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� Introduction

Today�s business enterprises can be viewed as a network of multiple heterogeneous in�

formation sources over which various complex business procedures are executed� These

information sources are the cornerstone of many organizational activities from decision

making to the rapid development of new information�based products and services� Hence�

the quality and accessibility of this information can be vital to an organization�s success�

These information systems are traditionally built to automate existing data�intensive busi�

ness functions� such as billing� that are otherwise performed manually in separate organi�

zational entities� By automating these functions separately� an enterprise typically ends

up with many stand�alone systems between which related information may be distributed

and not shared�

Using this set of information systems is an ever changing set of enterprise�wide op�

erations� As business requirements change� new procedures are introduced and others

become obsolete� Many of these procedures are composed of activities that manipulate

information at di�erent sites �	� �� �	� �
�� While many of the tasks in these activities

are automated� they are frequently invoked at di�erent times and by di�erent parts of

the organization� In some cases� certain dependencies between the applications can be

modeled and should be enforced �	� 

�� In other cases� these applications can be executed

with little constraint on their order or the time elapsed between their completion� In still

other cases� an activity may require all steps to be concurrently satis�ed immediately�

Furthermore� any particular step of a procedure could update some information which�

unbeknownst to it� has related information stored in other parts of the organization to

which the update should be propagated�

This type of environment is common and very prone to inconsistent management

of data across the enterprise� Most of these procedures are executed through informal�

and frequently manual processes� so rules about their execution are not always enforced�

Further� it is unlikely� and inappropriate� for a particular o�ce procedure� such as �update

the customer�s address�� to propagate its updates across the enterprise� especially if the

application was designed originally in a stand�alone fashion�

Automated support to rectify these problems must strike a balance between reliably

maintaining the consistency of the information stored in the environment and supporting

�exible� autonomous execution of existing applications that comprise complex enterprise

operations� The multidatabase framework described in this paper takes a step in this direc�

tion� It is a transparent transaction processing substrate upon which complex enterprise
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operations can execute� It has the following characteristics�

�� Flexible execution of autonomous� pre�existing applications is supported seamlessly

and forced invocations of them are triggered only when regular business procedures

fail� These business procedures may be manual or supported by an automated work

�ow management system ��� �	��

	� Interrelated data stored in heterogeneous databases can be maintained consistently

even if an application updates only part of the interrelated information�


� Existing applications operating on interrelated information can execute concurrently

with new distributed applications that need to share the same data�

Most of the prior work on multidatabase transaction management ��� �� ��� ��� 		� 	
�


�� has focussed on ways to integrate the transaction processing algorithms of disparate

DBMSs to achieve some correctness criteria such as global serializability �
�� or an approx�

imation of it such as quasi�serializability ��
�� Some propose that changes be made to the

local database system ���� 
��� while others propose that restrictions be placed on how

global transactions are submitted to the local databases ���� and how they can interact

with local transactions ���� Furthermore� those algorithms that do allow local transactions

to execute in the presence of global transactions �		� 	�� 	�� 
�� require global transac�

tions to be initiated by the global transaction manager and tightly control their execution

strategies�

The framework proposed in this paper departs from this work in at least three sig�

ni�cant ways� First� this framework makes the unique contribution of �loosely coupling�

pre�existing� local applications that update related information across disparate stores

into multidatabase transactions so that their execution can be managed as a whole� These

transactions could be thought of as global transactions that have been designed in a

�bottom�up� rather than �top�down� fashion� However� the execution of these loosely�

coupled multidatabase transactions is far more �exible than what distributed transac�

tion management protocols prescribe for the execution of global� �top�down�� distributed

transactions� This framework triggers the execution of pre�existing applications with a

transparent mechanism that does not violate their autonomy during regular execution� It

combines the advantage of consistent updates across multiple stores usually provided by

a global transaction management system with the �exibility of autonomous execution of

local applications�

	



Second� this framework incorporates the management of global �top�down� multi�

database transactions� local transactions that do not access information with related coun�

terparts in other systems� and loosely�coupled �bottom�up� multidatabase transactions

into one uni�ed framework� In the prior multidatabase transaction management work

outlined above� local transactions are generally modeled as single autonomous transac�

tions that share information with global transactions on an individual basis� However�

like liaison transactions executing at their respective local sites on the behalf of a global

transaction� a set of local applications distributed at di�erent sites can have relationships

between them that need to be managed in a multidatabase framework� The framework

proposed here is the only one� to our knowledge� that addresses this very real� and prac�

tical� aspect of complex� distributed information processing environments�

And third� unlike prior multidatabase transaction management work� it is not our goal

to devise new heterogeneous transaction management algorithms that enforce global se�

rializability� Indeed� the framework can be tailored to a number of di�erent correctness

criteria �including global serializability� and transaction management algorithms� We out�

line one implementation in ���� that allow inconsistency between related information stored

at disparate sites through unserializable interleavings of the various types of transactions

in the architecture� It is however bounded� and can be removed� In this paper� we outline

another implementation of this framework which relies on active database technology� and

ensures serializability� In both cases� the overall goal of harnessing existing interrelated

transactions together with global and local transactions into one uni�ed multidatabase

framework and retaining the autonomous execution of the pre�existing local applications

is maintained�

We start� in Section 	� by de�ning a model for the framework that is useful for un�

derstanding the update characteristics in the system� Section 
 details the consistency

constraints in multidatabase environments� Section � proposes an algorithm and describes

how it can maintain the consistency constraints� In section �� we suggest an implemen�

tation of the algorithm based on the active database technologies� And lastly� Section �

outlines some other research related to this approach and Section 
 concludes the paper�

� A Multidatabase Framework

In this section� we outline the major architectural components in our framework and a cat�

egorization of data and transactions upon which we base our multidatabase management

algorithms�






��� Architecture

The structure of our multidatabase framework is shown in Figure �� The multidatabase

system �MDBS� is implemented over a set of pre�existing� autonomous database systems�

fLDB�� LDB�� � � � � LDBmg� each of which manages its own data and supports execut�

ing� autonomous applications� The creation of this structure serves two purposes� First�

using the global transaction manager� applications can manipulate data in several local

databases simultaneously without having to know about the location or characteristics of

each� Second� it provides a mechanism to automatically maintain consistency between

related pieces of information stored across the local sites even if a transaction is submit�

ted to update only one of them� In this fashion� the architecture provides a transparent

overlay onto pre�existing systems which allows them to interoperate in a way that ensures

consistency of the related information that they store�

.    .    .

.    .    .

Wrapper 2 Wrapper m

Liaison 1 Liaison 2

LAU transactions

Global 
Transaction

Manager

LDB1 LDB2 LDBm

Liaison m

Wrapper 1

Local Transactions

Global Transactions

Figure �� MDBS Model

The transactions executing in this architecture can be partitioned into three types�

First� local transactions �LTs� are those submitted to a local site to update information

that has no related counterpart stored elsewhere� They are denoted LT �
Sm
i�� LTi for

m local databases� where LTi � fLTi��� LTi��� � � � � LTi�ng is a set of local transactions in

LDBi� Second� local asynchronous update transactions �LAUs� are those submitted to a

local site to update information that does have some related counterpart �e�g� a replica�

stored in other local databases in the MDBS� And third� global transactions �GTs� are
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those submitted to the global transaction manager to access several data items stored

in di�erent local sites� A global transaction� GTi� consists of a set of subtransactions�

fGTi��� GTi��� � � � � GTi�mg where subtransaction GTi�j accesses local database LDBj � A

transaction is a sequence of read and write operations and ended with either a commit or

an abort operation�

A local schedule is a sequence of transaction operations executed at a local database�

A global schedule is the combination of all local schedules� A global subschedule �
�� is

global schedule restricted to the set of global transactions in the global schedule�

The execution of global transactions is carried out by the global transaction manager

�GTM�� shown at the top of Figure �� The GTM maintains information to translate

global transaction requests into local requests �and vice versa� and the current state of the

transactions in the system� It communicates with the local systems via a liaison process�

depicted as ovals in Figure �� that executes at a local site� Each liaison is responsible for

translating the global request into the local system�s language and submit it to the local

database �LDB�� We assume that these transactions at each local site are managed by a

local transaction manager �LTM��

For each local database� there is a wrapper process that maintains information about

transactions updating information which has related counterparts stored in other local

databases in the MDBS� This information is used to help maintain consistency of the

local copy� this process is detailed in section �� As the slanted lines in Figure � depict� the

wrapper provides the same interface as the local database so that existing applications can

continue to execute without modi�cation in the multidatabase architecture� We assume

that the LTMs are not aware of each other� and that if a local transaction is submitted

to a LTM� no other LTM is aware of that transaction� LTMs perform their operations

without the knowledge of other LTMs or the GTM� Furthermore� we assume that each

LTM interface accepts at least read� write� commit� and abort operations�

��� Types of data

Intuitively� there are two types of data in this model� local data and global data� Local data

is information that has no related counterpart in other information sites� It was either

pre�existing in the local databases or created by local transactions after the development

of the MDBS� Global data� on the other hand� is related information that needs to be

managed �globally� to maintain its consistency� though this management process may

itself be distributed� This information may have been designed independently prior to the
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development of the multidatabase or created later by global transactions via the global

transaction manager� We refer to global data that are created prior to the development

of the multidatabase as conceptually interrelated data and those that are created later by

global transactions via the global transaction manager as interrelated data� We say this

information is conceptually interrelated since� for example� there may be data items that

are conceptually equivalent� but implemented di�erently in the autonomous sites� The

word �conceptually� describes the property that these �global� data will be updated by

local transactions�

There are a number of ways in which information can be interrelated across local

databases �	� 

�� One example� that we will use for illustration in the remainder of this

paper� is replication� We say that two data items are conceptually replicated �CRep� if it

has been determined that they are in fact referring to the same concept� but have been

implemented di�erently on their respective heterogeneous platforms� We refer to these

conceptually replicated data items as CRep data items�

��� Local Asynchronous Update Transactions �LAUs�

LAUs allow applications to update conceptually related information at a local site as if

it were the only copy� Hence� a pre�existing local application can autonomously update

any information in the multidatabase architecture� without changing its code or making

other special provisions� and still be guaranteed that all information related to it in other

autonomous databases will eventually be updated accordingly� The multidatabase archi�

tecture does this with a mechanism that triggers the execution of related LAUs at the

corresponding local sites in a very �exible� yet controlled manner� This mechanism is

achieved through the wrapper processes at each local site in the architecture�

It is important to note that our multidatabase framework is designed to be as unob�

trusive to existing database environments as possible� Hence� the automated mechanisms

for consistency maintenance are unbeknownst to users� Furthermore� they work in concert

with regular business operations� That is� if regular business operations work properly�

the MDBS can detect it� and if they fail� the system ensures that updates are made auto�

matically� In ����� this was achieved by allowing a certain grace period during which the

system would wait for regular transactions �local applications� that implemented appro�

priate LAUs to execute� If the grace period expired� the CRep was automatically brought

into a consistent state by the MDBS� This paper describes a more aggressive consistency

mechanism in which the MDBS automatically restores consistency without waiting for
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users to initiate local applications �LAUs�� However� if an LAU is submitted manually �as

part of regular business operations�� the MDBS can detected that is a duplicate update

and simply returns an a�rmative status to the user� This mechanism is described in

section ��

For each LAU updating a CRep data item in a local database� we assume there are other

LAUs which update the corresponding CRep data items in other local databases� These

LAUs are grouped conceptually into a global LAU �GLAU �� A GLAU� GLAU�� is a set

of LAUs� LAU��A� LAU��B� � � � � LAU��M � which perform semantically equivalent updates

on conceptually replicated data items� The implementation of this architecture described

in ���� actually instantiates GLAUs in data structures of the GTM and manages their

execution through coordinated activities of the GTM and the wrapper processes� However�

in the implementation described in this paper� GLAUs are virtual transactions in the sense

that no data structure is created speci�cally to track their creation� or completion� or

which LAUs de�ne them� Instead� the execution of the interrelated LAUs is automatically

managed independently by the wrapper processes without creating a GLAU data structure�

This is made possible by the use of active database technology� as described in section ��

� Consistency Constraints in a Multidatabase Architec�

ture

In this section� we �rst outline some of the types of consistency constraints which should

be enforced in a multidatabase environment� We then introduce a new notation� called

a data dependency graph� for representing these constraints� A data dependency graph

provides a conceptual model for the implementation of constraint enforcement algorithms

in multidatabase architectures� The graph serves as a reference model to describes how

information is related in a multidatabase architecture and what precedence is used in

performing updates� Moreover� a data dependency graph can be used as the basis for

a optimization of a consistency management algorithm� a discussion of this optimization

process is beyond the scope of this paper�

It is interesting to note that the particular implementation we propose in section �

does not make explicit use of a data dependency graph or other global information� The

consistency enforcement is managed inherently by the active database technology� yet it

still adheres to the relationships described by the graph� Another implementation of this

algorithm� on the other hand� could require the graph to be stored explicitly in some global






data structures as frequently found in distributed transaction management systems�

��� Consistency Constraints

A database is said to be consistent if it satis�es a set of consistency constraints �	�� 	���

For example� an Equivalence constraint on replicated data requires the values of replicated

data to be equivalent� Consistency constraints can be grouped into two categories� Global

consistency constraints are de�ned over distributed data whereas local consistency con�

straints are de�ned over data in a single database� In multidatabase environments� local

consistency constraints are maintained by LDBs and the global consistency constraints

are maintained by the MDBS�

Global consistency constraints can be partitioned into two categories� The �rst cate�

gory are de�ned on conceptually interrelated data created prior to the development of the

multidatabase� The second category are de�ned on interrelated data created by global

transactions via the global transaction manager� It is very di�cult to enforce the global

consistency constraints that belong to the �rst category� Conceptually interrelated data

can be accessed by both local and global transactions� In the multidatabase environments�

it is almost impossible to coordinate the execution of local transactions and global trans�

actions in a synchronous manner when local autonomy is to be maintained ���� �
�� If

local autonomy is preserved� local transactions and global transactions are interleaved ar�

bitrarily� As a result� global consistency constraints in the �rst category can be violated�

The following example illustrates this phenomenon�

Example �

Consider a multidatabase that consists of three local databases� LDBA� LDBB

and LDBC � There are three CRep data items� xA� xB and xC � located

at LDBA� LDBB and LDBC respectively� Suppose there are three LAUs�

LAU��A� LAU��B� and LAU��C � at each local database� Each LAU reads the

CRep data item and increases it by ���

LAU��A � xA �� xA � ��

LAU��B � xB �� xB � ��

LAU��C � xC �� xC � ��

There is a CRep Equivalence constraint which asserts that the values of three

�



CRep data items are equivalent�

CRep Equivalence constraint � xA � xB � xC

Assume local transactions can be submitted� executed� and committed au�

tonomously� Suppose LAU��A is executed and committed� without losing gen�

erality� The CRep Equivalence constraint is violated after LAU��A commits

because xA is now greater than xB and xC by ���

In ����� we de�ned the inconsistency in the CRep data items of Example � as be�

ing temporally inconsistent and proposed a mechanism that eventually brings all CRep

items up to date� Another type of inconsistency� called interleaved inconsistency� was

also introduced� it is created in CRep data items if other transactions� either local or

global� are allowed to update a CRep data item while temporal inconsistency exists �e�g�

a new update transaction interleaves with LAU��A� LAU��B and LAU��C�� In this case�

database inconsistency could grow in an uncontrolled manner� ���� proposes a mechanism

to control this type of inconsistency and remove it when the level becomes too high� The

implementation described in this paper� on the other hand� allows temporal inconsistency

in the databases but avoids transactions reading temporally inconsistent data and avoids

interleaved inconsistency altogether as outlined in section ��

��� Data Dependency Graphs

Data dependency �DD� graphs are a new notation for representing consistency constraints

in multidatabase architectures� They provide a conceptual model for various implemen�

tations of consistency enforcement algorithms� Causal dependency is one special type of

relationship depicted in the DD graphs and is a unique property of multidatabase archi�

tectures in which LAUs can execute on CRep data items� For two data items� x and y

where the value of y is derived from the value of x� if x is a CRep data item� then we say

that that y causally depends on a consistent value of x �that is� the CRep Equivalence

constraint for x is satis�ed�� In distributed databases� it is unnecessary to state the causal

dependency constraint explicitly because replicated data are consistent� However� in mul�

tidatabases� CRep data item are seldom consistent� The Causal Dependency constraint

has to be speci�ed explicitly in order to ensure the correct execution of transactions�

The DD graph is a mixture of a directed and an undirected graph� Data are represented

as nodes and the edges represent relationships between them� A data item x is related
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to data item y if there is an edge between them� We use a directed edge to represent

the causal dependency and an undirected edge to represent non�causal relationship� A

directed edge from x to y means that the value of y depends on consistent value of x�

In the DD graph� we use a dotted circle to represent a CRep Equivalence constraint� All

related CRep data items have undirected edges to a virtual node �represented as dotted

circle�� In example �� if the equivalence constraint on xA� xB and xC is maintained�

transactions that access the CRep data item x can arbitrary access xA� xB or xC without

worrying about which one is the consistent copy� We use a dotted directed edge to represent

that CRep Equivalence constraints are always enforced� Note that dotted nodes and edges

represent concepts but not real objects or dependency� The following example shows how

to use DD graph constructs to represent various relationships between data items�

Example �

Consider the following consistency constraints�

y � z

xA � xB � xC

Suppose there is a transaction that updates y based on the value of xA� for

instance� y � xA ���
�� We use a causal dependency to describe the fact that

y depends on the consistent value of xA� Figure 	 shows the data dependency

graph� The virtual node �dotted circle� represents the CRep Equivalence con�

straint of xA� xB and xC � A virtual directed edge �dotted line� from x to y

is used to represent the implication that if the CRep Equivalence constraint is

enforced� the value of y can depend on any one of xA� xB� or xC � i�e�� y can

depend on the virtual data node x�

We observe that the Causal Dependency constraint is guaranteed if the CRep Equiva�

lence constraint is maintained �� Therefore� once CRep Equivalence constraints are main�

tained� Causal Dependency constraints are maintained implicitly� From Example 	� this

means that y can use any value from xA� xB� and xC � in its calculation as long as the

�This does not imply a consistency constraint y � xA or y � xA 
 �	 because only y depends on the
value of xA but not vice versa�

�The reverse is not true because a data item can be causally dependent on a consistent CRep data item
although the CRep Equivalence constraint is violated�
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Figure 	� Data Dependency Graph

CRep Equivalence Constraint over x is maintained� In the next section� we show how

consistency constraints can be enforced in the multidatabase environments�

� Enforcing Consistency Constraints in Wrappers

Various techniques for consistency constraint enforcement in distributed database sys�

tems �
�� 
��� such as di�erential relations or assertions� cannot be used to describe the

Causal Dependency constraints and the CRep Equivalence constraints in this architecture�

These algorithms will detect that all LAUs are violating the CRep Equivalent contraints

and discontinue their execution� In this section� we propose an algorithm that can handle

these special types of consistency constraints without aborting any transaction� Then�

in the next section� we suggest a possible implementation and show that this implemen�

tation can be generalized to handle all types of consistency constraints in multidatabase

environments�

��� Data Structures

For each CRep data item in the local database� there are two lists of LAUs associated with

it in its respective wrapper process� One list is called the �To�Be�Submitted� �TBS� list

and the other is called the �Have�Committed� �HC � list� The TBS list records the sequence

of �to�be�submitted� LAUs� which have to be submitted to the LDB in order to restore the

consistency of CRep data item� The HC list records those �have�committed� transactions�

which have already been submitted by the wrapper process and successfully committed�

The TBS list is used to restore consistency of CRep data items and the HC list is used

to trap any possible duplicate submission of an LAU from a local application� Each entry

in the list stores the LAUs identi�er and the transaction�s parameters� This information

can be used to decide whether two LAUs are semantically equivalent by comparing their

identi�ers and the parameters� These LAUs in the lists are stored in the chronological

order�
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For each CRep data item� there is a consistency indicator associated with it in the

respective wrapper process� This consistency indicator states whether this CRep data item

is consistent with respect to other CRep data items in the MDBS and if it is inconsistent�

the consistency indicator will indicate which CRep data item is consistent� If a CRep data

item is updated by an LAU� all related CRep data items in other local databases are set to

be inconsistent� Referring to the DD graph in Figure 	� if xB is being updated by an LAU�

xA and xC are said inconsistent� and so does the virtual node x� A consistency marker

is created for each virtual node on the DD graph� The consistency marker points to the

CRep data item that is consistent� If the CRep Equivalence constraint is maintained� i�e�

all CRep data items are consistent� and equal to each other� the consistency marker points

to the respective virtual node�

��� Enforcing CRep Consistency and Causal Dependency Constraints

We propose a new Dynamic Primary Copy �DPC � algorithm to enforce CRep Equivalence

and Causal Dependency constraints in our MDBS framework� The CRep Equivalence con�

straint is violated by asynchronous execution of LAUs� The Causal Dependency constraint

is violated if a data item is causally dependent on a CRep data item whose CRep Equiv�

alence constraint is currently violated� The DPC algorithm enforces these constraints

using the TBS and the HC lists of CRep data items� Transactions on the TBS list of

CRep data item x can be classi�ed into two categories� A transaction falls into the �rst

category if x is the only data item it updates� A transaction falls into the second category

if it updates data items besides x� The DPC algorithm has two major components � the

virtual execution which handles the �rst category of transactions and the actual execution

which handles the second category of transactions�

Virtual Execution overwrites the inconsistent CRep data item with the consistent value

from the CRep data item to which the consistency indicator points� Since the overwriting

does not require the actual execution of the transactions on the TBS list� the Virtual

Execution procedure is more e�cient than the Actual Execution procedure� For those

transactions on the TBS list updating other data items except the CRep data item�

overwriting the CRep data item is not enough and the algorithm has to update all data

items that the transaction supposes to update� Actual Execution procedure is designed to

handle these transactions�

�	



����� Virtual Execution

The Virtual Execution �VE� procedure simulates the execution of the transactions on the

TBS list of the CRep data item xj by copying the value of the consistent CRep data item

xi over it when a transaction requires an consistent copy� We refer to transactions on a

TBS list as TBS transactions �TBSTrxns�� The VE procedure takes advantage of the

fact that we know which CRep data item in the MDBS is consistent using the consistency

indicator associated with each CRep data item� It is triggered when there is a transaction

requesting an CRep data item that is currently inconsistent� We refer to this transaction

as a requesting transaction �RTrxn�� We use the following example to illustrate the steps

in the VE procedure�

Example �

Suppose there are two CRep data items� xA and xB in LDBA and LDBB

respectively and xA � xB � �� initially� The �rst graph in Figure 
 depicts

the initial DD graph� The virtual node x shows that xA and xB are involved in
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Figure 
� Data Dependency Graph of Example 


a CRep Equivalence constraint� The asterisk in the virtual node x represents

the consistency marker of x and shows that the CRep Equivalence constraint

is maintained� There are two GLAUs� GLAU� and GLAU� and they have

LAUs in both local databases� Suppose all LAUs are accessing xA or xB

only� Consider the scenario that LAU��A of GLAU� is submitted to LDBA to

increase xA by �� and committed� The consistency indicator of xB is set to

FALSE by the wrapper process B and LAU��B is now on the TBS list of xB�

This means that LAU��B has to be submitted before any transaction accesses

xB so that the CRep Equivalence constraint is enforced� The second DD graph

in Figure 
 depicts the DD graph after LAU��A is committed� The consistency

marker on xA node indicates xA is the consistent copy�

�




Suppose that LAU��B� which multiplies xB by 	� is submitted to wrapper B�

The VE procedure is triggered before the RTrxn� LAU��B� is submitted to

LDBB� The VE procedure will copy the consistent value of x� i�e�� xA to

xB� and then move the TBSTrxn� LAU��B� entry from the TBS list of xB to

its HC list� We refer to the copy operation as the pre�requisite action of the

transaction LAU��B and the moving of the TBSTrxn from the TBS list to

HC list as the virtual execution of the TBSTrxn� xB is now consistent and

the CRep Equivalence constraint is maintained� The RTrxn� LAU��B� can be

submitted to LDBB� After the RTrxn commits� CRep Equivalence constraint

is violated again� Now� the xB is the consistent copy and the LAU��A is on the

TBS list of xA� The respective DD graph is shown as the third DD graph in

Figure 
�

The CRep data item marked by the consistency marker is an analog to the primary

copy update ��� that deals with data replication in distributed databases� However� in our

DPC algorithm� every CRep data item can be the primary copy and the location of the

primary copy is dynamically changed� As the TBSTrxn� LAU��B� is executed virtually by

copying the e�ect of its corresponding LAU �LAU��A�� we use the HC list for xB to trap

any duplicate transaction LAU��B that might be submitted by a local user manually later

on� If the wrapper traps the LAU��B and determines that it is a duplicate of one on the

HC list� it will signal that LAU��B commits to the user� though it will not actually execute

it� We refer to this sequence of operations as the Virtual Execution of LAU��B�

����� Actual Execution

Virtual Execution is not su�cient to maintain consistency if a TBSTrxn updates more

than one data item� For example� if the TBSTrxn� LAU��B� in example 
 updates y in

addition to xB� Virtual Execution only re�ects the update on xB because it only copies the

consistent value of x to xB but does not update the value of y� Actual Execution �AE��

on the other hand� will ensure that y is updated as well� The Actual Execution procedure

submits all updates to the local databases rather than updating wrapper structures as

Virtual Execution does� Lists and consistency marker manipulations in Actual Execution

are the same as they are in the Virtual Execution�

Example �

��



Consider further the scenario in which the TBSTrxn� LAU��B� of example


� updates y in addition to xB� When the RTrxn� LAU��B� is submitted to

wrapper B� the TBSTrxn� LAU��B� is identi�ed as the pre�requisite action of

LAU��B by the AE procedure and it is submitted to LDBB by the wrap�

per process� During the execution of LAU��B� LAU��B is suspended� When

the LAU��B commits� the xB becomes consistent and y is updated as well�

The RTrxn� LAU��B� can resume its execution �being submitted to the LDBB

by the wrapper process�� Nested triggering of transactions may result if the

LAU��B accesses another CRep data item� say zB� which is inconsistent� In this

case� LAU��B will be suspended until all TBSTrxns of zB are either virtually

or actually executed�

����� The DPC algorithm

The purpose of the DPC algorithm� shown in Figure �� is to ensure all CRep data items

in T �s Read set are consistent� Each transaction T accesses two sets of data � the Read

set and the Write set� For each CRep data item� x� in T �s Read set� an instance of

DPC Pre�T�x� is initiated before T is submitted to the local database� The major part of

the DPC Pre procedure is to execute all pending transactions on x�s TBS list� For each

TBSTrxn U � if x is the only data item it updates� the VE procedure will be executed�

Otherwise� the AE procedure will be executed� After all TBSTrxns are committed� the

consistency indicator of x will be set to TRUE � When all DPC Pre procedures for the

Read set of T are completed� the data items in the Read set are guaranteed consistent and

T will be submitted to the local database�

Before T is committed in the local database� for every CRep data items x in the

Write set of T � DPC Post�T�x� will be executed� The DPC Post procedure updates

the corresponding TBS list of all related CRep data items in other local databases and

their consistency indicator� When the DPC Post complete� T will be committed in local

database�

��� Correctness of the DPC algorithm

As mentioned previously� the correctness of the algorithms used in this architecture can

be tailored to di�erent criteria� The DPC algorithm maintains serializable execution of

any transaction� i�e� GLAUs and GTs� that access CRep data items� In addition� this
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    END;
  ENDIF

END

  IF TBS(x) is empty THEN

  ELSE
    END;

    IF T is in TBS(x) THEN

    ELSE
      TBS’(x) = TBS(x);
    ENDIF

    BEGIN
    WHILE TBS’(x) is not empty

      REMOVE U FROM TBS(x) and TBS’(x);

      ELSE

      ENDIF
    END /*WHILE*/

  ENDIF

      TBS’(x) = all transactions U before T;

      U = HEAD(TBS’(x));

      IF number of element in write-set(U) is 1
      APPEND U TO HC(x);

        Actual-Execute(U);

        Vitual-Execute(U);

    SET consistency-indicator(x) to TRUE;

  For each site i

    to the same GLAU of T;
    FIND the CRep y that links to the same

    FIND the LAU transaction V that belongs

    virtual node in DD graph that x links;
    APPEND V to the end of TBS(y);

END

    SET consistency-indicator(y) to x;

  ENDFOR

BEGIN

DPC_Post(T,x)

Figure �� The Dynamic Primary Copy �DPC� algorithm

architecture contains a GTM to manage the execution of general GTs that can access non�

CRep data as well� Depending on the type of concurrency control algorithm implemented

in the GTM� the overall consistency criteria of the system will vary� In this section�

we describe the di�erent types of schedules and associated correctness criteria in this

implementation of our framework�

There are three types of schedules in this architecture� First� a local schedule is a

sequence of transaction operations executed at a local database� Local schedules in this

framework consist of transactions from local applications� LAUs� and subtransactions of

GTs� The LTMs maintain serializable local schedules�

Second� a global subschedule �
�� is the global schedule restricted to the set of GTs in

the system� Given that a global concurrency control algorithm� such as the one proposed

in �	
�� is implemented in the GTM� the global subschedule is also serializable�

Third� we introduce a new type of schedule for multidatabase architectures� called

the GLAU subschedule� which is the global schedule restricted to the set of GLAUs in

the system� The DPC algorithm ensures that the GLAU subschedule is serializable�

Suppose there are two GLAU transactions� GLAU� � LAU��A� LAU��B� � � � � LAU��m and

GLAU� � LAU��A� LAU��B� � � � � LAU��m� accessing CRep data items xA� xB� � � � � xm in

��



LDBA� LDBB� � � � � LDBm respectively� Assume that LAU��i� accessing xi� is the �rst

LAU among all LAUs of GLAU�� Later� there will be LAU��j where j �� i accessing xj

at LDBj � Also assume that LAU��i accesses xi before LAU��i� without losing generality�

Then� the DPC algorithm ensures that all LAU��j � where j �� i� are executed before all

LAU��j � The proof is trivial� When LAU��i accesses xi and commits� LAU��j � where j �� i�

is appended on the respective TBS list of xi� When LAU��j executes� LAU��j will be either

virtually or actually executed by the DPC algorithm before LAU��j executes� GLAU� is

serialized before GLAU��

The DPC algorithm ensures the serializability of all transactions which access CRep

data items� This includes GLAUs and GTs� but not local transactions since LTs� by

de�nition� do not access CRep data items� Hence� we also need to consider the correctness

criteria enforced on the interleavings of GLAUs and GTs� It can easily be shown that

the DPC algorithm also maintains a serializable execution of these types of transactions�

The argument is similar to the one above by replacing one of the GLAU with a global

transaction�

Now consider the global schedule that is the interaction of local transactions� LAUs

�i�e� GLAUs�� and global transactions� If the GTM module in the MDBS is equipped with

any traditional distributed concurrency control algorithm in which local indirect con�ict

is unavoidable� the global schedule in our framework is equivalent to QSR � ��
�� QSR

requires the global subschedule to be serializable� which is maintained by the GTM and

the DPC algorithm� and local schedules to be serializable� which are maintained by LTMs�

If the GTM module in the MDBS is equipped with a multidatabase concurrency control

algorithm� in which local indirect con�ict is avoided� such as the one proposed in �	
�� the

global schedule in our framework is serializable� The GTM module enforces serializable

interaction between global transactions and local transactions and the DPC algorithm

ensures serializable execution of global transactions and LAUs�

It is worth noting that the DPC algorithm is designed explicitly to ensure consistency

for multidatabase architectures in which GLAUs exist � which includes most practical

heterogeneous database environments� Prior multidatabase algorithms and architectures�

such as those designed to maintain QSR ���� and the approach proposed in �	
�� do not

acknowledge the existence of GLAUs� and� therefore� cannot maintain a consistent multi�

database in our framework� These algorithms don�t manage the concurrent execution of

LAUs with other types of transactions� nor do they maintain the consistency of CRep data

�Local indirect con�ict is allowed in QSR�

�




items and or the Causal Dependency constraint� Hence� it is important to understand that

though the resulting global schedule in this architecture can be serializable or QSR �de�

pending on the global concurrency control implementation�� the architecture itself solves

a signi�cantly di�erent� and enhanced� problem from that of prior multidatabase work�

� Enabling Technologies

The wrapper process has an active role in the MDBS� It monitors the transactions and

automatically triggers consistency enforcement mechanism� To facilitate the implementa�

tion of the DPC procedures� the wrapper process should ful�ll two requirements� First� it

should have e�cient and e�ective storage management to manage constraints and relevant

information� such as the TBS and the HC lists� Second� it should provide the facilities to

specify and evaluate the constraints� which can be speci�ed as a set of rules� The active

database database management systems which embed rules in a DBMS ���� 
�� ful�ll the

requirements of the wrapper process� In this section� we describe an implementation of

wrapper processes applying the active database technology�

��� An Active Database Implementation

Active database management systems allow rules to be speci�ed declaratively� The Event�

Condition�Action �ECA� rule proposed in ��� ��� allows the triggering event and condition

of rules be speci�ed� An event can be a database operation� a temporal event or a signal

from arbitrary processes� The condition is a predicate� which can be specify as a database

query� and the action part speci�es a program� If the condition is satis�ed� the action is

executed� The system monitors the events� evaluates conditions and triggers the corre�

sponding actions when the conditions become true� and schedules tasks to meet the timing

requirements� without user or application intervention�

��� ECA rules

For each CRep Equivalence constraint which describes the relationship among data items�

x�� x�� � � � � xm� 	m ECA rules will be generated� two for each CRep data item� Figure �

depicts the two generic ECA rules�

The ECA rules enforce the CRep Equivalence constraints and the Causal Dependency

constraints at the same time� Recall that the Causal Dependency constraint states that

the data item being updated depends on another consistent data item� The Read ECA rule

��



CLASS: Update

Parameter: T: Triggering Transaction

           x: CRep accessed by T

EVENT: Update(x)

CONDITION: T is LAU

ACTION: DPC_Pre before Update

        DPC_Post after Update before Commit

CLASS: Read

Parameter: T: Triggering Transaction

           x: CRep accessed by T

EVENT: Read(x)

ACTION: DPC_Pre before Read

CONDITION: consistent_indicator(x) = FALSE

Figure �� The generic ECA rules

ensures that every CRep data item is made consistent before being read� As a result� the

Causal Dependency constraint is maintained� The Update ECA rule records the activities

that may violate the CRep Equivalence constraints�

The Update ECA rule ensures that the DPC Pre procedure is executed before the up�

date operation of the triggering transaction� This guarantees that any pending transaction

on the TBS list is executed before the data item is overwritten� The DPC Post procedure

is executed before the triggering transaction is committed� The Read ECA rule ensures

that the DPC Pre procedure is executed before the read operation� Figure � shows an

example of a triggering transaction after the corresponding ECA rules are triggered� The

elegant advantage of applying active database technology in this framework is that every

rule functions autonomously� There is no global information� such as the data dependency

graph� stored in the multidatabase systems� Hence� behavior usually implemented by sep�

arate control processes in a MDBS or distributed DBMS can be elegantly distributed to

each local site and executed autonomously�

Transation T:

      .
      .

      .
      .

END

BEGIN

  x := y + 10;

  COMMIT;

Modified T:
BEGIN
      .
      .
  DPC_Pre(T,y);
  DPC_Pre(T,x);

      .
      .
  DPC_Post(T,x);
  COMMIT;
END

ECA

  x := y + 10;

Figure �� The ECA Triggering

As the wrapper processes implement the event monitoring and rule triggering functions�

general data integrity constraints can be speci�ed as ECA rules �	��� As a result� all kinds

of data integrity constraints in multidatabase environments can be speci�ed systematically

and enforced autonomously�

��



For general data integrity constraints� the event part speci�es the operation that the

constraint has to be examined �� The condition part speci�es the data integrity constraint�

such as referential integrity� non�null attribute� unique�key and arithmetic relationships�

If the data integrity constraint is violated �the condition becomes true�� the action part

will abort the triggering transaction�

� Other Related Work

In addition to the various multidatabase transaction management algorithms outlined in

the introduction� research related to our approach can be categorized by three areas� mul�

tidatabase architectures� management of interrelated data dispersed across heterogeneous

databases� and algorithms for the management of replicated data in distributed systems�

In this section� we compare our approach with representative contributions to each of these

�elds�

Various multidatabase architectures have been proposed in systems such as Omni�

base �
	�� Interbase �	��� A la carte ����� and GTE�s Distributed Object Management �
�

project� All of these systems share the approach in our framework of using liaison pro�

cesses and wrappers to provide access to heterogeneous database management systems�

The Local Access Manager of Omnibase and the Remote System Interface of Interbase

each act as an interface at respective local sites� The Autonomous Manager in A la carte

and the Local Application Interface in DOM each take this idea one step further by serving

as a placeholder for local concurrency control mechanisms� if a local store does not provide

one itself� In either case� the liaison processes act mostly in a passive capacity responding

to liaison transaction requests� but provide no global management capabilities� In our

framework� on the other hand� the wrapper processes play an important part in the con�

sistency management of the overall architecture� They track the execution of pre�existing

transactions over interrelated data in a loosely�coupled way� Thus the wrappers are active

contributors to the overall transaction management in the framework rather than passive

interfaces�

More closely related to our approach are the agents proposed in �
�� for the man�

agement of nested transactions in federated database architectures� These agents are

comprised of various components� such as an analyzer and a scheduler� that play an active

part in the management of local transactions created from nested transactions executing

�In most of the cases� it will be the update operation�
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over a distributed architecture� The wrapper processes in our framework share this active

role� but focus on the management pre�existing transactions over interrelated data instead�

Another related area is that work on the management of conceptually related data in

heterogeneous environments� A prominent contribution is the Interdatabase Dependency

Schema �IDS� �	�� 

� in which data dependencies are speci�ed and managed� Polytrans�

actions �	��� which include system generated component transactions� are initiated by the

IDS to maintain consistency of data according to the speci�ed data dependencies� Our

framework has a similar goal in the management of conceptually related information�

However� a primary goal of our framework is to manage the execution of pre�existing

transactions that are already updating interrelated information� This goal is achieved in

addition to maintaining interdatabase dependencies via global transactions designed in a

�top�down� fashion �e�g� Polytransactions in IDS and GTs in our framework��

The work on Quasi�Serializability �QSR� ��
� ��� is relevant to the scheduling of pre�

requisite actions in the wrapper process during the execution of the DPC algorithm� QSR

is a correctness criterion for the MDBS� It is less restrictive than serializability which is

di�cult to maintain with the local autonomy requirement� QSR requires all local histories

to be serializable and the global subschedule to be serializable� It assumes that there is

no global data integrity constraint �except the restrictive global replication in which local

transactions cannot directly update replicated data� and there is no intra�transaction

dependency� The DPC algorithm and the GTM module can produce a global schedule

equivalent to QSR� However� our framework focuses on the enforcement of global data

integrity constraints on data items at di�erent sites and the management of the execution

of pre�existing local transactions which access conceptually replicated data items� Prior

multidatabase frameworks and associated correctness criteria� such as QSR� do not manage

these types of transactions�

Lastly� algorithms to manage replicated data e�ciently� such as Quasi�copy ��� and

Lazy Replication �	��� have relevance to this work� In the quasi�copy approach� updates

are made at a pre�de�ned primary site or set of sites� Inconsistency is allowed between

the primary site and other replicated sites� and can be restored by sending the updated

image from the primary site to the replicated sites� However� generally in multidatabase

environments� and certainly in the GLAU framework proposed here� it is most unlikely

to have a primary site for conceptually replicated data� In our framework� an LAU can

update a CRep data item at any site� Thus� our framework is more �exible and able to

accommodate many di�erent interwoven enterprise operations initiated anywhere in the

organization�
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The Lazy Replication approach requires clients �transactions in the terminology of

this paper� to specify a prede�ned� causal order that de�nes which other transactions it

depends on� This information is used to determine in what order transactions can access

replicated data� This approach is also incompatible with our framework since LAUs are

pre�existing� autonomous transactions that are not aware of each other� It is true� however�

that TBS list maintained by the wrapper process for each CRep data item maintains a

list of transaction execution� This list is somewhat similar to the prede�ned ordering in

Lazy Replication in that the system tracks information about which transactions should

execute to make the item consistent� The di�erence is that� in our framework� the list is a

dynamic structure that can adapt to any sequence of transaction execution� whereas the

Lazy Replication approach limits transaction access a�priori according to the prede�ned

sequence�

� Conclusion

We have introduced a framework that can be used to combine the �exible execution of

related� pre�existing applications with more traditional distributed transaction processing�

Using this framework� information that is related either through some existing enterprise

operations� or by basic de�nitions such as replication� can be managed consistently even

if it is stored in heterogeneous databases�

An important design goal of this framework is to be able to accomodate a spectrum

of autonomy in multidatabase management� At one end of the spectrum� local systems

surrender autonomy to be tightly controlled by a global multidatabase management sys�

tem� though a rather impractical approach� consistency enforcement can be guaranteed�

At the other end of the spectrum� local systems maintain total autonomy with little or

no coordination between them� the �exibility of this approach may come at the price of

�temporarily� inconsistent information in the architecture�

The approach described in this paper is just one point on this spectrum in which

traditional consistency criteria and local autonomy are maintained using active database

technology� In this implementation� the wrapper processes and associated triggering pro�

cedures are implemented as active database applications� Other future work include study

of how the DPC algorithm can be optimized and re�ned� how this framework supports

�exible transactional work �ow models and the utility of this architecture in the migration

of heterogeneous legacy systems into new computing architectures�
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