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Abstract 

The need to transform data between heterogeneous databases 
arises from a number of  critical tasks in data management. These 
tasks are complicated by schema evolution in the underlying 

databases, and by the presence of  non-standard database con- 
straints. We describe a declarative language, WOL, for specifying 
such transformations, and its implementation in a system called 
Morphase. WOL is designed to allow transformations between the 
complex data structures which arise in object-oriented databases 
as well as in complex relational databases, and to allow for rea- 
soning about the interactions between database transformations 

and constraints. 

integrating the US Cities-and-States and European-Cities- 
and-Countries databases shown in Figures 1 and 2. The 
graphical notation used here is inspired by [2]: the boxes 
represent classes which are finite sets of objects; the arrows 
represent attributes, or functions on classes. 

state 

( CityA 1 [ StateA 1 

name l * capital I ~name 
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Figure 1: Schema for US Cities and States 

1 Introduction 

Problems such as reimplementing legacy systems, adapting 
databases to schema evolution, integrating heterogeneous 
databases, and mapping between interfaces and the under- 
lying database all involve some form of transformation of 
data. Implementing such transformations is a critical task 
in data management. 

In all such data transformations the problem is one of map- 
ping instances of one or more source database schemas to 
an instance of some target schema. The schemas involved 
may be expressed in a variety of different data-models, and 
implemented using different DBMSs or other kinds of data 
repositories. Incompatibilities between the sources and tar- 
get exist at all levels - the choice of data-model and DBMS, 
the representation of data within a model, the value of an 
instance - and must be explicitly resolved within the map- 
pings. 

Example 1.1: As a simple example, consider the problem of 

*This research was supported in part by DOE DF,-FG02-94-ER-61923 
Sub 1, NSF BIR94-02292 PRIME, ARO AASERT DAAH04-93-G0129, 
ARPA N00014-94-1-1086 and DOE DE-AC03-76SF00098. 
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Figure 2: Schema for European Cities and Countries 

The first schema has two classes: City a and StateA. The 
City A class has two attributes: name, representing the name 
of a city, and state, which points to the state to which a city 
belongs. The StateA class also has two attributes, represent- 
ing its name and its capital city. 

The second schema also has two classes, this time City E 
and Country E. The City e class has attributes represent- 
ing its name and its country, but in addition has a Boolean- 
valued attribute is_capital which represents whether or not 
it is the capital city of a country. The Country E class has 
attributes representing its name, currency and the language 
spoken. 

Suppose we wanted to combine these two databases into a 
single database containing information about both US and 
European cities. A possible schema is shown in Figure 3, 
where the "plus" node indicates a variant. Here the City 
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classes from both source databases are mapped to a single 
class City T in the target database. The state and country at- 
tributes of the City classes are mapped to a single attribute' 
place which takes a value that is either a State or a Country. 
A more difficult mapping is between the representations of 
capital cities of European countries. Instead of represent- 
ing whether a city is a capital or not by means of a Boolean 
attribute, the Country class in our target database has an 
attribute capital which points to the capital city of a coun- 
try. To resolve this difference in representation a straightfor- 
ward embedding of data will not be sufficient. Constraints 
on the source database, ensuring that each Country has ex- 
actly one City for which the is_capital attribute is true, are 
also necessary in order for the transformation to be well de- 
fined. • 

I City T 

"ame 1 
str 

capital I . _ . . , e~ - s t r  

~ ? n t r y T  Vlanlzua~e" str 

[ ]p lace  ~ s t r  

capital 

Figure 3: An integrated schema of European and US Cities 

This example illustrates a number of complex types: ob- 
ject identities, recursive types and variants. In general, the 
types of data sources that we are considering are complex 
object systems, whose types involve arbitrarily deep nest- 
ing of records, sets, variants and lists in addition to object 
identity and the usual base types (Boolean, integer, string, 
etc). The number of fields in a record or variant may also be 
extremely large (tens of fields is common), and fields may 
be optional. 

While some commercial solutions exist for transforming 
data between relational databases implemented using spe- 
cific DBMSs, or for uploading certain file formats into a 
relational database, none exist for the variety of data types 
we are considering. To date, these transformation problems 
have been attacked by writing special-purpose programs do- 
ing explicit data conversions between fixed schemas. This 
code is typically difficult to understand and reason about, 
and cannot easily be maintained in the face of schema evo- 
lution. It is also difficult to reason about the correctness of 
the transformation implemented. 

Most of the existing work on transformations focuses on 
the problem of database integration. The most common 
approach taken is to apply a series of small transforma- 
tions or heuristics to source schemas in order to transform 
them into the target schema [20, 6, 19, 22]. There are two 
problems with these approaches. Firstly, the expressibil- 

ity is inherently limited by the selection of transformations 
or heuristics supported. For example, none of the systems 
mentioned would be able to deal with the transformation 
between the Boolean is_capital attribute of Cites and the 
capital attribute of Country in the example above. Secondly, 
these approaches focus on schema manipulation and neglect 
to describe the effect of the transformations on the actual 
data, though in general there are many possible interpreta- 
tions of a particular schema manipulation. For example, if 
we changed an attribute of a class from being optional to 
being required, there are a number of ways that such a ma- 
nipulation can be reflected on the underlying data: we could 
insert a default value for the attribute wherever it is omitted, 
or we could simply delete any objects from the class for 
which the attribute value is missing. 

An alternative approach is to use some high-level language 
to describe transformations as in [3, 9]. In such an approach, 
the effect of a transformation on the underlying data be- 
comes explicit. We use the term database transformation, 
as opposed to the more common term schema transforma- 
tion, to emphasize this distinction. 

A database transformation language should be sufficiently 
expressive to specify all ways in which data might relate be- 
tween one or more source databases and a target database, 
but differs from a database query language in that entire 
database instances are being manipulated and created. Ex- 
pressivity must therefore be carefully balanced with effi- 
ciency. In particular, an implementation of a transformation 
should be performed in one pass over the source databases, 
curtailing the inclusion of expensive operations such as clo- 
sure operators. Such a language should also be simple and 
declarative so that it can be easily modified and reasoned 
about, and should be able to handle the data types found in 
the formats and databases to be transformed. 

The size, number and complexity of schemas that may be 
involved in a transformation also leads to a need for par- 
tiality of rules or statements of a transformation language, 
and for the ability to reason with constraints. Schemas can 
be complex, involving many, deeply nested attributes. Val- 
ues for attributes of an object in a target database may be 
drawn from many different source database instances. It is 
therefore very useful to be able to specify the transforma- 
tion in a step-wise manner in which individual rules do not 
completely describe a target object. 

Constraints can play a part in determining and optimizing 
transformations, and conversely, transformations can imply 
constraints on their source and target databases. Further, the 
constraints that occur when dealing with transformations 
often fall outside of those supported by most data-models 
(keys, functional and inclusion dependencies and so on) and 
may involve multiple databases. It is therefore important 
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that a transformation language be capable of expressing and 
interacting with a large class of constraints. 

Using these desiderata, we have designed a database 
transformation language called WOL (Well-founded Ob- 
ject Logic) for specifying transformations, and developed 
a system called Morphase I for implementing transforma- 
tions specified using WOL. Morphase has been used in sev- 
eral transformations involving biomedical databases in in- 
formatics support of the Philadelphia Human Genome Cen- 
ter for Chromosome 22, and many of the requirements on 
WOL have been drawn from this experience. The WOL 
language has been used independently in part of  the VO- 
DAK project, in Darmstadt, Germany, for building a data- 
warehouse, ReLiBase, which is used in drug development 
[1]. In Section 2 we establish the data-model on which 
WOL is based. Section 3 describes WOL through a series 
of examples and illustrates how WOL can be used to ex- 
press a wide variety of  database constraints as well as trans- 
formations. Section 4 discusses how constraints and trans- 
formation clauses interact with each other. Section 5 de- 
scribes the Morphase system which implements WOL. Fi- 
nally, Section 6 summarizes our contributions and describes 
future work. 

2 A Data Model for Database Transforma- 
tions 

To perform transformations between heterogeneous 
databases, we must first represent the schemas and data of 
the component databases using some sufficiently expres- 
sive common data-model, or meta-data-model. In [21] the 
requirements on such a meta-data-model are examined, 
and the authors conclude that one which supports complex 
data-structures (sets, records and variants), object-identity 
and specialization and generalization relations between 
object classes is desirable. These conclusions apply equally 
well to other applications of database transformations. 

When transforming recursive data-structures such as those 
of Figures 1, 2 and 3, it is also necessary to have a notion 
of extents or classes in addition to a notion of referencing. 
These classes represent the finite sets of objects represented 
in a database. The WOL data-model was designed with 
these requirements in mind, and includes support for object- 
identities, classes and complex data-structures. The model 
is similar to that of [4] and is equivalent to the models im- 
plemented in various object-oriented databases [5], except 
for the omission of direct support for inheritance or special- 
izations, which we regard as special kinds of constraints. 
Constraints are not considered to be part of the model, and 
are expressed in the WOL language as illustrated in the next 

1 Morphase has no relation to the god of slumber, Morpheus, rather it is 
an enzyme (-ase) for morphing data. 

section. A more detailed definition of the model can be 
found in [17]. 

2.1 Schemas and Instances 

The types in our model are nested relational types with the 
additional feature' of class types. In order to describe a par- 
ticular database system it is necessary to state what classes 
are present, and also the types of (the values associated 
with) the objects of each class. We consider that these two 
pieces of information constitute a database schema. (Other 
constraints, which in some data-models would also be con- 
sidered part of a schema, will be considered later). 

Assume a finite set C of classes ranged over by C, C ~, . . . ,  
and for each class C a countable set of object identities of 
class C. The types over C, ranged over by r , . . . ,  consist 
of base types, b, such as integer and string; class types C, 
where C E C, representing objects-identities of  class C; 
set types {b_} and {C} for each base type b and class type 
C, representing sets of base values or objects respectively; 
record types ( a l  : T 1 , . . . , a k  : "l'k), where a l , . . . , a k  are 
taken from some countable set of attribute labels .,4; and 
variant types ~al : r l , . . . ,  ak : rkD. A value of a record 
type (al : r l , .  • . ,  ak : rk) is a tuple with k fields labeled by 
al . . . .  , ak, such that the value of the ith field, labeled by ai, 
is of type ri. A value of a variant type (]al : r l , . . . ,  ak : rk D 
is a pair consisting of a label ai, where 1 < i < k, and a 
value of type ri. 

A schema, ,5, consists of a finite set of classes, C, and for 
each class C E C a corresponding type r c where r c is not 
a class type. 

Example 2.1: The first schema illustrated in example 1.1 
has two classes representing Cities and States, with each 
city having a name and a state, and each state having a name 
and a capital city. The set of classes for the schema is there- 
fore CA -- {City a , Statea} and the associated types are 

T CityA ==. (name : str, state : StateA) 

r s~teA -- (name : str, capital: CitYA) 

The second schema has classes CE -- {City E, Country~} 
and associated types 

7" Cityl~ 

rCountry~ =_ 

(name : str, is_capital : Bool, 

country: CountryE ) 

(name : str, language : str, 

currency: str) 

The values that may occur in a particular database instance 
depend on the object identities of that instance. Suppose 
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we have a schema ,S with classes C. An instance, 27, of S 
consists of a finite set of object identities, , ,c ,  for each class 
C E C, and a mapping },c from ~r c to values of type r c ,  for 
each C E C, such that for any object identity o E ¢ rc, the 
object identities occurring in the value },c (o) are contained 
in the set Uc~c °'c. 

Example 2.2: Continuing with our example database of Eu- 
ropean cities and countries described in example 2.1, in- 
stance of the schema would consist of two sets of object 
identities, such as 

0 "CityE ==_ {London, Manchester, Paris, Berlin, Bonn} 
~r c ° u " ~  -- { UK, FR, GM} 

and functions },otyE on a cityE and V state~ on a staten , such 

a s  

V city~ (London) -- (name ~ "London", 
country ,--+ UK, is_capital ~ True) 

igci~e ( Manchester) = (name ~-+ "Manchester", 
country ~-* UK, is_capital ~ False) 

I)City~ (Paris)  =-- (name ~ "Paris", 
country ~ FR, is_capital ~ True) 

VC°u"wy~ ( UK) - (name ~ "United Kingdom", 
language ~ "English", currency ,--+ "sterling") 

v c ° ~ " ~  ( FR ) = (name ~ "France", 
language ~ "French", currency ~ "franc") 

and so on. • 

2.2 Surrogate Keys 

We must also have some mechanism to create and reference 
object-identities. Since object identities are not considered 
to be directly visible and are typically unrelated between 
databases, some value-based handle on them is necessary. 
We follow [14] in using surrogate keys for this purpose. 

A key specification, /C, for a schema S, assigns a set of 
functions/C c,  C E C, to each instance $ of S, such that 
/g~ maps ~r c onto values of some type ~c,  where ~c does 
not involve any classes. 

An instance 2" of schema S is said to satisfy a key specifica- 
tion/g on S iff for each class C E C and any o, o' E a c ,  if 
/CC(o) = /CC(o  ')  then o = o'. 

A keyed schema consists of a schema S, and a key specifi- 
cation/C on 8. An instance of a keyed schema (8 , /g)  is an 
instance 2" of S such that 2" satisfies/C. 

Example 2.3: For the European Cities and Countries 
schema defined in example 2.1 we might expect each 
Country to be uniquely determined by its name, and each 
City to be uniquely determined by its name and the name 

of its country (two Countries might both contain Cities with 
the same name). The functions are defined by 

Count.lyE 
IC z ( z )  -- z .name 

/cCity~(¢) =- ( n a r n e = z . n a m e ,  

country_name = z .name.name) 

where the notation z.a  means if z E ~c  then take the value 
V c (x), which must be of record type, and project out the 
attribute a. • 

3 T h e  W O L  L a n g u a g e  

The transformation specification language W O L  is based 
on the data-model of the previous section, and can therefore 
deal with databases involving object-identity and recursive 
data-structures as well as complex and arbitrarily nested 
data-structures. A formal definition of WOL, its seman- 
tics, and the various requirements for a well-defined W O L  
transformation program may be found in [17]. 

As will be illustrated in section 4, there are important in- 
teractions between transformations and the constraints im- 
posed on databases. Since the constraints that are use- 
ful when dealing with transformations often fall outside of  
the simple constraints coupled with traditional data models 
(such as keys, functional and inclusion dependencies, cardi- 
nality constraints and inheritance [10, 12]), W O L  augments 
a simple data-model with a general formalism for express- 
ing constraints as well as transformations, making it possi- 
ble to reason about the interaction between transformations 
and constraints. 

3.1 F o r m u l a e  a n d  Clauses  

A specification of a transformation written in W O L  con- 
sists of a finite set of clauses, which are logical statements 
describing either constraints on the databases being trans- 
formed, or part of the relationship between objects in the 
source databases and objects in the target database. Each 
clause has the form 

head ~ body 

where head and body are both finite sets of  atomic f o ~ u l a e  
or a t o m .  An example of a simple clause for the Cities and 
States database shown in figure 1 would be 

X . s t a t e =  Y ~ Y E S ta teA ,X  = Y.capital; (C1) 

Here the body atoms are Y E StateA and X = Y.capital, 
and the head atom is X.state -- Y .  Each atom is a basic 
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logical statement, for example saying that two expressions 
are equal or one expression occurs within another. 

The meaning of a clause is that if all the atoms in the body 
are true then the atoms in the head are also true. More pre- 
cisely, a clause is satisfied iff, for any instantiation of the 
variables in the body of the clause which makes all the body 
atoms true, there is an instantiation of any additional vari- 
ables in the head of the clause which makes all the head 
atoms true. 

So the clause above says that for any object Y occurring in 
the class Statea, i f X  is the capitalcity of Y then Y is the 
state of X. This is an example of a constraint. We can also 
use constraints to define the keys of a schema that can be 
used to uniquely identify objects. In our database of Cities, 
States and Countries, we would like to say that a Country 
is uniquely determined by its name, while a City can be 
uniquely identified by its name and its country. This can be 
expressed by the clauses 

X = M k  ~tyr (name = N, country = C) (C2) 
X E City T, N = X.name, C = X.country; 

Y = Mkc°unr~yr(N) (C3) 

Y E Country T, N = Y.name; 

M k  ciry~ and M k  c ° u " ~  are examples of Skolem functions, 
which create new object identities associated uniquely with 
their arguments. In this case, the name of a City and the 
country object identity are used to create an object identity 
for the City. 

WOL can be used to express a wide variety of constraints, 
including functional and existence dependencies, key con- 
straints, and other kinds of constraints supported by estab- 
lished data-models. It can also express constraints which 
cannot typically be expressed in the constraint languages of 
databases. For example, the following constraints expresses 
that, in our European Cities and Countries database, each 
country has exactly one capital city. 

Y E CityE, Y.country = X,  Y.is_capital = True (C4) 
X E Countryv, 

X = Y ~ X E CityE, Y E CityE, (C5) 
X.country = Y.country, 
X.is_capital = True, Y.is_capital = True 

The first clause states that, for every Country, there is a cor- 
responding City for which the attribute is_capital has the 
value True. The second clause states that, for any two Cities 
belonging to the same Country, if both are capital cities 
(the is_capital attribute has the value True) then they are the 
same City. 

Not all syntactically correct WOL clauses are meaningful. 
We require two conditions to hold on a well-formed WOL 

clause, namely that it be well-typed and range-restricted. A 
clause is said to be well-typed iff we can assign types to all 
the variables in the clause in such a way that all the atoms 
of the clause make sense. For example a clause containing 
the atom X < Y.population (where population is an integer 
valued attribute) and an atom X E City A would not be well- 
typed. For the first atom to make sense X would have to 
have type integer, and for the second it would have to be an 
object of class City A. 

The concept of range-restriction is used to ensure that ev- 
ery variable in the clause is bound to some object or value 
occurring in the database instance in order for the atoms of 
a clause to be true. This is similar to the idea of safety in 
Datalog clauses. For example the in clause 

X.population < Y = X E City A 

the variable Y is not range restricted. 

All the clauses we consider in this paper will be both well- 
typed and range-restricted. 

3.2 Expressing Transformations using WOL 

In addition to expressing constraints about individual 
databases, WOL clauses can be used to express relation- 
ships between the objects of distinct databases. Consider 
the clause 

X E CountryT, X.name = E.name, (T1) 
X.language = E.language, X.currency = E.currency 

¢== E E CountryE; 

This states that, for every Country in our European Cities 
and Countries database (Figure 2), there is a corresponding 
Country in our target international database (Figure 3) with 
the same name, language and currency. This is an example 
of a transformation clause, which states how an object or 
part of an object in the target database arises from various 
objects in the source and target databases. 

A similar clause can be used to describe the relationship 
between European City and City in our target database: 

Y E CityT, Y.name = E.name, (T2) 
Y.place = inSeuro.city( X ) 

¢== E E City E, X E Country r ,  
X.name = E.country.name; 

Note that the body of this clause refers to objects both in 
the source and the target databases: it says that if there is a 
City, E, in the European Cities database and a Country, X, 
in the target database with the same name as the name of the 
country of E, then there is a City, Y, in the target database 
with the same name as E and with country X .  (inseuro-city 
accesses the euro_city choice of the variant). 
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A final clause is needed to show how to instantiate the 
capital attribute of City in our target database: 

X.capital = Y (T3) 
¢== X E Country T, Y E City T, 

Y.place = inseuro-city(X), E E CityE, 
E.name = Y.name, E.state, name = X.name, 
E.is_capital = True; 

Notice that the definition of Country in our target database 
is spread over multiple WOL clauses: clause (T1) describes 
a country's name, language and currency attributes, while 
clause (T3) describes its capital attribute. This is an im- 
portant feature of WOL, and one of the main ways it dif- 
fers from other Horn-clause logic based query languages 
such as Datalog or ILOG which require each clause to com- 
pletely specify a target value. It would be possible to com- 
bine clauses (T1), (T3) and (C3), in order to a single clause 
completely describing how a Country object in the target 
database arises. However, when many attributes or com- 
plex data structures are involved, or a target object is derived 
from several source objects, such clauses become very com- 
plex and difficult to understand. Further if variants are in- 
volved, the number of clauses required may be exponential 
in the number of variants involved. Consequently, while 
conventional logic-based languages might be adequate for 
expressing queries resulting in simple data structures, in or- 
der to write transformations involving complex data struc- 
tures with many attributes, particularly those involving vari- 
ants, it is necessary to be able to split up the specification of 
the transformation into small parts involving partial infor- 
mation about data structures. 

A transformation program consists of a finite set of trans- 
formation clauses and constraints for some source and tar- 
get database schemas. Given such a transformation pro- 
gram, say Tr, a Tr-transformation of an instance of the 
source database would be an instance of the target database 
such that the two instances satisfy all the clauses in Tr. 

Since WOL clauses represent logical statements, there may 
be many instances of a target database satisfying a set of 
clauses for a particular source database. For example the 
clauses (T1), (T2) and (T3) above would imply that there 
are objects in our target Country class corresponding to each 
Country in our source database, but would not rule out the 
possibility of having lots of other Countries, not related to 
any in our source database. When dealing with transfor- 
mation programs, we are therefore interested in the unique 
smallest transformation of a particular source database. 

A transformation program Tr is said to be complete iff 
whenever there is a Tr-transformation of a particular source 
database instance, there is a unique smallest such Tr- 
transformation (up to renaming of object identities). In gen- 
eral, if a transformation program is not complete, it is be- 

cause the programmer has left out some part of the descrip- 
tion of the transformation. 

3.3 Related Languages 

There are a number of database query languages based on 
Horn-clause logic which have some similarity to WOL. 
Most of these languages are variants and extensions of Dat- 
aiog [?], and are therefore limited in their types to flat 
relations. For example, ILOG [13] extends Datalog with 
a mechanism for dealing with object identities based on 
Skolem functions. Atomic formulae in ILOG and other 
Dataiog-like languages typically use a positional represen- 
tation of attributes, making the syntax unsuitable for dealing 
with relations with lots of attributes. Furthermore, clauses 
completely describe a target or intensional value in terms of 
other values. As noted earlier, when targeting complex data- 
structures it is desirable to have clauses which give partial 
descriptions of a target value. There query languages are 
therefore not appropriate in the context of database trans- 
formations. 

The F-logic of Kifer and Lausen [15] is another logic- 
based language for reasoning about database schemas and 
instances involving various object-oriented concepts. F- 
logic differs from WOL in blurring the distinctions between 
objects and schema-classes, and between objects and at- 
tributes, and by directly incorporating a notion of inheri- 
tance or subsumption. In the design of WOL there is a clear 
distinction between schemas and instances, and between at- 
tributes and classes, which were felt to be conceptually dis- 
tinct. More significantly, WOL aims to be a practical lan- 
guage allowing the efficient implementation of a significant 
class of transformation specifications and constraints, while 
F-logic does not lend itself to practical implementations. 

Possibly the closest existing work to WOL, in both spirit 
and purpose, are the structural manipulations of Abiteboul 
and Hull [3]. These make use of rewrite rules, which have 
similar feel to the Horn clauses of WOL, but are based on 
pattern matching against complex data-structures, allowing 
for arbitrarily nested set, record and variant type construc- 
tors. The main contributions of WOL, compared with [3], 
lie in its ability to deal with object-identity and hence recur- 
sive data-structures, and in the uniform treatment of trans- 
formation rules and constraints. 

4 Transformations and Constraints 

Since constraints specify valid instances of databases, they 
can play an important role in implementing as well as in 
proving the correctness of transformations. 
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4.1 Determining Transformations using Con- 
straints 

One of the most obvious examples of how constraints on a 
target database play a part in determining a transformations 
is that of key constraints. In the examples of the previous 
section, clauses (T1) and (T3) must be combined with a key 
constraint on Country T (C3) in order to completely specify 
an object of class Country T in the target database. 

Other constraints, such as inclusion dependencies and spe- 
cialization or generalization relations, may also play a part 
in determining transformations. For example suppose we 
wish to generalize Country T and Stater by adding a class 
Placer, with key attribute name, and attributes currency and 
language, to our international Cities, Countries and States 
database. The relationship between objects of class Placer 
and those of class Stater or Country 7, might be expressed 
by means of constraints: 

P E Placer, P.name = N, P.currency = C, (C6) 
P.language = L 

¢== X E CountryT,, X.name = N, 
X.currency = C, X.language = L; 

P E Placer, P.name = N, (C7) 
P.currency = "US-Dollars", P.language = "English" 

¢== S E Stater, X . n a m e =  N,X. language= L; 

These clauses, in combination with key clauses for the 
class Placer, are sufficient to determine the objects of class 
Placer, so no additional transformation clauses, other than 
those already defined for generating the classes Country 7. 
and StateT, would be needed. 

4.2 Optimizing Transformations using Con- 
straints 

Constraints on the source databases do not play a part in 
determining a transformation, since they only assert restric- 
tions on the source database, which we assume are satisfied 
prior to the transformation being carried out. Nevertheless 
they can play an important part in implementing a database 
transformation. 

The implementation of WOL described in Section 5 is based 
on the approach of first deriving new WOL clauses from a 
transformation program which completely describe how to 
generate an object in the target database, and then applying 
these new clauses using some underlying database query 
engine. Source database constraints play an important part 
in optimizing this process, both by simplifying the derived 
rules and by causing unsatisfiable rules to be rejected. 

Example 4.1: For the schemas of the Cities and Countries 

databases described earlier, suppose we split the description 
of the instantiation of the Country T class over several trans- 
formation clauses: 

X = Mkc°untrYr(N), X.language = L (T4) 

¢== Y E Country E, Y.name = N, Y.language = L 

X = MkC°Un~r(N), X.currency = C (T5) 
¢== Z E Country E, Z.name = N, Z.currency = C 

Combining these clauses gives 

X = MkC°Unt~Yr(N), X.language = L, X.currency = C 

¢== Y E Country E, Y .name= N, Y.language= L 

Z E CountryE, Z.name = N, Z.currency = C 

To apply this clause we would need to take the product of 
the source class Country E with itself, and try to bind Y and 
Z to pairs of objects in Country E which have the same value 
on their name attribute. 

Suppose however, we had a constraint on the source 
database: 

X = Y ~ (C8) 
X E Country E Y E Country E X.name = Y.name 

That is, name is a key for Country E. We could then use this 
source constraint to simplify our previous, derived transfor- 
mation clause, in order to form the new clause: 

X = MkC°Un~Yr(N), X.language = L, X.currency = C 
¢ : :  Y E Country E, Y.name = N, 

Y.language = L, Y.currency = C 

This clause does not actually give us any new information 
about the target database, but that it is simpler and more 
efficient to evaluate. • 

4.3 Correctness of Transformations 

Since many applications of database transformations are 
highly critical, it is important to have some notion of cor- 
rectness for database transformations, and, in particular, to 
be able to show that a transformation preserves the informa- 
tion stored in a database. 

The issues of information capacity and information domi- 
nance for database schemas have been thoroughly examined 
in [11]. The basic concept was defined by saying that one 
schema dominates another iff there is an injective transfor- 
mation, subject to various restrictions, from the instances of 
the first schema to the instances of the second: that is each 
distinct source database instance is mapped to a distinct tar- 
get instance by the transformation. Such a transformation is 
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said to be information preserving. The notion of informa- 
tion capacity and information preserving transformations is 
complicated by the presence of object identities (see [16]), 
but can easily be adapted. An important conclusion of [l 1] 
is that none of these criteria capture an adequate notion of 
semantic dominance, that is, whether there is a semanti- 
cally meaningful interpretation of instances of one schema 
as instances of another. Consequently the task of ensuring 
a transformation is semantically meaningful still requires a 
knowledge and understanding of the databases involved. 

In [18, 19] Miller et al. analyze the information require- 
ments that need to be imposed on transformations in var- 
ious applications. For example they claim that if a trans- 
formation is to be used to view and query an entire source 
database then it must be a total injective function, while if 
a database is to be updated via a view then the transfor- 
mation to the view must also be surjective. An important 
observation in [ 18] is that database transformations can fail 
to be information capacity preserving, not because there is 
anything wrong with the definition of the transformations 
themselves, but because certain constraints which hold on 
the source database are not expressed in the source database 
schema. However the full significance of this observation is 
not properly appreciated: in fact it is frequently the case 
that the constraints that must be taken into account in order 
to validate a transformation have not merely been omitted 
from the source schema, but are not expressible in any stan- 
dard constraint language. 

I Person ~__~use 

S~e.mal ~n~me 
mal e 

str 
umt unit 

Figure 4: A schema of persons and marriages prior to 
schema evolution 

Male ) name , str 

I Marriage y . . _  
Wi~"-~ Female I name , str 

Figure 5: A schema of persons and marriages after schema 
evolution 

Example 4.2: Consider the schema evolution illustrated 
in Figures 4 and 5. The first schema has only one class, 
Person, with attributes representing a person's name, sex 
(a variant of male and female) and spouse. In our sec- 
ond (evolved) schema the Person class has been split into 

two distinct classes, Male and Female, perhaps because 
we wished to start storing some different information for 
men and women. Further the spouse attribute is replaced 
by a new class, Marriage, perhaps because we wished to 
start recording additional information such as dates of mar- 
riages, or allow un-married people to be represented in the 
database. 

It seems clear that there is a meaningful transformation from 
instances of the first database to instances of the second. 
The transformation can be described by the following W O L  
program: 

X E Male, X .name  = N (T6) 
¢== Y E Person, Y.name = N,  Y.sex = insr, ale(); 

X E Female, X .name  = N (T7) 
Y E Person, Y.name = N,  ]".sex = insrernale(); 

M E Marriage, M.husband = X ,  M.  wife = Y 
¢== X E Male, Y E Female, Z E Person, 

W E Person, X .name  = Z.name, 
Y.name = W.name, W = Z.spouse; 

(T8) 

Unfortunately this transformation is not information pre- 
serving: there are instances of the spouse attribute that are 
allowed by the first schema that will not be reflected by the 
second schema. In particular the first schema does not re- 
quire that the spouse attribute of a man goes to a woman, or 
that for each spouse attribute in one direction there is a cor- 
responding spouse attribute going the other way. However 
if we augment the first schema with additional constraints, 
such as: 

X.sex  = insmaleO (C9) 
¢=:= Y E Person, Y.sex = insremalc(), 

X = Y.spouse; 

Y.sex = inseemaleO (C10) 
X E Person, X . sex  = insmate(), 
Y = X.spouse; 

Y = X.spouse  ( C l l )  
¢::= Y E Person, X = Y.spouse; 

we can then show that the transformation is information pre- 
serving on those instances of the first schema that satisfy 
these constraints. These constraints deal with values at the 
instance level of the database, and could not be expressed 
with the standard constraint languages associated with most 
data-models. • 

This highlights a basic problem with information capacity 
analysis of transformations: such an analysis assumes that 
schemas give a complete description of the set of possible 
instances of a database. In practice schemas are seldom 

62 



complete, either because certain constraints were forgotten 
or were not known at the time of schema design, or because 
the data-model being used simply isn't sufficiently expres- 
sive. In the above example, the transformation appears to 
discard information, while in fact this is because the new 
schema is a better fit for the data. 

WOL takes a step towards addressing these problems: It 
provides a formalism for expressing constraints necessary 
in order to ensure information preserving transformations, 
and allows for formal reasoning about the interactions be- 
tween database transformations and constraints. 

5 Morphase 

Implementing a transformation directly using clauses such 
as (T1), (T2) and (T3) would be inefficient: to infer the 
structure of a single object we would have to apply multiple 
clauses, for example clauses (T1), (T3) and (C3) would be 
needed for a single Country object. Further, since some of 
the transformation clauses, such as (T1) and (T3), involve 
target classes and objects in their bodies, we would have to 
apply the clauses recursively: having inserted a new object 
into Country T we would have to test whether clause (T2) 
could be applied to that Countryin order to introduce a new 
City T object. 

Since WOL programs are intended to transform entire 
databases and may be applied many times, we trade off 
compile-time expense for run-time efficiency. We pursue 
an implementation strategy which finds, at compile time, an 
equivalent, more efficient transformation program in which 
all clauses are in normal form. A transformation clause 
in normal form completely defines an insert into the tar- 
get database in terms of the source database only. That is, 
a normal form clause will contain no target classes in its 
body, and will completely and unambiguously determine 
some object of the target database in its head. A transfor- 
mation program in which all the transformation clauses are 
in normal form, can easily be implemented in a single pass 
using some suitable database programming language. 

Our prototype implementation of WOL, Morphase, first 
rewrites a WOL transformation program so that all the 
clauses are in normal-form, and then uses a database pro- 
gramming language, CPL, to perform the transformations. 
Morphase has been used in several trial transformations 
within the Philadelphia Genome Center for Chromo- 
some 22 (see [8, 17] for details; also visit the Web site 
http : //www. cis. upenn, edu/~db/morphase). 

A number of syntactic extensions and shorthands were used 
in order to make programming in WOL more convenient 
and concise without effecting the expressive power of the 
language. 

Unfortunately, not all complete transformation programs 
have equivalent normal form transformation programs, and 
it is not decidable whether a transformation program is 
complete or such an equivalent normal form transformation 
program exists. Consequently Morphase imposes certain 
syntactic restrictions on transformation programs, to ensure 
that they are non-recursive, such that most natural transfor- 
mations satisfy these restrictions. 

The architecture of Morphase is illustrated in figure 6: 
WOL transformation rules are typically written by the user 
of the system; however a large number of constraints, such 
as keys and other dependencies, can be automatically gen- 
erated from the meta-data associated with the source and 
target databases, in order to complete a transformation pro- 
gram. Such constraints are time consuming and tedious to 
program by hand. Deriving them directly from meta-data 
therefore reduces the amount of grunge work that needs to 
be done by the programmer, and allows him or her to con- 
centrate on the structural part of a transformation. 

[ WOL t r [  ansform!tioPar~ er 1 
~, program 

[ Translator to snf 1 

~ snf transformation program 
Meta- 

data [ Normalization program 1 

~ normal-form transformation 

[ Translator to CPL ) 

Source DBs 
Input 

..I 
Morphase 

CPL c o d e  system 

Target DBs 
output 

CPL 

Figure 6: Architecture of the Morphase system 

The translation of a WOL transformation program has sev- 
eral stages. The clauses are first rewritten into semi-normal 
form (snf), which reduces the number of forms the atoms of 
a clause can take, so that any two equivalent clauses or sets 
of atoms will differ only in their choice of variables. This 
simplifies the unification of clauses, as well as the book- 
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keeping necessary for optimizations. The snf program is 
then transformed into a normal-form program if possible, 
using a process of unifying and unfolding clauses. A num- 
ber of important optimizations are used during this process, 
including the application of source and target constraints to 
simplify clauses. See [17] for details. 

Note that this normalization process differs from the uni- 
fication and unfolding of clauses carried out in certain im- 
plementations of Horn-clause logic based languages such 
as Prolog and Datalog, in that it deals with un-instantiated 
clauses for the purpose of forming new clauses or re-writing 
a transformation program. In traditional logic based lan- 
guages, unfolding and unification are used in order to apply 
clauses and to bind the variables of a query to actual values. 

Once translated into normal-form, a WOL program can be 
executed against the source databases to produce the tar- 
get database. Complete, normal-form WOL programs are 
compiled into CPL, a database programming language for 
complex values developed at the University of Pennsylva- 
nia. The reason for using CPL as an implementation lan- 
guage is that it supports many of the data-types that we are 
interested in, and its implementation in the Kleisli system 
[7] enables us to access a wide variety of heterogeneous 
database systems, including those that we wished to use 
in our trials. We can currently connect to Sybase, Ora- 
cle, ASN.1 and ACeDB 2 databases, as well as a number 
of application programs such as the sequence analysis pack- 
ages Blast and FASTA; extending Kleisli to incorporate new 
databases is relatively easy. However, translating normal 
form WOL programs into some other sufficiently expres- 
sive DBPL should be a straightforward task. 

6 Conclusions 

The development of WOL was in part motivated by expe- 
riences in informatics support of the Philadelphia Human 
Genome Center for Chromosome 22. As is the case in many 
biomedical databases, the database for sequence data per- 
taining to Chromosome 22 at Penn (Chr22DB) undergoes 
frequent schema evolution due to changing experimental 
techniques, resulting in the need for various data transfor- 
mations to maintain data input screens and analysis pack- 
ages. Additional data for Chr22DB (a Sybase database) is 
imported from ACe22DB, an ACeDB database located at 
the Sanger Centre in Cambridge, England. ACeDB repre- 
sents data in tree-like structures with object identities, and 
is well suited for representing "sparsely populated" data 
[23]. Data is structured very differently in ACe22DB and 
Chr22DB, since they use incompatible data-models as well 
as different interpretations of the underlying data and how 

2A c. elegans Database (AceDB). While "C elegans" may sound like a 
contradiction in terms to a computer scientist, it is actually a small worm. 

it should be structured. Therefore, complicated programs 
were hand-coded to periodically exchange data between 
ACe22DB and Chr22DB. However, both of the databases 
are constantly evolving necessitating modifications of the 
hand-coded programs. 

WOL and its implementation in Morphase have been tested 
on these and other transformations arising at the Bio- 
Informatics center at Penn, and the performance of the sys- 
tem has been evaluated in terms of ease of use, compilation 
time, and size and complexity of  the resulting normal form 
program. The size and complexity of the normal form pro- 
gram is an indirect indicator of  the execution time of the ac- 
tual transformation, since the Kleisli optimizer will rewrite 
the CPL code to a more efficient form. These trials gave us 
significant insights into optimizations for the normalization 
procedure and the translation to CPL, many of which were 
incorporated into the prototype. 

WOL transformations were programmed by researchers 
connected with the Philadelphia Genome Center, who used 
their domain knowledge to formulate the transformations. 
Learning WOL and using it to express the transformations 
was found to be an easy and natural process. The most diffi- 
cult part of the process was in fact understanding the foreign 
databases. As ACe22DB and Chr22DB have evolved over 
time, it has also been easy to modify the original WOL pro- 
gram to reflect schema changes. 

The time taken to compile and normalize various WOL 
programs was also measured. These included programs in 
which all the clauses were already in normal form, which 
represented the minimum time necessary for the system to 
process a transformation program. It was found that the 
use of constraints was extremely important in gaining ac- 
ceptable performance from the implementation, with a non- 
normalized transformation program with constraints taking 
approximately six times longer to compile than a normal- 
ized program. If  constraints were omitted the time taken to 
normalize a program, and the size of the resulting normal- 
form program, could be exponential in the size of the origi- 
nal program. 

The WOL language has also been used independently by 
researchers in the VODAK project at Darmstadt, Germany, 
[1], in order to build a data-warehouse of protein and 
protein-ligand data for use in drug design. This project in- 
volved transforming data from a variety of public molecular 
biology databases, including SWISSPROT and PDB, and 
storing it in an object-oriented database, ReLiBase. WOL 
was used to specify structural transformations of data, and 
to guide the implementations of these transformations. 

The primary contributions of this paper lie in the desiderata 
we have gleaned for database transformation languages, and 
the language WOL itself. While the idea of using a Horn- 
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clause logic query language for complex object databases is 
not new, several features of  WOL make it uniquely appli- 
cable as a database transformation language. First, WOL is 
designed to deal with transformations involving the com- 
plex and possibly recursive data-structures that occur in 
object-oriented databases, as well as with traditional rela- 
tional databases involving large numbers of  attributes. This 
necessitates the ability to specify partial rules, which in 
turn requires some unique, efficient compile time rewriting 
strategies. Second, the ability to capture and reason about 
database constraints in the same formalism allows for the 
use of  constraints in determining and optimizing transfor- 
mations, and in reasoning about the correctness of  trans- 
formations. We have also briefly described implementa- 
tion strategies, based on the WOL language, which proto- 
type implementations and trials have shown to be extremely 
promising. 

In future work, we also wish to explore how well the 
approach scales to larger problems than we have consid- 
ered. (Human Genome Project databases are typically 
rather small, less than a gigabyte.) It is also clear that there 
is a potential for graphical schema manipulation tools gen- 
erating WOL transformation programs. Finally, given that 
constraints are available to reason about formally within the 
WOL framework, we would like to explore ways in which 
to reason about the "correctness" of  transformations. 
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