
W O L : A Language for Database Transformat ions and Constraints *

Susan B. Davidson
Dept. of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

Email: susan@central.cis.upenn.edu

Anthony S. Kosky
Lawrence Berkeley National Laboratory,

1 Cyclotron Road,

Berkeley, CA 94705.

Email: Anthony_Kosky@lbl.gov

Abstract

The need to transform data between heterogeneous databases
arises from a number of critical tasks in data management. These
tasks are complicated by schema evolution in the underlying

databases, and by the presence of non-standard database con-
straints. We describe a declarative language, WOL, for specifying
such transformations, and its implementation in a system called
Morphase. WOL is designed to allow transformations between the
complex data structures which arise in object-oriented databases
as well as in complex relational databases, and to allow for rea-
soning about the interactions between database transformations

and constraints.

integrating the US Cities-and-States and European-Cities-
and-Countries databases shown in Figures 1 and 2. The
graphical notation used here is inspired by [2]: the boxes
represent classes which are finite sets of objects; the arrows
represent attributes, or functions on classes.

state

(CityA 1 [StateA 1

name l * capital I ~name
str str

Figure 1: Schema for US Cities and States

1 Introduction

Problems such as reimplementing legacy systems, adapting
databases to schema evolution, integrating heterogeneous
databases, and mapping between interfaces and the under-
lying database all involve some form of transformation of
data. Implementing such transformations is a critical task
in data management.

In all such data transformations the problem is one of map-
ping instances of one or more source database schemas to
an instance of some target schema. The schemas involved
may be expressed in a variety of different data-models, and
implemented using different DBMSs or other kinds of data
repositories. Incompatibilities between the sources and tar-
get exist at all levels - the choice of data-model and DBMS,
the representation of data within a model, the value of an
instance - and must be explicitly resolved within the map-
pings.

Example 1.1: As a simple example, consider the problem of

*This research was supported in part by DOE DF,-FG02-94-ER-61923
Sub 1, NSF BIR94-02292 PRIME, ARO AASERT DAAH04-93-G0129,
ARPA N00014-94-1-1086 and DOE DE-AC03-76SF00098.

I CityE ~ ~ - F lan~uaee _s,, L . o u n t r y E ~ - ~ u

Figure 2: Schema for European Cities and Countries

The first schema has two classes: City a and StateA. The
City A class has two attributes: name, representing the name
of a city, and state, which points to the state to which a city
belongs. The StateA class also has two attributes, represent-
ing its name and its capital city.

The second schema also has two classes, this time City E
and Country E. The City e class has attributes represent-
ing its name and its country, but in addition has a Boolean-
valued attribute is_capital which represents whether or not
it is the capital city of a country. The Country E class has
attributes representing its name, currency and the language
spoken.

Suppose we wanted to combine these two databases into a
single database containing information about both US and
European cities. A possible schema is shown in Figure 3,
where the "plus" node indicates a variant. Here the City

55
1063-6382/97 $10.00 © 1997 IEEE

classes from both source databases are mapped to a single
class City T in the target database. The state and country at-
tributes of the City classes are mapped to a single attribute'
place which takes a value that is either a State or a Country.
A more difficult mapping is between the representations of
capital cities of European countries. Instead of represent-
ing whether a city is a capital or not by means of a Boolean
attribute, the Country class in our target database has an
attribute capital which points to the capital city of a coun-
try. To resolve this difference in representation a straightfor-
ward embedding of data will not be sufficient. Constraints
on the source database, ensuring that each Country has ex-
actly one City for which the is_capital attribute is true, are
also necessary in order for the transformation to be well de-
fined. •

I City T

"ame 1
str

capital I . _ . . , e~ - s t r

~ ? n t r y T Vlanlzua~e" str

[]p lace ~ s t r

capital

Figure 3: An integrated schema of European and US Cities

This example illustrates a number of complex types: ob-
ject identities, recursive types and variants. In general, the
types of data sources that we are considering are complex
object systems, whose types involve arbitrarily deep nest-
ing of records, sets, variants and lists in addition to object
identity and the usual base types (Boolean, integer, string,
etc). The number of fields in a record or variant may also be
extremely large (tens of fields is common), and fields may
be optional.

While some commercial solutions exist for transforming
data between relational databases implemented using spe-
cific DBMSs, or for uploading certain file formats into a
relational database, none exist for the variety of data types
we are considering. To date, these transformation problems
have been attacked by writing special-purpose programs do-
ing explicit data conversions between fixed schemas. This
code is typically difficult to understand and reason about,
and cannot easily be maintained in the face of schema evo-
lution. It is also difficult to reason about the correctness of
the transformation implemented.

Most of the existing work on transformations focuses on
the problem of database integration. The most common
approach taken is to apply a series of small transforma-
tions or heuristics to source schemas in order to transform
them into the target schema [20, 6, 19, 22]. There are two
problems with these approaches. Firstly, the expressibil-

ity is inherently limited by the selection of transformations
or heuristics supported. For example, none of the systems
mentioned would be able to deal with the transformation
between the Boolean is_capital attribute of Cites and the
capital attribute of Country in the example above. Secondly,
these approaches focus on schema manipulation and neglect
to describe the effect of the transformations on the actual
data, though in general there are many possible interpreta-
tions of a particular schema manipulation. For example, if
we changed an attribute of a class from being optional to
being required, there are a number of ways that such a ma-
nipulation can be reflected on the underlying data: we could
insert a default value for the attribute wherever it is omitted,
or we could simply delete any objects from the class for
which the attribute value is missing.

An alternative approach is to use some high-level language
to describe transformations as in [3, 9]. In such an approach,
the effect of a transformation on the underlying data be-
comes explicit. We use the term database transformation,
as opposed to the more common term schema transforma-
tion, to emphasize this distinction.

A database transformation language should be sufficiently
expressive to specify all ways in which data might relate be-
tween one or more source databases and a target database,
but differs from a database query language in that entire
database instances are being manipulated and created. Ex-
pressivity must therefore be carefully balanced with effi-
ciency. In particular, an implementation of a transformation
should be performed in one pass over the source databases,
curtailing the inclusion of expensive operations such as clo-
sure operators. Such a language should also be simple and
declarative so that it can be easily modified and reasoned
about, and should be able to handle the data types found in
the formats and databases to be transformed.

The size, number and complexity of schemas that may be
involved in a transformation also leads to a need for par-
tiality of rules or statements of a transformation language,
and for the ability to reason with constraints. Schemas can
be complex, involving many, deeply nested attributes. Val-
ues for attributes of an object in a target database may be
drawn from many different source database instances. It is
therefore very useful to be able to specify the transforma-
tion in a step-wise manner in which individual rules do not
completely describe a target object.

Constraints can play a part in determining and optimizing
transformations, and conversely, transformations can imply
constraints on their source and target databases. Further, the
constraints that occur when dealing with transformations
often fall outside of those supported by most data-models
(keys, functional and inclusion dependencies and so on) and
may involve multiple databases. It is therefore important

56

that a transformation language be capable of expressing and
interacting with a large class of constraints.

Using these desiderata, we have designed a database
transformation language called WOL (Well-founded Ob-
ject Logic) for specifying transformations, and developed
a system called Morphase I for implementing transforma-
tions specified using WOL. Morphase has been used in sev-
eral transformations involving biomedical databases in in-
formatics support of the Philadelphia Human Genome Cen-
ter for Chromosome 22, and many of the requirements on
WOL have been drawn from this experience. The WOL
language has been used independently in part of the VO-
DAK project, in Darmstadt, Germany, for building a data-
warehouse, ReLiBase, which is used in drug development
[1]. In Section 2 we establish the data-model on which
WOL is based. Section 3 describes WOL through a series
of examples and illustrates how WOL can be used to ex-
press a wide variety of database constraints as well as trans-
formations. Section 4 discusses how constraints and trans-
formation clauses interact with each other. Section 5 de-
scribes the Morphase system which implements WOL. Fi-
nally, Section 6 summarizes our contributions and describes
future work.

2 A Data Model for Database Transforma-
tions

To perform transformations between heterogeneous
databases, we must first represent the schemas and data of
the component databases using some sufficiently expres-
sive common data-model, or meta-data-model. In [21] the
requirements on such a meta-data-model are examined,
and the authors conclude that one which supports complex
data-structures (sets, records and variants), object-identity
and specialization and generalization relations between
object classes is desirable. These conclusions apply equally
well to other applications of database transformations.

When transforming recursive data-structures such as those
of Figures 1, 2 and 3, it is also necessary to have a notion
of extents or classes in addition to a notion of referencing.
These classes represent the finite sets of objects represented
in a database. The WOL data-model was designed with
these requirements in mind, and includes support for object-
identities, classes and complex data-structures. The model
is similar to that of [4] and is equivalent to the models im-
plemented in various object-oriented databases [5], except
for the omission of direct support for inheritance or special-
izations, which we regard as special kinds of constraints.
Constraints are not considered to be part of the model, and
are expressed in the WOL language as illustrated in the next

1 Morphase has no relation to the god of slumber, Morpheus, rather it is
an enzyme (-ase) for morphing data.

section. A more detailed definition of the model can be
found in [17].

2.1 Schemas and Instances

The types in our model are nested relational types with the
additional feature' of class types. In order to describe a par-
ticular database system it is necessary to state what classes
are present, and also the types of (the values associated
with) the objects of each class. We consider that these two
pieces of information constitute a database schema. (Other
constraints, which in some data-models would also be con-
sidered part of a schema, will be considered later).

Assume a finite set C of classes ranged over by C, C ~, . . . ,
and for each class C a countable set of object identities of
class C. The types over C, ranged over by r , . . . , consist
of base types, b, such as integer and string; class types C,
where C E C, representing objects-identities of class C;
set types {b_} and {C} for each base type b and class type
C, representing sets of base values or objects respectively;
record types (a l : T 1 , . . . , a k : "l'k), where a l , . . . , a k are
taken from some countable set of attribute labels .,4; and
variant types ~al : r l , . . . , ak : rkD. A value of a record
type (al : r l , . • . , ak : rk) is a tuple with k fields labeled by
al , ak, such that the value of the ith field, labeled by ai,
is of type ri. A value of a variant type (]al : r l , . . . , ak : rk D
is a pair consisting of a label ai, where 1 < i < k, and a
value of type ri.

A schema, ,5, consists of a finite set of classes, C, and for
each class C E C a corresponding type r c where r c is not
a class type.

Example 2.1: The first schema illustrated in example 1.1
has two classes representing Cities and States, with each
city having a name and a state, and each state having a name
and a capital city. The set of classes for the schema is there-
fore CA -- {City a , Statea} and the associated types are

T CityA ==. (name : str, state : StateA)

r s~teA -- (name : str, capital: CitYA)

The second schema has classes CE -- {City E, Country~}
and associated types

7" Cityl~

rCountry~ =_

(name : str, is_capital : Bool,

country: CountryE)

(name : str, language : str,

currency: str)

The values that may occur in a particular database instance
depend on the object identities of that instance. Suppose

57

we have a schema ,S with classes C. An instance, 27, of S
consists of a finite set of object identities, , ,c , for each class
C E C, and a mapping },c from ~r c to values of type r c , for
each C E C, such that for any object identity o E ¢ rc, the
object identities occurring in the value },c (o) are contained
in the set Uc~c °'c.

Example 2.2: Continuing with our example database of Eu-
ropean cities and countries described in example 2.1, in-
stance of the schema would consist of two sets of object
identities, such as

0 "CityE ==_ {London, Manchester, Paris, Berlin, Bonn}
~r c ° u " ~ -- { UK, FR, GM}

and functions },otyE on a cityE and V state~ on a staten , such

a s

V city~ (London) -- (name ~ "London",
country ,--+ UK, is_capital ~ True)

igci~e (Manchester) = (name ~-+ "Manchester",
country ~-* UK, is_capital ~ False)

I)City~ (Paris) =-- (name ~ "Paris",
country ~ FR, is_capital ~ True)

VC°u"wy~ (UK) - (name ~ "United Kingdom",
language ~ "English", currency ,--+ "sterling")

v c ° ~ " ~ (FR) = (name ~ "France",
language ~ "French", currency ~ "franc")

and so on. •

2.2 Surrogate Keys

We must also have some mechanism to create and reference
object-identities. Since object identities are not considered
to be directly visible and are typically unrelated between
databases, some value-based handle on them is necessary.
We follow [14] in using surrogate keys for this purpose.

A key specification, /C, for a schema S, assigns a set of
functions/C c, C E C, to each instance $ of S, such that
/g~ maps ~r c onto values of some type ~c, where ~c does
not involve any classes.

An instance 2" of schema S is said to satisfy a key specifica-
tion/g on S iff for each class C E C and any o, o' E a c , if
/CC(o) = /CC(o ') then o = o'.

A keyed schema consists of a schema S, and a key specifi-
cation/C on 8. An instance of a keyed schema (8 , /g) is an
instance 2" of S such that 2" satisfies/C.

Example 2.3: For the European Cities and Countries
schema defined in example 2.1 we might expect each
Country to be uniquely determined by its name, and each
City to be uniquely determined by its name and the name

of its country (two Countries might both contain Cities with
the same name). The functions are defined by

Count.lyE
IC z (z) -- z .name

/cCity~(¢) =- (n a r n e = z . n a m e ,

country_name = z .name.name)

where the notation z.a means if z E ~c then take the value
V c (x), which must be of record type, and project out the
attribute a. •

3 T h e W O L L a n g u a g e

The transformation specification language W O L is based
on the data-model of the previous section, and can therefore
deal with databases involving object-identity and recursive
data-structures as well as complex and arbitrarily nested
data-structures. A formal definition of WOL, its seman-
tics, and the various requirements for a well-defined W O L
transformation program may be found in [17].

As will be illustrated in section 4, there are important in-
teractions between transformations and the constraints im-
posed on databases. Since the constraints that are use-
ful when dealing with transformations often fall outside of
the simple constraints coupled with traditional data models
(such as keys, functional and inclusion dependencies, cardi-
nality constraints and inheritance [10, 12]), W O L augments
a simple data-model with a general formalism for express-
ing constraints as well as transformations, making it possi-
ble to reason about the interaction between transformations
and constraints.

3.1 F o r m u l a e a n d Clauses

A specification of a transformation written in W O L con-
sists of a finite set of clauses, which are logical statements
describing either constraints on the databases being trans-
formed, or part of the relationship between objects in the
source databases and objects in the target database. Each
clause has the form

head ~ body

where head and body are both finite sets of atomic f o ~ u l a e
or a t o m . An example of a simple clause for the Cities and
States database shown in figure 1 would be

X . s t a t e = Y ~ Y E S ta teA ,X = Y.capital; (C1)

Here the body atoms are Y E StateA and X = Y.capital,
and the head atom is X.state -- Y . Each atom is a basic

58

logical statement, for example saying that two expressions
are equal or one expression occurs within another.

The meaning of a clause is that if all the atoms in the body
are true then the atoms in the head are also true. More pre-
cisely, a clause is satisfied iff, for any instantiation of the
variables in the body of the clause which makes all the body
atoms true, there is an instantiation of any additional vari-
ables in the head of the clause which makes all the head
atoms true.

So the clause above says that for any object Y occurring in
the class Statea, i f X is the capitalcity of Y then Y is the
state of X. This is an example of a constraint. We can also
use constraints to define the keys of a schema that can be
used to uniquely identify objects. In our database of Cities,
States and Countries, we would like to say that a Country
is uniquely determined by its name, while a City can be
uniquely identified by its name and its country. This can be
expressed by the clauses

X = M k ~tyr (name = N, country = C) (C2)
X E City T, N = X.name, C = X.country;

Y = Mkc°unr~yr(N) (C3)

Y E Country T, N = Y.name;

M k ciry~ and M k c ° u " ~ are examples of Skolem functions,
which create new object identities associated uniquely with
their arguments. In this case, the name of a City and the
country object identity are used to create an object identity
for the City.

WOL can be used to express a wide variety of constraints,
including functional and existence dependencies, key con-
straints, and other kinds of constraints supported by estab-
lished data-models. It can also express constraints which
cannot typically be expressed in the constraint languages of
databases. For example, the following constraints expresses
that, in our European Cities and Countries database, each
country has exactly one capital city.

Y E CityE, Y.country = X, Y.is_capital = True (C4)
X E Countryv,

X = Y ~ X E CityE, Y E CityE, (C5)
X.country = Y.country,
X.is_capital = True, Y.is_capital = True

The first clause states that, for every Country, there is a cor-
responding City for which the attribute is_capital has the
value True. The second clause states that, for any two Cities
belonging to the same Country, if both are capital cities
(the is_capital attribute has the value True) then they are the
same City.

Not all syntactically correct WOL clauses are meaningful.
We require two conditions to hold on a well-formed WOL

clause, namely that it be well-typed and range-restricted. A
clause is said to be well-typed iff we can assign types to all
the variables in the clause in such a way that all the atoms
of the clause make sense. For example a clause containing
the atom X < Y.population (where population is an integer
valued attribute) and an atom X E City A would not be well-
typed. For the first atom to make sense X would have to
have type integer, and for the second it would have to be an
object of class City A.

The concept of range-restriction is used to ensure that ev-
ery variable in the clause is bound to some object or value
occurring in the database instance in order for the atoms of
a clause to be true. This is similar to the idea of safety in
Datalog clauses. For example the in clause

X.population < Y = X E City A

the variable Y is not range restricted.

All the clauses we consider in this paper will be both well-
typed and range-restricted.

3.2 Expressing Transformations using WOL

In addition to expressing constraints about individual
databases, WOL clauses can be used to express relation-
ships between the objects of distinct databases. Consider
the clause

X E CountryT, X.name = E.name, (T1)
X.language = E.language, X.currency = E.currency

¢== E E CountryE;

This states that, for every Country in our European Cities
and Countries database (Figure 2), there is a corresponding
Country in our target international database (Figure 3) with
the same name, language and currency. This is an example
of a transformation clause, which states how an object or
part of an object in the target database arises from various
objects in the source and target databases.

A similar clause can be used to describe the relationship
between European City and City in our target database:

Y E CityT, Y.name = E.name, (T2)
Y.place = inSeuro.city(X)

¢== E E City E, X E Country r ,
X.name = E.country.name;

Note that the body of this clause refers to objects both in
the source and the target databases: it says that if there is a
City, E, in the European Cities database and a Country, X,
in the target database with the same name as the name of the
country of E, then there is a City, Y, in the target database
with the same name as E and with country X . (inseuro-city
accesses the euro_city choice of the variant).

59

A final clause is needed to show how to instantiate the
capital attribute of City in our target database:

X.capital = Y (T3)
¢== X E Country T, Y E City T,

Y.place = inseuro-city(X), E E CityE,
E.name = Y.name, E.state, name = X.name,
E.is_capital = True;

Notice that the definition of Country in our target database
is spread over multiple WOL clauses: clause (T1) describes
a country's name, language and currency attributes, while
clause (T3) describes its capital attribute. This is an im-
portant feature of WOL, and one of the main ways it dif-
fers from other Horn-clause logic based query languages
such as Datalog or ILOG which require each clause to com-
pletely specify a target value. It would be possible to com-
bine clauses (T1), (T3) and (C3), in order to a single clause
completely describing how a Country object in the target
database arises. However, when many attributes or com-
plex data structures are involved, or a target object is derived
from several source objects, such clauses become very com-
plex and difficult to understand. Further if variants are in-
volved, the number of clauses required may be exponential
in the number of variants involved. Consequently, while
conventional logic-based languages might be adequate for
expressing queries resulting in simple data structures, in or-
der to write transformations involving complex data struc-
tures with many attributes, particularly those involving vari-
ants, it is necessary to be able to split up the specification of
the transformation into small parts involving partial infor-
mation about data structures.

A transformation program consists of a finite set of trans-
formation clauses and constraints for some source and tar-
get database schemas. Given such a transformation pro-
gram, say Tr, a Tr-transformation of an instance of the
source database would be an instance of the target database
such that the two instances satisfy all the clauses in Tr.

Since WOL clauses represent logical statements, there may
be many instances of a target database satisfying a set of
clauses for a particular source database. For example the
clauses (T1), (T2) and (T3) above would imply that there
are objects in our target Country class corresponding to each
Country in our source database, but would not rule out the
possibility of having lots of other Countries, not related to
any in our source database. When dealing with transfor-
mation programs, we are therefore interested in the unique
smallest transformation of a particular source database.

A transformation program Tr is said to be complete iff
whenever there is a Tr-transformation of a particular source
database instance, there is a unique smallest such Tr-
transformation (up to renaming of object identities). In gen-
eral, if a transformation program is not complete, it is be-

cause the programmer has left out some part of the descrip-
tion of the transformation.

3.3 Related Languages

There are a number of database query languages based on
Horn-clause logic which have some similarity to WOL.
Most of these languages are variants and extensions of Dat-
aiog [?], and are therefore limited in their types to flat
relations. For example, ILOG [13] extends Datalog with
a mechanism for dealing with object identities based on
Skolem functions. Atomic formulae in ILOG and other
Dataiog-like languages typically use a positional represen-
tation of attributes, making the syntax unsuitable for dealing
with relations with lots of attributes. Furthermore, clauses
completely describe a target or intensional value in terms of
other values. As noted earlier, when targeting complex data-
structures it is desirable to have clauses which give partial
descriptions of a target value. There query languages are
therefore not appropriate in the context of database trans-
formations.

The F-logic of Kifer and Lausen [15] is another logic-
based language for reasoning about database schemas and
instances involving various object-oriented concepts. F-
logic differs from WOL in blurring the distinctions between
objects and schema-classes, and between objects and at-
tributes, and by directly incorporating a notion of inheri-
tance or subsumption. In the design of WOL there is a clear
distinction between schemas and instances, and between at-
tributes and classes, which were felt to be conceptually dis-
tinct. More significantly, WOL aims to be a practical lan-
guage allowing the efficient implementation of a significant
class of transformation specifications and constraints, while
F-logic does not lend itself to practical implementations.

Possibly the closest existing work to WOL, in both spirit
and purpose, are the structural manipulations of Abiteboul
and Hull [3]. These make use of rewrite rules, which have
similar feel to the Horn clauses of WOL, but are based on
pattern matching against complex data-structures, allowing
for arbitrarily nested set, record and variant type construc-
tors. The main contributions of WOL, compared with [3],
lie in its ability to deal with object-identity and hence recur-
sive data-structures, and in the uniform treatment of trans-
formation rules and constraints.

4 Transformations and Constraints

Since constraints specify valid instances of databases, they
can play an important role in implementing as well as in
proving the correctness of transformations.

60

4.1 Determining Transformations using Con-
straints

One of the most obvious examples of how constraints on a
target database play a part in determining a transformations
is that of key constraints. In the examples of the previous
section, clauses (T1) and (T3) must be combined with a key
constraint on Country T (C3) in order to completely specify
an object of class Country T in the target database.

Other constraints, such as inclusion dependencies and spe-
cialization or generalization relations, may also play a part
in determining transformations. For example suppose we
wish to generalize Country T and Stater by adding a class
Placer, with key attribute name, and attributes currency and
language, to our international Cities, Countries and States
database. The relationship between objects of class Placer
and those of class Stater or Country 7, might be expressed
by means of constraints:

P E Placer, P.name = N, P.currency = C, (C6)
P.language = L

¢== X E CountryT,, X.name = N,
X.currency = C, X.language = L;

P E Placer, P.name = N, (C7)
P.currency = "US-Dollars", P.language = "English"

¢== S E Stater, X . n a m e = N,X. language= L;

These clauses, in combination with key clauses for the
class Placer, are sufficient to determine the objects of class
Placer, so no additional transformation clauses, other than
those already defined for generating the classes Country 7.
and StateT, would be needed.

4.2 Optimizing Transformations using Con-
straints

Constraints on the source databases do not play a part in
determining a transformation, since they only assert restric-
tions on the source database, which we assume are satisfied
prior to the transformation being carried out. Nevertheless
they can play an important part in implementing a database
transformation.

The implementation of WOL described in Section 5 is based
on the approach of first deriving new WOL clauses from a
transformation program which completely describe how to
generate an object in the target database, and then applying
these new clauses using some underlying database query
engine. Source database constraints play an important part
in optimizing this process, both by simplifying the derived
rules and by causing unsatisfiable rules to be rejected.

Example 4.1: For the schemas of the Cities and Countries

databases described earlier, suppose we split the description
of the instantiation of the Country T class over several trans-
formation clauses:

X = Mkc°untrYr(N), X.language = L (T4)

¢== Y E Country E, Y.name = N, Y.language = L

X = MkC°Un~r(N), X.currency = C (T5)
¢== Z E Country E, Z.name = N, Z.currency = C

Combining these clauses gives

X = MkC°Unt~Yr(N), X.language = L, X.currency = C

¢== Y E Country E, Y .name= N, Y.language= L

Z E CountryE, Z.name = N, Z.currency = C

To apply this clause we would need to take the product of
the source class Country E with itself, and try to bind Y and
Z to pairs of objects in Country E which have the same value
on their name attribute.

Suppose however, we had a constraint on the source
database:

X = Y ~ (C8)
X E Country E Y E Country E X.name = Y.name

That is, name is a key for Country E. We could then use this
source constraint to simplify our previous, derived transfor-
mation clause, in order to form the new clause:

X = MkC°Un~Yr(N), X.language = L, X.currency = C
¢ : : Y E Country E, Y.name = N,

Y.language = L, Y.currency = C

This clause does not actually give us any new information
about the target database, but that it is simpler and more
efficient to evaluate. •

4.3 Correctness of Transformations

Since many applications of database transformations are
highly critical, it is important to have some notion of cor-
rectness for database transformations, and, in particular, to
be able to show that a transformation preserves the informa-
tion stored in a database.

The issues of information capacity and information domi-
nance for database schemas have been thoroughly examined
in [11]. The basic concept was defined by saying that one
schema dominates another iff there is an injective transfor-
mation, subject to various restrictions, from the instances of
the first schema to the instances of the second: that is each
distinct source database instance is mapped to a distinct tar-
get instance by the transformation. Such a transformation is

61

said to be information preserving. The notion of informa-
tion capacity and information preserving transformations is
complicated by the presence of object identities (see [16]),
but can easily be adapted. An important conclusion of [l 1]
is that none of these criteria capture an adequate notion of
semantic dominance, that is, whether there is a semanti-
cally meaningful interpretation of instances of one schema
as instances of another. Consequently the task of ensuring
a transformation is semantically meaningful still requires a
knowledge and understanding of the databases involved.

In [18, 19] Miller et al. analyze the information require-
ments that need to be imposed on transformations in var-
ious applications. For example they claim that if a trans-
formation is to be used to view and query an entire source
database then it must be a total injective function, while if
a database is to be updated via a view then the transfor-
mation to the view must also be surjective. An important
observation in [18] is that database transformations can fail
to be information capacity preserving, not because there is
anything wrong with the definition of the transformations
themselves, but because certain constraints which hold on
the source database are not expressed in the source database
schema. However the full significance of this observation is
not properly appreciated: in fact it is frequently the case
that the constraints that must be taken into account in order
to validate a transformation have not merely been omitted
from the source schema, but are not expressible in any stan-
dard constraint language.

I Person ~__~use

S~e.mal ~n~me
mal e

str
umt unit

Figure 4: A schema of persons and marriages prior to
schema evolution

Male) name , str

I Marriage y . . _
Wi~"-~ Female I name , str

Figure 5: A schema of persons and marriages after schema
evolution

Example 4.2: Consider the schema evolution illustrated
in Figures 4 and 5. The first schema has only one class,
Person, with attributes representing a person's name, sex
(a variant of male and female) and spouse. In our sec-
ond (evolved) schema the Person class has been split into

two distinct classes, Male and Female, perhaps because
we wished to start storing some different information for
men and women. Further the spouse attribute is replaced
by a new class, Marriage, perhaps because we wished to
start recording additional information such as dates of mar-
riages, or allow un-married people to be represented in the
database.

It seems clear that there is a meaningful transformation from
instances of the first database to instances of the second.
The transformation can be described by the following W O L
program:

X E Male, X .name = N (T6)
¢== Y E Person, Y.name = N, Y.sex = insr, ale();

X E Female, X .name = N (T7)
Y E Person, Y.name = N,]".sex = insrernale();

M E Marriage, M.husband = X , M. wife = Y
¢== X E Male, Y E Female, Z E Person,

W E Person, X .name = Z.name,
Y.name = W.name, W = Z.spouse;

(T8)

Unfortunately this transformation is not information pre-
serving: there are instances of the spouse attribute that are
allowed by the first schema that will not be reflected by the
second schema. In particular the first schema does not re-
quire that the spouse attribute of a man goes to a woman, or
that for each spouse attribute in one direction there is a cor-
responding spouse attribute going the other way. However
if we augment the first schema with additional constraints,
such as:

X.sex = insmaleO (C9)
¢=:= Y E Person, Y.sex = insremalc(),

X = Y.spouse;

Y.sex = inseemaleO (C10)
X E Person, X . sex = insmate(),
Y = X.spouse;

Y = X.spouse (C l l)
¢::= Y E Person, X = Y.spouse;

we can then show that the transformation is information pre-
serving on those instances of the first schema that satisfy
these constraints. These constraints deal with values at the
instance level of the database, and could not be expressed
with the standard constraint languages associated with most
data-models. •

This highlights a basic problem with information capacity
analysis of transformations: such an analysis assumes that
schemas give a complete description of the set of possible
instances of a database. In practice schemas are seldom

62

complete, either because certain constraints were forgotten
or were not known at the time of schema design, or because
the data-model being used simply isn't sufficiently expres-
sive. In the above example, the transformation appears to
discard information, while in fact this is because the new
schema is a better fit for the data.

WOL takes a step towards addressing these problems: It
provides a formalism for expressing constraints necessary
in order to ensure information preserving transformations,
and allows for formal reasoning about the interactions be-
tween database transformations and constraints.

5 Morphase

Implementing a transformation directly using clauses such
as (T1), (T2) and (T3) would be inefficient: to infer the
structure of a single object we would have to apply multiple
clauses, for example clauses (T1), (T3) and (C3) would be
needed for a single Country object. Further, since some of
the transformation clauses, such as (T1) and (T3), involve
target classes and objects in their bodies, we would have to
apply the clauses recursively: having inserted a new object
into Country T we would have to test whether clause (T2)
could be applied to that Countryin order to introduce a new
City T object.

Since WOL programs are intended to transform entire
databases and may be applied many times, we trade off
compile-time expense for run-time efficiency. We pursue
an implementation strategy which finds, at compile time, an
equivalent, more efficient transformation program in which
all clauses are in normal form. A transformation clause
in normal form completely defines an insert into the tar-
get database in terms of the source database only. That is,
a normal form clause will contain no target classes in its
body, and will completely and unambiguously determine
some object of the target database in its head. A transfor-
mation program in which all the transformation clauses are
in normal form, can easily be implemented in a single pass
using some suitable database programming language.

Our prototype implementation of WOL, Morphase, first
rewrites a WOL transformation program so that all the
clauses are in normal-form, and then uses a database pro-
gramming language, CPL, to perform the transformations.
Morphase has been used in several trial transformations
within the Philadelphia Genome Center for Chromo-
some 22 (see [8, 17] for details; also visit the Web site
http : //www. cis. upenn, edu/~db/morphase).

A number of syntactic extensions and shorthands were used
in order to make programming in WOL more convenient
and concise without effecting the expressive power of the
language.

Unfortunately, not all complete transformation programs
have equivalent normal form transformation programs, and
it is not decidable whether a transformation program is
complete or such an equivalent normal form transformation
program exists. Consequently Morphase imposes certain
syntactic restrictions on transformation programs, to ensure
that they are non-recursive, such that most natural transfor-
mations satisfy these restrictions.

The architecture of Morphase is illustrated in figure 6:
WOL transformation rules are typically written by the user
of the system; however a large number of constraints, such
as keys and other dependencies, can be automatically gen-
erated from the meta-data associated with the source and
target databases, in order to complete a transformation pro-
gram. Such constraints are time consuming and tedious to
program by hand. Deriving them directly from meta-data
therefore reduces the amount of grunge work that needs to
be done by the programmer, and allows him or her to con-
centrate on the structural part of a transformation.

[WOL t r [ansform!tioPar~ er 1
~, program

[Translator to snf 1

~ snf transformation program
Meta-

data [Normalization program 1

~ normal-form transformation

[Translator to CPL)

Source DBs
Input

..I
Morphase

CPL c o d e system

Target DBs
output

CPL

Figure 6: Architecture of the Morphase system

The translation of a WOL transformation program has sev-
eral stages. The clauses are first rewritten into semi-normal
form (snf), which reduces the number of forms the atoms of
a clause can take, so that any two equivalent clauses or sets
of atoms will differ only in their choice of variables. This
simplifies the unification of clauses, as well as the book-

63

keeping necessary for optimizations. The snf program is
then transformed into a normal-form program if possible,
using a process of unifying and unfolding clauses. A num-
ber of important optimizations are used during this process,
including the application of source and target constraints to
simplify clauses. See [17] for details.

Note that this normalization process differs from the uni-
fication and unfolding of clauses carried out in certain im-
plementations of Horn-clause logic based languages such
as Prolog and Datalog, in that it deals with un-instantiated
clauses for the purpose of forming new clauses or re-writing
a transformation program. In traditional logic based lan-
guages, unfolding and unification are used in order to apply
clauses and to bind the variables of a query to actual values.

Once translated into normal-form, a WOL program can be
executed against the source databases to produce the tar-
get database. Complete, normal-form WOL programs are
compiled into CPL, a database programming language for
complex values developed at the University of Pennsylva-
nia. The reason for using CPL as an implementation lan-
guage is that it supports many of the data-types that we are
interested in, and its implementation in the Kleisli system
[7] enables us to access a wide variety of heterogeneous
database systems, including those that we wished to use
in our trials. We can currently connect to Sybase, Ora-
cle, ASN.1 and ACeDB 2 databases, as well as a number
of application programs such as the sequence analysis pack-
ages Blast and FASTA; extending Kleisli to incorporate new
databases is relatively easy. However, translating normal
form WOL programs into some other sufficiently expres-
sive DBPL should be a straightforward task.

6 Conclusions

The development of WOL was in part motivated by expe-
riences in informatics support of the Philadelphia Human
Genome Center for Chromosome 22. As is the case in many
biomedical databases, the database for sequence data per-
taining to Chromosome 22 at Penn (Chr22DB) undergoes
frequent schema evolution due to changing experimental
techniques, resulting in the need for various data transfor-
mations to maintain data input screens and analysis pack-
ages. Additional data for Chr22DB (a Sybase database) is
imported from ACe22DB, an ACeDB database located at
the Sanger Centre in Cambridge, England. ACeDB repre-
sents data in tree-like structures with object identities, and
is well suited for representing "sparsely populated" data
[23]. Data is structured very differently in ACe22DB and
Chr22DB, since they use incompatible data-models as well
as different interpretations of the underlying data and how

2A c. elegans Database (AceDB). While "C elegans" may sound like a
contradiction in terms to a computer scientist, it is actually a small worm.

it should be structured. Therefore, complicated programs
were hand-coded to periodically exchange data between
ACe22DB and Chr22DB. However, both of the databases
are constantly evolving necessitating modifications of the
hand-coded programs.

WOL and its implementation in Morphase have been tested
on these and other transformations arising at the Bio-
Informatics center at Penn, and the performance of the sys-
tem has been evaluated in terms of ease of use, compilation
time, and size and complexity of the resulting normal form
program. The size and complexity of the normal form pro-
gram is an indirect indicator of the execution time of the ac-
tual transformation, since the Kleisli optimizer will rewrite
the CPL code to a more efficient form. These trials gave us
significant insights into optimizations for the normalization
procedure and the translation to CPL, many of which were
incorporated into the prototype.

WOL transformations were programmed by researchers
connected with the Philadelphia Genome Center, who used
their domain knowledge to formulate the transformations.
Learning WOL and using it to express the transformations
was found to be an easy and natural process. The most diffi-
cult part of the process was in fact understanding the foreign
databases. As ACe22DB and Chr22DB have evolved over
time, it has also been easy to modify the original WOL pro-
gram to reflect schema changes.

The time taken to compile and normalize various WOL
programs was also measured. These included programs in
which all the clauses were already in normal form, which
represented the minimum time necessary for the system to
process a transformation program. It was found that the
use of constraints was extremely important in gaining ac-
ceptable performance from the implementation, with a non-
normalized transformation program with constraints taking
approximately six times longer to compile than a normal-
ized program. If constraints were omitted the time taken to
normalize a program, and the size of the resulting normal-
form program, could be exponential in the size of the origi-
nal program.

The WOL language has also been used independently by
researchers in the VODAK project at Darmstadt, Germany,
[1], in order to build a data-warehouse of protein and
protein-ligand data for use in drug design. This project in-
volved transforming data from a variety of public molecular
biology databases, including SWISSPROT and PDB, and
storing it in an object-oriented database, ReLiBase. WOL
was used to specify structural transformations of data, and
to guide the implementations of these transformations.

The primary contributions of this paper lie in the desiderata
we have gleaned for database transformation languages, and
the language WOL itself. While the idea of using a Horn-

64

clause logic query language for complex object databases is
not new, several features of WOL make it uniquely appli-
cable as a database transformation language. First, WOL is
designed to deal with transformations involving the com-
plex and possibly recursive data-structures that occur in
object-oriented databases, as well as with traditional rela-
tional databases involving large numbers of attributes. This
necessitates the ability to specify partial rules, which in
turn requires some unique, efficient compile time rewriting
strategies. Second, the ability to capture and reason about
database constraints in the same formalism allows for the
use of constraints in determining and optimizing transfor-
mations, and in reasoning about the correctness of trans-
formations. We have also briefly described implementa-
tion strategies, based on the WOL language, which proto-
type implementations and trials have shown to be extremely
promising.

In future work, we also wish to explore how well the
approach scales to larger problems than we have consid-
ered. (Human Genome Project databases are typically
rather small, less than a gigabyte.) It is also clear that there
is a potential for graphical schema manipulation tools gen-
erating WOL transformation programs. Finally, given that
constraints are available to reason about formally within the
WOL framework, we would like to explore ways in which
to reason about the "correctness" of transformations.

Acknowledgments . We would like to thank Peter Buneman
for his help,suggestions and examples, Barbara Eckman and
Carmem Hara for their help with the Morphase trials, and
Scott Harker for his implementation work on Morphase.

References

[1] K. Aberer and K. Hemm. A methodology for building a data
warehouse in a scientific environment. In Proceedings of the
1st IFCIS International Conference on Cooperative Informa-
tion Systems (CooplS), Brussels, Belgium, June 1996.

[2] S. Abiteboul and R. Hull. IFO: A formal semantic database
model. ACM Transactions on Database Systems, 12(4):525-
565, December 1987.

[3] S. Abiteboul and R. Hull. Restructuring hierarchical
database objects. Theoretical Computer Science, 62:3-38,
1988.

[4] S. Abiteboul and P. Kanellakis. Object identity as a query
language primitive. In Proceedings of ACM SIGMOD Con-
ference on Management of Data, pages 159-173, Portland,
Oregon, 1989.

[5] F. Bancilhon. Object-oriented database systems. In Proceed-
ings of 7th ACM Symposium on Principles of Database Sys-
tems, pages 152-162, Los Angeles, California, 1988.

[6] J. Banerjee, W. Kim, H. Kim, and H. Korth. Semantics
and implementation of schema evolution in object-oriented
databases. SIGMOD Record, 16(3):311-322, 1987.

[7] P. Buneman, S. Davidson, K. Hart, C. Overton, and L. Wong.
A data transformation system for biological data sources. In
Proceedings of21st VLDB, September 1995. Also Technical
report MS-CIS-95-10, Dept. of Computer and Information
Science, University of Pennsylvania. March 1995.

[8] S. B. Davidson, A. S. Kosky, and B. Eckman. Facilitating
transformations in a human genome project database. Tech-
nical Report MS-CIS-93-94/L&C 74, University of Pennsyl-
vania, Philadelphia, PA 19104, December 1994.

[9] U. Dayal and H. Hwang. View definition and generalisation
for database integration in Multibase: A system for heteroge-
neous distributed databases. IEEE Transactions on Software
Engineering, SE-I 0(6):628-644, November 1984.

[10] N. Hammer and D. McLeod. Database description with
SDM: A semantic database model. ACM Transactions on
Database Systems, 6(3):351-386, September 1981.

[l 1] R. Hull. Relative information capacity of simple relational
database schemata. SIAM Journal of Computing, 15(3):865-
886, August 1986.

[12] R. Hull and R. King. Semantic database modeling: Survey,
applications, and research issues. ACM Computing Surveys,
19(3):201-260, September 1987.

[13] R. Hull and M. Yoshikawa. ILOG: Declarative creation and
manipulation of object identifiers. In Proceedings of 16th
International Conference on Very Large Data Bases, pages
455-468, 1990.

[14] S. N. Khoshafian and G. E Copeland. Object identity. In
S. B. Zdonik and D. Maier, editors, Readings in Object Ori-
ented Database Systems, pages 37-46. Morgan Kaufmann
Publishers, San Mateo, California, 1990.

[15] M. Kifer and G. Laussen. F-logic: A higher order language
for reasoning about objects, inheritance, and scheme. In Pro-
ceedings of ACM-SIGMOD 1989, pages 46-57, June 1989.

[16] A. Kosky. Observational properties of databases with object
identity. Technical Report MS-CIS-95-20, Dept. of Com-
puter and Information Science, University of Pennsylvania,
1995.

[17] A. Kosky. Transforming Databases with Recursive Data
Structures. PhD thesis, Department of Computer and In-
formation Science, University of Pennsylvania, Philadelphia,
PA 19104, November 1995.

[18] R.J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The use
of information capacity in schema integration and transla-
tion. In Proc. 19th International VLDB Conference, pages
120-133, August 1993.

[19] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema
equivalence in heterogeneous systems: Bridging theory and
practice. Information Systems, 19, 1994.

[20] A. Motro. Superviews: Virtual integration of multiple
databases. IEEE Transactions on Software Engineering, SE-
13(7):785-798, July 1987.

[21] E Saltor, M. Castellanos, and M. Garcia-Solaco. Suitability
of data models as canonical models for federated databases.
SIGMOD Record, 20(4):~4 ~8, December 1991.

[22] P. Shoval and S. Zohn. Binary-relationship integration
methodology. Data and Knowledge Engineering, 6:225-
249, 1991.

[23] J. Thierry-Mieg and R. Durbin. Syntactic Definitions for
the ACEDB Data Base Manager. Technical Report MRC-
LMB xx.92, MRC Laboratory for Molecular Biology, Cam-
bridge,CB2 2QH, UK, 1992.

65

