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Abstract

Time series stored as feature vectors can be indexed by multi-
dimensional index trees like R-Trees for fast retrieval. Due to
the dimensionality curse problem, transformations are applied to
time series to reduce the number of dimensions of the feature vec-
tors. Different transformations like Discrete Fourier Transform
(DFT), Discrete Wavelet Transform (DWT), Karhunen-Loeve (K-
L) transform or Singular Value Decomposition (SVD) can be ap-
plied. While the use of DFT and K-L transform or SVD have been
studied in the literature, to our knowledge, there is no in-depth
study on the application of DWT. In this paper, we propose to use
Haar Wavelet Transform for time series indexing. The major con-
tributions are: (1) we show that Euclidean distance is preserved
in the Haar transformed domain and no false dismissal will occur,
(2) we show that Haar transform can outperform DFT through
experiments, (3) a new similarity model is suggested to accom-
modate vertical shift of time series, and (4) a two-phase method
is proposed for efficient � -nearest neighbor query in time series
databases.

1. Introduction

Time series data are of growing importance in many new
database applications, such as data warehousing and data mining
[3, 8, 2, 12]. A time series (or time sequence) is a sequence of
real numbers, each number representing a value at a time point.
Typical examples include stock prices or currency exchange rates,
biomedical measurements, weather data, etc . . . collected over
time. Therefore, time series databases supporting fast retrieval of
time series data and similarity queries are desired.

In order to depict the similarity between two time series,
we define a similarity measurement during the matching pro-
cess. Given two time series ������	��

������������������������� and �������	

��� ���!����������� �"�#� , a standard approach is to compute the Eu-
clidean distance $&%'���� ��)( between time series �� and ��*,+!-.0/ -1�2�354 � �"�6 7�8 
:9 . 7�; 1 7 9 <�=?>@
By using this similarity model, we can retrieve similar time series
by considering distance $A%!��B� ��)( .

Indexing is used to support efficient retrieval and matching of
time series. Some important factors have to be considered: The
first factor is dimensionality reduction. Many multi-dimensional
indexing methods [13, 7, 5, 20] such as the R-Tree and R*-Tree
[20, 5, 11] scale exponentially for high dimensionalities, eventu-
ally reducing the performance to that of sequential scanning or
worse. Hence, transformation is applied to map the time sequences
to a new feature space of a lower dimensionality. Next we must
ensure completeness and effectiveness when the number of dimen-
sions is reduced. To avoid missing any qualifying object, the Eu-
clidean distance in the reduced C -dimensional space should be less
than or equal to the Euclidean distance between the two original
time sequences. Finally, we must also consider the nature of data
series since the effectiveness of power concentration of a partic-
ular transformation depends on the nature of the time series. It
is believed that only brown noise or random walks exists in real
signals. In particular, stock movements and exchange rates can be
modeled successfully as random walks in [10], for which a skewed
energy spectrum can be obtained.

Discrete Fourier Transform (DFT) has been one of the most
commonly used techniques. One problem with DFT is that it
misses the important feature of time localization. Piecewise
Fourier Transform has been proposed to mitigate this problem, but
the size of the pieces leads to other problems. While large pieces
reduce the power of multi-resolution, small pieces has weakness
in modeling low frequencies.

Wavelet Transform (WT), or Discrete Wavelet Transform
(DWT) [9, 18] has been found to be effective in replacing DFT
in many applications in computer graphics, image [26], speech [1]
, and signal processing [6, 4]. We propose to apply this technique
in time series for dimension reduction and content-based search.
DWT is a discrete version of WT for numerical signal. Although
the potential application of DWT in this problem was pointed out
in [22], no further investigation has been reported to our knowl-
edge. Hence, it is of value to conduct studies and evaluations on
time series retrieval and matching by means of wavelets.

The advantage of using DWT is multi-resolution representation
of signals. It has the time-frequency localization property. Thus,
DWT is able to give locations in both time and frequency. There-
fore, wavelet representations of signals bear more information than
that of DFT, in which only frequencies are considered. While DFT
extracts the lower harmonics which represent the general shape of



a time sequence, DWT encodes a coarser resolution of the origi-
nal time sequence with its preceding coefficients. We show that
Euclidean distance is preserved in the Haar transformed domain.
Moreover, we show by experiments that Haar Wavelet Transform�

[9], which is a commonly used wavelet transform, can outper-
form DFT significantly.

We also suggest a similarity definition to handle the problem of
vertical shifts of time series. Finally we propose an algorithm on� -nearest neighbor query for the proposed wavelet method. The
algorithm makes use of the range query and dynamically adjusts
the range by the property of Euclidean distance preservation of the
wavelet transformation.

2. Related Work

Discrete Fourier Transform (DFT) is often used for dimension
reduction [2, 15] to achieve efficient indexing. An index built by
means of DFT is also called an F-index [2]. Suppose the DFT of
a time sequence �� is denoted by �� . For many applications such as
stock data, the low frequency components are located at the pre-
ceding coefficients of �� which represent the general trend of the
time sequence �� . These coefficients can be indexed in an R-Tree
or R*-Tree for fast retrieval. In most previous works, range query-
ing is considered. A range query (or epsilon query) evaluation
returns sequences with Euclidean distance within � from the query
point.

Parseval’s Theorem [23] shows that the Euclidean distance be-
tween two signals �� and �� in time domain is the same as their
Euclidean distance in frequency domain� ���� �� � <�� � �� � �� � < (1)

Therefore, F-index may raise false alarms, but guarantees no false
dismissal. After a range query in the F-index, false alarms are fil-
tered by checking against the query sequence in the original time
domain in a post-processing step. F-index is further generalized
and subsequence matching is proposed in [15]. This is called the
ST-index which permits sequence query of varying length. Each
time sequence is broken up into pieces of subsequences by a slid-
ing window with a fixed length � for DFT. Feature points in nearby
offsets will form a trail due to the effect of stepwise sliding win-
dow, the minimum bounding rectangle (MBR) of a trail is then be-
ing indexed in an R-Tree instead of the feature points themselves.
When a query arrives, all MBRs that intersect the query region are
retrieved and their trails are matched.

New similarity models are applied to F-index based time se-
ries matching in [24]. It achieves time warping, moving average,
and reversing by applying transformations to feature points in the
frequency domain. Given a query �	 , a new index is built by apply-
ing a transformation to all points in the original index and feature
points with a distance less than � from �	 are returned. However, a
lot of computations are involved in building the new index. which
has a great impact on the actual query performance.

In the above works, no efficient method for nearest neighbor
query, which can be more useful than range query, has been pro-
posed.�

We shall use Haar wavelet transform and DWT interchangeably
throughout this paper, unless specified particularly.

Another method that has been employed for dimension reduc-
tion is Karhunen-Loeve (K-L) transform [28]. (This method is
also known as Singular Value Decomposition (SVD) [22], and
is called Principle Component analysis in statistical literature.)
Given a collection of � -dimensional points, we project them on aC -dimensional sub-space where C�
 � , maximizing the variances
in the chosen dimensions. The key weakness of K-L transform is
the deterioration of performance upon incremental update of the
index. Therefore, new projection matrix should be re-calculated
and the index tree has to be re-organized periodically to keep up
the search performance.

2.1. Wavelet Transform

Wavelets are basis functions used in representing data or other
functions. Wavelet algorithms process data at different scales or
resolutions in contrast with DFT where only frequency compo-
nents are considered. The origin of wavelets can be traced to the
work of Karl Weierstrass [27] in 1873. The construction of the
first orthonormal system by Haar [21] is an important milestone.
Haar basis is still a foundation of modern wavelet theory. Another
significant advance is the introduction of a nonorthogonal basis by
Dennis Gabor in 1946 [16]. In this work we shall advocate the use
of the Haar wavelets in the problem of time series retrieval.

3. The Proposed Approach

Following a trend in the disciplines of signal and image pro-
cessing, we propose to study the use of wavelet transformation for
the time series indexing problem. Before we go into the details of
our proposed techniques, we would first like to define the similar-
ity model used in sequence matching. The first definition is based
on the Euclidean distance $A%'���� ���( between time sequences �� and�� .

Definition 1 Given a threshold � , two time sequences �� and �� of
equal length � are said to be similar if*,+'-. / -1�2�3 4 � �"�6 7�8 
 + 1 7 ; . 7 2 < =?>@
� �

A shortcoming of Definition 1 is demonstrated in Figure 1.
From human interpretation, �� and �� may be quite similar because�� can be shifted up vertically to obtain �� or vice versa. However,
they will be considered not similar by Definition 1 because errors
are accumulated at each pair of � 7 and � 7 . Therefore, we suggest
another similarity model.

Definition 2 Given a threshold � , two time sequences �� and �� of
equal length � are said to be v-shift similar if*,+!-. / -1 2�3 4 � �"�6 7�8 
 +�+ 1 70; . 7 2 ; + 1�� ; .�� 2�2 < =?>@
� �

where .�� 3��� � �"�6 7�8 
 . 7 and 1�� 3��� � �"�6 7�8 
 1 7



From Definition 2, any two time sequencesare said to be v-shift
similar if the Euclidean distance is less than or equal to a thresh-
old � neglecting their vertical offsets from x-axis. This definition
can give a better estimation of the similarity between two time se-
quences with similar trends running at two completely different
levels.
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Figure 1. Example of vertical shifts of time sequences

3.1. Haar Wavelets

We want to have a decomposition that is fast to compute and
requires little storage for each sequence. The Haar wavelet is cho-
sen for the following reasons: (1) it allows good approximation
with a subset of coefficients, (2) it can be computed quickly and
easily, requiring linear time in the length of the sequence and sim-
ple coding, and (3) it preserves Euclidean distance (see Section
3.3). The formal definition of Haar wavelets is given in Appendix
A. Concrete mathematical foundations can be found in [9, 19] and
related implementations in [14].

Haar transform can be seen as a series of averaging and differ-
encing operations on a discrete time function. We compute the av-
erage and difference between every two adjacent values of

� % ��( .
The procedure to find the Haar transform of a discrete function� % ��( = (9 7 3 5) is shown below.

Resolution Averages Coefficients
4 (9 7 3 5)
2 (8 4) (1 -1)
1 (6) (2)

Resolution 4 is the full resolution of the discrete function
� % ��( .

In resolution 2, (8 4) are obtained by taking the average of (9 7)
and (3 5) at resolution 4 respectively. (1 -1) are the differences
of (9 7) and (3 5) divided by two respectively. This process is
continued until a resolution of 1 is reached. The Haar transform� % � % ��(�( = ( ��� 

 � �
 � �� ) = (6 2 1 -1) is obtained which is composed
of the last average value 6 and the coefficients found on the right
most column, 2, 1 and -1. It should be pointed out that � is the
overall average value of the whole time sequence, which is equal
to %����
	��
���
� (���� ��� . Different resolutions can be obtained
by adding difference values back to or subtract differences from
averages. For instance, (8 4) = (6+2 6-2) where 6 and 2 are the
first and second coefficient respectively. This process can be done
recursively until the full resolution is reached.

Haar transform can be realized by a series of matrix multiplica-
tions as illustrated in Equation (2). Envisioning the example input
signal �� as a column vector with length < � = 4, an intermediate
transform vector �� as another column vector and Haar transform
matrix � �� .��
� �
. � �� �� �� 3 �� �� � � � ��

;
� � �� � � �� � �

;
�

��"!#�� . 
. �. <.%$ �� (2)

The factor 1/2 associated with the Haar transform matrix can be
varied according to different normalization

$
conditions. After the

first multiplication of �� and � , half of the Haar transform coef-
ficients can be found which are � �
 and � �� in �� interleaving with
some intermediate coefficients � �
 and � � � . Actually, � �
 and � �� are
the last two coefficients of the Haar transform. � �
 and � � � are then
extracted from �� and put into a new column vector �� � = [ � �
 � � � 0
0] & . �� � is treated as the new input vector for transformation. This
process is done recursively until one element is left in �� � . In this
particular case, � and � 

 can be found in the second iteration.

The complexity of Haar transform can be evaluated by consid-
ering the number of operations involved in the recursion process.

Lemma 1 Given a time sequence of length � where � is an inte-
gral power of 2, the complexity of Haar transform is ' % � ( .
Proof: There are totally � matrix additions or subtractions in the
first iteration of matrix operation. The size of the input vector is
halved in each iteration onwards. The total number of operations
is formulated as( )�* @ �+ ,.- /�0� � �21 �"34353�� 1 �61 1 ( )�* @ � �
71 �
7 �61 % � �87'(
which is bounded by 9 % � ( . :
3.2. DFT versus Haar Transform

Our motivation of using Haar transform to replace DFT is
based on several evidences and observations, some of which are
also the reasons why the use of wavelet transforms instead of DFT
is considered in areas of image and signal processing.

The first reason is on the pruning power. The nature of the
Euclidean distance preserved by Haar transform and DFT are dif-
ferent. In DFT, comparison of two time sequences is based on
their low frequency components, where most energy is presumed
to be concentrated on. On the other hand, the comparison of Haar
coefficients is matching a gradually refined resolution of the two
time sequences. From intuition, Euclidean distance can be highly
related to low resolution of signal rather than low frequency com-
ponents. This property can give rise to more effective pruning, i.e.
less false alarms will appear, which is confirmed by experiments
in Section 5.

Another reason is the complexity consideration. The complex-
ity of Haar transform is O % � ( whilst O % �<;>=.? � ( computation is< As for Fast Fourier Transform, the length of the signal is restricted to
numbers which are power of 2.$

The normalization is described in Section 3.3.



required for Fast Fourier Transform (FFT) [17]. Both impose re-
striction on the length of time sequences which must be an inte-
gral power of 2. Although these computations are all involved in
pre-processing stage, the complexity of the transformation can be
a concern especially when the database is large. From our experi-
ments, the pre-processing time for DFT is about 3 to 4 times longer
than Haar transform.

Finally, the proposed method provides better similarity model.
Apart from Euclidean distance, our model can easily accommo-
date v-shift similarity of two time sequences (Definition 2) at a lit-
tle more cost. That is, the situation where vertically shifted signals
can match is accommodated. On the other hand, previous study on
F-index did not make use of this similarity model.

Note that similar to DFT, DWT will not require massive index
re-organization because of database updating, which is a major
drawback in using the K-L transform or SVD approach.

3.3. Guarantee of no False Dismissal

For FT and DFT, it is shown by Parseval’s Theorem [23] that
the energy of a signal conserves in both time and frequency do-
mains. Parseval’s Theorem also shows that this situation is true for
wavelet transforms. On the other hand, the Euclidean distances of
both time and frequency domains are the same for DFT by Equa-
tion (1). This is a very important property in order that dimen-
sion reduction of sequence data is possible. It guarantees that no
qualified time sequence will be rejected, thus no false dismissal.
However, this property has not been shown for DWT in general,
and not for the Haar wavelets. Here we show such a relationship.

Lemma 2 Given a sequence �� = ( ��
 ��� ) and a sequence �� = ( �	
��� ). The Haar transforms of �� and �� are
� %'�� ( = �� = ( �!
��
� ) and� %����( = �� = ( � 
 � � ) respectively. Lengths of �� , �� , �� and �� are

all equal to 2. Then Euclidean distance $A%!��B� ���( is
� 1 times of

Euclidean distance $A%!�� � ��	( , i.e. $A%!��B� ��0( � � 1 $A%'��	� ��
(
Proof: Express �� in terms of �� and �� in terms of �� by applying
Equation (2) accordingly.-� 3�� . 
�� . �� . 
 ; . �� 	 -
 3�� 1 
�� 1 �� 1 
 ; 1 �� 	
Square of Euclidean distance of �� and ��� @
������ ������ ��������� >@ � � ��� � >@ 	 @ � ���!� � � >@ �"� � � � >@ 	 @ � � @ ���� � �� �@
Thus, $ < %'��
� ���( � % $ < %'���� ��)(�(��.1 , and $A%!��B� ��)( � � 1 $A%!��	� ��!( :
Lemma 3 Given two sequences �� and �� , and the Haar transforms
of �� , �� are �� and �� respectively. Lengths of �� , �� , �� and �� are all �
( �$# 1 and � is a power of 2). ( �� – �� ) = ( % $ � $ < . . . $ ����� ). The
Euclidean distance $A%'���� ���( = & ( )�* @ � can be expressed in terms
of ( %?$ � $ < . . . $ � �"� ) recursively by' 7)( � 3 * � ! +�' <7 � * <<�+ � * <<�+ ( � �-,.,/,/� * <<�+ � > �"� 2for � �"0 �214365 < � ; �' 
 3 7 (3)

Level Si+1
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x i+1,2j x i+1,2j+1

d 2 +ji
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i

Figure 2. Hierarchy of Haar wavelet transform of se-
quence �� of length �

Proof: In Figure 2, the original sequence �� is represented at level;>=2? < � . The values of � 7�8 9 and � <�+ (:9 are defined by. 7;8 9 3 . 7)( � 8 < 9 � . 7<( � 8 < 9/( ��
� <�+ (:9 3 . 7)( � 8 < 9 ; . 7<( � 8 < 9/( ��

The Haar transform of �� ,
� %'�� ( is represented by ( ��
 8 
 � � � <. . . � <�+ (=9 � <�+ (:9>( � . . . � ����� ). A similar hierarchy exists for another

sequence �� . Denote % � ��
 8 
�� �	
 8 
 and $ 7 � � 7 of sequence�� � � 7 of sequence �� , where 7@?BAC? � � 7 .
We can treat the elements at each horizontal level of the hierar-

chy to be a data sequence. Hence the sequence at level & 7 contains
data �	� 7;8 
 ��� 7�8 � ��������� � 7;8 <�+ ��� � . Let us define & 7 to be

' 7 3 DEEF <�+ �"�6 9#8 
 + . 7;8 9 ; 1 7;8 9 2 <
& 7 can be seen as the Euclidean distance between the data se-
quences at level A ( G ?HA@? ;>=.? < � ) in the hierarchies for �� and�� . Also, & ( )�* @ � is the Euclidean distance between the given time
series.

Next we prove the following statement:' 7<( � 3 * � ! +�' <7 � * <<�+ � * <<�+ ( � �I,J,.,!� * <<�+ � > ��� 2for � �"0 �"14365 < � ; �' 
 3 7
(4)

The base case is shown true by Lemma 2 when A = 0.' � 3 K � ! +�' <
 � * < � 2
We next prove the case for A�� C LMG . We first note that in the

given hierarchy, for a pair of adjacent elements at a level L 0 of
the form �	� 7<( � 8 < 9 ��� 7<( � 8 < 9>( � � , we have the following relation



+ . 7)( � 8 < 9 ; 1 7<( � 8 < 9 2 < � + . 7)( � 8 < 9/( � ; 1 7<( � 8 < 9/( � 2 <3 � � + . 7�8 9 ; 1 7�8 9 2 < � � � <�+ (:9 ; � �< + (=9 	 <�� (5)

where � �< + (=9 is the element in the hierarchy for �� corre-
sponding to � <�+ (:9 . This can be shown by repeating the
proof in Lemma 2, replacing �� by �	� 7<( � 8 < 9 ��� 7<( � 8 < 9>( �'� , �� by��� 7<( � 8 < 9 ��� 7<( � 8 < 9>( ��� , �� by �!� 7�8 9 � � <�+ (=9 � , and �� by ��� 7�8 9 � � �<�+ (=9 � .

Note that � � <�+ (=9 � � �<�+ (=9�� < � $ <<�+ (=9 .For A�� C ,'�� ( � 3 DEEF <�� � > �"�6 9#8 
 + . � ( � 8 9 ; 1 � ( � 8 9 2 <3 	 + . � ( � 8 
 ; 1 � ( � 8 
 2 < � + . � ( � 8 � ; 1 � ( � 8 ��2 < �I,J,/,� + . � ( � 8 < � � > ���
; 1 � ( � 8 < � � > ��� 2 <�
 >@By Equation (5), we have & � ( �3 	 ��� + . � 8 
 ; 1 � 8 
�2 < � * <<���
 � ��� + . � 8 � ; 1 � 8 ��2 < � * <<�� ( � 
 �,/,/,/� � � + . � 8 <�� ��� ; 1 � 8 <�� �"� 2 < � * <<�� ( <�� �"� 
 
 >@3 	 ��� + . � 8 
 ; 1 � 8 
 2 < � + . � 8 � ; 1 � 8 � 2 < �-,J,.,� + . � 8 <�� ��� ; 1 � 8 <�� �"� 2 < 
� � � * <<�� � * <<�� ( � �-,.,J,!� * <<�� ( <�� �"� 
 
 >@

Finally by definition of & � ,& � ( � � * 1�� % & <� � $ <<�� � $ <<�� ( � �8353532� $ <<�� � > ��� (which completes the proof. :
The expression of the Euclidean distance between time se-

quences in terms of their Haar coefficients is not sufficient for
proper use in multi-dimensional index trees until Euclidean dis-
tance preserves in both Haar and time domains, as for DFT in
(1). This can be achieved by a normalization step which replaces
the scaling factor in Equation (2) from 7��21 to 7�� � 1 in the Haar
transformation. After the normalization step, Euclidean distance
between sequences in Haar domain will be equivalent to & ( )�* @ �
in Equation (3). The preservation of Euclidean distance of Haar
transform ensures the completeness of feature extraction as in
DFT.

If only the first ��� dimensions ( 7@? ��� ? � ) of Haar transform
are used in calculation of Euclidean distance in Equation (3), then
we should replace 0’s in the Haar transformed sequences. This
replacement starts from ��� +1 th to � th coefficients in the trans-
formed sequences.

Lemma 4 If the first ��� ( 7 ? ��� ? � ) dimensions of Haar trans-
form are used, no false dismissal will occur for range queries.

Proof: Considering the inequality in Definition 1 and Lemma 3$A%!���� ���( � & ( )�* @ � ? � (6)

Using the first ��� dimensions as index, the value of $ 7
in Equation

(3) will become zero for A #���� . Thus the Euclidean distance
between two sequences is ? & ( )�* @ � ? � . This completes the
proof. :

4. The Overall Strategy

In this section, we present the overall strategy of our time se-
ries matching method and propose our own method for nearest
neighbor query. Before querying is performed, we shall do some
pre-processing to extract the feature vectors with reduced dimen-
sionality, and to build the index. After the index is built, content-
based search can be performed for two types of querying: range
querying and � -nearest-neighbors querying.

4.1. Pre-processing

Step 1 - Similarity Model Selection: According to their applica-
tions users may choose to use either the simple Euclidean distance
(Definition 1) or the v-shift similarity (Definition 2) as their sim-
ilarity measurements. For Definition 1, Haar transform is applied
to time series. For Definition 2, Haar transform is applied to time
series, but the first Haar coefficient will not be used in indexing, as
there is no need to match their average values.

Step 2 - Index Construction: Given a database of time series of
varying length. We pre-process the time series as follows. We ob-
tain the � -point Haar transform by applying Equation (2) with the
normalization factor, for each subsequences with a sliding window
of size � to each sequence in the database. An index structure
such as an R-Tree is built, using the first ����� Haar coefficients
where ��� is an optimal value found by experiments based on the
number of page accesses. This is because of a trade off between
post-processing cost and index dimension.

4.2. Range Query

After we have built the index, we can carry out range query or
nearest neighbor query evaluation. For range queries, two steps
are involved:

1. Similar sequences with distances ? � from the query are
looked up in the index and returned.

2. A post processing step is applied on these sequences to find
the true distances in time domain to remove all false alarms.

4.3. Nearest Neighbor Query

For nearest neighbor query, we propose a two-phase evaluation
as follows.� Phase 1

In the first phase, � nearest neighbors of query �	 are found
in the R-Tree index using the algorithm in [25]. The Eu-
clidean distances $ in time domain (full dimension) are
computed between the query sequence and all � nearest
neighbors obtained which are $&%��	�� ���� �7 ( , where ���� �7 de-

notes the nearest neighbor A ( 7 ? A ? � ), with ���� �� farthest
from the query �	 .� Phase 2
A range query evaluation is then performed on the same in-
dex by setting � = $A%��	0� ���� ��)( initially. During the search,� Using Definition 2, one dimension can be saved in the index tree.



we keep a list of � nearest sequences ��B� < 7 found so far and
their Euclidean distances in time domain (full dimension)$A%��	 � ��B� < 7 ( with query �	 ( 72? A ? � ). The post process-
ing step mentioned in Section 4.2 is avoided since the Eu-
clidean distances are found already in time domain during
the search. In the search we keep updating

�
the value of

� with $A%��	�� ���� < � ( which is the distance of the current far-
thest neighbor among the � nearest neighbors. The � near-
est neighbors stored in the list are returned as answer when
the range query evaluation is finished. The distance of the
farthest nearest neighbor with query �	 is $A%��	�� ��B� � ���� ( .

The correctness of the above algorithm can be shown by con-
sidering two cases. For the first case, assume the � nearest neigh-
bors in the final answer all appear in the results in Phase 1, ���� �7
= ��B� � ���9 , where 7 ? A����"? � and A need not be equal to � . Ob-

viously, $A%��	 � ���� �� ( = $&%��	�� ���� � ���� ( . In the second case, assume
some or no nearest neighbor obtained in the final answer appears
in the results in Phase 1, ���� �7 �� ���� � ���9 , where 7 ? A ��� ? �
for some A and � . Thus, $A%��	)� ���� ��0( L $A%��	�� ���� � ���� ( . Therefore,$A%��	�� ���� �� ( #?$A%��	�� ���� � ���� ( and by Lemma 4 there are only false
alarms produced in the range query of Phase 2 since the value of �
upper bounds the distance of the farthest neighbor ��B� � ���� .

The effectiveness of this � -nearest neighbor search algorithm
arises from the value of $A%��	�� ���� �� ( found in Phase 1 which pro-
vides a sufficient small query range to prune out a large amount
of candidates for Phase 2. No false dismissal will occur in Phase
2 as $A%��	�� ���� �� ( gives the upper bound distance for $A%��	�� ���� � ���� (
which is the farthest � -nearest neighbor in the final answer.

The extra step introduced in Phase 2 to update � can enhance
the performance by pruning more non-qualifying MBRs during
the traversal of R-Tree.

5. Performance Evaluation

Experiments using real stock data and synthetic random walk
data have been carried out. All experiments are conducted on a
Sun UltraSPARC-1 workstation with 686MBytes of main mem-
ory. Page size is set to 1024 bytes. A branching factor of 20 is
chosen for the R-Tree so that the index tree nodes can be fitted
within one disk page. We pointed out earlier that pre-processing
time for Haar wavelet is much less than that for DFT. Here we
shall compare the querying performance.

We have experimented with both real data and synthetic data.
Real data are extracted from different equities of Hong Kong stock
market from 12/7/90 to 7/11/96. They have been collected daily
over the time period. Totally 10k feature vectors are extracted by
a sliding window of size � = 512 and inserted into an R-Tree.

Both range and nearest neighbor queries are examined and the
results are shown in Figures 3 - 6. Random queries are applied
with varying epsilon � , which ranges from 0.5% to 5% of the
database size. The number of nearest neighbors for nearest neigh-
bor query is between 20 and 40. All results are obtained from the

�
The updating process begins only when the list storing the nearest

neighbors has been filled up already.
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Figure 3. Precision of Range query
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Figure 4. Precision of Range query (V-shift model)
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Figure 5. Page accesses of Range query
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Figure 6. Page accesses of NN query



average of 100 trials. In each figure, Haar transforms using Defini-
tion 1 and Definition 2 as similarity models are denoted as ’Haar’
and ’Haar(V-shift)’ respectively.

In Figure 3, precision against the first tenth indexed coeffi-
cients/dimensions is investigated using Definition 1. It is defined
as

Precision � & time& transform
(7)

where & time refers to the number of time sequences qualified in
time domain while & transform is the number of time sequencesqual-
ified in the transformed domain. As we can observe, K-L trans-
form gives the best precision at each dimension. On the other
hand, the precision attained by Haar transform is close to the best
and it outperforms DFT significantly at all except the first dimen-
sion. The enhancement in precision of Haar transform over DFT
increases with the number of dimensions.

In Figure 4, the precision of Haar and Haar(V-shift) is shown.
The precision of the non-v-shift model outperforms the v-shift
model by 20% at most. The large difference can be attributed to
the removal of the first Haar coefficient to achieve v-shift simi-
larity. As the time series of financial data consist of a sequence
of time values fluctuating around a relative constant level, which
is the average value of that time sequence. This average value is
very effective in discriminating time series in the sense that every
sequence distributes further away in the x-axis. Hence, its removal
will cause a sudden drop in precision. From another point of view,
precision is traded for a better similarity model.

As most of the page accesses
�

of a query are devoted to remov-
ing false alarm, the precision is crucial to the overall performance
of query evaluation. This agrees with the result depicted in Figure
5, where the page accesses of the best dimensions of DFT (dim.
5), Haar (dim. 7), and Haar(V-shift) (dim. 10) are shown. Page
accesses increase linearly with � . Haar has the minimum page
accesses while DFT performs the worst. Page accesses of Haar(V-
shift) model have been traded for better similarity model. Even so,
it outperforms DFT. The best dimension of DFT is smaller than
Haar and Haar(V-shift) as there is no significant gain in precision
with additional dimensions. Haar(V-shift) needs more dimensions
to attain sufficient precision in building the R-Tree.

Result of nearest neighbor query is shown in Figure 6. The
trends for page accesses

�

are consistent with range query in Figure
5, Haar and Haar(V-shift) still outperform DFT.

Since many real data like stock movements and exchange rates
can be modeled successfully by random walks [10], we also study
the performance of our proposed technique for random walk data.
Synthetic random walk data consisting of 30k time sequences are
generated. As we want to show the effectiveness of our approach
for different sequence lengths, we set � = 1024. The same set of
experiments as for the real data are performed and the results are
found to be similar to that for the real data. The gain in perfor-
mance by Haar is larger as longer sequences are used. For lack of
space the details are not shown here.

�

Performance is measured in terms of page access due to I/O time dom-
ination over computation time in database applications. Page accesses
= non-leaf node accesses + leaf node accesses + post processing page
accesses

�

Page accesses = non-leaf node accesses + leave node accesses

5.1. Scalability Test

We study the scalability of our method by varying the size
or length of synthetic time series database. Different sizes of
databases (5k to 30k) and different lengths of sequences (256 to
2048) are generated as described in the previous section separately.
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Figure 7. Scalability in database size of NN query
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Figure 8. Scalability in sequence length of NN query

Figure 7 and Figure 8 show the scalability of nearest neighbor
queries. Haar and Haar(V-shift) have a better scaling with database
size and sequence length increase than DFT. Similar results have
also been recorded for range queries. As revealed from the above
experiments, a considerable portion of page accesses is devoted
to the post processing step. The poorer precision of DFT creates
more work in the post-processing step and this affects the overall
performance, especially in terms of the amount of disk accesses
for large databases with long sequences.

5.2. Other Wavelets

There are many kinds of known wavelets, we have tried some
other wavelets in our experiments. We observe that Haar wavelets
outperforms Daubechies and Coiflet wavelets in precision. More-
over, it is computationally less expensive. We discover that not all
the wavelets are suitable for dimension reduction for stock data.
From our experiments, not all the wavelets are able to concentrate
energy at the first few coefficients. Haar, Daub4, and Coif6 are the
best wavelets we have found in their families. From experiments,



we find that the other wavelets seem to also preserve Euclidean
distances, however, so far we have a proof of this property only
for the Haar wavelets. It is interesting to see if we can apply dif-
ferent kinds of wavelets to different kinds of data series.

6. Conclusion

In this paper, an efficient time series matching technique
through dimension reduction by Haar Wavelet Transform is pro-
posed. The first few coefficients of the transformed sequences are
indexed in an R-Tree for similarity search. Experiments show that
our method outperforms the F-index (Discrete Fourier Transform)
method in terms of pruning power, number of page accesses, scal-
ability, and complexity. A new similarity model is introduced to
deal with vertical shifts of sequences. Furthermore, an efficient
two-phase nearest neighbor query is proposed and its effectiveness
is demonstrated by experiments.

We have some suggestions for future work. We can study the
possibility of using other wavelets like Symmlet [18] to boost up
the performance further. We can also try to apply wavelets that
did not work well with stock data in other signals, e.g. sinusoidal
signals, electrocardiographs (ECGs).
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Appendix A

The Haar wavelets are defined as
��� + � � �=� � � @ � � � + � + � � �������J� @ � � > (8)

where
� ��� � � � > �
	 � 	@� � �� > � � � 	 � 	 >� otherwise

(9)

together with a scaling function

� � � � � 	 > �
	 � 	 >� otherwise
(10)

Haar wavelet for 
 

 %�� ( and the scaling function are shown below.
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