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Abstract

In thispaper, wedevelopandtestanapproach to retrieving
imagesfrom an image databasebasedon contentsimilar-
ity. First, each picture is divided into manyoverlapping
regions. For each region, the sub-picture is filtered and
convertedinto a feature vector. In this way, each picture
is representedby a numberof differentfeaturevectors. The
userselectspositiveand negativeimage examplesto train
thesystem.During thetraining, a multiple-instancelearn-
ing methodknownastheDiverseDensityalgorithmis em-
ployedto determinewhich featurevectorin each imagebest
representstheuser’s concept,andwhich dimensionsof the
feature vectors are important. Thesystemtries to retrieve
imageswith similar feature vectors from the remainderof
thedatabase. A variationof theweightedcorrelationstatis-
tic is usedto determineimage similarity. Theapproach is
testedona medium-sizeddatabaseof natural scenesaswell
assingle-andmultiple-objectimages.

1. Intr oduction

While searchingfor textualdataon theWorld WideWeb
andin otherdatabaseshasbecomecommonpractice,search
enginesfor pictorial dataarestill rare. This comesasno
surprise,sinceit is a muchmoredifficult taskto index, cat-
egorizeandanalyzeimagesautomatically, comparedwith
similaroperationson text.

An easyway to make a searchableimagedatabaseis to
labeleachimagewith a text description,andto performthe
actualsearchon thosetext labels.However, a hugeamount
of work is requiredin manuallylabellingeverypicture,and
thesystemwould notbeableto dealwith any new pictures
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Figure 1. A sample picture

not labelledbefore.Furthermore,it is difficult to givecom-
pletedescriptionsfor mostpictures. Considerthe picture
in Figure1. Onemight be temptedto describeit as“ri ver,
treesandstones”,but it wouldnotbeableto respondto user
queriesfor “water”,“waterfall”, “clouds” or “white blobsin
background”.To make a realcontent-basedimageretrieval
system,we needsomemechanismto searchon theimages
directly.

1.1. Previouswork

Early approachesto the content-basedimage re-
trieval problemincludethe IBM QBIC (Query-By-Image-
Content) System[3], where userscan query an image
databaseby average color, histogram, texture, shape,
sketch,etc. Theimagedatabaseis preprocessedwith some
humanassistanceto facilitate the search. Someresearch
hasbeendoneto groupimagesinto categoriesthatcapture
high-level concepts,suchasindoorvs. outdoorscenesand
city vs. landscapescenes[18, 19]. However, imagequeries
alongtheselinesarenot powerful enough,andmorecom-
plex queries(suchas“all picturesthatcontainwaterfalls”)
arehardto formulate. Lipson et al. [9] usedhand-crafted



templatesto classify naturalsceneimages. While it has
beensuccessfulin this domain,the processis difficult to
automate.Recentresearchhaspaidmoreattentionto query-
by-example[1, 11, 16]. In thesesystems,userqueriesare
givenin termsof positiveandnegativeexamples,andsome-
timessalientregionsarealsomanuallyindicated.Thesys-
temthenproceedsto retrieve images“similar” to theposi-
tiveexamplesand“dissimilar” to thenegativeones.

For images,however, “similarity” is not well-defined.
Many algorithmshave beenproposedto computeimage
similarities.They typically dosoby convertingimagesinto
featurevectorsandusingfeaturevectordistancesasasimi-
larity measure.Grosky andMehrotra[4] experimentedwith
a representationusing object boundaries’local structural
features,and they usedstring edit-distanceas a distance
measure.MehrotraandGary[13] usedrelativepositionsof
“interestpoints”alongobjectboundariesto representshape,
andusedEuclideandistanceasa distancemeasure.These
methodsarebasedon objectrecognitiontechniques.How-
ever, they are quite sensitive to noisein the images,and
cannothandleimageswheretherearenodistinctobjects,as
in naturalscenes.DeBonetandViola [1] proposedanalgo-
rithm whereimagesarepassedthrougha treeof nonlinear
filters to obtain featurevectorsthat represent“texture-of-
texture” of the original images. It works well with natu-
ral scenesandsingle-objecttestsets.MaronandLakshmi
Ratan[11] usedsimple featureslike a row’s meancolor,
color differencesandcolor distributionsamongneighbors,
etc.,andit works well for color imagesof naturalscenes.
Ravelaetal. [16] developedasystemthatusesacorrelation
measureto indicatesimilarity. It worksfor a varietyof im-
ages,but it requiresthattheusermanuallypick theregions
of interestfrom theimages.In reality, theusermaynot al-
waysknow which regionsaremostimportantwith respect
to the similarity measureusedby the algorithm. Further-
more,notall pixelswithin a rectangularregionareof equal
interest,whichcomplicatestheproblem.

More detailedreviews of previous literature in image
classificationandretrieval canbefoundin [8, 11].

1.2. The multiple-instancelearning approach

Sincethe picturein Figure1 canbe viewed differently
as“ri ver”, “waterfall”, “trees”,“clouds”, etc.,andmultiple-
objectimagesaremorecommonthansingle-objectimages,
it is natural to have one imagecorrespondto more than
onefeaturevector, eachonedescribingoneparticularview
(or object). In this way, eachpositive or negative example
translatesinto multiple featurevectors. After Maron [10],
we call eachof thesefeaturevectorsan instance, andwe
call thecollectionof instancesfor thesameexampleimage
abag.

For a positive example,at leastoneof the instancesin
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Figure 2. A multiple-instance learning algo-
rithm: Diver se Density

thebagshouldbea closematchto theconcepttheuserhad
in mind whenheor shechosetheexamples,but we do not
know which one. The restof the instancesin the bagare
irrelevantandshouldbe regardedasnoise. For a negative
example,we know for surethat noneof the instancesin
thebagcorrespondsto theuser’s concept.Given the large
collectionof instancesfrompositiveandnegativeexamples,
our task is to find the “ideal” featurevector that accounts
for theuser’s concept.Furthermore,amongall the feature
dimensionswe chooseto describean instance,only some
of themmayberelevantto definingtheidealconcept,while
the remainingonesshouldbe ignored. Whenwe take this
into account,the problembecomescomputationallymuch
harder[2].

This kind of problemis known as a Multiple-Instance
Learningproblem[2, 10, 12]. Oneway to solve this type
of problemis to examinethedistribution of theseinstance
vectors,andto look for a featurevector that is closeto a
lot of instancesfrom differentpositivebagsandfar from all
the instancesfrom negative bags. Sucha vector is likely
to representtheconceptwe aretrying to learn. This is the
basicideabehindtheDiverseDensityalgorithm,proposed
by MaronandLozano-Ṕerez[10, 11, 12], andis illustrated
in Figure2. In Figure2, therearefive positive examples
(bags)labelled1 to 5 and threenegative examples(bags)
labelled6 to 8. Eachbaghasseveralinstances.Thefeature
vectorspaceis 2-dimensional.The “ideal” featurevector
is wherethereis a high concentrationof positive instances
from differentbags.

MaronandLakshmiRatan[11] haveappliedtheDiverse
Densitytechniqueto imageretrieval problemsby usingim-
agefeaturessuchas color statisticsandcolor distribution
patterns. They convertedeachpicture into an ����� ma-



trix of “color blobs”, andusedfeaturevectorssuchasrow
color vectors,columncolor vectors,color patternsof spe-
cific neighborhoods,etc.Thisrepresentationworkswell for
retrieving colornaturalsceneimages.

In this paper, we improve their methodto deal with a
broaderrangeof imagesincluding object images. Simi-
lar attemptshave beenmadeby LakshmiRatanet al. [6],
who usedimagesegmentationtechniquesand morecom-
plex featuressuchas a combinationof color, texture and
simpleshapes.They usedspecialfilters to find circlesand
othersimpleshapesfrom theimages,in anattemptto learn
objectconcepts.Our approachdiffers from theirs in that
wedo not pre-defineor dependonany templatesfor object
shapes,but usea muchsimplerfeaturerepresentation.For
object imagesthat can be modeledby existing templates,
the methodgiven in [6] is more suitable,but our method
canpotentiallywork with a largerclassof images.

We definean imagesimilarity measureas the correla-
tion coefficient of correspondingregions after smoothing
and sampling,and further refine it by allowing different
weight factorsfor different locationswhencomparingfor
similarity. Basedonthis,wedevelopafeaturevectorrepre-
sentationfor imageswherewecanuseweightedEuclidean
distanceto reflectthedistancedefinedby ourweightedsim-
ilarity measure.For eachexampleimage,a bagof multiple
instancesareobtainedby choosingdifferentsub-regionsof
theimageandgeneratinga featurevectorfor eachregion.

In section2 below, we introducetheDiverseDensityal-
gorithm.Section3 discussesourcorrelationsimilarity mea-
sure,its correspondingfeaturerepresentationanda weight
factorcontrollingmethod.Section4 givesexperimentalde-
tailsandresults.

2. The DiverseDensityalgorithm

In this section, we give a brief introduction to the
multiple-instancelearningproblemandtheDiverseDensity
(DD) algorithm. A moreelaboratetreatmentcanbe found
in [10, 11, 12].

2.1. The multiple-instancelearning problem

Machinelearningalgorithmsprovidewaysfor computer
programsto improveautomaticallywith experience[14]. In
a typical machinelearningproblem,the task is to learna
function �
	���
��������������������������
givensomeexamples.In traditionalSupervisedLearning,
theexamplesaregivenin termsof


�� �!�����"�������#�$���������%�&�����
tu-

ples,where' is the index of examples:' 	)(*�,+-�,.-�������
That

is, eachsetof input values

����"�/�����#�$���������%�&�����

is taggedwith
the correctlabel

� �
. In Multiple-InstanceLearning, how-

ever, input vectors

�� �"� �%� �0� �/�������%� ��� �

(called instances) are

not individually labelledwith its corresponding
� �

value;
rather, oneor moreinstancesaregroupedtogetherto form
a bag, andthey arecollectively labelledwith a

�
valueof 1

(TRUE) or 0 (FALSE). If the label is TRUE, it meansthat
at leastoneof the instancesin thebagmustcorrespondto� �

=TRUE, while othersmaycorrespondto eitherTRUE or
FALSE. If the label is FALSE, it meansthat all of the in-
stancesin thebagmustcorrespondto FALSE.

In termsof the imageretrieval problem,eachpositive
exampleselectedby theusercorrespondsto a baglabelled
TRUE, andeachnegativeexampleselectedby theusercor-
respondsto abaglabelledFALSE.A featurevectorconsists
of 1 numbers(features),eachof which partially describes
the image in someway, for example,pixel values,color
statistics,edgelocations,etc. Redundantor irrelevant fea-
turesareallowed.Sincethepicturesareinherentlyambigu-
ous, we generatemore than one featurevector (instance)
to describeeachpicture. We expectthat oneof thesefea-
ture vectorsfor eachpositive examplewould accountfor
the conceptthe userhadin mind whenpicking the exam-
ples,andthatnoneof themin thenegativeexampleswould
coincidewith theuser’sconcept.

We would like to train the systemso that it can make
predictionsfor new examples:givena new exampleimage
(a bagof instancevectors),it shoulddeterminewhetherit
correspondsto TRUE or FALSE. To allow for uncertainty,
thesystemmaygivea realvaluebetween0 (FALSE) and1
(TRUE).

We make a simplifying assumptionthat the user’s con-
ceptcanbe representedby a single“ideal” point in the 1 -
dimensionalfeaturespace.A bagis labelledTRUE if one
of its instancesis closeto theidealpoint. A bagis labelled
FALSE if noneof its instancesis closeto the ideal point.
The“ideal” point is wherethereis a high concentrationof
positive instancesfrom differentbags.Theconfidenceof a
bagbeingTRUE canbemeasuredby thedistancefrom the
idealpoint to theclosestinstancevectorin thebag.[10, 12]
developedan algorithm called Diverse Density, which is
able to find sucha point. Not all dimensionsof feature
vectorsare equally important,so the distancehereis not
restrictedto normalEuclideandistance,but maybedefined
asa weightedEuclideandistancewhereimportantdimen-
sionshave largerweights. The DiverseDensityalgorithm
is capableof determiningtheseweightfactorsaswell.

2.2. DiverseDensity

Following thesamenotationsasin [10, 11, 12], we de-
notethepositive bagsas 243 � � 243� ��������� 2 3� andthenegative
bagsas 265� � 265� ��������� 2 57 . The 8�9;: instanceof bag 243� is
written as 2 3��< , while the 8 9;: instanceof bag 2 5� is written
as 2 5��< . Eachbagmaycontainany numberof instances,but
every instancemustbea = -dimensionalvectorwhere = is a



constant.
Not all = dimensionscontributeequallyto definingthe

ideal concept,so we needto give a weight to eachdi-
mension. We want to look for a point in the weighted = -
dimensionalspacenearwhich thereis a highconcentration
of positiveinstancesfrom differentbags.It is importantthat
they arefrom different bags,sincea high concentrationof
instancesfrom thesamebagis effectively thesameasone
instanceat that point. In otherwords,we are looking for
a point wherethereis a high Diverse Densityof positive
instances.

For any point > in the featurespace,the probability of
it beingour targetpoint, givenall thepositive andnegative
bags,is ?A@ 
 >/B�2 3 � �/������� 2 3� � 2 5� �/������� 2 57 �

. Sothepointweare
looking for is theonethatmaximizesthis probability, that
is C @,D�E CGF

9 ?A@ 
 >/B�2 3 � �/������� 2 3� � 2 5� �/������� 2 57 �
UsingBayes’rule, assuminga uniform prior over thecon-
cept location ?H@ 
 > � and conditional independenceof the
bagsgiventhetargetconcept> , theaboveequalsC @,DIE C�F

9 � ?A@ 
 >/B�243� � � ?A@ 
 >/B0265� �

This is a formal definitionof maximizingDiverseDensity.
We usethe“noisy-or” assumption(seeMaron[10] for mo-
tivationanddiscussions)that

?H@ 
 >/B�243� �J	 (LK < 
!(LK ?A@ 
 2M3��< 	 > �!�

?A@ 
 >/B�2
5� �J	 < 
,(LK ?H@ 
 2
5��< 	 > �,�

andmake thefollowing assumption:

?A@ 
 2 ��<A	 > ��	ON F$P 
%K B�B02 ��<QK >/B�B
� �

where B�B�2 ��< K >/B�B is the distancebetweenthe two vectors.
This is a Gaussianbumpcenteredon thefeaturevector. As
wementionedbefore,notall dimensionsareequallyimpor-
tant,so we definethe distanceto bea weightedEuclidean
distance:

B�B�2 ��< K >/B�B
� 	

RTS
�
R 
 2 ��< R K > R �

�

where 2 ��< R is the = 9;: dimensionin the vector 2 ��< . S
�
R is

a non-negative weight. (We use S
�
R ratherthan S R in or-

derto forcetheweightsto benon-negative.) Now we need
to maximizeDiverseDensityover both > and S . By intro-
ducing weights,we have actually doubledthe numberof
dimensionsover which we aretrying to maximizeDiverse
Density.

2.3. Finding the maximum

The problem of finding the global maximum Diverse
Density (DD) is difficult, especiallywhen the numberof
dimensionsis large.TheDD algorithmmakesuseof a gra-
dientascentmethodwith multiple startingpoints. It starts
from every instancefrom every positive bagandperforms
gradientascentfrom eachoneto find the maximum. The
ideais that,at leastoneof thepositive instancesis likely to
be closeto the maximum. So if we do hill-climbing from
every positive instance,it is very likely thatwe will hit the
maximumDD point.

3. Adapting DiverseDensity

The definition of DD requiresthe definition of feature
vectorsfor images,wherea weightedEuclideandistance
canbeusedasameasureof “similarity”. Wewanttousethe
pixelsthemselvesasthefeaturesandcorrelationcoefficient
asasimilarity measure.

3.1. The correlation similarity measure

Given two seriesof sampledsignals
����
 > � and

�U�$
 > � ,> 	V(*�,+-��������� 1 , thereis a standardway to find out how cor-
relatedthey arewith respectto eachother:wecancompute
their correlation coefficient [17]. In its simplestform, the
correlationcoefficient W is definedby

W 	
�� �

9�X
� 
�� � 
 > ��K � � �!
%� � 
 > �&K � � �

Y Z�[UY$Z�\
where

� �
,
� �

are the averagevaluesof
� � 
 > � and

� � 
 > � ,
and Y Z [ , Y Z \ arethestandarddeviationsof

� � 
 > � and
� � 
 > � ,

respectively:

�

���]	 (
1

�

9�X
� ���/
 > �%� �U�^	 (

1
�

9�X
� �U�$
 > �

Y$Z/[ 	
(
1

�

9�X
� 
%����
 > �&K ����� � � Y Z�\ 	

(
1

�

9�X
� 
��U� 
 > �&K �U� � �

When W 	_(
, the two signalsareperfectlycorrelated.

When Wa`cb , thereis little or no correlationbetweenthe
two. WhenW 	dKe(

, thetwo signalsareperfectlyinversely
correlated.If we only countpositive correlationsas“simi-
lar”, thenW canbeusedasa directmeasurementof similar-
ity: asW increases,similarity increases.f

Strictly speaking[15], in the definitionsfor gih [ , gih \ and j given
here,

fk shouldbe replacedby
fkml f . But it doesnot matterto us. Both

definitionswork the sameway in the derivations in this paper, and we
chooseto use

fk which is moreconvenient.
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Figure 3. Illustration of smoothing and sam-
pling process

Sinceanimageregionof sizers�ut canbetreatedasanrvt -dimensionalvectorof gray-scalevalues,thiscorrelation
coefficientis oftenusedto measuresimilaritiesbetweenim-
ageregions[5, 16].

If we apply the correlationformula to the original im-
agesdirectly, on a pixel-by-pixel basis,a shift in the im-
ageby onepixel would causea relatively big changein the
correlationvalue,which is not desirable.To avoid this ef-
fect, we smoothandsamplethe w_�x1 imagedown to a
low-resolutionyz�xy matrix. In mostof theexperimentsin
this paper, we choosey 	{( b . Specifically, we smooththew|�61 imagewith a

� 7
: 3

� �
�}�
: 3

�
averagingkernelandthen

sub-sampleit to getan yz�~y matrix. In otherwords,each
entryin theresultingy���y matrix is theaveragegray-scale
valueof acorrespondingblockregionin theoriginal image,
asillustratedin Figure3. In Figure3, theaveragevalueof
block �M�e��� goesinto the1stentryof the

( b�� ( b matrix,
theaveragevalueof block 2����x� goesinto the2ndentry
(1strow, 2ndcolumn)of thematrix,andsoon. Eachblock
hasa �Gb�� overlapwith any of its neighbors.Thelargeover-
lap is intendedto reducesensitivity to the choiceof block
borderlocations.

3.2. Regionselection

With theabovesmoothingandsamplingschemeand y 	( b , thecorrelationcoefficient is a goodindicationof simi-
larity for two single-objectimages.However, thiswouldnot
generalizeto morecomplex casessuchasmultiple-object
images,wheretheobject(or feature)of interestmaynotbe
at thesamepositionin all pictures.

In amorecomplex image,theobject(or feature)of inter-
estdoesnotoccupy thewholeimage,but only a sub-region
of the image. We would not beableto getsatisfactoryre-
sults if we comparedthe two entire imagesin Figure4(a)

Picture1 Picture2

(a)Correlationcoefficientof thesetwo imagesis 0.118.

Picture1 Picture2

(b) Correlationcoefficientof thetwo markedregionsis
0.674.

Figure 4. More comple x images

usingthe correlationsimilarity measure,but we may have
betterluck if we comparea region in oneimageagainsta
region in theother. For example,thecorrelationcoefficient
of the two entireimagesin Figure4(a) is 0.118,while the
correlationcoefficient of thetwo markedregionsin Figure
4(b) is 0.674,indicatingsimilarity.

Now thequestionis, how do we choosetheregions?In
fact,we do not know which regionswe shouldpick, since
thepicturesareinherentlyambiguous,andany regionmight
becometheregionof interest,dependingon theuser’scon-
cept. This is exactly wheremultiple-instancelearningcan
helpus: we cansimplypick all possibleregionsandlet the
learningalgorithmtakecareof findingthe“right” regionfor
us.

Figure 5 shows 20 possibleregions (as shadedareas).
Conceptually, thereis anunlimitednumberof possiblere-
gions.Whendecidingtheactualnumberof regionsto con-
sider, thereis a trade-off betweenthechanceof hitting the
“right” regionandtheamountof noiseintroduced.Thiswill
bediscussedfurtherin Section4.2.

In mostof this paper, we only considerthe 20 possible
regionsshown in Figure5. Consequently, if someimages
containobjectsthat aremuchsmallerthanonequarterof
theentireimage,their detailsmaynot bevisible to theal-
gorithm.For eachregion,weconsiderboththeoriginal im-
agein that region and the left-right mirror imageof that
region,sinceleft-right mirror imagesoccurvery frequently
in imagedatabasesand we would like to regard them as
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Figure 5. Possib le regions to consider

thesame.Therefore,therearea total of 40 sub-picturesto
consider. This translatesinto 40 instancesper bag in the
multiple-instancelearningframework. Here,we do a little
optimizationto throw out regionswhosevariancesarebe-
low a certainthreshold,sincelow-varianceregionsarenot
likely to beinteresting.For eachsub-picture,we processit
with smoothingandsamplingasillustratedin Figure3, to
get an y��µy matrix which we treatasan y

�
-dimensional

featurevector.

3.3. Weightedcorrelation coefficient

Not all dimensionsin the featurevectorareequallyim-
portant.For example,someof themmaycorrespondto the
backgroundin theimage,andwedonotwantthemto carry
the sameweightsasotherdimensions.Therefore,we ex-
tend our correlationsimilarity measureto allow different
dimensionsto have differentweight factors. We definea
weightedcorrelationcoefficient for two 1 -dimensionalfea-
turevectors

�$�
and

�U�
as:

Wm¶ 	
�� �

R X
�
S
�
R 
%� � 
 = ��K � � �,
�� � 
 = �&K � � �

Y ¶Z�[ Y ¶Z%\
whereS

�
R is thenon-negativeweightfor the = 9;: dimension,� �

,
� �

aredefinedasbefore,and Y ¶Z [ , Y ¶Z \ arethe“weighted”
standarddeviationsof

� � 
 = � and
� � 
 = � , respectively:

Y ¶Z�[ 	 (
1

�
R X

� S
�
R 
����/
 = ��K ���/� �

Y ¶Z�\ 	 (
1

�
R X

� S
�
R 
�� � 
 = ��K � � � �

3.4. Fitting into Euclideanspace

Our similarity measureis definedastheweightedcorre-
lation coefficient on featurevectors,ratherthanEuclidean
distance.Thisdoesnot fit directly into theDiverseDensity
framework. However, thereis asimplewayto transformthe
vectors,sothatwecanuseweightedEuclideandistancedi-
rectly to reflecttheweightedcorrelationcoefficientsof the
original featurevectors.

Supposethat � ��< is the 1 -dimensionalfeaturevectorwe
haveobtainedfor the ' 9;: bag,8 9;: instance.S

�
R is theweight

factorfor the = 9;: dimension.Define

2 ��< 	 � ��< K � ��<Y ¶·]¸º¹
where � ��< is the averageof � ��< entries,and Y ¶·]¸#¹ is the
“weighted”standarddeviationof � ��< entries:
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With this definition,we aregoingto show that,compar-
ing or ranking � ��< vectorsbasedon weightedcorrelation
coefficientsis the sameascomparingor ranking 2 ��< vec-
torsbasedonweightedEuclideandistancesin reverseorder.
This is formally statedasfollows:
Claim For any ' � 8 �/»¼� w ��½���¾*� r � t andweightfactors¿ S

�
R À ,

1. ��ÁÂWÃW 
 � ��<G� �QÄ 7 �ÆÅ ��ÁÂWÃW 
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where ��ÁÂWÃW 
�Ð]��Ñ^� meansthe weightedcorrelationcoeffi-
cientof

Ð
and

Ñ
, and B�B Ð�KQÑ B�B meanstheweightedEuclidean

distancebetween
Ð

and
Ñ
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Proofof thelemmais straightforwardgiventhedefinitions
above.
Proof of Claim
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Similarly,

B�B02^ÇÉÈ K 2^ÊÃË B�B 	Ö+ 1 K×+ 1A��ÁÂWÃW 
 �QÇÉÈ � �LÊÎË �
andtheClaim follows.

3.5. Baggenerationand imageretrieval

Now we arereadyto put everythingtogether. For every
imagein ourdatabase,wedo thefollowing pre-processing:

1. If it is acolor image,convertit into agray-scaleimage.

2. Selectsomeregionsfrom theimage,accordingto Sec-
tion 3.2.Throw outregionswhosevariancesarebelow
acertainthreshold.

3. Extracttwo sub-picturesfrom eachregion: oneasthe
imageitself in theregion,andtheotherasits left-right
mirror image. For eachsub-picture,performsmooth-
ing andsamplingas illustratedin Figure3 to get anyz�~y matrix. Treatthis asan y

�
-dimensionalfeature

vector.

4. Transformeachfeaturevectorinto a new oneaccord-
ing to Section3.4, i.e., subtractits meanfrom it and
thendivide it by its standarddeviation. (All weights
are1 to startwith.)

5. For eachimagein our database,we have obtaineda
numberof featurevectors(after the transformation).
Treateachoneasaninstanceandput themtogetherto
form abagfor theimage.

After thesesteps,our imagedatabaseis readyto respond
to userqueries.Theuseris askedto selectseveralpositive
andnegative examples.The systemputstogetherthe cor-
respondingimagebagsof multiple-instancedataandfeeds
theminto theDD algorithm. TheDD algorithmreturnsan
“ideal” point in the featurespaceas well as a set of fea-
tureweightvalueswhich maximizeDiverseDensity. Then
thesystemgoesto theimagedatabaseandranksall images
basedon their weightedEuclideandistancesto the ideal
point. (To find thedistancefrom animageto theidealpoint,
it computesthedistancesof all of its instancesto thepoint,
andthenpicksthesmallestone.)It thenretrievesimagesin
therankedorder. If theretrieval resultsarenot satisfactory,
theusermayobtainbetterperformanceby pickingout false
positivesand/orfalsenegatives,addingthemto the exam-
plesandtrainingthesystemagain.

3.6. Controlling feature weight factors

TheDD algorithmfindsan“ideal” featurevector> anda
setof weightsS to maximizeDiverseDensity. However, in
thepresenceof few negativeinstances,it tendsto pushmost
of theweightfactorstowardszero,leaving only a few large
weightvalues,which meansthatwe areonly usinga small
fractionof pixelsto classifyandretrieve images.Sincewe
have very little training data,a too-simpleconceptbased
on a few pixels is likely to work well on the training set.
However, it is not likely to generalizewell, especiallyfor
complex imageconcepts.To addressthisissue,weimposea
constraintonthesumof weightfactors,asdiscussedbelow.

Without lossof generality, werequirethatall weightfac-
torsbebetween0 and1: bÙØ S R Ø (m� = 	c(m�!+-�/������� y

�
. ( y

�
is thenumberof dimensionsin thefeaturevectors.)Wecan
limit thechangein weight factorsS R by imposingthe fol-
lowing constraint,which setsa lower boundfor thesumof
weights: : \

R X
� S R
Ú Ñ~Û y

�

where
Ñ

is a constantbetweenb and
(
. When

Ñ�	 b , there
is norestrictionontheweights,andwearebackto theorig-
inal DD algorithm.When

Ñ�	c(
, we areforcing all weight

factorsS R to beequalto 1. Therestrictionson weightfac-
torsareeasilycontrolledby changing

Ñ
values.For exam-

ple, when
ÑÜ	 b � � , theaverageof weight factorsmustbe

greaterthan0.5,sono morethanhalf of theweightfactors
canbecloseto zero.

Thesimpleunconstrainedmaximizationalgorithmused
in theoriginalDD methodwouldnolongerwork to find the
maximumwith this new constraint. We switch to a more
powerful algorithmcalledCFSQP(C codefor FeasibleSe-
quentialQuadraticProgramming)[7], which is capableof
handlingmaximizationproblemswith constraints.As will
beshown in Section4, this approachworkswell on a wide
varietyof situations.

4. Results

We have tested our system on two different image
databases.One is a natural sceneimage database,con-
sisting of 500 pictures, 100 each for waterfalls, moun-
tains, fields, lakes/rivers,and sunsets/sunrises.Theseare
taken from the COREL library, the samedatabaseasused
in [11]. The otherone is an object imagedatabase,con-
sisting of 228 picturesfrom 19 different categories,such
as cars, airplanes,pants,hammers,cameras,etc. These
are downloadedfrom the websitesof AVIS Car Rental
(www.avis.com),BicycleOnline(www.bicycle.com),Con-
tinentalAirlines (www.flycontinental.com),Delta Airlines
(www.delta-air.com),J.Crew (www.jcrew.com),JCPenney



User-selectedpositiveexamples

User-selectednegativeexamples

Final retrieval fr om test set(top 16 images)

Figure 6. A sample run with 3 rounds of train-
ing: retrie ving cars

(www.jcpenney.com),Ritz Camera(www.ritzcamera.com),
Sears(www.sears.com)andSony (www.sony.com).

4.1. Experimental setup

To simulateuserfeedbackwhile minimizing userinter-
vention,wefollowedthesameexperimentalmethodasused
in [11]:

Theentireimagedatabaseis split into a smallpotential
training setanda largertestset. Thecorrectclassifications
for all imagesin thepotentialtrainingsetareknown to the
system.After the userselectspositive andnegative image
examples,we generatecorrespondingbagsandrun DD al-
gorithmonce,andthenusetheresultsto rankimagesfrom
thepotentialtrainingset. Sincetheir correctclassifications
arealreadyknown, thesystemcanevaluateits own perfor-
manceon theseimageswithout askingtheuser. It canpick
outsomefalsepositivesand/orfalsenegativesandaddthem
to theexamplesto train itself again.Thisprocesscanbere-
peatedmorethanonce,andit effectively simulateswhata
usermight do to obtainbetterperformance.In the exper-
imentsof this section,20% of imagesfrom eachcategory
areplacedin the potentialtraining set. The systempicks
out top 5 falsepositivesfrom thepotentialtrainingsetand
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Figure 7. Precision-recall cur ve for Figure 6

addsthemto the negative examplesfor a secondroundof
training,andthenpicksoutanothertop5 falsepositivesand
trainsfor a third time. Finally it retrievesimagesfrom the
largertestset.A samplerunof theimageretrieval systemis
shown in Figure6, wheretheuserwantsto retrieve images
thatcontaincars.

Oneway to evaluateimageretrieval performanceis to
use precision-recallcurves. Precisionis the ratio of the
numberof correctlyretrieved imagesto the numberof all
imagesretrieved so far. Recall is the ratio of the number
of correctlyretrievedimagesto thetotal numberof correct
imagesin thetestdatabase.In a precision-recallcurve,we
plot precisionvaluesagainstrecall values.Figure7 shows
the precision-recallcurve for the retrieval result in Figure
6. In this graph,precisionis around0.5whenrecall is 0.6,
whichmeans:in orderto obtain60%of all waterfalls,about
50%of theimagesretrievedaretruewaterfalls.

4.2. Comparisons

Wenow studytheeffectsof changingvariousparameters
in thelearningalgorithm.

Ý Adjustingweightfactorcontrol

The
Ñ

valuein theinequalityconstraintaffectsperfor-
manceverymuch.In Figure8, we show theresultsof
varying

Ñ
whenretrieving sunsetimages.For each

Ñ
,

the precision-recallcurve is shown. As
Ñ

movesto-
wardsb , theprecision-recallcurvetendsto moveclose
to thatof theoriginal DD algorithm. As

Ñ
movesto-

wards
(
, theprecision-recallcurvetendsto moveclose

to that of forcing all weightsto be identical. This is
consistentwith ouranalysisin Section3.6.
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retrieving sunsets/sunrises:
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Figure 9. Precision-recall cur ves for diff erent number of instances per bag
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Ý Choosingdifferentnumberof instancesperbag

Mostof theexperimentshavebeendonewith up to 40
instancesperbag,by picking 20 differentregionsand
takingmirror images.Figure9 showstheeffectsof us-
ing fewerandmoreinstancesperbag.In general,hav-
ing moreinstancesperbagmeansa higherchanceof
hitting the “right” region. However, it alsomeansin-
troducingmorenoisewhich affectsDD performance.
Therefore,more instancesper bag do not guarantee
betterperformance.This is supportedby Figure9.

Ý Changingfeaturevectordimensions

In most experiments,we smoothedand subsampled
eachimageregion to a low-resolution

( bà� ( b ma-
trix (a100-dimensionalfeaturevector)beforecompar-
ing themagainsteachother. We canuseother reso-
lutions (i.e., featurevectordimensions)aswell. Fig-
ure 10 shows the effectsof doing so. In many cases,
aswe increasethe resolution,performancefirst rises,
thendeclines.Theproblemwith a very low resolution
is that it doesnot give muchinformationto compare
for similarity. The problemwith a very high resolu-
tion is thatit makesourcorrelationsimilarity measure
very sensitive to imageshifts,anda higherresolution
bringsmorenoise.The“ideal” resolutionwhichgives
thebestperformanceis highly dependentontheactual
images.

Ý Comparingwith a previousapproach

Now wecompareoursystemwith apreviousapproach
developedby Maron andLakshmiRatan[11], which
usedDD algorithmwith imagefeaturevectorsof color
statisticsandcolordistributionpatterns.With anatural
scenedatabase,theperformanceof oursystemis very
closeto that of [11], asshown in Figure11. Theap-
proachin [11] wastargetedto retrieving color natural
sceneimages,andwouldnotwork with objectimages.
Our systemmakesuseof only gray-scaleinformation
from theimages,andhasobtainedcomparableresults
on the naturalscenedatabase.Furthermore,it works
with a wider rangeof imagedatabasesincluding ob-
ject images.

5. Conclusionsand futur e work

We have presenteda new approachto the problemof
content-basedimagedatabaseretrieval, using a weighted
correlation similarity measureand the Diverse Density
multiple-instancelearningtechniques.We have built and
testeda systemwhich allows usersto selectpositive and
negative exampleimagesand thenautomaticallyretrieves
similarpicturesfromamedium-sizeddatabase.Ashasbeen
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Figure 11. Comparison with a color -statistics
approach

shown in thetestresults,thisapproachperformsreasonably
well onbothnaturalscenesandobjectimages.

Comparedwith a previousapproachin [11] which was
targetedto retrieving naturalscenes,ourapproachperforms
verycloseto theirs.Furthermore,our approachworkswell
on objectimagedatabases,which [11] wasnot designedto
handle.

We have studiedtheeffectsof puttingmoreor fewer in-
stancesin eachbag (by choosingmore or fewer regions
from eachpicture), and the effects of changingthe num-
ber of featurevectordimensions(by smoothingandsam-
pling imageregionsat differentresolutions).Having more
instancesper bag doesnot guaranteebetterperformance.
Althoughthechanceof hitting the“right” region increases
aswe put moreinstancesinto eachbag,moreirrelevantin-
stanceslead to morenoise,which makes it moredifficult
for DD algorithmto find theidealpoint. Ontheotherhand,
as we increasethe numberof dimensionsof eachfeature
vector, performancefirst risesandthendropsdown in many
cases.This is becausea very low resolutiondoesnot give
enoughinformationto comparefor similarity, while a very
high resolutionaddsnoiseandalsomakesour correlation
similarity measureverysensitive to imageshifts.

Thetreatmentof featurespaceweight factorsin theDi-
verseDensityalgorithmhassignificanteffectson the per-
formanceof our system.The original DiverseDensityal-
gorithmgivesthemaximizationprocesstoomuchfreedom,
whichdrivesmostof theweightfactorstowardszero,leav-
ing only a few large values. This is not desirablein the
imageretrieval domain. We experimentedwith imposing
differentinequalityconstraintson thesumof weights.The
systemis quitesensitive to thesechanges.



In Section4.2,we discussedtheeffectsof changingtheÑ
valuein the inequalityconstraint.As a futuredirection,

onemight want to studyhow to choose
Ñ

automaticallyto
getoptimalperformance.

All experimentsshown in this paperhave beendoneon
gray-scaleimages.Someattemptshavebeenmadeto make
useof color informationin color naturalsceneimages.We
usedRGB valuesseparatelyand useda similar approach
as we did with gray-scaleimages,tripling the numberof
dimensionsof featurevectors.Nosignificantimprovements
have beenobservedin this case.Oneotherpossiblefuture
directionwould be to explore theeffectsof alternatecolor
representationschemes,and to test on a larger variety of
color images.

Also,onemightwantto try tousedifferentfeaturevector
representationsand/orothersimilarity measures.We have
attemptedtopreprocesstheimageswith edgedetection,and
to useline andcornerfeaturesin thefeaturevectors.How-
ever, theresultswehavegotarenotsatisfactory.

Although our systemis able to handlescalingchanges
acrossimages,it is not designedto handlerotations. The
correlationsimilarity measurecantoleratesmall rotations,
but large rotationsof the sameobjectwould be treatedas
dissimilar. One way to handlerotationswould be to add
moreinstancesto representdifferentanglesof view for each
imageregion, althoughthis would meana significantin-
creasein the numberof instancesper bag. Theremay be
betterways, and this is yet anotherpossiblefuture direc-
tion.
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References

[1] J. S. De Bonet and P. Viola, “Structure driven image
databaseretrieval”, in Advancesin Neural InformationPro-
cessing, Vol. 10,1997,pp.866-872.

[2] T. G. Dietterich,R. H. LathropandT. Lozano-Ṕerez,“Solv-
ing the multiple-instanceproblemwith axis-parallelrect-
angles”,Artificial IntelligenceJournal, Vol. 89, Nos. 1-2,
1997,pp.31-72.

[3] M. Flickner, H. Sawhney, W. Niblack,J.Ashley, Q. Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D.
SteeleandP. Yanker, “Query by imageandvideo content:

the QBIC system”,IEEE Computer, Vol. 28, No. 9, Sept.
1995,pp.23-30.

[4] W. I. Grosky andR. Mehrotra,“Index-basedobjectrecog-
nition in pictorial data management”,ComputerVision,
Graphics,andImage Processing, Vol. 52, No. 3, 1990,pp.
416-436.

[5] R. Jain, R. Kasturi and B. G. Schunck,Machine Vision,
McGraw-Hill, 1995.

[6] A. Lakshmi Ratan,O. Maron, W. E. L. Grimson and T.
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