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Abstract

In this paper we developandtestan appoad to retrieving
imagesfrom an image databasebasedon contentsimilar-

ity. First, eac picture is divided into many overlapping
regions. For ead region, the sub-pictue is filtered and
convertedinto a feature vector In this way, ead picture
is representedy a numberof differentfeatuie vectos. The
userselectspositiveand nggativeimage examplesto train

the system During thetraining, a multiple-instancdearn-
ing methodknownasthe Diverse Densityalgorithmis em-
ployedto determinavhich featuie vectorin ead image best
representghe user's conceptandwhich dimension®f the
featuie vectos are important. The systentries to retrieve
imageswith similar featue vectos from the remainderof
thedatabaseA variation of theweightedcorrelationstatis-
tic is usedto determineimage similarity. Theappmoad is

testedona medium-sizedatabasef natural scenesiswell

assingle-and multiple-objecimages.

1. Intr oduction

While searchindor textual dataon the World Wide Web
andin otherdatabaseksasbecomecommonpractice search
enginesfor pictorial dataare still rare. This comesasno
surprisesinceit is amuchmoredifficult taskto index, cat-
egorize and analyzeimagesautomatically comparedwith
similar operationon text.

An easyway to make a searchablémagedatabasés to
labeleachimagewith atext descriptionandto performthe
actualsearclonthosetext labels.However, a hugeamount
of work is requiredin manuallylabellingevery picture,and
the systemwould notbe ableto dealwith ary new pictures
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Figure 1. A sample picture

notlabelledbefore.Furthermoreit is difficult to give com-
plete descriptionsfor mostpictures. Considerthe picture
in Figure1l. Onemight betemptedto describet as“river,
treesandstones” but it would notbeableto respondo user
queriedor “water”,“waterll”, “clouds” or “white blobsin
background”.To make areal content-basetnageretrieval
systemwe needsomemechanisnio searchon theimages

directly.
1.1 Previouswork

Early approachesto the content-basedimage re-
trieval problemincludethe IBM QBIC (Query-By-Image-
Content) System[3], where userscan query an image
databaseby average color, histogram, texture, shape,
sketch,etc. Theimagedatabasés preprocessedith some
humanassistanceo facilitate the search. Someresearch
hasbeendoneto groupimagesinto cateyoriesthatcapture
high-level conceptssuchasindoorvs. outdoorscenesand
city vs. landscapascene$18, 19]. However, imagequeries
alongtheselines are not powerful enough,andmorecom-
plex queries(suchas“all picturesthatcontainwaterflls”)
arehardto formulate. Lipson et al. [9] usedhand-crafted



templatesto classify naturalsceneimages. While it has
beensuccessfuln this domain, the processis difficult to
automateRecentesearcthaspaidmoreattentiornto query-
by-example[1, 11, 16]. In thesesystemsuserqueriesare
givenin termsof positve andnegative examplesandsome-
timessalientregionsarealsomanuallyindicated. The sys-
temthenproceeddo retrieve images'similar” to the posi-
tive examplesand“dissimilar” to the negative ones.

For images,however, “similarity” is not well-defined.
Many algorithmshave beenproposedto computeimage
similarities. They typically do soby cornvertingimagesnto
featurevectorsandusingfeaturevectordistancessa simi-
larity measureGrosky andMehrotra[4] experimentedvith
a representationusing object boundaries’local structural
features,and they usedstring edit-distanceas a distance
measureMehrotraandGary[13] usedrelative positionsof
“interestpoints”alongobjectboundarieso represenshape,
andusedEuclideandistanceasa distancemeasure.These
methodsarebasedon objectrecognitiontechniquesHow-
ever, they are quite sensitve to noisein the images,and
cannothandleimageswheretherearenodistinctobjectsas
in naturalscenesDe BonetandViola[1] proposedinalgo-
rithm whereimagesare passedhrougha tree of nonlinear
filters to obtainfeaturevectorsthat representtexture-of-
texture” of the original images. It works well with natu-
ral scenesandsingle-objectestsets. Maron and Lakshmi
Ratan[11] usedsimple featureslike a row’s meancolor,
color differencesandcolor distributionsamongneighbors,

etc.,andit workswell for color imagesof naturalscenes.

Ravelaetal. [16] developeda systenthatusesa correlation
measurdo indicatesimilarity. It worksfor a variety of im-
ageshut it requiresthatthe usermanuallypick theregions
of interestfrom theimages.In reality, the usermaynot al-
waysknow which regionsare mostimportantwith respect
to the similarity measureusedby the algorithm. Further
more,notall pixelswithin arectangularegion areof equal
interestwhich complicateghe problem.

More detailedreviews of previous literaturein image
classificatiorandretrieval canbefoundin [8, 11].

1.2 The multiple-instance learning approach

Sincethe picturein Figure 1l canbe viewed differently
as‘river”, “waterall”, “trees”, “clouds”, etc.,andmultiple-
objectimagesaremorecommonthansingle-objectmages,
it is naturalto have one image correspondto more than
onefeaturevector eachonedescribingoneparticularview
(or object). In this way, eachpositive or negative example
translatesnto multiple featurevectors. After Maron[10],
we call eachof thesefeaturevectorsan instance andwe
call thecollectionof instancedor the sameexampleimage
abag.

For a positive example,at leastone of the instancesn
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Figure 2. A multiple-instance
rithm: Diverse Density

learning algo-

thebagshouldbe a closematchto the conceptheuserhad
in mind whenhe or shechosethe examples but we do not
know which one. The restof the instancesn the bagare
irrelevantand shouldbe regardedasnoise. For a negative
example,we know for surethat noneof the instancesn
the bagcorrespondso the users concept.Giventhe large
collectionof instance$rom positive andnegative examples,
our taskis to find the “ideal” featurevectorthat accounts
for the users concept.Furthermoreamongall the feature
dimensionswve chooseto describean instanceonly some
of themmayberelevantto definingtheidealconceptwhile
the remainingonesshouldbe ignored. Whenwe take this
into account,the problembecomesomputationallymuch
harder2].

This kind of problemis known as a Multiple-Instance
Learningproblem[2, 10, 12]. Oneway to solve this type
of problemis to examinethe distribution of theseinstance
vectors,andto look for a featurevectorthatis closeto a
lot of instance$rom differentpositive bagsandfar from all
the instancedrom negative bags. Sucha vectoris likely
to representhe conceptwe aretrying to learn. Thisis the
basicideabehindthe Diverse Densityalgorithm, proposed
by MaronandLozano-Rerez[10, 11, 12], andis illustrated
in Figure2. In Figure2, therearefive positive examples
(bags)labelledl to 5 andthreenegative examples(bags)
labelled6 to 8. EachbaghasseveralinstancesThefeature
vector spaceis 2-dimensional. The “ideal” featurevector
is wherethereis a high concentratiorof positive instances
from differentbags.

MaronandLakshmiRatan[11] have appliedtheDiverse
Densitytechniqueo imageretrieval problemsby usingim-
agefeaturessuchas color statisticsand color distribution
patterns. They corvertedeachpictureinto an8 x 8 ma-



trix of “color blobs”, andusedfeaturevectorssuchasrow
color vectors,columncolor vectors,color patternsof spe-
cific neighborhoodsgtc. Thisrepresentatiomorkswell for
retrieving color naturalscendmages.

In this paper we improve their methodto dealwith a
broaderrange of imagesincluding objectimages. Simi-
lar attemptshave beenmadeby LakshmiRatanet al. [6],
who usedimage sggmentationtechniquesand more com-
plex featuressuchasa combinationof color, texture and
simpleshapes.They usedspecialfilters to find circlesand
othersimpleshapedrom theimagesjn anattemptto learn
objectconcepts. Our approachdiffers from theirsin that
we do not pre-defineor dependon any templatedor object
shapesbut usea muchsimplerfeaturerepresentationtor
objectimagesthat can be modeledby existing templates,
the methodgivenin [6] is more suitable,but our method
canpotentiallywork with alargerclassof images.

We definean image similarity measureas the correla-
tion coeficient of correspondingegions after smoothing
and sampling,and further refine it by allowing different
weight factorsfor differentlocationswhen comparingfor
similarity. Basedonthis, we developafeaturevectorrepre-
sentatiorfor imageswherewe canuseweightedEuclidean
distanceo reflectthedistancelefinedby ourweightedsim-
ilarity measureFor eachexampleimage,a bagof multiple
instancesareobtainedby choosingdifferentsub-reionsof
theimageandgeneratinga featurevectorfor eachregion.

In section2 below, we introducethe DiverseDensityal-
gorithm. Section3 discussesur correlationsimilarity mea-
sure,its correspondindeaturerepresentatioanda weight
factorcontrollingmethod.Sectiond givesexperimentable-
tailsandresults.

2. The DiverseDensity algorithm

In this section, we give a brief introduction to the
multiple-instancéearningproblemandthe DiverseDensity
(DD) algorithm. A moreelaboratdreatmentanbe found
in[10, 11, 12].

2.1 The multiple-instancelearning problem

Machinelearningalgorithmsprovide waysfor computer
programgo improve automaticallywith experiencg14]. In
a typical machinelearningproblem,the taskis to learna
function

Y= f(xl-, T2y .y xn)
given someexamples. In traditional Supervised.earning
the examplesaregivenin termsof (y;, z;1, T2, ..., Tin ) tU-
ples,wherei is theindex of examples:i = 1,2, 3, ... That
is, eachsetof inputvalues(z;1, z;2, ..., ;) IS taggedwith
the correctlabel ;. In Multiple-Instancel.earning how-
ever, input vectors(z;1, x;2, ..., Zin ) (calledinstance}are

not individually labelledwith its correspondingy; value;
rather oneor moreinstancesre groupedtogetherto form
abag, andthey arecollectively labelledwith ay valueof 1
(TRUE) or 0 (FALSE). If thelabelis TRUE, it meanghat
atleastoneof theinstancesn the bagmustcorrespondo
1;=TRUE, while othersmay correspondo eitherTRUE or
FALSE. If the labelis FALSE, it meansthatall of the in-
stances$n thebagmustcorrespondo FALSE.

In termsof the imageretrieval problem, eachpositive
exampleselectedy the usercorrespondso a baglabelled
TRUE, andeachnegative exampleselectedy the usercor-
respondso abaglabelledFALSE. A featurevectorconsists
of n numberg(features)eachof which partially describes
the imagein someway, for example, pixel values,color
statistics,edgelocations,etc. Redundanbr irrelevantfea-
turesareallowed. Sincethe picturesareinherentlyambigu-
ous, we generatemore than one featurevector (instance)
to describeeachpicture. We expectthat one of thesefea-
ture vectorsfor eachpositive examplewould accountfor
the conceptthe userhadin mind whenpicking the exam-
ples,andthatnoneof themin the negative exampleswould
coincidewith theusers concept.

We would like to train the systemso that it can make
predictionsfor new examples:givena new exampleimage
(a bagof instancevectors),it shoulddeterminewhetherit
corresponds$o TRUE or FALSE. To allow for uncertainty
thesystemmaygive arealvaluebetweerD (FALSE) and1
(TRUE).

We male a simplifying assumptiorthat the users con-
ceptcanberepresentedby a single“ideal” pointin the n-
dimensionafeaturespace.A bagis labelledTRUE if one
of its instancess closeto theidealpoint. A bagis labelled
FALSE if noneof its instancess closeto the ideal point.
The“ideal” pointis wherethereis a high concentratiorof
positive instancedrom differentbags.The confidenceof a
bagbeing TRUE canbe measuredy the distancefrom the
idealpointto the closesinstancevectorin thebag.[10, 12]
developedan algorithm called Diverse Density which is
ableto find sucha point. Not all dimensionsof feature
vectorsare equally important, so the distancehereis not
restrictedo normalEuclideandistanceput maybedefined
asa weightedEuclideandistancewhereimportantdimen-
sionshave larger weights. The DiverseDensity algorithm
is capableof determiningheseweightfactorsaswell.

2.2 DiverseDensity

Following the samenotationsasin [10, 11, 12], we de-
notethe positive bagsas B, By, ..., B;" andthe negative
bagsas B; , B, , ..., B,,. The j* instanceof bag B;" is
written as B;/;, while the j instanceof bag B;" is written
asB;;. Eachbagmay containany numberof instancesbut

every instancanustbe a k-dimensionalvectorwherek is a



constant.

Not all £ dimensionscontribute equallyto definingthe
ideal concept,so we needto give a weight to eachdi-
mension. We want to look for a pointin the weightedk-
dimensionakpacenearwhich thereis a high concentration
of positiveinstancedrom differentbags.It is importantthat
they arefrom different bags,sincea high concentratiorof
instancedrom the samebagis effectively the sameasone
instanceat that point. In otherwords, we are looking for
a point wherethereis a high Diverse Density of positive
instances.

For ary point ¢ in the featurespace the probability of
it beingour targetpoint, givenall the positive andnegative
bagsijs Pr(t|By, ..., B, By , ..., B;,). Sothepointwe are
looking for is the onethat maximizesthis probability, that
is

argmtaxPr(t|Bl+, wwBl . B ,...B,)

Using Bayes’rule, assuminga uniform prior over the con-
ceptlocation Pr(¢) and conditionalindependencef the
bagsgiventhetargetconcept, theabove equals

+ —
argmtaXHPr(ﬂBi )HPr(t|Bi )
3 2

This is a formal definition of maximizingDiverseDensity
We usethe “noisy-or” assumptiorfseeMaron[10] for mo-
tivationanddiscussionsphat

1-JJ-Pe(Bj; =1)
H(1 — Pr(Bj; =t))

J

Pr(t|B;") =

Pr(t|B;) =

andmake thefollowing assumption:
Pr(By; = t) = exp(~||Bi; — t||*)

where||B;; — t|| is the distancebetweerthe two vectors.
Thisis a Gaussiarbump centeredn the featurevector As

we mentionedefore ,notall dimensionsareequallyimpor-

tant, so we definethe distanceto be a weightedEuclidean
distance:

1Bij — tl]> = wi(Bijk — tx)?
k

where B; ;. is the k" dimensionin the vector B;;. u,% is
a non-ngjative weight. (We usew; ratherthanwy, in or-
derto force the weightsto be non-ngyative.) Now we need
to maximizeDiverseDensityover both¢ andw. By intro-
ducing weights,we have actually doubledthe numberof
dimensionsover which we aretrying to maximizeDiverse
Density

2.3 Finding the maximum

The problem of finding the global maximum Diverse
Density (DD) is difficult, especiallywhen the numberof
dimensionss large. The DD algorithmmakesuseof agra-
dientascentmethodwith multiple startingpoints. It starts
from every instancefrom every positive bagand performs
gradientascentfrom eachoneto find the maximum. The
ideais that,atleastoneof thepositive instancess likely to
be closeto the maximum. So if we do hill-climbing from
every positive instancejt is very likely thatwe will hit the
maximumDD point.

3. Adapting DiverseDensity

The definition of DD requiresthe definition of feature
vectorsfor images,where a weightedEuclideandistance
canbeusedasameasuref “similarity”. Wewantto usethe
pixelsthemselesasthefeaturesandcorrelationcoeficient
asasimilarity measure.

3.1 The correlation similarity measure

Given two seriesof sampledsignals f;(¢t) and f>(t),
t =1,2,...,n, thereis astandardvay to find out how cor-
relatedthey arewith respecto eachother:we cancompute
their correlation coeficient[17]. In its simplestform, the
correlationcoeficientr is definedby

_ aXia () — ) (fe(t) ~ )

O'flo'f2

where f;, f» arethe averagevaluesof f(t) and f(t),
andoy,, oy, arethestandardleviationsof f1(t) and f2(¢),
respectiely:!

R= 13 A0, B=23A)
t=1 t=1

1 n

D (At =F)% op = -~ > (falt) = F2)?

O’flz

S|~

Whenr = 1, the two signalsare perfectly correlated.
Whenr = 0, thereis little or no correlationbetweenthe
two. Whenr = —1, thetwo signalsareperfectlyinversely
correlated.If we only countpositive correlationsas“simi-
lar”, thenr canbeusedasa directmeasuremerdf similar
ity: asr increasessimilarity increases.

1Strictly speaking[15], in the definitionsfor of, 0f, andr given
here,% shouldbe replacedby ﬁ But it doesnot matterto us. Both
definitionswork the sameway in the deriationsin this paper and we
chooseto use% whichis morecorvenient.
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Figure 3. lllustration of smoothing and sam-
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Sinceanimageregion of sizeu x v canbetreatedasan
uv-dimensionalectorof gray-scalesaluesthis correlation
coeficientis oftenusedtio measursimilaritiesbetweerim-
ageregions|[5, 16)].

If we apply the correlationformulato the original im-
agesdirectly, on a pixel-by-pixel basis,a shift in the im-
ageby onepixel would causearelatively big changan the
correlationvalue,which is not desirable.To avoid this ef-
fect, we smoothand samplethe m x n imagedown to a
low-resolutions x h matrix. In mostof the experimentsn
this paperwe chooseh = 10. Specifically we smooththe
m x n imagewith a 2% x ;2% averagingkernelandthen
sub-samplédt to getanh x h matrix. In otherwords,each
entryin theresultingh x h matrixis theaveragegray-scale
valueof acorrespondindplockregionin theoriginalimage,
asillustratedin Figure 3. In Figure3, the averagevalueof
block AEGC goesinto the 1stentryof the 10 x 10 matrix,
theaveragevalueof block BF' H D goesinto the 2ndentry
(1strow, 2ndcolumn)of the matrix, andsoon. Eachblock
hasa50% overlapwith ary of its neighborsThelargeover
lap is intendedto reducesensitvity to the choiceof block
borderlocations.

3.2 Regionselection

With theabove smoothingandsamplingschemendh =
10, the correlationcoeficientis a goodindicationof simi-
larity for two single-objectmages However, thiswould not
generalizeo more complex casessuchas multiple-object
imageswherethe object(or feature)of interestmaynot be
atthe samepositionin all pictures.

In amorecomplex image theobject(or feature)of inter-
estdoesnotoccupy thewholeimage,but only asub-rejion
of theimage. We would not be ableto get satishctoryre-
sultsif we comparedhe two entireimagesin Figure 4(a)

nm
l 1

Picturel Picture2

(a) Correlationcoeficient of thesetwo imagesis 0.118.

Picturel

Picture2

(b) Correlationcoeficient of thetwo markedregionsis
0.674.

Figure 4. More comple x images

usingthe correlationsimilarity measureput we may have
betterluck if we comparea region in oneimageagainsta
regionin the other For example,the correlationcoeficient
of thetwo entireimagesin Figure4(a)is 0.118,while the
correlationcoeficient of thetwo marked regionsin Figure
4(b)is 0.674 indicatingsimilarity.

Now the questionis, how do we chooseheregions?In
fact, we do not know which regionswe shouldpick, since
thepicturesareinherentlyambiguousandany regionmight
becomeheregion of interestdependingnthe users con-
cept. This is exactly wheremultiple-instancdearningcan
helpus: we cansimply pick all possibleregionsandlet the
learningalgorithmtake careof findingthe“right” regionfor
us.

Figure 5 shavs 20 possibleregions (as shadedareas).
Conceptuallythereis an unlimited numberof possiblere-
gions. Whendecidingthe actualnumberof regionsto con-
sider, thereis atrade-of betweerthe chanceof hitting the
“right” regionandtheamountof noiseintroduced.Thiswill
bediscussedurtherin Sectior4.2.

In mostof this paper we only considerthe 20 possible
regionsshavn in Figure5. Consequentlyif someimages
containobjectsthat are much smallerthan one quarterof
the entireimage,their detailsmay not be visible to the al-
gorithm. For eachregion, we consideiboththe originalim-
agein that region and the left-right mirror image of that
region, sinceleft-right mirror imagesoccurvery frequently
in image databaseand we would like to regardthem as
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Figure 5. Possib le regions to consider

the same.Therefore therearea total of 40 sub-pictureso
consider This translatesnto 40 instancesger bagin the
multiple-instancdearningframewvork. Here,we do a little
optimizationto throw out regionswhosevariancesare be-
low a certainthreshold sincelow-varianceregionsarenot
likely to beinteresting.For eachsub-picturewe processt
with smoothingandsamplingasillustratedin Figure3, to
getanh x h matrix which we treatas an h2-dimensional
featurevector

3.3 Weightedcorrelation coefficient

Not all dimensionsn the featurevectorareequallyim-
portant.For example,someof themmay correspondo the
backgroundn theimage,andwe do notwantthemto carry
the sameweightsas otherdimensions. Therefore we ex-
tend our correlationsimilarity measureto allow different
dimensiongo have differentweight factors. We definea
weightedcorrelationcoeficient for two n-dimensionafea-
turevectorsf, andf, as:

) _ 3 ey We(1 (k) = 1) (fa () — Fo)

r
77
91.9f,

ﬂhe_rew,% is thenon-neyativeweightfor the £*" dimension,
f1, f2 aredefinedasbefore ands’; , o’y arethe“weighted”
standardleviationsof f1(k) and f2(k), respectiely:

o = | w2
\ 7

1< —
o = gé%%@—m2

3.4. Fitting into Euclidean space

Our similarity measureés definedastheweightedcorre-
lation coeficient on featurevectors,ratherthan Euclidean
distance.This doesnotfit directly into the DiverseDensity
framevork. However, thereis asimplewayto transformthe
vectors sothatwe canuseweightedEuclideandistancedi-
rectly to reflectthe weightedcorrelationcoeficientsof the
original featurevectors.

Supposghat A4;; is then-dimensionafeaturevectorwe
have obtainedbor thei'” bag,j!" instancew? is theweight

factorfor the k*"* dimension Define

Ay A

By = ———=
O A,

where A;; is the averageof A;; entries,and o’y is the
“weighted” standardieviation of A;; entries:

erzl Aijk / 1 ¢ 2 A2
i T T OAy Tl E wk(Aijk - Aij)
n n 1

N

With this definition,we aregoingto show that,compar
ing or ranking 4;; vectorsbasedon weightedcorrelation
coeficientsis the sameas comparingor ranking B;; vec-
torsbasednweightedeuclideandistancesn reverseorder
Thisis formally statedasfollows:

Claim Forary i, j, L, m, p, g, u, v andweightfactors{w? },

1. Corr(Aij, Aim) > Corr(Ayg, Ayy) if andonly if
HBij - Blm” < Hqu - Buv”

2. Corr(Aij, Aim) = Corr(Apq, Auy) if and only if
1Bij = Buml| = [|Bpg = Buo||

3. Corr(Aij, Aim) < Corr(Apq, Auy) if and only if
|[Bij — Bim|| > |[Bpq — Buo||

whereCorr(a, 3) meansthe weightedcorrelationcoefi-
cientof & andg, and||a— || meangheweightedEuclidean
distancebetweeny andg.

Lemma Forary i, j,

n
§ 2p2
kaijk: =N
k=1

Proofof thelemmais straightforvard giventhe definitions
above.
Proof of Claim

[|1Bij — Biml|

Z wi(Bijk — Bimk)?
=1
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Similarly,
[|Bpg — Buv|| = 2n — 2nCorr(A,,, Auv)

andthe Claimfollows.
3.5. Bag generationand imageretrieval

Now we arereadyto put everythingtogether For every

imagein our databaseye do thefollowing pre-processing:

1. If itisacolorimage corvertit into agray-scalémage.

2. Selectsomeregionsfrom theimage,accordingo Sec-
tion 3.2. Throw outregionswhosevariancesrebelov
acertainthreshold.

3. Extracttwo sub-picturesrom eachregion: oneasthe
imageitself in theregion, andthe otherasits left-right
mirror image. For eachsub-picture performsmooth-
ing and samplingasillustratedin Figure 3 to getan
h x h matrix. Treatthis asan h?-dimensionafeature
vector

4. Transformeachfeaturevectorinto a new oneaccord-
ing to Section3.4, i.e., subtractits meanfrom it and
thendivide it by its standarddeviation. (All weights
arel to startwith.)

5. For eachimagein our databasewe have obtaineda

numberof featurevectors(after the transformation).

Treateachoneasaninstanceandputthemtogetherto
form abagfor theimage.

After thesestepspurimagedatabasés readyto respond
to userqueries.The useris asledto selectseveral positive
and negative examples. The systemputstogetherthe cor-
respondingmagebagsof multiple-instancedataandfeeds
theminto the DD algorithm. The DD algorithmreturnsan
“ideal” pointin the featurespaceaswell as a setof fea-
ture weightvalueswhich maximizeDiverseDensity Then
the systemgoesto theimagedatabasandranksall images
basedon their weightedEuclideandistancego the ideal
point. (To find thedistancdrom animageto theidealpoint,
it computeghe distance®f all of its instancego the point,
andthenpicksthe smallesione.)It thenretrievesimagesn
therankedorder If theretrieval resultsarenot satishctory
theusermayobtainbetterperformancdoy picking outfalse
positvesand/orfalsenegatives,addingthemto the exam-
plesandtrainingthe systemagain.

3.6. Controlling feature weight factors

TheDD algorithmfindsan*ideal” featurevectort anda
setof weightsw to maximizeDiverseDensity However, in
thepresencef few negativeinstancesit tendsto pushmost
of theweightfactorstowardszero,leaving only afew large
weightvalues,which meanghatwe areonly usinga small
fraction of pixelsto classifyandretrieve images.Sincewe
have very little training data, a too-simpleconceptbased
on a few pixelsis likely to work well on the training set.
However, it is not likely to generalizewell, especiallyfor
compleximageconceptsTo addresshisissueweimposea
constrainobnthesumof weightfactorsasdiscussedbelow.

Withoutlossof generalitywe requirethatall weightfac-
torsbebetweerDandl: 0 < wy, < 1,k = 1,2, ..., h%. (h?
is thenumberof dimensionsn thefeaturevectors.)We can
limit the changein weightfactorsw;, by imposingthe fol-
lowing constraintwhich setsa lower boundfor the sumof
weights:

h2
Zwk >6-h°
k=1

where( is aconstanbetweer) and1. Wheng = 0, there
is norestrictionontheweights,andwe arebackto theorig-
inal DD algorithm.Wheng = 1, we areforcing all weight
factorswy, to beequalto 1. Therestrictionson weightfac-
torsareeasilycontrolledby changings values.For exam-
ple,wheni = 0.5, the averageof weightfactorsmustbe
greaterthan0.5, sono morethanhalf of the weightfactors
canbecloseto zero.

The simpleunconstraineanaximizationalgorithmused
in theoriginal DD methodwould nolongerwork to find the
maximumwith this new constraint. We switch to a more
powerful algorithmcalledCFSQP(C codefor FeasibleSe-
guentialQuadraticProgramming) 7], which is capableof
handlingmaximizationproblemswith constraints.As will
be shaovn in Section4, this approachworkswell on awide
varietyof situations.

4. Results

We have tested our systemon two different image
databases.One is a natural sceneimage databasegon-
sisting of 500 pictures, 100 eachfor waterflls, moun-
tains, fields, lakes/rivers, and sunsets/sunrisesTheseare
taken from the COREL library, the samedatabas@asused
in [11]. The otheroneis an objectimagedatabase¢con-
sisting of 228 picturesfrom 19 different categories, such
as cars, airplanes,pants,hammers,camerasetc. These
are downloadedfrom the websitesof AVIS Car Rental
(www.avis.com),Bicycle Online (www.bicycle.com),Con-
tinental Airlines (www.flycontinental.com)Delta Airlines
(www.delta-aircom),J. Crew (www.jcrew.com),JCPenng



Userselectedpositive examples

B

Figure 6. A sample run with 3 rounds of train-
ing: retrie ving cars

(www.jcpenng.com),Ritz Camergwww.ritzcamera.com),
Searqwww.sears.comandSory (www.sory.com).

4.1 Experimental setup

To simulateuserfeedbackwhile minimizing userinter-
vention,wefollowedthesame=xperimentamethodasused
in[11]:

The entireimagedatabasés split into a small potential
training setanda largertestset Thecorrectclassifications
for all imagesin the potentialtraining setareknown to the
system. After the userselectspositive and negative image
exampleswe generateorrespondindpagsandrun DD al-
gorithmonce,andthenusetheresultsto rankimagesfrom
the potentialtraining set. Sincetheir correctclassifications
arealreadyknown, the systemcanevaluateits own perfor
manceon theseimageswithout askingthe user It canpick
outsomefalsepositivesand/orfalsenegativesandaddthem
to theexampledo trainitself again.This processanbere-
peatedmorethanonce,andit effectively simulatesvhata
usermight do to obtainbetterperformance.In the exper
imentsof this section,20% of imagesfrom eachcateyory
are placedin the potentialtraining set. The systempicks
outtop 5 falsepositivesfrom the potentialtraining setand
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Figure 7. Precision-recall curve for Figure 6

addsthemto the negative examplesfor a secondround of

training,andthenpicksoutanotheitop 5 falsepositivesand
trainsfor athird time. Finally it retrievesimagesfrom the
largertestset. A samplerun of theimageretrieval systemis

shawvn in Figure6, wherethe userwantsto retrieve images
thatcontaincars.

Oneway to evaluateimageretrieval performances to
use precision-recallcurves. Precisionis the ratio of the
numberof correctlyretrieved imagesto the numberof all
imagesretrieved so far. Recallis the ratio of the number
of correctlyretrievedimagesto the total numberof correct
imagesin thetestdatabaseln a precision-recalturve, we
plot precisionvaluesagainstrecall values. Figure 7 shavs
the precision-recalcurve for the retrieval resultin Figure
6. In this graph,precisionis around0.5whenrecallis 0.6,
whichmeansin orderto obtain60%of all waterflls, about
50%of theimagegetrievedaretruewaterflls.

4.2 Comparisons

We now studytheeffectsof changingvariousparameters
in thelearningalgorithm.

e Adjustingweightfactorcontrol

The 5 valuein theinequalityconstrainiaffectsperfor
mancevery much. In Figure8, we shaw the resultsof
varying 3 whenretrieving sunseimages.For eachg,
the precision-recalturve is shovn. As 8 movesto-
wards0, theprecision-recalturve tendsto move close
to that of the original DD algorithm. As 5 movesto-
wardsl, theprecision-recalturvetendsto move close
to that of forcing all weightsto be identical. This is
consistentvith our analysisn Section3.6.
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e Choosingdifferentnumberof instanceperbag

Most of the experimenthave beendonewith up to 40
instancegperbag, by picking 20 differentregionsand
takingmirrorimages Figure9 shavstheeffectsof us-
ing fewerandmoreinstanceperbag.In generalhav-
ing moreinstanceger bagmeansa higherchanceof
hitting the “right” region. However, it alsomeansn-
troducingmore noisewhich affects DD performance.
Therefore,more instancesper bag do not guarantee
betterperformanceThisis supportedy Figure9.

e Changindeaturevectordimensions

In most experiments,we smoothedand subsampled
eachimageregion to a low-resolution10 x 10 ma-
trix (a100-dimensiondeaturevector)beforecompar
ing them againsteachother We canuseotherreso-
lutions (i.e., featurevectordimensionsiaswell. Fig-
ure 10 shaws the effectsof doing so. In mary cases,
aswe increasehe resolution,performancsdirst rises,
thendeclines.The problemwith avery low resolution
is thatit doesnot give muchinformationto compare
for similarity. The problemwith a very high resolu-
tionis thatit makesour correlationsimilarity measure
very sensitve to imageshifts, anda higherresolution
bringsmorenoise.The*“ideal” resolutionwhich gives
thebestperformancés highly dependenvntheactual
images.

e Comparingwith apreviousapproach

Now we compareour systemwith apreviousapproach
developedby Maron and LakshmiRatan[11], which

usedDD algorithmwith imagefeaturevectorsof color

statisticsaandcolordistribution patterns With anatural
scenedatabasethe performancef our systemis very

closeto thatof [11], asshawvn in Figure11. The ap-

proachin [11] wastargetedto retrieving color natural
scendmagesandwould notwork with objectimages.
Our systemmakesuseof only gray-scalénformation

from theimages,andhasobtainedcomparableesults
on the naturalscenedatabase Furthermorejt works

with a wider rangeof imagedatabase@cluding ob-

jectimages.

5. Conclusionsand futur e work

We have presenteda new approachto the problem of
content-basedmage databaseetrieval, using a weighted
correlation similarity measureand the Diverse Density
multiple-instancdearningtechniques.We have built and
testeda systemwhich allows usersto selectpositive and
negative exampleimagesand then automaticallyretrieves
similarpicturesfrom amedium-sizediatabaseAs hasbeen

091 — Our approach (inequality =0.25) -

---- A color-statistics approach
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Figure 11. Comparison with a color -statistics
approach

shavnin thetestresults this approactperformsreasonably
well onbothnaturalscenesndobjectimages.

Comparedwith a previous approachin [11] which was
targetedto retrieving naturalscenesgur approactperforms
very closeto theirs. Furthermorepur approactworkswell
on objectimagedatabasesyhich [11] wasnot designedo
handle.

We have studiedthe effectsof puttingmoreor fewerin-
stancesn eachbag (by choosingmore or fewer regions
from eachpicture), and the effects of changingthe num-
ber of featurevectordimensiongby smoothingand sam-
pling imageregionsat differentresolutions).Having more
instanceger bag doesnot guaranteebetterperformance.
Althoughthe chanceof hitting the “right” regionincreases
aswe put moreinstancesnto eachbag,moreirrelevantin-
stancedeadto more noise,which makesit more difficult
for DD algorithmto find theidealpoint. Ontheotherhand,
aswe increasethe numberof dimensionsof eachfeature
vector, performancdirst risesandthendropsdown in mary
cases.This is because very low resolutiondoesnot give
enoughinformationto comparefor similarity, while avery
high resolutionaddsnoiseandalso makes our correlation
similarity measurevery sensitve to imageshifts.

Thetreatmenbf featurespaceweightfactorsin the Di-
verseDensity algorithmhassignificanteffects on the per
formanceof our system. The original DiverseDensity al-
gorithmgivesthe maximizationprocessoo muchfreedom,
which drivesmostof theweightfactorstowardszero,leav-
ing only a few large values. This is not desirablein the
imageretrieval domain. We experimentedwith imposing
differentinequalityconstrainton the sumof weights. The
systemis quite sensitve to thesechanges.



In Section4.2, we discussedhe effectsof changingthe
(8 valuein the inequality constraint. As a future direction,
onemight wantto studyhow to chooses automaticallyto
getoptimalperformance.

All experimentsshawn in this paperhave beendoneon
gray-scalémages.Someattemptshave beenmadeto make
useof colorinformationin color naturalsceneémages.We
usedRGB valuesseparatelyand useda similar approach
aswe did with gray-scaleimages,tripling the numberof
dimension®f featurevectors.No significantimprovements
have beenobseredin this case.Oneotherpossiblefuture
directionwould beto explore the effectsof alternatecolor
representatioschemesandto teston a larger variety of
colorimages.

Also, onemightwantto try to usedifferentfeaturevector
representationand/orother similarity measuresWe have
attemptedo preprocestheimageswith edgedetectionand
to useline andcornerfeaturesn thefeaturevectors.How-
ever, theresultswe have got arenot satishctory

Although our systemis ableto handlescalingchanges
acrossimages,it is not designedo handlerotations. The
correlationsimilarity measurecantoleratesmall rotations,
but large rotationsof the sameobjectwould be treatedas
dissimilar One way to handlerotationswould be to add
moreinstanceso representlifferentanglesof view for each
imageregion, althoughthis would meana significantin-
creasdn the numberof instancegper bag. Theremay be
betterways, andthis is yet anotherpossiblefuture direc-
tion.
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