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Abstract

In high-dimensional and complex metric spaces, determin-
ing the nearest neighbor (NN) of a query objectq can be a
very expensive task, because of the poor partitioning oper-
ated by index structures – the so-called “curse of dimen-
sionality”. This also affects approximately correct (AC)
algorithms, which return as result a point whose distance
fromq is less than(1 + �) times the distance betweenq and
its true NN.
In this paper we introduce a new approach to approximate
similarity search, called PAC-NN queries, where the error
bound� can be exceeded with probabilityÆ and both� andÆ
parameters can be tuned at query time to trade the quality of
the result for the cost of the search. We describe sequential
and index-based PAC-NN algorithms that exploit the dis-
tance distribution of the query object in order to determine
a stopping condition that respects the error bound. Analy-
sis and experimental evaluation of the sequential algorithm
confirm that, for moderately large data sets and suitable�

andÆ values, PAC-NN queries can be efficiently solved and
the error controlled. Then, we provide experimental evi-
dence that indexing can further speed-up the retrieval pro-
cess by up to 1-2 orders of magnitude without giving up the
accuracy of the result.

1. Introduction

Similarity queries have become a fundamental paradigm
for multimedia, data mining, decision support, pattern
recognition, statistical, and medical applications, to list a
few. In its essence, the problem is to determine the object
which is most similar to a given query object. This is usu-
ally done by first extracting the relevant featuresfrom the
objects (e.g. color histograms from still images [15], Fourier
coefficients from time series [1]), and then measuring the

distancebetween feature values, so that similarity search
becomes a nearest neighbor(NN) query over the space of
feature values.

To speed-up NN search, feature values, which often
are high-dimensional (high-D) vectors, can be indexed by
means of either multi-dimensional trees (such as the R�-tree
[4], the SR-tree [18], and the X-tree [6]) or metrictrees (e.g.
the M-tree [10] and the mvp-tree [8]). Metric trees only re-
quire the distance between feature values to be a metric,
thus they can be used even when no adequate vector repre-
sentation for the features is possible.

It is a fact that, depending on the characteristics of the
data set at hand, indexing might not be the best solution.
Indeed, the performance of index trees has been repeatedly
observed to deteriorate in high-D spaces, so that, even forD
as low as 10-15, a linear scan of the data set would perform
(much) better [7, 24, 18]. Furthermore, recent mathemat-
ical studies demonstrate that this unpleasant phenomenon,
known as “the curse of dimensionality”, is not peculiar
to vector spaces, but can also affect more complex met-
ric spaces [20], it being tightly related to the distribution
of distances between the indexed objects and the query ob-
ject [7]. Intuitively, the more such distances are all similar
each other, i.e. their varianceis low, the more searching is
difficult.

On the other hand, when objects are naturally organized
into clusters or the intrinsic (or fractal) dimensionality of
the data set is low, NN search can be efficiently solved
[3, 7, 10, 18]. In this case, a (multi-step) filter-and-refine
approach has also been proposed, the idea being to initially
use an easy-to-compute distance function that lower bounds
the original one, and then to compute the actual result by
evaluating the original distance function only on the set of
candidatesreturned by the filter step. This is also the basic
idea underlying the use of dimensionality-reduction tech-
niques [21].

In this paper we pursue a different, yet complementary,



direction that extends previous work on approximateNN
search, i.e. when one does not require that the result has nec-
essarily to be the “correct” NN of the query object. Approx-
imate queries are suitable to a variety of scenarios, espe-
cially when the query specification is itself a “guess”. This
is the case in exploratory data analysis, in content-based im-
age retrieval, and in many other real-life situations. Further-
more, in many cases the difference between the NN and a
“good” approximation is indistinguishable from a practical
point of view.

With approximate queries, the two conflicting require-
ments to be satisfied are low processing costs and high ac-
curacy of the results, i.e. low errors. The approach under-
taken by what here we call approximately correctNN (AC-
NN) queries [2] is to specify the maximum relative error to
be tolerated, � > 0, thus one is guaranteed to obtain a re-
sult whose distance from the query object does not exceed
(1 + �) times the distance between the query object and its
NN. Unfortunately, AC-NN algorithms are still plagued by
the dimensionality curse and become unpractical whenD is
intrinsically high, regardlessof �.

In this paper we propose a probabilisticapproach to ap-
proximate NN search, which allows two parameters to be
specified at query time: the accuracy� allows for a cer-
tain relative error in the result, and the confidenceÆ guar-
antees, with probability at least (1 � Æ), that � will not be
exceeded. This generalizes both AC-NN queries, obtained
when Æ = 0, as well as correct(C-NN) queries (� = Æ = 0).
The basic information used by our PAC (probably approx-
imately correct) NN algorithms is the distance distribution
of the query object, which is exploited to derive a stopping
conditionwith provable quality guarantees, the basic idea
being to avoid searching “too close” to the query object.

We first analytically and experimentally demonstrate the
effectiveness of a PAC-NN sequential algorithm. Results
show that, say, with n = 106 objects and D = 100, only
about 7000 objects need to be read in order to obtain, with
probability � 0:99, a result that differs no more than 10%
from the correct one. Since the complexity of the PAC-NN
sequential algorithm is at least O(nÆ�1(1+�)�D), thus still
linear in the data set size, we introduce a PAC-NN index-
based algorithm that we have implemented in the M-tree
[10], and experimentally demonstrate that performance can
improve by 1-2 orders of magnitude. Although we use the
M-tree for practical reasons, our algorithm and results apply
to all multi-dimensional and metric index trees. We also
demonstrate that, for any value of the � accuracy parameter,
the Æ confidence parameter can be chosen in such a way that
the actualaverage relative error stays indeed very close to
�. This implies that an user can indeed exert an effective
control on the quality of the result, thus trading accuracy
for cost.

The rest of the paper is organized as follows. After re-

viewing the basic logic of C-NN and AC-NN algorithms
(Section 2), in Section 3 we emphasize the distinction be-
tween the task of “locating” the result (either correct or ap-
proximate) and the task of “stopping” the search, and show
that the first task is relatively easy, whereas stopping is
the real trouble. Then we exploit this observation by in-
troducing PAC-NN queries, and formalize the relationship
between the distance distribution and the stopping condi-
tion used by PAC-NN algorithms. Section 4 provides ana-
lytical and experimental evaluation for sequential data sets,
and Section 5 introduces and evaluates the PAC-NN index-
based algorithm on both synthetic and real data sets. Fi-
nally, in Section 6 we discuss other approaches to approxi-
mate NN search and draw our conclusions.

2. NN and approximate NN search algorithms

For the sake of generality, we develop our arguments
by considering that objects are points of a metric space
M = (U ; d), where U is the domain of values and d is
a metric – a non-negative and symmetric function which
satisfies the triangular inequality, d(pi; pj) � d(pi; pk) +
d(pk; pj) 8pi; pj ; pk 2 U – used to measure the distance
(dis-similarity) of points of U .

Some basic definitions are useful for what follows (the
relevant notation is summarized in Table 1). For any real
r � 0, Br(c) = fp 2 U j d(c; p) � rg is the r-ball of point
c, that is, the set of points in U whose distance from c does
not exceed r. Given a query point q, the minimum distance
between q and a region R � U is defined as dmin(q; R) =
inffd(q; p) j p 2 Rg. Note that dmin(q; R) = 0 if q 2 R.
Finally, given a set S � U of n points, and a query point
q 2 U , the nearest neighborof q in S is a point p(q) 2 S

such that:

r
q def
= d(q; p(q)) � d(q; p) 8p 2 S

An optimalcorrect nearest neighbor (C-NN) index-based
algorithm has first been described for the PMR-Quadtree
[16] and then generalized to work with any (either multi-
dimensional or metric) index tree that is based on a recur-
sive and conservative decomposition of the space [5], thus
matching the following generic structure. Each nodeN
(usually mapped to a disk page) in the tree corresponds to a
data region, Reg(N) � U . Node N stores a set of entries,
each entry pointing to a child node Nc and including the
specification of Reg(Nc). All indexed feature values are
stored in the leaf nodes of the tree, and those in the sub-tree
rooted at N are guaranteed to stay in Reg(N).

The C-NN Optimal algorithm in Figure 1 uses a pri-
ority queue, PQ, of references to nodes of the tree, which
are kept ordered by increasing values of dmin(q; Reg(N)).
This ensures the algorithm to be optimal, since it only ac-
cesses those nodes whose region intersects the NN ball



Symbol Description
U domain of values
D space dimensionality
d distance function
S � U data set
n = jSj cardinality of the data set
q query point q 2 U
Br(q) r-ball of point q
p(q) nearest neighbor of point q
rq distance between q and p(q)
N node of a tree
Reg(N) data region corresponding to N
dmin(q; R) minimum dist. between q and region R
� accuracy (relative error)
�e� effective relative error
Æ confidence
Fq(x) relative distance distribution of q
Gq(x) distribution of the nearest neighbor of q
r
q

Æ
Æ-radius of point q

Table 1. Summary of relevant notation.

Brq(q) [5]. Note that the computation of dmin(q; Reg(N))
is the only part of the algorithm that depends on the specific
index at hand. The search is stopped at line 5 when the first
region in the queue cannot contain any point closer to q than
the current nearest neighbor, whose distance from q is r, i.e.
dmin(q; Reg(N)) � r.

Algorithm C-NN Optimal

Input: index tree T , query object q;
Output: object p(q), the nearest neighbor of q;

1. Initialize PQ with a pointer to the root node of T ;
2. Let r =1;
3. While PQ 6= ; do:
4. Extract the first entry from PQ, referencing node N ;
5. If dmin(q; Reg(N)) � r then exit, else read N ;
6. If N is a leaf node then:
7. For each point pi in N do:
8. If d(q; pi) < r then: Let p(q) = pi, r = d(q; pi);
9. else: // N is an internal node
10. For each child node Nc of N do:
11. If dmin(q; Reg(Nc)) < r:
12. Update PQ performing an ordered insertion

of the pointer to Nc;
13. End.

Figure 1. Optimal algorithm for C-NN search.

Although “optimal”, above algorithm is effective only
when the number of dimensions is relatively low (i.e.
D � 10) after which a sequential scan becomes compet-
itive. This is because in spaces with an intrinsic high-D
the distance rq of the NN of q is “large”, and this implies

that the probability that a data region intersects the NN ball
Brq(q) approaches 1 [24].

In order to reduce the complexity of C-NN search, sev-
eral alternatives have been considered to support approxi-
matesimilarity queries, i.e. queries that are not guaranteed
to return the NN of the query point. Here we concentrate
on the relevant case of approximately correctNN (AC-NN)
queries, which, given a value for the accuracyparameter
(relative error) �, can return any point p 0 2 S such that:

d(q; p0) � (1 + �)rq

Point p0 is called a (1+ �)-approximate NN of q. Above al-
gorithm can be adapted to support AC-NN queries by sub-
stituting r=(1 + �) for r at lines 5 and 11. Clearly, when
� = 0 one turns back to the usual C-NN search.

Example 1 Refer to Figure 2, where the space is (<2
; L2),

i.e. the real plane with the Euclidean distance. We assume
that points are indexed by an M-tree, for which regions are
balls, i.e. Reg(N) = BrN (pN ),1 and dmin(q; Reg(N)) =
maxfd(q; pN )� rN ; 0g.
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Figure 2. C-NN and AC-NN search in (<2
; L2).

In Figure 2 (a) the current NN is p0, r = d(q; p0), and the
queue contains pointers to nodes A, B, and C, to be visited
in this order. Since nothing changes with node A, the C-
NN algorithm reads node B and discovers that d(q; p) < r,
thus setting r = d(q; p) (Figure 2 (b)). At this point, since
dmin(q; Reg(C)) > r holds, the C-NN search is stopped.

1The actual “shape” of M-tree regions depends on the specific metric
space (U ; d). For instance, regions are “diamonds” in (<2; L1), circles in
(<2; L2), and squares in (<2; L1).



On the other hand, the AC-NN algorithm, before reading
nodeB, discovers that d(q; pB)�rB > r=(1+�) and stops,
thus returning point p0 for which d(q; p0) < (1 + �)d(q; p)
holds. 2

Performance of the AC-NN algorithm depends on the
choice of �. Intuitively, the higher � is, the faster the algo-
rithm is expected to run. However, this can have a negative
effect on the quality of the result, that is, on the effective
error.

Definition 1 The effective (relative) error, �e� , of an ap-
proximate (not necessarily AC) NN algorithm that returns a
pointp0 whose distance fromq is r is defined as:

�e� =
r

r
q � 1

By definition, AC-NN algorithms guarantee that�e� � �,
sincer � (1 + �)rq . 2

Experimental results in [2] show that �e� � � usually
holds, with ratios of the order of 0:01 : : :0:03. This fact
is only apparently positive, since it implies that users can-
not directly control the actual quality of the result, rather
only a much-higher upper bound. Furthermore, even if per-
formance improvements are obtainable in low-D spaces,
the cost grows exponentially with D in the worst case.2

Some intuition on the complexity of AC-NN queries can
be obtained in the case of indexes that allow data regions
to overlap, such as the R�-tree and the M-tree. In this case
a lower bound on the cost of an AC-NN query, regardless
of the value of�, is given by the number of data regions
that enclose the query point q. Indeed, if q 2 Reg(N) then
dmin(q; Reg(N)) = 0 and node N has necessarily to be
accessed (see node A in Figure 2). Figure 3 confirms that
the fraction of such regions grows with D and soon reaches
a limit beyond which sequential scan becomes more conve-
nient.

3. PAC similarity queries

A basic observation to go beyond limitations of AC-NN
queries concerns the very nature of a similarity search pro-
cess. According to our view, this can be conceptually split
into two phases:
Locating: This first phase just consists in determining the
result, that is, retrieving the point that will be eventually
returned by the algorithm.
Stopping: This phase does not change, by definition, the
result, yet it is needed to determine that what discovered so
far is a (1 + �)-approximation of the NN.

2In [2] this is derived by means of combinatorial arguments applied to
the BBD-tree, a multi-dimensional index structure with non-overlapping
data regions.
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objects indexed by an M-tree.

Figure 4 (a) shows the total (i.e. “locating” plus “stop-
ping”) cost, expressed as the number of distance compu-
tations executed by the AC-NN algorithm implemented in
the M-tree, whereas in Figure 4 (b) we plot the ratio of the
“locating cost” to the total cost.

Although the performance rapidly deteriorates as D

grows, it can be seen that locating a (1 + �)-approximate
NN is, in itself, a relatively easy task, whose complexity
indeed decreaseswith space dimensionality. This is due to
the reduction of the variance of the distances to the query
object, which is responsible for the dimensionality curse.
We conclude that the hard problem in high-D approximate
search is to determine how to stop, and that most of the time
spent in an AC-NN search is wasted time, during which no
improvement is obtained.

The new approach to similarity search we propose con-
siders a probabilistic framework, according to which it is
admissible that the result can exceed the error bound � with
a certain probability Æ. This leads to what we call PAC-NN
queries.

Definition 2 Given a data setS, a query pointq, an accu-
racy parameter�, and aconfidence parameterÆ 2 [0; 1),
the result of a PAC-NN (probably approximately correct)
query is a pointp0 2 S such that the probability thatp0

is inside theB(1+�)rq(q) ball is at least1 � Æ, that is,
Prfp0 62 B(1+�)rq(q)g � Æ or, equivalently:

Prf�eff > �g � Æ

The result of a PAC-NN query is said to be a(1 + �; Æ)-
approximate nearest neighbor ofq. 2

The confidence parameter Æ aims to avoid searching “too
close” to the query point (this will be made precise in Sec-
tion 3.2). This exploits the observations that r q is “large” in
high-D spaces and that, nonetheless, stopping an AC-NN
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Figure 4. (a) Total cost (no. of distance com-
putations) of AC-NN search; (b) Ratio of lo-
cating cost to total cost. n = 104, Euclidean
distance, uniform distribution.

search remains a difficult task. A further advantage is that
in principle it is possible to choose Æ so as to have �e� � �,
thus avoiding the mismatch proper of AC-NN algorithms
for which �e� � �. This will be investigated in Section
5. Finally, since PAC-NN queries still use �, “locating” is
guaranteed to remain a relatively easy task.

3.1. The distance distribution

PAC-NN algorithms need some information about r q in
order to provide a probabilistic guarantee on the quality of
the result. Our solution exploits results from [11, 9] on the
estimation of search costs for similarity queries on metric
spaces. For this, it is adequate to consider probability metric
spaces,M = (U ; d; �), where � is a measure of probability
over U [11]. To help intuition, we slightly abuse terminol-
ogy and also call � the datadistribution overU . The models
in [11] and [9] show that the costs for determining the NN
of q can be accurately predicted if one knows the relative
distance distribution ofq, formally defined as:

Fq(x) = Prfd(q; p) � xg (1)

where p is distributed according to �. Intuitively, Fq(x)
represents the fraction of objects in U whose distance from

q does not exceed x.
In [11] we have also demonstrated that the distribution

of the nearest neighborof q with respect to a data set of size
n is given by

Gq(x)
def
= Prfrq � xg = 1� (1� Fq(x))

n (2)

Example 2 Consider the metric spaces l
D
1;U =

([0; 1]D; L1; U), where points are uniformly (U ) dis-
tributed over the D-dimensional unit hypercube, and
the distance is measured by the L1 “max” metric,
L1(pi; pj) = maxkfj pi[k] � pj [k] jg � 1. When
the query point coincides with the “center” of the space,
q
cen = (0:5; : : : ; 0:5), it is immediate to derive that
Fqcen(x) = (2x)D , thus Gqcen(x) = 1 � (1 � (2x)D)n.
On the other hand, when the query point is one of the
2D corners of the hypercube, it is Fqcor (x) = x

D and
Gqcor (x) = 1� (1� x

D)n. 2

3.2. Stopping the search in PAC-NN algorithms

The basic idea of PAC-NN algorithms is to avoid to
search in a region that, according to Gq(�), is reputed to
be “too small” to contain at least a point. How the Æ confi-
dence parameter is related to the volume of such region is
formalized by the following definition.

Definition 3 Given a data setS of n points, a query point
q with distance distributionFq(�), and a confidence param-
eterÆ, theÆ-radius of q, denotedrqÆ , is the maximum value
of distance fromq for which the probability that there exists
at least a pointp 2 S with d(q; p) � r

q
Æ is not greater than

Æ, that is,rqÆ = supfr j Prf9p 2 S : d(q; p) � rg � Æg =
supfr j PrfGq(r) � Æg: If Gq(�) is invertible, thenrqÆ can
be expressed as:

r
q
Æ

def
= G

�1
q (Æ) (3)

Example 3 For the metric spaces l
D
1;U , when the query

point is qcen = (0:5; : : : ; 0:5) it is derived (see Example
2) that

r
qcen

Æ = G
�1
qcen(Æ) =

1

2

�
1� (1� Æ)1=n

�1=D
(4)

For instance, when D = 50 and n = 106, if we set
Æ = 0:01 then r

qcen

0:01 � 0:346 results. This is to say that
with probability at least 99% the hypercube centered on
q
cen with side 2� 0:346 is empty. 2

The Æ-radius is the basis to determine a stopping condition
with probabilistic quality guarantees.

Lemma 1 Given a data setS of n points, a query pointq
with distance distributionFq(�), an accuracy parameter�,



and a confidence parameterÆ, let p 0 be the closest point to
q discovered so far by a PAC-NN algorithm, and letr =
d(q; p0). If

r � (1 + �)rqÆ
def
= r

q
Æ;� (5)

thenp0 is a (1 + �; Æ)-approximate NN ofq. 2

Proof: By definition of PAC-NN queries, it has to be shown
that Prf�eff > �g � Æ, that is, Prfr=rq � 1 > �g =
Prfrq < r=(1 + �)g � Æ. Since the last probability equals
Gq(r=(1 + �)) and r=(1 + �) � r

q
Æ = G

�1
q (Æ), from the

monotonicity of Gq(�) it follows that Gq(r=(1 + �)) �

Gq(G
�1
q (Æ)) = Æ. 2

The stopping rule (5) provides a simple interpretation of
the behavior of PAC-NN algorithms. Given a value of Æ,
the algorithm first determines the Æ-radius rqÆ , then stops the
search as soon as it finds a point p0 such that d(q; p0)=(1 +
�) � r

q
Æ . Thus, the algorithm will avoid searching points

within theBrq
Æ

(q) ball, which is empty with probability at
least 1�Æ. It is indeed this phenomenon that is not exploited
at all by C-NN and AC-NN algorithms.

3.3. When are PAC-NN queries meaningful?

After [7], this section addresses an important conceptual
issue, concerning the very reason to be of (approximate)
NN search. This is an important point, since in [7] it is
clearly demonstrated that, under specific conditions related
to Fq(�), the NN problem can lose interest. This happens
when the distance from q to its NN is comparable to the
distance from q to its “farthest neighbor” in the data set.
The most well-known case for which this holds are high-D
Euclidean spaces with a uniform distribution of data points
(this case has been extensively analyzed in [24]). Clearly,
in such situations not only C-NN search is meaningless, but
also AC-NN and PAC-NN queries are of no interest.

The scenarios we consider are clearly those for which
approximate NN search is meaningful, yet C-NN and AC-
NN algorithms would perform poorly. This holds, say, for
the metric spaces lDp;U = ([0; 1]D; Lp; U) when D is in the
range from 20 to 100 or something more. For such dimen-
sionalities the performance of known algorithms deterio-
rates, yet the variance of distances still makes the search
meaningful.

Figure 5 aims to support the above claims and to provide
a graphical intuition on how PAC-NN algorithms work. The
figure shows graphs of both Fq(�) and Gq(�), together with
values of Æ and �. When the two distributions are quite well
separated (as it happens in the scenarios we focus on), � and
Æ can be chosen so that the value of (1 + �)rqÆ stays well
on the left of the zone where Fq(�) sharply increases, that
is where most distance values are concentrated. This is also
to say that in this case the result of the PAC-NN query is
indeed meaningful.

0

0.2

0.4

0.6

0.8

1

0 1
 

δ

rδ
q (1+ε)rδ

q

Fq
Gq

Figure 5. How Fq(�), Gq(�), �, and Æ interact in
PAC-NN search.

4. The PAC-NN sequential algorithm

The PAC-NN sequential algorithm is suitable when the
data set is stored as a sequential file and no index is avail-
able. Note that, regardless of �, an AC-NN algorithm would
necessarily scan the whole file, thus approximation alone
(without Æ) would be hopeless.

Given a file of n records/points and a query point q, our
algorithm reads the records one by one, and stops as soon
as it finds a point p0 for which d(q; p0) � r

q
Æ;� holds. The

expected cost, measured as the number of distance compu-
tations (probes), is estimated by considering a random sam-
pling process with repetitions(i.e. a point can be probed
more than once). This is an adequate model as long as there
is no correlation between the distances of the points to q and
their positions in the file, n is large, and the estimated cost
is (much) lower than n. On the other hand, when the anal-
ysis derives that the cost is comparable to n, then predic-
tions deviate from the actual performance and only provide
a (non-tight) upper bound of the cost.

The search process can be analyzed by observing that the
cost M is a geometricrandom variable,3 where the proba-
bility of success of a single probe is given byFq(r

q
Æ;�). From

this it immediately follows that the expected value of M
is simply the inverse of the probability of success at each
probe:

E[M ] =
1

Fq(r
q
Æ;�)

=
1

Fq((1 + �)G�1
q (Æ))

(6)

Note that, since E[M ] = 1=Fq(r
q
Æ;�) it follows that varying

Æ and � will not influence the search cost as long asr qÆ;�
stays constant.

3This is because we have assumed a “sampling with repetitions” pro-
cess.



Example 4 Refer to Example 3. By substituting the value
of rq

cen

Æ given by Eq. 4 into Eq. 6, it is derived:

E[M ] =
1

(1 + �)D(1� (1� Æ)1=n)
(7)

Experimental results shown in Table 2 are in line with the
analysis. This, as expected, breaks down when E[M ] � n

does not hold, whereas estimates are quite accurate in the
other cases.4 When � � 0:2, PAC-NN reduces to randomly
sampling a single object, that is, NN search becomes mean-
ingless. 2

Theoretical analysis of the effective error is somewhat
more involved. For space reasons, we just present the final
result and omit all the intermediate steps. The distribution
of the effective error is derived to be:

Prf�e� � xg = 1�Gq(r
q
Æ;�=(1 + x))

+

Z r
q

Æ;�
=(1+x)

0

Fq((1 + x)y)� Fq(y)

Fq(r
q
Æ;�)� Fq(y)

gq(y) dy (8)

where 1 � Gq(r
q
Æ;�) = Prf�e� = 0g, gq is the density of

Gq , and the denominator in the integral “normalizes” the
possible distances to those admissible when r

q = y (y �
r
q
Æ;�), that is, [y; rqÆ;�].

Equations 6 and 8 completely characterize the trade-off
between accuracy and cost for the sequential case. Table 3
shows some statistics on the effective error distribution for
uniformly distributed data sets.

Æ �e� (avg) �e� (max) �e� > � (% of cases)

0:01 0:087 0:234 1:79

0:05 0:135 0:304 2:95

0:10 0:144 0:304 6:03

0:20 0:179 0:343 17:95

Table 3. Statistics on the effective error.
� = 0:2; n = 105; D = 40.

As a final observation, asymptotic analysis of Eq. 7 re-
veals that E[M ] grows like O(nÆ�1(1 + �)�D), thus lin-
early with n. From this we conclude that the PAC-NN se-
quential algorithm is not really suitable for (very) large data
sets, especially when � and Æ have both small values. We
remark, however, that this depends on the specific metric
spaces (in particular on the uniform distribution) used in the
example.

4The table simply reports n if E[M ] � n results from Eq. 7.

5. Experimenting the index-based PAC-NN al-
gorithm

The PAC-NN algorithm for index-based search is de-
scribed in Figure 6. As with the AC-NN algorithm, lines
5 and 12 consider r=(1+ �) in place of r, whereas the stop-
ping condition based on rqÆ is at line 8. No other changes to
the logic of C-NN Optimal are needed.

Algorithm PAC-NN

Input: index tree T , query object q, �, Æ, Fq(�);
Output: object p0, a (1 + �; Æ)-approximate NN of q;

1. Initialize PQ with a pointer to the root node of T ;
2. Compute rq

Æ
; Let r =1;

3. While PQ 6= ; do:
4. Extract the first entry from PQ, referencing node N ;
5. If dmin(q; Reg(N)) � r=(1 + �) then exit, else read N ;
6. If N is a leaf node then:
7. For each point pi in N do:
8. If d(q; pi) < r then:

Let p0 = pi, r = d(q; pi); If r � (1 + �)rq
Æ

then exit;
9. else: // N is an internal node
10. For each child node Nc of N do:
11. If dmin(q; Reg(Nc)) < r=(1 + �):
12. Update PQ performing an ordered insertion

of the pointer to Nc;
13. End.

Figure 6. The index-based PAC-NN algorithm.

In the following we present experimental results on the
performance of the PAC-NN algorithm, and compare it with
AC-NN search. All the experiments are run by indexing the
data set with an M-tree (the node size is 8 KB), execut-
ing 100 queries with the same distribution of the data set,
and then averaging results. For simplicity, we do not use
the distance distribution Fq(�) of the query point, rather we
approximate it with the overall distance distribution, F (�),
obtained by sampling the data set at hand. Although this
can introduce some estimation error, from a practical point
of view differences are minimal, as demonstrated in [11].
Alternatively, a better approximation of Fq(�) can be ob-
tained by using the techniques described in [9], which re-
quire to store the distance distribution of a set of “represen-
tative points”5 and then to combine them at query time. The
sample size is between 1% (for larger data sets) and 10%
of the data set size, and F (�) is represented by a 100-bins
equi-width histogram. For space reasons we only present
results where the “cost” is measured as the number of dis-
tance computations (CPU cost). I/O costs (page reads) are

5These are called witnessesin [9].



� # Æ ! 0:01 0:05 0:1 0:2 0:5

0:01 10
6

(982869) 10
6

(952869) 10
6

(843738) 10
6

(663542) 533381 (391212)

0:05 756640 (470758) 148255 (154617) 72176 (71741) 34079 (33479) 10971 (11944)

0:10 7221 (7138) 1415 (1410) 689 (683) 326 (327) 105 (107)

0:20 2 (2) 1 (1) 1 (1) 1 (1) 1 (1)

Table 2. Expected costs and (in parentheses) actual results of the PAC-NN sequential algorithm for a
“center” query point. n = 106, D = 100. Results are averaged over 104 data sets.

not shown, since they follow the same trend of CPU costs,
up to a scale factor that depends on the average number of
entries in each node.

5.1. Synthetic data sets

We start with data sets consisting of n = 105 uniformly
distributed objects. For high-D spaces, Figure 7 shows how
the cost varies with D, for different values of Æ and � = 0:1.
It is clear that the AC-NN algorithm (Æ = 0) is completely
useless at such high dimensionalities, whereas the cost of
PAC-NN queries remains quite low (note that the cost axis
uses a logarithmic scale).
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Figure 7. Uniform data sets. � = 0:1.

Figure 8 shows results for the case D = 40, from which
it is evident that � alone is ineffective, whereas the cost is
highly dependent on � when Æ > 0.

In low- to medium-D spaces both PAC-NN and AC-NN
algorithms can be profitably used, with Figure 9 showing
typical trends. As for the cost, Figure 9 (a) shows that �
alone has a minimal influence.6 As for the effective error,
Figure 9 (b) confirms that PAC-NN search can exceed the
error bound, the average amount depending on the choice
of Æ.

6This does not contradict results in [2], since in that paper much higher
values of � are considered, up to � = 10.
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Figure 8. Uniform data sets. D = 40.
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Figure 9. Low- and medium-D spaces.
(a) Cost; (b) Effective error.



Figure 10 analyzes the case of clustered data sets.
Each data set consists of D-dimensional vectors normally-
distributed (with � = 0:1) in 10 clusters over the unit hy-
percube, with clusters’ centers randomly chosen. Compar-
ing with Figure 9, it can be observed that both costs and
effective errors are now reduced. This confirms that also for
PAC-NN queries uniformly distributed data sets are harder
to deal with.
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Figure 10. Clustered data sets. (a) Cost;
(b) Effective error.

5.2. Real data sets

Here we present results of experiments with two real-
life data sets. The first data set consists of 11; 648 45-
dimensional feature vectors extracted from color images.
Each image is first decomposed into five overlapping parts,
then from each part a 9-dimensional feature vector is ex-
tracted using the first three moments of the distribution of
the 3 HSV color channels, as described in [23]. The Eu-
clidean distance is used to compare the so-obtained 45-
dimensional vectors. In general, as Figure 11 shows, av-
erage costs are reduced up to 50% by using the PAC-NN
algorithm. Note that, because of the different distance dis-
tribution, higher values of �, as compared to those shown
in Section 5.1 for uniform and clustered data sets, are now
used.
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Figure 11. Image data set. Cost vs. �.

As for the quality of the result, Figure 12 shows how, for
a given � value, accuracy can be controlled by varying Æ.
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Figure 12. Image data set. Effective error
vs. �.

It has to be remarked that in many cases, even using quite
high values of � and Æ, the PAC-NN algorithm is able to
return the correct NN. As an example, consider Figure 13,
where the query image is shown on the left and its NN is in
the middle. The correct NN is also retrieved by the PAC-NN
algorithm as long as � < 1 and Æ < 0:5, whereas for higher
values of the parameters the PAC-NN search retrieves the
approximate NN shown on the right.

(a) (b) (c)

Figure 13. (a) Query image; (b) The NN of (a);
(c) Approximate NN of (a), (�; Æ) = (1; 0:5).

The second data set we experimented with was given
us by B.S. Manjunath [19] and consists of 275; 465 60-
dimensional vectors. Each vector contains texture informa-
tion extracted from a tile of size 64 � 64 that is part of a



large aerial photograph (there are 40 airphotos in the data
set). Each tile is analyzed by means of 30 Gabor filters, and
for each filter the mean and the standard deviation of the
output are stored in the feature vector.

Figure 14 (a) shows how the cost varies with Æ and �, and
Figure 14 (b) makes evident the trade-off existing between
cost and accuracy. The most important observation, which
has general validity and is not restricted to the specific data
set, is that �e� is almost insensitive to the specific choice of
� andÆ values, provided the two parameters are chosen in an
appropriate way. This has an explanation similar to the one
given for the sequential case (Eq. 6), in that performance
mainly depends on the value of rqÆ;�, rather than on the single
� and Æ values.
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Figure 14. Airphoto data set. (a) Cost vs. �;
(b) Effective error vs. cost.

5.3. Tuning PAC-NN search

Since we have not developed yet a model to predict the
cost of the PAC-NN index-based algorithm, here we provide
some guidelines on how parameters of PAC-NN queries can
be chosen in order to achieve a certain trade-off between the
actual quality of the result, i.e. �e� , and the cost.

Consider the case of, say, a 40-dimensional data set with
105 uniformly distributed points. Figure 15 (a) relates the
effective error to the cost and confirms what observed from
Figure 14 (b), that is, the trade-off between cost and accu-
racy is practically independent of the specific � and Æ values.
Consider also Figure 15 (b), where the values of Æ that guar-

antee to have �e� � � are shown, for several values of the �
parameter.
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Figure 15. Uniform data sets. D = 40. (a) Ef-
fective error vs. cost; (b) Æ vs. effective error.

A realistic scenario for an user issuing PAC-NN queries
on a data set for which statistics like these are available is
summarized in Figure 16. The user can either specify a
value for the effectiverelative error or limit the cost to be
paid. In the first case the system can first choose � � �e�

and then, from Figure 15 (b), the appropriate value for Æ.
In the second case these steps have to be preceded by an
estimate of �e� based on Figure 15 (a). As an example, in
order to have �e� = 0:2, Figure 15 (a) predicts a cost in the
range 800::1400, and Figure 15 (b) suggests to use Æ � 0:1.

ε eff

estimate the
effective error

set the
confidence

cost

accuracy
set the

ε δ

eff(ε ≈ ε     )

Figure 16. How � and Æ values can be chosen
so as to to yield a given performance level.



5.4. Sequential vs. index-based PAC-NN search

We conclude by comparing the sequential and the index-
based PAC-NN algorithms. Since, as discussed at the be-
ginning of Section 5, the index uses the overall distance
distribution (rather than the one specific for the query point
at hand) to determine the Æ-radius, the same procedure was
used for the sequential search, in order to guarantee fairness
of comparison.

Table 4 presents results for a 40-dimensional data set
with 105 uniformly distributed points. The improvement
obtainable through indexing is always between 1-2 orders
of magnitude, and only reduces when the search becomes
easier (i.e. for higher values of � and/or Æ, not shown in the
table), in which case however NN queries lose interest, as
discussed in Sections 3.3 and 4.

Finally, we evaluated the query response time as a func-
tion of the effective error on the airphoto data set. Exper-
iments were run on a Linux PC with a Pentium III 450
MHz processor, 256 MB of main menory, and a 9 GB disk.
It should be remarked that the average response time for
correct NN queries is 107 seconds for a sequential scan,
and 26.3 seconds for an index-based search. As Figure 17
shows, index-based search consistently outperforms the se-
quential PAC-NN scan, the difference always being about
one order of magnitude. For higher values of � e� , not
shown in the figure, the stopping condition is satisfied by
a large fraction of the points in the data set and therefore
the response time for both algorithms is considerably lower.
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Figure 17. Airphoto data set. Elapsed time vs.
effective error.

6. Conclusions

In this work we have introduced a new paradigm for ap-
proximatesimilarity queries, in which the error bound � can
be exceeded with a certain probability Æ and both � and Æ

can be chosen on a per-query basis. We have analytically
and experimentally shown that PAC-NN queries can lead to

remarkable performance improvements in high-D spaces,
where other algorithms would fail because of the “dimen-
sionality curse”. Our algorithms need some prior informa-
tion on the distance distributionof the query point, which,
using results in [11], can be however reliably approximated
by the overalldistance distribution of the data set. We have
also shown that it is indeed possible to exert an effective
control on the quality of the result, thus trading accuracy
for cost. This is an important issue that has gained full rel-
evance in recent years [22].

Other approaches, besides the one proposed in [2] and
that we have somewhat taken as a reference starting point,
exist to support approximate NN search. Indik and Motwani
[17] consider a hash-based technique able to return a (1+�)-
approximate NN with constantprobability. Although defi-
nitely interesting, this technique is limited to vector spaces
andLp norms, and its preprocessing costs are exponential in
1=�, with the drawback that � needs to be known in advance.
Also, no possibility to control at query time the probability
of exceeding the error bound is given. This is also the case
for the solution proposed by Clarkson [13], which applies
to exact NN search over generic metric spaces, but whose
space requirements depend on the error probability. Finally,
Zezula et al. [25] have recently proposed approximate NN
search algorithms with good cost performance. However,
since the effective error is not bounded by any function of
the input parameters, their algorithms do not provide guar-
antees on the quality of the result.

We have argued and experimentally shown that, even if
the “dimensionality curse” can make NN queries meaning-
less when the distances between the indexed objects and the
query objects are all similar [7], there are indeed relevant
cases where this is not the case and, at the same time, known
algorithms show poor performance. PAC-NN queries and
algorithms are best suited to these situations, even if they
can be profitably applied also to low-dimensional spaces.

In the future we plan to extend our approach to k-nearest
neighbors queries, for which the exact search would retrieve
the k best matches of the query object, and to develop a cost
model for predicting the performance of the PAC-NN index-
based algorithm. Another interesting research issue would
be to apply our results to the case of complexNN queries,
where more than one similarity criterion has to be applied
in order to determine the overall similarity of two objects
[14, 12].
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[8] T. Bozkaya and M. Özsoyoglu. Distance-based indexing for
high-dimensional metric spaces. SIGMOD’97, pages 357–
368, Tucson, AZ, May 1997.

[9] P. Ciaccia, A. Nanni, and M. Patella. A query-sensitive cost
model for similarity queries with M-tree. ADC’99, pages
65–76, Auckland, New Zealand, January 1999.

[10] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient ac-
cess method for similarity search in metric spaces. VLDB’97,
pages 426–435, Athens, Greece, August 1997.

[11] P. Ciaccia, M. Patella, and P. Zezula. A cost model for simi-
larity queries in metric spaces. PODS’98, pages 59–68, Seat-
tle, WA, June 1998.

[12] P. Ciaccia, M. Patella, and P. Zezula. Processing com-
plex similarity queries with distance-based access methods.
EDBT’98, pages 9–23, Valencia, Spain, March 1998.

[13] K. L. Clarkson. Nearest neighbor queries in metric spaces.
STOC’97, pages 609–617, El Paso, TX, May 1997.

[14] R. Fagin. Combining fuzzy information from multiple sys-
tems. PODS’96, pages 216–226, Montreal, Canada, June
1996.

[15] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D.
Petkovic, and R. Barber. Efficient and effective querying by
image content. Journal of Intelligent Information Systems,
3(3/4):231–262, July 1994.

[16] G. R. Hjaltason and H. Samet. Ranking in spatial databases.
SSD’95, pages 83–95, Portland, ME, August 1995.

[17] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. STOC’98,
pages 604–613, Dallas, TX, May 1998.

[18] N. Katayama and S. Satoh. The SR-tree: An index structure
for high-dimensional nearest neighbor queries. SIGMOD’97,
pages 369–380, New York, NY, May 1997.

[19] B.S. Manjunath. The airphoto data set. http:// vi-
valdi.ece.ucsb.edu/Manjunath/research.htm.

[20] V. Pestov. On the geometry of similarity search:
Dimensionality curse and concentration of mea-
sure. Technical Report RP-99-01, School of Math-
ematical and Computing Sciences, Victoria Uni-
versity of Wellington, New Zealand, January 1999.
http://xxx.lanl.gov/abs/cs.IR/9901004.

[21] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest
neighbor search. SIGMOD’98, pages 154–165, Seattle, WA,
June 1998.

[22] N. Shivakumar, H. Garcia-Molina, and C. Chekuri. Filter-
ing with approximate predicates. VLDB’98, pages 263–274,
New York, NY, August 1998.

[23] M. Stricker and M. Orengo. Similarity of color images. In
Storage andRetrieval for Image and Video Databases SPIE,
volume 2420, pages 381–392, San Jose, CA, February 1995.

[24] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. VLDB’98, pages 194–205, New
York, NY, August 1998.

[25] P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approxi-
mate similarity retrieval with M-trees. The VLDB Journal,
7(4):275–293, 1998.


