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Abstract 
In this papec we propose a new subsequence matching method, 

DualMatch, which exploits duality in constructing windows and 
significantly improves performance. Qual Match divides data se- 
quences into disjoint windows and the query sequence into sliding 
windows, and thus, is a dual approach of the one by Faloutsos 
et al. (FRM in short), which divides data sequences into sliding 
windows and the query sequence into disjoint windows. We for- 
mally prove that our dual approach is correct, i.e., it incurs no 
false dismissal. We also prove that, given the minimum query 
length, there is a maximum bound of the window size to guar- 
antee correctness of Dual Match and discuss the effect of the win- 
dow size on performance. FRM causes a lot of false alarms (i.e., 
candidates that do not qualify) by storing minimum bounding 
rectangles rather than individual points representing windows to 
avoid excessive storage space required for the index. Dual Match 
solves this problem by directly storing points, but without incur- 
ring excessive storage overhead. Experimental results show that, 
in most cases, DualMatch provides large improvement in both 
false alarms and performance over FRM, given the same amount 
of storage space. In particular; for low selectivities (less than 

DualMatch significantly improves performance up to 430- 
fold. On the other hand, for high selectivities(more than lo-'), 
it shows a very minor degradation (less than 29%). For selectiv- 
ities in between (10-4-10-2), Dual Match shows performance 
slightly better than that of FRM. DualMatch is also 4.10-25.6 
times faster than FRM in building indexes of approximately the 
same size. Overall, these results indicate that our approach pro- 
vides a new paradigm in subsequence matching that improvesper- 
formance significantly in large database applications. 

1. Introduction 
Time-series data are of growing importance in many new 

database applications such as data mining and data ware- 
housing[lO]. A time-series is a sequence of real num- 
bers, representing values at specific time points. Typical 
examples of time-series data include stock prices, growth 
rates of companies, exchange rates, biomedical measure- 
ments, weather data, and etc. The time-series data stored 
in a database are called data sequences. Finding data 
sequences similar to the given query sequence from the 

database is called similar sequence matching [ 1 ,  51. Owing 
to faster computing speed and larger storage devices, there 
has been a number of efforts to utilize the large amount of 
time-series data, and accordingly, similar sequence match- 
ing has become an important research topic in data min- 
ing [l, 2 , 5 ,  8, 113. 

Various similarity models have been studied in simi- 
lar sequence matching. In this paper, we use the simi- 
larity model based on the Euclidean distance [ 1, 4, 5, IO]. 
Given two sequences Z = {21,22, ..., z n }  and a = 
{ yl,  y2, ..., yn} of the same length n, the Euclidean distance 
D(Z,$ is defined as JC;="=,xi - ~ i ) ~ .  We say two se- 
quences Z and $ are similar if the distance D(Z ,  y3 is less 
than or equal to the user specified tolerance €[ I ] .  More 
specifically, we define that two sequences Z and y' are in e- 
match if the distance between i? and gis  less than or equal to 
e. We define n-dimensional distance computation as the op- 
eration that computes the distance between two sequences 
of length n. 

Similar sequence matching can be classified into two cat- 
egories [5 ] :  

Whole matching: Given N data sequences S I ,  ..., S N ,  
a query sequence Q,  and the tolerance e, we find those 
data sequences that are in e-match with Q. Here, the 
data and query sequences must have the same length. 

Subsequence matching: Given N data sequences SI , 
..., SN of varying lengths, a query sequence Q, and the 
tolerance e, we find all the sequences Si, one or more 
subsequences of which are in €-match with Q, and the 
offsets in Si of those subsequences. 

Thus, subsequence matching is a generalization of whole 
matching [4,5, 161. In this paper, we focus on subsequence 
matching. 

Faloutsos et al. [5] have proposed a novel solution 
for subsequence matching on query sequences of varying 
lengths (we simply call this solution FRM by taking au- 
thors' initials). Subsequences similar to the query sequence 
can be found anywhere in a data sequence. In FRM, to 
find all possible subsequences, they use a sliding window 
of size w starting from every possible offset in the data se- 
quence. Then, they divide a query sequence into disjoint 
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windows of size w and retrieve similar subsequences by US- 

ing those disjoint windows. They transform each sliding 
window to a point in a lower dimensional space(we call 
it lower-dimensional transformation or simply transforma- 
tion). Since too many points are generated to be stored 
individually in an index, they construct minimum bound- 
ing rectangles (MBRs) that contain hundreds or thousands 
of points, using a heuristic method, and then, store those 
MBRs into a multidimensional index, R*-tree [3]. For sub- 
sequence matching, they first identify, using the index, those 
MBRs containing information to identify the subsequences, 
called candidates, that are potentially in €-match with the 
query sequence. They subsequently refine the result by ac- 
cessing the database and selecting only those subsequences 
that are in €-match with the query sequence. 

In this paper, we propose a new subsequence 
matching method, Dual Match (Duality-based subsequence 
Matching), that reduces false alarms and improves perfor- 
mance significantly. We use the dual approach of FRM in 
constructing windows (we simply call it duality): i.e., we 
divide data sequences into disjoint windows and a query 
sequence into sliding windows. We formally prove that 
our dual approach is correct, i.e., it incurs no false dis- 
missal. We also prove that, given the minimum length of 
the queries, there is a maximum bound of the window size 
to gurantee correctness of Dual Match and discuss the effect 
of the window size on performance. 

FRM entails many false alarms (i.e., candidates that do 
not qualify) by storing only MBRs rather than individual 
points, and accordingly, degrades performance. In con- 
trast, by dividing the data sequences into disjoint windows 
rather than sliding windows, Dual Match reduces the num- 
ber of points to store drastically-to 1/w of that of FRM. 
Thus, DualMatch is able to store individual points in- 
stead of MBRs in the index. For subsequence matching, it 
first transforms the sliding windows of the query sequence 
into points, constructs range queries using these individual 
points and the user-specified tolerance 6, and then searches 
the index to get the candidates. By storing and searching 
with individual points directly, Dual Match reduces false 
alarms. Moreover, this method has an advantage of being 
faster in creating the index than FRM because it requires 
only l/w lower-dimensional transformations of FRM. 

The rest of this paper is organized as follows. Section 2 
describes previous work. Section 3 explains the motivation 
of this research. Section 4 proposes Dual Match. Section 
5 presents the results of performance evaluation. Section 6 
summarizes and concludes the paper. 

2. Related Work 
We first summarize in Table 1 the notation to be used 

throughout the paper. The symbols in Table 1 are self ex- 
planatory and do not need further elaboration. We then re- 

view related work for whole matching and describe FRM, a 
representative research result for subsequence matching. 

Table 1. Summarv of notation. 
I Symbols I Definitions 
1 Len(S) I LengthofsequenceS -1 

7iJtUlLeI I  

Sk1 

I Sum of lengths of a11 data sequences 

1 The k-th entry of 

one to the j-th 

Length of the slidingldisjoint window 

of eaual lencrth 

E 1 User-specified tolerance I 
I S i  I The i-th disjoint window of sequence S I 

WhoPe Matching 
Agrawal et al.[ 13 have first introduced a solution for sim- 

ilar sequence matching. The outline of the method is as fol- 
lows. First, each data sequence of length n is transformed 
into the frequency domain by using Discrete Fourier Trans- 
form (DFT), and the first f (< n) features are extracted. 
They are regarded as an f-dimensional point, and this point 
is indexed using the R*-tree [3]. Only a small number of 
features are extracted because of the difficulty in storing 
high-dimensional sequences in the R'-tree index due to di- 
mensionality problem in multidimensional indexes (called 
dimensionality curse [ 131). Next, a query sequence is sim- 
ilarly transformed to an f-dimensional point, and a range 
query constructed using the point and the given tolerance E. 

Then, the R*-tree is searched to evaluate the query, a candi- 
date set constructed consisting of the feature points that are 
in €-match with the query sequence. This method guaran- 
tees no false dismissal (i.e., it does not miss a sequence in 
the result set), but may cause false alarms because it uses 
only f features instead of n. Thus, for each candidate se- 
quence obtained, the actual data sequence is accessed from 
the disk; the distance from the query sequence computed; 
and the candidate is discarded if it is a false alarm. This 
last step, which eliminates false alarms, is called the post- 
processing step [ I]. 

The function used for dimensionality reduction, such as 
extracting f features after DFT, is called thefeature extrac- 
tion function [ 5 ] .  We have the following Lemma 1 for fea- 
ture extraction functions. 

Lemma 1 [ 5 ] :  To guarantee no false dismissals for range 
queries, the feature extraction function F ( )  must satisfy the 
following equation: 

DFT satisfies Lemma 1 [ 1,5]. Recently, Chan and Fu [4] 
have proposed a similar sequence matching method that 
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uses Haar Wavelet transform (we simply call it Wavelet) 
as the feature extraction function. They have shown that 
Wavelet also satisfies Lemma 1. 

Subsequence Matching 

Faloutsos et a1.[5] have proposed the subsequence 
matching method (FRM) as a generalization of the whole 
matching method by Agrawal et al. [I]. They divide data 
sequences into sliding windows and a query sequence into 
disjoint windows. We explain FRM for three cases: 1) the 
length of the query sequence is equal to the window size, 2) 
the query sequence is composed of exactly p (2 1) disjoint 
windows, and 3) the query sequence has a remainder when 
it is divided into p disjoint windows. 

First, we explain the case where the query sequence has 
the length equal to that of a window. In this case, the 
problem becomes the one of finding windows that are in 
E-match with the query sequence; thus, it can be solved us- 
ing Agrawal et al.’s whole matching. That is, FRM trans- 
forms each sliding window to a point in the f -dimensional 
space. Next, it transforms the query sequence to a point in 
the f -dimensional space and makes a range query using the 
point and the tolerance E .  Lastly, it constructs a candidate 
set using the range query and discards false alarms through 
the post-processing step. FRM, however, generates almost 
Tota lLen  f -dimensional points corresponding to sliding 
windows for data sequences, and thus, needs f times more 
storage than is required by original data sequences. More- 
over, the search performance may become even poorer than 
that of sequential scanning due to the excessive height of 
the R*-tree [SI. To solve this problem, FRM does not store 
individual points directly into the R*-tree, but stores only 
MBRs that contain hundreds or thousands of such points. 

To construct MBRs, FRM uses heuristics in an attempt 
to minimize the number of disk accesses for the index. It 
first transforms a data sequence S into a trail consisting of 
Len(S) - w + 1 f -dimensional points. Next, it defines the 
marginal cost of a point using the estimated value (we call 
it the estimatedtolerance e’) of 0.25’ as the tolerance E ,  and 
divides a trail into sub-trails using the cost [5]. FRM subse- 
quently constructs an MBR for each sub-trail and stores it 
into the R*-tree with its starting and ending offsets in S and 
the identifier of S. 

Next, we explain the case where the query sequence Q 
is composed of exactly p disjoint windows (i.e., Len(&) = 
p w ) .  FRM uses the following Lemma: 

Lemma 2 [5]: When two sequences S and Q of the same 
length are divided into p windows si and qi (1 5 i 5 p )  
respectively, if S and Q are in €-match, then at least one of 
the pairs (si, qi)  are in €/&-match. That is, the following 

‘FRM has used 0.25 for 8, the estimated tolerance to be given by the 
user, in the normalized domain space [0, I )  of each axis. 

equation holds: 
P 

D(S,  Q) < E v D(si ,  qi) < E / &  (2) 
i=l 

Using Lemma 2, FRM divides the query sequence into 
p disjoint windows, transforms each window to an f -  
dimensional point, generates a range query using the point 
and E / & ,  and then constructs a candidate set by search- 
ing the R*-tree. Since the candidates satisfy the necessary 
condition in Eq. (2), false dismissals do not occur. 

Finally, we explain the case where the query sequence 
Q has a remainder when it is divided into p disjoint win- 
dows(i.e., Len(Q) = p w  + k ,  1 < k < w - 1). FRM uses 
the following Lemma: 

Lemma 3 [5]: Iftwo sequences S and Q of the same length 
are in E-match, then any pair of subsequences (S[i  : 
j ] ,  Q[i : j ] )  are also in E-match. That is, the following equa- 
tion holds: 

(3) 

According to Lemma 3, FRM does not cause any false dis- 
missal by using the subsequence Q[l : p w ]  instead of the 
query sequence Q[ l  : p w  + k] .  Since the subsequence 
Q[l : p w ]  is composed of exactly p windows, FRM can 
find similar subsequences without false dismissals accord- 
ing to Lemma 2. 

In summary, FRM works as follows. It first divides data 
sequences into sliding windows, transforms them into f - 
dimensional points, constructs the MBRs that contain multi- 
ple points, and stores them into the R*-tree. Next, it divides 
the query sequence into p disjoint windows, transforms each 
window to an f -dimensional point, makes a range query us- 
ing the point and the tolerance E / , / j j ,  and constructs a can- 
didate set by searching the R*-tree. Lastly, it performs the 
post-processing step to eliminate false alarms by accessing 
the data sequence and executing Len(Q)-dimensional dis- 
tance computation for each candidate. 

D(S,  Q )  5 E D(S[i  : j ] ,  Q[i : j ] )  5 E 

3. Motivation of the Research 
In this section, we explain the motivation of our ap- 

proach: in particular, why false alarms occur and how 
we reduce them. In similar sequence matching, the more 
false alarms occur, the more disk accesses and CPU oper- 
ations for Len(Q)-dimensional distance computations are 
incurred in the post-processing step. Thus, false alarms are 
the main cause of performance degradation. In FRM, false 
alarms occur for the following three reasons: 1) use of fea- 
ture extraction functions, 2) use of Lemmas 2 and 3, and 3) 
storing only MBRs in the index. 

First, feature extraction functions cause false alarms be- 
cause the lower-dimensional transformation is not distance- 
preserving. That is, although the distance between two f- 
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dimensional points is less than or equal to e ,  the actual dis- 
tance between two w-dimensional windows can be greater 
than E. To reduce this kind of false alarms, one can increase 
the number of features used in the index or select a better 
feature extraction function. The recent Wavelet-based re- 
search of Chan and Fu [ 5 ]  is a good example. 

Second, using Lemmas 2 and 3 for long query sequences 
causes false alarms. That is, when two sequences S and 
Q are divided into p windows si and qi ( 1  5 i 5 p )  re- 
spectively, although a pair (si, qi)  are in €/&-match, the 
distance between S and Q may be greater than 6 .  To reduce 
this kind of false alarms, we need to use as large windows as 
possible. For example, let the window size of the method A 
be twice as large as that of the method B. Then, by Lemma 2 
or 3, a candidate subsequence of the method A must also be 
a candidate of the method B. However, the inverse does not 
hold. We define this effect the window size effect. The size 
of the window, however, must be less than or equal to the 
length of the query sequence; thus, the maximum window 
size is dependent on the length of the query sequence. In 
Section 4, we will explain this point in more detail when 
calculating the maximum window size that can be used for 
the proposed Dual Match. 

Third, storing only MBRs instead of individual points 
causes false alarms. We explain this point using Figure 1. 
In Figure 1, Pi (1 5 i 5 14) represents a point in the 2- 
dimensional space (f = 2) to which a sliding window for a 
data sequence is transformed. The 14 Pi's are contained in 
an MBR. Q1 and Q2 represent the points for disjoint win- 
dows of a query sequence. In Figure 1, since Q1 and Q Z  are 
in €/&&match with the MBR, every Pi will be in the can- 
didate set. In fact, however, no Pi is in €/&-match with 
Q1, and no Pi except PF, and Pg is with Q2. Thus, we have 
many false alarms. We can reduce this kind of false alarms 
by storing every individual point of the MBR in the index. 

Figure 1. False alarms caused by storing only MBRs. 

For example, in Figure 1, if every Pi were stored in the 
index, there would be no candidate for Q1, but only two 
candidates PF, and Pg for Q2. We define this effect the 
point-jiltering effect. As we have explained in Section 2, 
however, if every individual point were stored in the in- 
dex, then too much storage would be needed, and the per- 
formance degraded. Accordingly, in FRM, it is difficult to 
reduce the false alarms that are caused by the third reason. 

In summary, the false alarms due to the first and second 
reasons are caused by the feature extraction function and the 

relative size of the query sequence compared with the win- 
dow size. The false alarms due to the third reason, however, 
are caused by lack of the point-filtering effect. In Section 4, 
we introduce a subsequence matching method, Dual Match, 
that reduces the third type of false alarms fully utilizing the 
point-filtering effect. 

4. Duality-based Subsequence Matching 
The Concept 

Dual Match divides data sequences into disjoint win- 
dows and the query sequence into sliding windows. This 
way, we are able to store and search individual points di- 
rectly in the index without much storage overhead and im- 
prove disk and CPU performance. 

We first define some terminology. Given a sequence S ,  
a subsequence S[iz  : j2] includes a subsequence S[ i l  : jl] 
if il  2 i2 and jl 5 j2.  When S is divided into fixed dis- 
joint windows, we define the included windows for S[ i  : j ]  
as those disjoint windows included in ,S[i : j]. A subse- 
quence of a specific length may have ,a different number 
of included windows depending on its position in S .  For 
example, in Figure 2, the subsequence S[ i l  : j l ]  has one in- 
cluded window, but S[i2 : j23 of the same length 1 has two. 
We define the minimum number of included windows for a 
subsequence of length 1 as the minimum one over all subse- 
quences of the same length regardless of their positions in 
S. We can obtain this minimum using Lemma 4. 

S 

S[~Z.hl 

7 1  dqomt wmdows of S 
S [ i ,  ill  and S [ I ~ ] ~ ]  are of the same length 
# of mcluded wmdows of S [ i l  j l ]  = 1, # of mcludeci wmdows of S [ i 2 ] 2 ]  = 2 

Figure 2. Different numbers of included windows for two 
subsequences of the same length. 

Lemma 4: If the sequence S is divided into disjoint win- 
dows of size w, the minimum number o)' included windows 
p for  subsequences of length 1 is given by the following for- 
mula: 

(4) 

PROOF: See the reference [9]. 0 
According to Lemma4, a subsequence of length Len(Q)  

includes at least [ (Len(&)  + l)/wJ - 1 disjoint windows. 
We now derive Theorem 1, on which the correctness of 
Dual Match is based. 

Theorem 1: Suppose the data sequence S is divided into 
disjoint windows of size w, and the query sequence Q into 
sliding windows of the same size w. If the subsequence 

p = [ ( I  + l)/wJ - 1 
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S[ i  : j ]  of length Len(Q) is in €-match with Q, then at least 
one included window of S[i : j ]  at a certain offset from 
S[i ]  is in €/&match with the sliding window of Q at the 
same offset from Q[l] .  Here, p is the minimum number of 
included windows for subsequences of length Len(Q) given 

PROOF: In Figure 3, suppose the subsequence S[i : j ]  is in 
€-match with the query sequence Q. S[i : j ]  must include at 
least p disjoint windows SI, ..., sp,  and also (possibly null) 
subsequences sh (at the head) and st (at the tail). Thus, S[i : 
j ]  can be represented as S h  SI  . . . sp st.  Similarly, Q can be 
represented as qh q1 . . . qp qt where Len(qh) = Len(sh) 
and Len(qt) = Len(st). Then, we obtain Eq. ( 5 )  by using 
Lemmas 2 and 3. 

by Eq. (4). 

D(S[ i  : j ] ,  Q )  5 6 D ( s ~  . * . s p ,  q1 . . qp)  5 
P 

* v D ( S k , q k )  < E / &  (5 )  
k=l 

Hence, if S[i : j ]  and Q are in c-match, at least one of 
p included windows of S[i : j ]  (say Sk) must be in e/&% 

U match with a window Qk of Q. 

Figure 3. A subsequence S[i : j] in e-match with the query 
sequence Q. 

At query time, since we use sliding windows and place 
them at every possible offset in the query sequence Q, the 
window q k  in Theorem 1 must be one of those sliding win- 
dows. According to Theorem 1, if we construct the can- 
didate set with those subsequences that have an included 
window in €/&-match with a sliding window of Q, i.e., 
that satisfy the necessary condition of Eq. (3, then we will 
not encounter any false dismissal. 

Index Building Algorithm 
Figure 4 shows the index building algorithm of 

DualMatch. The input to Algorithm BuildIndex is a 
database containing data sequences; the output an f - 
dimensional index, which will be used in subsequence 
matching. In Step 2.1 of the algorithm, we divide each 
data sequence into LLen(S)/wJ disjoint windows. The re- 
maining subsequence S[ 1-1 * w  + 1 : Len(S)] ,  whose 
length is less than w ,  is ignored by using Lemma 3. In Step 
2.2.1, we transform a disjoint window to an f-dimensional 
point. In Step 2.2.2, we construct a record consisting of 
the transformed point f-point, the data sequence identifier 
S-id, and the start offset dw-offset of the disjoint window in 

S. The identifier will be used, when searching the index, to 
find the actual data sequence that contains the similar subse- 
quence; the start offset to find the offset of the subsequence 
in the sequence. We subsequently insert the record into the 
index using the transformed point as the key. 

Algorithm BuildIndex 
Input: 
Output: f-dimensional index that will be used for subsequence matching 
Algorithm: 
1 Initialize the index. 
2 For each data sequence S with the identifier S-id in db, DO 

Database db that contains data sequences 

2.1 Divide S intoLhan(S)/oj disjoint windows. 
2.2 For each disjoint window with the start offset dw-ofiet, DO 

2.2.1 Transform the window to an f-dimensional point f-point by 
using the feature extraction function. 

2.2.2 Construct a record <f-poinf, S-id, dw-ofiet>. 
2.2.3 Insert the record, whose key isf-point, into the index. 

Figure 4. The index building algorithm BuildIndex. 

DualMatch has an important advantage: it is able to 
store the individual points, which .have been transformed 
from disjoint windows, directly in the index without much 
storage overhead. It generates approximately TotalLenlw 
points by dividing data sequences into disjoint windows, 
and thus, the storage for the index is about f / w  of that 
for the original data sequences. This is only approximately 
1/w of the storage that FRM would take if it stored (ap- 
proximately TotalLen)  individual points directly in the 
index. In practice, since f is less than 10, and w greater 
than 100 [4, 51, the storage for the index in Dual Match is 
less than 10% (E = g) of that for the original data se- 
quences; the number of points stored in the index is less 
than 1% (i = &) of the sum of the lengths of all data 
sequences. 

Dual Match has additional advantages: 1) it can use point 
access methods (PAMs) as the index, and 2) the index cre- 
ation is very fast. Multidimensional index methods can be 
categorized into PAMs[l2, 14, 151 that store points and 
spatial access methods (SAMs) [3, 71 that store spatial ob- 
jects [6]. Since Dual Match stores points, it can use a PAM 
as the index with a flexibility of using various multidimen- 
sional indexes of differing characteristics. Dual Match can 
create the index much faster than FRM, since it needs only 
1 / w  as many calls as in FRM to feature extraction functions, 
which constitute a major part of the CPU overhead. 

Basic Subsequence Matching Algorithm 
Figure 5 shows Basic Dual Match algorithm. The inputs 

to the algorithm are the time-series database, index, query 
sequence Q, and tolerance E ;  the output is the set of se- 
quences containing subsequences that are in c-match with 
Q and offsets of those subsequences. 

Algorithm Basic Dual Match consists of three steps: ini- 
tialization, index searching, and post-processing. In the 
initialization step, we calculate the minimum number of 
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Algorithm Basic Dual Match 
Input: (1) Database db that contains data sequences 

(2) f-dimensional index that has been created by BuildIndex 
(3) Query sequence Q and tolerance e 

with Q and offsets of those subsequences 
Output Data sequences that contain subsequences that are in e-match 

Algorithm: 
1 Initialization 

1.1 Calculate the minimum number of included windows p .  
1.2 Divide Q into Len(Q) - o + 1 sliding windows. 

2 Index searching: for each sliding window Q[i:i +o -11, DO 
2.1 Transform the window to anf-dimensional point. 
2.2 Construct a range query using the transformed point and E/& 

2.3 Search the index and include in the candidate set the records that 
are found together with the value i. 

3 Post-processing: for each record <f-point, S-id, dw-offset> in the can- 
didate set, DO 
3.1 Read from db the candidate subsequence s u b 4  of the data sequence 

S. This is done using S-id. The offset of sub-S in S is calculated as 
’dw-offset - i + 1.’ Here, i is the index of the sliding window that has 
been stored with this record in Step 2.3. 

3.2 If D(sub-S,Q) Se, then output S-id and the offset of sub-S. 

Figure 5. The basic subsequence matching algorithm Ba- 
sic Dual Match. 

included windows p = [ ( L e n ( & )  + l ) / w J  - 1 for the 
subsequence of length Len(Q)  using Lemma 4, and di- 
vide the query sequence into Len(Q)  - w + 1 sliding win- 
dows. In the index searching step, we construct the can- 
didate set. We first transform each sliding window to an 
f-dimensional point and construct a range query using this 
point and €/&. Next, we evaluate the range query, using 
the index, retrieving the qualifying points into the candi- 
date set. In the post-processing step, for each record in the 
candidate set, we first read the candidate subsequence sub- 
S from the database in Step 3.1. If the sliding window is 
the i-th(l 5 i 5 Len(Q)  - w + 1) one, then we calcu- 
late the start offset of s u b 4  in the data sequence S as ‘dw- 
ofse t  - i + 1.’ Here, dw-ofset  is the start offset in S of the 
disjoint window (point) in the candidate set. In Step 3.2, we 
remove false alarms keeping only those subsequences in 6- 

match with the query sequence. For each such subsequence 
sub-S, we output the identifier S-id of the data sequence S 
containing sub-S and the offset of sub-S in S. 

Algorithm Basic Dual Match is very effective in reduc- 

for a data sequence. It is different in that it keeps the points 
in the MBR while FRM does not, and in that it uses MBRs 
for the query while FRM does for the data sequences. Since 
the search result for a sliding window of the query sequence 
may be similar to those for adjacent sliding windows, we 
use MBRs that contain multiple points for adjacent win- 
dows. Using MBRs to search the index tends to increase 
the size of the candidate set. Nevertheless, we can get the 
same candidate set as that of Basic Dual Match-despite the 
use of MBRs-by filtering false alarms in the index be- 
fore accessing data sequences in the database. We do fil- 
tering by computing the f-dimensional distance between 
each point in the MBR and each point in the search re- 
sult and by including in the candidate. set only those points 
that are in EIJpmatch. We define this filtering as index- 
level jiltering. Index-level filtering is possible because we 
maintain all the points in an MBR. Figure 6 shows the al- 
gorithm Enhanced Dual Match. Like Basic Dual Match, En- 
hanced Dual Match consists of three steps: initialization, in- 
dex searching, and post-processing. 

Algorithm Enhanced DualMatch 
Input (1) Database db that contains data sequences 

(2) f-dimensional index that has been created by BuildIndex 
(3) Query sequence Q and tolerance E 

Output: Data sequences that contain subsequences that are in €-match 
with Q and offsets of those subsequences 

Algorithm: 
1 Initialization 

1.1 Calculate the minimum number of included windows p .  
1.2 Divide Q into LenfQ) - o + 1 sliding windows and transform each 

window to anf-dimensional point. 
1.3 Construct MBRs using the transformed points. 

2 Index searching: for each MBR, DO 

2.1 Construct a range query using the MBR and E/&. 

2.2 Search the index using the range query and do index-level filtering 
(compute the distance between each point in the MBR and each 
point in the search result; include in the candidate set only the 
records having those points that are in e/&match together with 
the index i of the matching sliding window). 

3 Post-processing: for each record <f-point, S-id, dw-offseb in the can- 
didate set, DO 
3.1 Read from db the candidate subsequence s u b 4  of the data sequence 

S. This is done using S-id. The offset of s u b 4  in S is calculated as 
’dw-offset - i + 1.’ Here, i is the index of the sliding window that has 
been stored with this record in Step 2.2. 

3.2 If D(sub-S,Q) 5 E, then output S-id and the offset of sub-5. 

1) range queries-one for each sliding window. This 
could cause performance degradation. We present the En- 
hanced Dual Match algorithm to correct this problem. 

Enhanced Subsequence Matching Algorithm 

Rather than constructing a query for each point, En- 
hanced Dual Match constructs a query for an MBR that con- 
tains multiple points. This approach is similar to that of 
FRM, in which MBRs are constructed using multiple points 

; ennancea suosequence marcning aigonrnm 
a1 Match. 

In the initialization step, we calculate the minimum num- 
ber of included windows p ,  divide the query sequence into 
sliding windows, transform each sliding window to an f -  
dimensional point, and then construct MBRs that contain 
multiple points. We may use various techniques for con- 
structing MBRs. Examples are 1) uhe heuristics used in 
FRM discussed in Section 2, 2) using a fixed number of 
points in an MBR, and 3) using only one MBR containing 
all the points. The detailed discussion, however, is not a fo- 
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cus of this paper and is left as a further study. In general, if 
the query sequence is long, using several MBRs is more ef- 
fective since MBRs do not become too large. Experimental 
results for real stock data show that using 2-8 MBRs can 
improve the performance compared with using only one. In 
this paper, however, to simplify the problem, we use only 
one MBR. 

In the index searching step, we construct the candidate 
set. We first make a range query using each MBR and the 
tolerance E/&?. Then, we retrieve the qualifying points by 
searching the index and construct the candidate set by using 
index-level filtering. 

The post-processing step is the same as Ba- 
sic Dual Match. 

Maximum Window Size vs. Minimum Query Length 
We explain the relationship between the maximum win- 

dow size and the minimum length of a query sequence in 
Lemma 5 and discuss its implication. 

Lemma 5 : If the minimum length of the query sequence is 
given by Min(Q) ,  then the maximum window size allowed 
in DualMatch is L(Min(Q) + 1)/2J. 
PROOF: See the reference [9]. U 

Given the same minimum length of the query sequence, 
the maximum window size of DualMatch is about half that 
of FRM because the former is L(Min(Q) + 1)/2] and the 
latter Min(Q)  [5]. As we have explained in Section 3, a 
smaller window causes more false alarms by the window 
size effect. Hence, the smaller maximum window size adds 
some tendency that Dual Match generates more false alarms 
than FRM. Nevertheless, Dual Match more than compen- 
sate for this effect by significantly reducing false alarms ex- 
ploiting the point-filtering effect. 

5. Performance Evaluation 
Experimental Data and Environment 

We have performed extensive experiments using three 
types of data sets. A data set consists of a long data se- 
quence and has the same effect as the one consisting of mul- 
tiple data sequences. The first data set, a real stock data set2 
used in FRM, consists of 3291 12 entries. We call this data 
set STOCK-DATA. The second data set, also used in FRM, 
contains random walk data consisting of five million entries. 
The data are generated synthetically: the first entry is set to 
1.5, and subsequent entries are obtained by adding a ran- 
dom value in the range (-0.001, 0.001) to the previous one. 
We call this data set WALK-DATA. The last data set con- 
tains pseudo periodic synthetic time-series data3 consisting 

2This data set can be obtained from ftp://ftp.santafe.edu. 
3This data set is one of those that are currently under construction with 

support from the National Science Foundation and can be obtained from 
http://kdd.ics.uci.edu/databases/synthetic/synthetic.html. 

of one million entries. We call this data set PERIODIC- 
DATA. In PERIODIC-DATA, similar subsequences appear 
repeatedly with a long period. Changes among adjacent en- 
tries are small in STOCK-DATA and WALK-DATA; those 
in PERIODIC-DATA are relatively large. 

All the experiments are conducted on a SUN Ultra 60 
workstation with 5 12 Mbytes of main memory. To avoid the 
buffering effect of the UNIX file system and to guarantee 
actual disk UOs, we use raw disks for data and index files. 
The page size for data and indexes is set to 4096 bytes. As 
the multidimensional index, we use R*-tree for both FRM 
and Dual Match. As the feature extraction function, we use 
the DFT and Wavelet transformations. We set the minimum 
length of the query sequence to be 512. Thus, the window 
size of FRM becomes 5 12, and that of Dual Match 256. We 
use 6 features4, as has been done in FRM. We use 5 12,768, 
and 1024 as the lengths of query sequences. They are uni- 
formly distributed over various selectivities5. 

In FRM, the average number of points contained in an 
MBR varies depending on the estimated tolerance E’ used in 
the heuristics. This number, in turn, affects the number of 
false alarms and the size of the index. In the experiments, 
we make the index sizes and the storage requirements ap- 
proximately the same-the difference is less than 10%-for 
fair comparison of the two methods. This is done by con- 
trolling e’ to make the number of points in an MBR for FRM 
and the number of entries in the disjoint window (window 
size) for Dual Match approximately the same and, in turn, to 
make the number of MBRs stored in FRM and the number 
of transformed points stored in Dual Match approximately 
the same. We further classify those experiments into two 
categories: 1) those using Wavelet(Case A) and 2) those 
using DFT(Case B). In addition, we also perform experi- 
ments for the case where the estimated tolerance E‘ is 0.25, 
the same value used in the original experiments done in 
FRM (Case C). 

For the experimental results, we measure the relative 
number of candidates, the relative number of page ac- 
cesse@, and the relative wall clock time of the two meth- 
ods on a dedicated machine. We generate query sequences 
from the data sequences by taking subsequences of length 
Len(Q) starting from random offsets[5]. To avoid ef- 
fects of noise, we experiment with 10 different query se- 
quences of the same length and use the average as the re- 
sult. We perform experiments for selectivities in the range 
10-6-10-1 [5]. For STOCK-DATA, however, the mini- 
mum selectivity tested is approximately 3.0 x loF6 since we 
have less than 3291 12 subsequences. We obtain the desired 
selectivity by controlling the tolerance e for each query. 

4With DFT, we have used the real part of the fourth complex number 
instead of the imaginary part of the first one, which is 0. 

of subse uences that are in r-match with 
SSelectivity(Q) = jf# of all &a subsequences of length L ~ ~ C Q P  
6# of page accesses = # o f  data page accesses + #of  index page accesses 
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Experimental Results 
Here, we present the experimental results. We first ex- 

plain in detail the results for Case A and then briefly men- 
tion those for Cases B and C. 

1) STOCK-DATA: Figure 7 shows the experimental re- 
sults using Wavelet for STOCK-DATA. Figure 7 (a) shows 
the relative number of candidates, Figure 7(b) the rela- 
tive number of page accesses, and Figure 7(c) the rela- 
tive wall clock time. In the figure, when the selectivity is 

Selectivity 

(a) The relative number of candidates 
less than lop3, Dual Match significantly reduces the num- 
ber of candidates to as little as of that for FRM, re- 
duces the number of page acccsses by up to 4.49 times, and 
improves performance up to 10.1 -fold. When the selectiv- 
ity is in the range 10-3-10-2, Dual Match shows perfor- 
mance slightly better than FRM in all three measures. On 

DualMatch increases the number of candidates by up to 

' 4 4 9  
e .  

0 .  - OH16 the other hand, when the selectivity is greater than * L  
(=& 

i w  ins in' in '  1 0 2  in1 
= 007 ' ""'": """': ' .----: ' ' " ' Y  

1.18 times, increases the number of page accesses by up to 
1.23 times, and degrades performance by up to 1.2 1 times 
that of FRM. The increased number of candidates and per- 
formance degradation for higher selectivities are due to the 
window size effect; at the same time, the point-filtering ef- 
fect is less eminent because the relative number of false 
alarms to the total number of candidates becomes smaller 
in higher selectivities. 

In Figure 7, the relative number of candidates is much 
higher than the relative number of page accesses and the 
relative wall clock time. The reason for this discrepancy 
is that adjacent subsequences are similar, and thus, can be 
accessed together being stored in the same data page. That 
is, if the subsequence S[ i  : j] of the sequence S is similar 
to the query sequence Q, then many adjacent subsequences 
of S[i : j ] ,  including S[i - 1 : j - 11 and S[i + 1 : j + 11, 
may very well be stored in the same data page. Compared to 
Dual Match, FRM accesses more (non-qualifying) adjacent 
subsequences included in the candidate set since many of 
them are represented together by one MBR in the index. 
Nevertheless, since those adjacent ones tend to be accessed 
together from the same data page, the relative number of 
I/O's-accordingly, the relative wall clock time-is smaller 
than the relative number of candidates. 

2) WALK-DATA: The results using Wavelet for WALK- 
DATA show the same tendency as in Figure 7. We omit 
the detailed results of this experiment because of space lim- 
itation of the paper. See the reference [9] for the detailed 
result. 

3) PERIODIC-DATA: Figure 8 shows the results us- 
ing Wavelet for PERIODIC-DATA. Here, we have much 
larger improvement. When the selectivity is less than 
Dual Match drastically reduces the number of candidates to 
as little as of that for FRM, reduces the number of 
page accesses by up to 26.9 times, and improves the perfor- 
mance up to 430-fold. PERIODIC-DATA has the character- 

_ _  ._ .. -_ 
Selectivity 

(b) The relative number of page accesses 

106 ius 104 1u3 iuz 101 
".U 

Selechvlty 

(c) The relative wall clock time 

Figure 7. Performance comparison of Dual Match and FRM 
using Wavelet for STOCK-DATA. 

istic that the changes among adjacent entries are relatively 
large. Accordingly, adjacent windows in PERIODIC-DATA 
tend to have distances among them larger than in STOCK- 
DATA. Thus, in FRM that stores MBRs of multiple adjacent 
windows, many windows far apart from one another can be 
included in the same MBR. Since these windows are in- 
cluded in the candidate set together, many false alarms are 
generated. In contrast, Dual Match does not cause this prob- 
lem by storing individual points rather than MBRs. For this 
reason, PERIODIC-DATA shows larger relative number of 
candidates, relative number of page accesses, and relative 
wall clock time than STOCK-DATA does. 

The experimental results for Case B and Case C are sim- 
ilar to those for Case A. Table 2 summarizes the results for 
the three cases. In all three cases, Dual Match outperforms 
FRM significantly in lower selectivities, with slight degra- 
dation in higher selectivities. 

In summary, Dual Match drastically improves the perfor- 
mance over FRM due to the point-filtering effect for lower 
selectivities, but show slight degradation (less than 29%) for 
higher selectivities due to the window size effect. For very 
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We have performed extensive experiments using vari- 
ous types of data sets, feature extraction functions, and 
the estimated tolerances E’ (used in FRM). In most cases, 
Dual Match drastically reduces the number of candidates 
and improved performance. In particular, for lower selec- 
tivities (less than Dual Match reduces the number of 
candidates to as little as of that for FRM, reduces the 
number of page accesses by up to 26.9 times, and improves 
performance up to 430-fold. For selectivities in between 
( Dual Match shows performance slightly bet- 
ter than that of FRM. On the other hand, for higher selec- 
tivities(more than it shows a very minor degrada- 
tion (less than 29%) by all three measures. This degradation 
is mainly due to the window size effect. In general, in large 
databases, users will require low selectivities to find only 
small number of similar subsequences. Thus, Dual Match 
will be an effective tool for large database applications. 

Dual Match also provides excellent performance in in- 
dex creation. Experimental results show that it is 4.10-25.6 
times faster than FRM in building indexes of approximately 
the same size. We obtain this result because DualMatch 
requires only about 1/w of lower-dimensional transforma- 
tions that FRM does. 

Overall, these results indicate that our approach provides 
a new paradigm in subsequence matching that improves 
performance significantly in many variations and applica- 
tions based on the FRM approach. Dual Match can also be 
used with newer types of transformations such as moving 
average transformation, shifting and scaling, and normal- 
ization. We are currently investigating into detailed issues 
as a further study. 
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