
Duality-Based Subsequence Matching in Time-Series Databases

Yang-Sae Moon, Kyu-Young Whang, and Woong-Kee Loh
Department of Computer Science and Advanced Information Technology Research Center (AITrc)

Korea Advanced Institute of Science and Technology (KAIST)
373-1, Kusong-Dong, Yusong-Gu, Taejon 305-701, Korea

{ ysmoon,ky whang, woong } @ mozart. kaist .ac. kr

Abstract
In this papec we propose a new subsequence matching method,

DualMatch, which exploits duality in constructing windows and
significantly improves performance. Qual Match divides data se-
quences into disjoint windows and the query sequence into sliding
windows, and thus, is a dual approach of the one by Faloutsos
et al. (FRM in short), which divides data sequences into sliding
windows and the query sequence into disjoint windows. We for-
mally prove that our dual approach is correct, i.e., it incurs no
false dismissal. We also prove that, given the minimum query
length, there is a maximum bound of the window size to guar-
antee correctness of Dual Match and discuss the effect of the win-
dow size on performance. FRM causes a lot of false alarms (i.e.,
candidates that do not qualify) by storing minimum bounding
rectangles rather than individual points representing windows to
avoid excessive storage space required for the index. Dual Match
solves this problem by directly storing points, but without incur-
ring excessive storage overhead. Experimental results show that,
in most cases, DualMatch provides large improvement in both
false alarms and performance over FRM, given the same amount
of storage space. In particular; for low selectivities (less than

DualMatch significantly improves performance up to 430-
fold. On the other hand, for high selectivities(more than lo-'),
it shows a very minor degradation (less than 29%). For selectiv-
ities in between (10-4-10-2), Dual Match shows performance
slightly better than that of FRM. DualMatch is also 4.10-25.6
times faster than FRM in building indexes of approximately the
same size. Overall, these results indicate that our approach pro-
vides a new paradigm in subsequence matching that improvesper-
formance significantly in large database applications.

1. Introduction
Time-series data are of growing importance in many new

database applications such as data mining and data ware-
housing[lO]. A time-series is a sequence of real num-
bers, representing values at specific time points. Typical
examples of time-series data include stock prices, growth
rates of companies, exchange rates, biomedical measure-
ments, weather data, and etc. The time-series data stored
in a database are called data sequences. Finding data
sequences similar to the given query sequence from the

database is called similar sequence matching [1 , 51. Owing
to faster computing speed and larger storage devices, there
has been a number of efforts to utilize the large amount of
time-series data, and accordingly, similar sequence match-
ing has become an important research topic in data min-
ing [l, 2 , 5 , 8, 113.

Various similarity models have been studied in simi-
lar sequence matching. In this paper, we use the simi-
larity model based on the Euclidean distance [1, 4, 5, IO].
Given two sequences Z = {21,22, ..., z n } and a =
{ yl, y2, ..., yn} of the same length n, the Euclidean distance
D(Z,$ is defined as JC;="=,xi - ~ i) ~ . We say two se-
quences Z and $ are similar if the distance D(Z , y3 is less
than or equal to the user specified tolerance €[I] . More
specifically, we define that two sequences Z and y' are in e-
match if the distance between i? and gis less than or equal to
e. We define n-dimensional distance computation as the op-
eration that computes the distance between two sequences
of length n.

Similar sequence matching can be classified into two cat-
egories [5] :

Whole matching: Given N data sequences S I , ..., S N ,
a query sequence Q, and the tolerance e, we find those
data sequences that are in e-match with Q. Here, the
data and query sequences must have the same length.

Subsequence matching: Given N data sequences SI ,
..., SN of varying lengths, a query sequence Q, and the
tolerance e, we find all the sequences Si, one or more
subsequences of which are in €-match with Q, and the
offsets in Si of those subsequences.

Thus, subsequence matching is a generalization of whole
matching [4,5, 161. In this paper, we focus on subsequence
matching.

Faloutsos et al. [5] have proposed a novel solution
for subsequence matching on query sequences of varying
lengths (we simply call this solution FRM by taking au-
thors' initials). Subsequences similar to the query sequence
can be found anywhere in a data sequence. In FRM, to
find all possible subsequences, they use a sliding window
of size w starting from every possible offset in the data se-
quence. Then, they divide a query sequence into disjoint

263
1063-6382/01$10.00 0 2001 IEEE

windows of size w and retrieve similar subsequences by US-

ing those disjoint windows. They transform each sliding
window to a point in a lower dimensional space(we call
it lower-dimensional transformation or simply transforma-
tion). Since too many points are generated to be stored
individually in an index, they construct minimum bound-
ing rectangles (MBRs) that contain hundreds or thousands
of points, using a heuristic method, and then, store those
MBRs into a multidimensional index, R*-tree [3]. For sub-
sequence matching, they first identify, using the index, those
MBRs containing information to identify the subsequences,
called candidates, that are potentially in €-match with the
query sequence. They subsequently refine the result by ac-
cessing the database and selecting only those subsequences
that are in €-match with the query sequence.

In this paper, we propose a new subsequence
matching method, Dual Match (Duality-based subsequence
Matching), that reduces false alarms and improves perfor-
mance significantly. We use the dual approach of FRM in
constructing windows (we simply call it duality): i.e., we
divide data sequences into disjoint windows and a query
sequence into sliding windows. We formally prove that
our dual approach is correct, i.e., it incurs no false dis-
missal. We also prove that, given the minimum length of
the queries, there is a maximum bound of the window size
to gurantee correctness of Dual Match and discuss the effect
of the window size on performance.

FRM entails many false alarms (i.e., candidates that do
not qualify) by storing only MBRs rather than individual
points, and accordingly, degrades performance. In con-
trast, by dividing the data sequences into disjoint windows
rather than sliding windows, Dual Match reduces the num-
ber of points to store drastically-to 1/w of that of FRM.
Thus, DualMatch is able to store individual points in-
stead of MBRs in the index. For subsequence matching, it
first transforms the sliding windows of the query sequence
into points, constructs range queries using these individual
points and the user-specified tolerance 6, and then searches
the index to get the candidates. By storing and searching
with individual points directly, Dual Match reduces false
alarms. Moreover, this method has an advantage of being
faster in creating the index than FRM because it requires
only l/w lower-dimensional transformations of FRM.

The rest of this paper is organized as follows. Section 2
describes previous work. Section 3 explains the motivation
of this research. Section 4 proposes Dual Match. Section
5 presents the results of performance evaluation. Section 6
summarizes and concludes the paper.

2. Related Work
We first summarize in Table 1 the notation to be used

throughout the paper. The symbols in Table 1 are self ex-
planatory and do not need further elaboration. We then re-

view related work for whole matching and describe FRM, a
representative research result for subsequence matching.

Table 1. Summarv of notation.
I Symbols I Definitions
1 Len(S) I LengthofsequenceS -1

7iJtUlLeI I

Sk1

I Sum of lengths of a11 data sequences

1 The k-th entry of

one to the j-th

Length of the slidingldisjoint window

of eaual lencrth

E 1 User-specified tolerance I
I S i I The i-th disjoint window of sequence S I

WhoPe Matching
Agrawal et al.[13 have first introduced a solution for sim-

ilar sequence matching. The outline of the method is as fol-
lows. First, each data sequence of length n is transformed
into the frequency domain by using Discrete Fourier Trans-
form (DFT), and the first f (< n) features are extracted.
They are regarded as an f-dimensional point, and this point
is indexed using the R*-tree [3]. Only a small number of
features are extracted because of the difficulty in storing
high-dimensional sequences in the R'-tree index due to di-
mensionality problem in multidimensional indexes (called
dimensionality curse [131). Next, a query sequence is sim-
ilarly transformed to an f-dimensional point, and a range
query constructed using the point and the given tolerance E.

Then, the R*-tree is searched to evaluate the query, a candi-
date set constructed consisting of the feature points that are
in €-match with the query sequence. This method guaran-
tees no false dismissal (i.e., it does not miss a sequence in
the result set), but may cause false alarms because it uses
only f features instead of n. Thus, for each candidate se-
quence obtained, the actual data sequence is accessed from
the disk; the distance from the query sequence computed;
and the candidate is discarded if it is a false alarm. This
last step, which eliminates false alarms, is called the post-
processing step [I].

The function used for dimensionality reduction, such as
extracting f features after DFT, is called thefeature extrac-
tion function [5] . We have the following Lemma 1 for fea-
ture extraction functions.

Lemma 1 [5] : To guarantee no false dismissals for range
queries, the feature extraction function F () must satisfy the
following equation:

DFT satisfies Lemma 1 [1,5]. Recently, Chan and Fu [4]
have proposed a similar sequence matching method that

264

uses Haar Wavelet transform (we simply call it Wavelet)
as the feature extraction function. They have shown that
Wavelet also satisfies Lemma 1.

Subsequence Matching

Faloutsos et a1.[5] have proposed the subsequence
matching method (FRM) as a generalization of the whole
matching method by Agrawal et al. [I]. They divide data
sequences into sliding windows and a query sequence into
disjoint windows. We explain FRM for three cases: 1) the
length of the query sequence is equal to the window size, 2)
the query sequence is composed of exactly p (2 1) disjoint
windows, and 3) the query sequence has a remainder when
it is divided into p disjoint windows.

First, we explain the case where the query sequence has
the length equal to that of a window. In this case, the
problem becomes the one of finding windows that are in
E-match with the query sequence; thus, it can be solved us-
ing Agrawal et al.’s whole matching. That is, FRM trans-
forms each sliding window to a point in the f -dimensional
space. Next, it transforms the query sequence to a point in
the f -dimensional space and makes a range query using the
point and the tolerance E . Lastly, it constructs a candidate
set using the range query and discards false alarms through
the post-processing step. FRM, however, generates almost
Tota lLen f -dimensional points corresponding to sliding
windows for data sequences, and thus, needs f times more
storage than is required by original data sequences. More-
over, the search performance may become even poorer than
that of sequential scanning due to the excessive height of
the R*-tree [SI. To solve this problem, FRM does not store
individual points directly into the R*-tree, but stores only
MBRs that contain hundreds or thousands of such points.

To construct MBRs, FRM uses heuristics in an attempt
to minimize the number of disk accesses for the index. It
first transforms a data sequence S into a trail consisting of
Len(S) - w + 1 f -dimensional points. Next, it defines the
marginal cost of a point using the estimated value (we call
it the estimatedtolerance e’) of 0.25’ as the tolerance E , and
divides a trail into sub-trails using the cost [5]. FRM subse-
quently constructs an MBR for each sub-trail and stores it
into the R*-tree with its starting and ending offsets in S and
the identifier of S.

Next, we explain the case where the query sequence Q
is composed of exactly p disjoint windows (i.e., Len(&) =
p w) . FRM uses the following Lemma:

Lemma 2 [5]: When two sequences S and Q of the same
length are divided into p windows si and qi (1 5 i 5 p)
respectively, if S and Q are in €-match, then at least one of
the pairs (si, qi) are in €/&-match. That is, the following

‘FRM has used 0.25 for 8, the estimated tolerance to be given by the
user, in the normalized domain space [0, I) of each axis.

equation holds:
P

D(S, Q) < E v D(si , qi) < E / & (2)
i=l

Using Lemma 2, FRM divides the query sequence into
p disjoint windows, transforms each window to an f -
dimensional point, generates a range query using the point
and E / & , and then constructs a candidate set by search-
ing the R*-tree. Since the candidates satisfy the necessary
condition in Eq. (2), false dismissals do not occur.

Finally, we explain the case where the query sequence
Q has a remainder when it is divided into p disjoint win-
dows(i.e., Len(Q) = p w + k , 1 < k < w - 1). FRM uses
the following Lemma:

Lemma 3 [5]: Iftwo sequences S and Q of the same length
are in E-match, then any pair of subsequences (S[i :
j] , Q[i : j]) are also in E-match. That is, the following equa-
tion holds:

(3)

According to Lemma 3, FRM does not cause any false dis-
missal by using the subsequence Q[l : p w] instead of the
query sequence Q[l : p w + k] . Since the subsequence
Q[l : p w] is composed of exactly p windows, FRM can
find similar subsequences without false dismissals accord-
ing to Lemma 2.

In summary, FRM works as follows. It first divides data
sequences into sliding windows, transforms them into f -
dimensional points, constructs the MBRs that contain multi-
ple points, and stores them into the R*-tree. Next, it divides
the query sequence into p disjoint windows, transforms each
window to an f -dimensional point, makes a range query us-
ing the point and the tolerance E / , / j j , and constructs a can-
didate set by searching the R*-tree. Lastly, it performs the
post-processing step to eliminate false alarms by accessing
the data sequence and executing Len(Q)-dimensional dis-
tance computation for each candidate.

D(S, Q) 5 E D(S[i : j] , Q[i : j]) 5 E

3. Motivation of the Research
In this section, we explain the motivation of our ap-

proach: in particular, why false alarms occur and how
we reduce them. In similar sequence matching, the more
false alarms occur, the more disk accesses and CPU oper-
ations for Len(Q)-dimensional distance computations are
incurred in the post-processing step. Thus, false alarms are
the main cause of performance degradation. In FRM, false
alarms occur for the following three reasons: 1) use of fea-
ture extraction functions, 2) use of Lemmas 2 and 3, and 3)
storing only MBRs in the index.

First, feature extraction functions cause false alarms be-
cause the lower-dimensional transformation is not distance-
preserving. That is, although the distance between two f-

265

dimensional points is less than or equal to e , the actual dis-
tance between two w-dimensional windows can be greater
than E. To reduce this kind of false alarms, one can increase
the number of features used in the index or select a better
feature extraction function. The recent Wavelet-based re-
search of Chan and Fu [5] is a good example.

Second, using Lemmas 2 and 3 for long query sequences
causes false alarms. That is, when two sequences S and
Q are divided into p windows si and qi (1 5 i 5 p) re-
spectively, although a pair (si, qi) are in €/&-match, the
distance between S and Q may be greater than 6 . To reduce
this kind of false alarms, we need to use as large windows as
possible. For example, let the window size of the method A
be twice as large as that of the method B. Then, by Lemma 2
or 3, a candidate subsequence of the method A must also be
a candidate of the method B. However, the inverse does not
hold. We define this effect the window size effect. The size
of the window, however, must be less than or equal to the
length of the query sequence; thus, the maximum window
size is dependent on the length of the query sequence. In
Section 4, we will explain this point in more detail when
calculating the maximum window size that can be used for
the proposed Dual Match.

Third, storing only MBRs instead of individual points
causes false alarms. We explain this point using Figure 1.
In Figure 1, Pi (1 5 i 5 14) represents a point in the 2-
dimensional space (f = 2) to which a sliding window for a
data sequence is transformed. The 14 Pi's are contained in
an MBR. Q1 and Q2 represent the points for disjoint win-
dows of a query sequence. In Figure 1, since Q1 and Q Z are
in €/&&match with the MBR, every Pi will be in the can-
didate set. In fact, however, no Pi is in €/&-match with
Q1, and no Pi except PF, and Pg is with Q2. Thus, we have
many false alarms. We can reduce this kind of false alarms
by storing every individual point of the MBR in the index.

Figure 1. False alarms caused by storing only MBRs.

For example, in Figure 1, if every Pi were stored in the
index, there would be no candidate for Q1, but only two
candidates PF, and Pg for Q2. We define this effect the
point-jiltering effect. As we have explained in Section 2,
however, if every individual point were stored in the in-
dex, then too much storage would be needed, and the per-
formance degraded. Accordingly, in FRM, it is difficult to
reduce the false alarms that are caused by the third reason.

In summary, the false alarms due to the first and second
reasons are caused by the feature extraction function and the

relative size of the query sequence compared with the win-
dow size. The false alarms due to the third reason, however,
are caused by lack of the point-filtering effect. In Section 4,
we introduce a subsequence matching method, Dual Match,
that reduces the third type of false alarms fully utilizing the
point-filtering effect.

4. Duality-based Subsequence Matching
The Concept

Dual Match divides data sequences into disjoint win-
dows and the query sequence into sliding windows. This
way, we are able to store and search individual points di-
rectly in the index without much storage overhead and im-
prove disk and CPU performance.

We first define some terminology. Given a sequence S ,
a subsequence S[iz : j2] includes a subsequence S[i l : jl]
if il 2 i2 and jl 5 j2. When S is divided into fixed dis-
joint windows, we define the included windows for S[i : j]
as those disjoint windows included in ,S[i : j]. A subse-
quence of a specific length may have ,a different number
of included windows depending on its position in S . For
example, in Figure 2, the subsequence S[i l : j l] has one in-
cluded window, but S[i2 : j23 of the same length 1 has two.
We define the minimum number of included windows for a
subsequence of length 1 as the minimum one over all subse-
quences of the same length regardless of their positions in
S. We can obtain this minimum using Lemma 4.

S

S[~Z.hl

7 1 dqomt wmdows of S
S [i , ill and S [I ~] ~] are of the same length
of mcluded wmdows of S [i l j l] = 1, # of mcludeci wmdows of S [i 2] 2] = 2

Figure 2. Different numbers of included windows for two
subsequences of the same length.

Lemma 4: If the sequence S is divided into disjoint win-
dows of size w, the minimum number o)' included windows
p for subsequences of length 1 is given by the following for-
mula:

(4)

PROOF: See the reference [9]. 0
According to Lemma4, a subsequence of length Len(Q)

includes at least [(Len(&) + l)/wJ - 1 disjoint windows.
We now derive Theorem 1, on which the correctness of
Dual Match is based.

Theorem 1: Suppose the data sequence S is divided into
disjoint windows of size w, and the query sequence Q into
sliding windows of the same size w. If the subsequence

p = [(I + l)/wJ - 1

266

S[i : j] of length Len(Q) is in €-match with Q, then at least
one included window of S[i : j] at a certain offset from
S[i] is in €/&match with the sliding window of Q at the
same offset from Q[l] . Here, p is the minimum number of
included windows for subsequences of length Len(Q) given

PROOF: In Figure 3, suppose the subsequence S[i : j] is in
€-match with the query sequence Q. S[i : j] must include at
least p disjoint windows SI, ..., sp, and also (possibly null)
subsequences sh (at the head) and st (at the tail). Thus, S[i :
j] can be represented as S h SI . . . sp st. Similarly, Q can be
represented as qh q1 . . . qp qt where Len(qh) = Len(sh)
and Len(qt) = Len(st). Then, we obtain Eq. (5) by using
Lemmas 2 and 3.

by Eq. (4).

D(S[i : j] , Q) 5 6 D (s ~ . * . s p , q1 . . qp) 5
P

* v D (S k , q k) < E / & (5)
k=l

Hence, if S[i : j] and Q are in c-match, at least one of
p included windows of S[i : j] (say Sk) must be in e/&%

U match with a window Qk of Q.

Figure 3. A subsequence S[i : j] in e-match with the query
sequence Q.

At query time, since we use sliding windows and place
them at every possible offset in the query sequence Q, the
window q k in Theorem 1 must be one of those sliding win-
dows. According to Theorem 1, if we construct the can-
didate set with those subsequences that have an included
window in €/&-match with a sliding window of Q, i.e.,
that satisfy the necessary condition of Eq. (3, then we will
not encounter any false dismissal.

Index Building Algorithm
Figure 4 shows the index building algorithm of

DualMatch. The input to Algorithm BuildIndex is a
database containing data sequences; the output an f -
dimensional index, which will be used in subsequence
matching. In Step 2.1 of the algorithm, we divide each
data sequence into LLen(S)/wJ disjoint windows. The re-
maining subsequence S[1-1 * w + 1 : Len(S)] , whose
length is less than w , is ignored by using Lemma 3. In Step
2.2.1, we transform a disjoint window to an f-dimensional
point. In Step 2.2.2, we construct a record consisting of
the transformed point f-point, the data sequence identifier
S-id, and the start offset dw-offset of the disjoint window in

S. The identifier will be used, when searching the index, to
find the actual data sequence that contains the similar subse-
quence; the start offset to find the offset of the subsequence
in the sequence. We subsequently insert the record into the
index using the transformed point as the key.

Algorithm BuildIndex
Input:
Output: f-dimensional index that will be used for subsequence matching
Algorithm:
1 Initialize the index.
2 For each data sequence S with the identifier S-id in db, DO

Database db that contains data sequences

2.1 Divide S intoLhan(S)/oj disjoint windows.
2.2 For each disjoint window with the start offset dw-ofiet, DO

2.2.1 Transform the window to an f-dimensional point f-point by
using the feature extraction function.

2.2.2 Construct a record <f-poinf, S-id, dw-ofiet>.
2.2.3 Insert the record, whose key isf-point, into the index.

Figure 4. The index building algorithm BuildIndex.

DualMatch has an important advantage: it is able to
store the individual points, which .have been transformed
from disjoint windows, directly in the index without much
storage overhead. It generates approximately TotalLenlw
points by dividing data sequences into disjoint windows,
and thus, the storage for the index is about f / w of that
for the original data sequences. This is only approximately
1/w of the storage that FRM would take if it stored (ap-
proximately TotalLen) individual points directly in the
index. In practice, since f is less than 10, and w greater
than 100 [4, 51, the storage for the index in Dual Match is
less than 10% (E = g) of that for the original data se-
quences; the number of points stored in the index is less
than 1% (i = &) of the sum of the lengths of all data
sequences.

Dual Match has additional advantages: 1) it can use point
access methods (PAMs) as the index, and 2) the index cre-
ation is very fast. Multidimensional index methods can be
categorized into PAMs[l2, 14, 151 that store points and
spatial access methods (SAMs) [3, 71 that store spatial ob-
jects [6]. Since Dual Match stores points, it can use a PAM
as the index with a flexibility of using various multidimen-
sional indexes of differing characteristics. Dual Match can
create the index much faster than FRM, since it needs only
1 / w as many calls as in FRM to feature extraction functions,
which constitute a major part of the CPU overhead.

Basic Subsequence Matching Algorithm
Figure 5 shows Basic Dual Match algorithm. The inputs

to the algorithm are the time-series database, index, query
sequence Q, and tolerance E ; the output is the set of se-
quences containing subsequences that are in c-match with
Q and offsets of those subsequences.

Algorithm Basic Dual Match consists of three steps: ini-
tialization, index searching, and post-processing. In the
initialization step, we calculate the minimum number of

267

Algorithm Basic Dual Match
Input: (1) Database db that contains data sequences

(2) f-dimensional index that has been created by BuildIndex
(3) Query sequence Q and tolerance e

with Q and offsets of those subsequences
Output Data sequences that contain subsequences that are in e-match

Algorithm:
1 Initialization

1.1 Calculate the minimum number of included windows p .
1.2 Divide Q into Len(Q) - o + 1 sliding windows.

2 Index searching: for each sliding window Q[i:i +o -11, DO
2.1 Transform the window to anf-dimensional point.
2.2 Construct a range query using the transformed point and E/&

2.3 Search the index and include in the candidate set the records that
are found together with the value i.

3 Post-processing: for each record <f-point, S-id, dw-offset> in the can-
didate set, DO
3.1 Read from db the candidate subsequence s u b 4 of the data sequence

S. This is done using S-id. The offset of sub-S in S is calculated as
’dw-offset - i + 1.’ Here, i is the index of the sliding window that has
been stored with this record in Step 2.3.

3.2 If D(sub-S,Q) Se, then output S-id and the offset of sub-S.

Figure 5. The basic subsequence matching algorithm Ba-
sic Dual Match.

included windows p = [(L e n (&) + l) / w J - 1 for the
subsequence of length Len(Q) using Lemma 4, and di-
vide the query sequence into Len(Q) - w + 1 sliding win-
dows. In the index searching step, we construct the can-
didate set. We first transform each sliding window to an
f-dimensional point and construct a range query using this
point and €/&. Next, we evaluate the range query, using
the index, retrieving the qualifying points into the candi-
date set. In the post-processing step, for each record in the
candidate set, we first read the candidate subsequence sub-
S from the database in Step 3.1. If the sliding window is
the i-th(l 5 i 5 Len(Q) - w + 1) one, then we calcu-
late the start offset of s u b 4 in the data sequence S as ‘dw-
ofse t - i + 1.’ Here, dw-ofset is the start offset in S of the
disjoint window (point) in the candidate set. In Step 3.2, we
remove false alarms keeping only those subsequences in 6-

match with the query sequence. For each such subsequence
sub-S, we output the identifier S-id of the data sequence S
containing sub-S and the offset of sub-S in S.

Algorithm Basic Dual Match is very effective in reduc-

for a data sequence. It is different in that it keeps the points
in the MBR while FRM does not, and in that it uses MBRs
for the query while FRM does for the data sequences. Since
the search result for a sliding window of the query sequence
may be similar to those for adjacent sliding windows, we
use MBRs that contain multiple points for adjacent win-
dows. Using MBRs to search the index tends to increase
the size of the candidate set. Nevertheless, we can get the
same candidate set as that of Basic Dual Match-despite the
use of MBRs-by filtering false alarms in the index be-
fore accessing data sequences in the database. We do fil-
tering by computing the f-dimensional distance between
each point in the MBR and each point in the search re-
sult and by including in the candidate. set only those points
that are in EIJpmatch. We define this filtering as index-
level jiltering. Index-level filtering is possible because we
maintain all the points in an MBR. Figure 6 shows the al-
gorithm Enhanced Dual Match. Like Basic Dual Match, En-
hanced Dual Match consists of three steps: initialization, in-
dex searching, and post-processing.

Algorithm Enhanced DualMatch
Input (1) Database db that contains data sequences

(2) f-dimensional index that has been created by BuildIndex
(3) Query sequence Q and tolerance E

Output: Data sequences that contain subsequences that are in €-match
with Q and offsets of those subsequences

Algorithm:
1 Initialization

1.1 Calculate the minimum number of included windows p .
1.2 Divide Q into LenfQ) - o + 1 sliding windows and transform each

window to anf-dimensional point.
1.3 Construct MBRs using the transformed points.

2 Index searching: for each MBR, DO

2.1 Construct a range query using the MBR and E/&.

2.2 Search the index using the range query and do index-level filtering
(compute the distance between each point in the MBR and each
point in the search result; include in the candidate set only the
records having those points that are in e/&match together with
the index i of the matching sliding window).

3 Post-processing: for each record <f-point, S-id, dw-offseb in the can-
didate set, DO
3.1 Read from db the candidate subsequence s u b 4 of the data sequence

S. This is done using S-id. The offset of s u b 4 in S is calculated as
’dw-offset - i + 1.’ Here, i is the index of the sliding window that has
been stored with this record in Step 2.2.

3.2 If D(sub-S,Q) 5 E, then output S-id and the offset of sub-5.

1) range queries-one for each sliding window. This
could cause performance degradation. We present the En-
hanced Dual Match algorithm to correct this problem.

Enhanced Subsequence Matching Algorithm

Rather than constructing a query for each point, En-
hanced Dual Match constructs a query for an MBR that con-
tains multiple points. This approach is similar to that of
FRM, in which MBRs are constructed using multiple points

; ennancea suosequence marcning aigonrnm
a1 Match.

In the initialization step, we calculate the minimum num-
ber of included windows p , divide the query sequence into
sliding windows, transform each sliding window to an f -
dimensional point, and then construct MBRs that contain
multiple points. We may use various techniques for con-
structing MBRs. Examples are 1) uhe heuristics used in
FRM discussed in Section 2, 2) using a fixed number of
points in an MBR, and 3) using only one MBR containing
all the points. The detailed discussion, however, is not a fo-

268

cus of this paper and is left as a further study. In general, if
the query sequence is long, using several MBRs is more ef-
fective since MBRs do not become too large. Experimental
results for real stock data show that using 2-8 MBRs can
improve the performance compared with using only one. In
this paper, however, to simplify the problem, we use only
one MBR.

In the index searching step, we construct the candidate
set. We first make a range query using each MBR and the
tolerance E/&?. Then, we retrieve the qualifying points by
searching the index and construct the candidate set by using
index-level filtering.

The post-processing step is the same as Ba-
sic Dual Match.

Maximum Window Size vs. Minimum Query Length
We explain the relationship between the maximum win-

dow size and the minimum length of a query sequence in
Lemma 5 and discuss its implication.

Lemma 5 : If the minimum length of the query sequence is
given by Min(Q) , then the maximum window size allowed
in DualMatch is L(Min(Q) + 1)/2J.
PROOF: See the reference [9]. U

Given the same minimum length of the query sequence,
the maximum window size of DualMatch is about half that
of FRM because the former is L(Min(Q) + 1)/2] and the
latter Min(Q) [5]. As we have explained in Section 3, a
smaller window causes more false alarms by the window
size effect. Hence, the smaller maximum window size adds
some tendency that Dual Match generates more false alarms
than FRM. Nevertheless, Dual Match more than compen-
sate for this effect by significantly reducing false alarms ex-
ploiting the point-filtering effect.

5. Performance Evaluation
Experimental Data and Environment

We have performed extensive experiments using three
types of data sets. A data set consists of a long data se-
quence and has the same effect as the one consisting of mul-
tiple data sequences. The first data set, a real stock data set2
used in FRM, consists of 3291 12 entries. We call this data
set STOCK-DATA. The second data set, also used in FRM,
contains random walk data consisting of five million entries.
The data are generated synthetically: the first entry is set to
1.5, and subsequent entries are obtained by adding a ran-
dom value in the range (-0.001, 0.001) to the previous one.
We call this data set WALK-DATA. The last data set con-
tains pseudo periodic synthetic time-series data3 consisting

2This data set can be obtained from ftp://ftp.santafe.edu.
3This data set is one of those that are currently under construction with

support from the National Science Foundation and can be obtained from
http://kdd.ics.uci.edu/databases/synthetic/synthetic.html.

of one million entries. We call this data set PERIODIC-
DATA. In PERIODIC-DATA, similar subsequences appear
repeatedly with a long period. Changes among adjacent en-
tries are small in STOCK-DATA and WALK-DATA; those
in PERIODIC-DATA are relatively large.

All the experiments are conducted on a SUN Ultra 60
workstation with 5 12 Mbytes of main memory. To avoid the
buffering effect of the UNIX file system and to guarantee
actual disk UOs, we use raw disks for data and index files.
The page size for data and indexes is set to 4096 bytes. As
the multidimensional index, we use R*-tree for both FRM
and Dual Match. As the feature extraction function, we use
the DFT and Wavelet transformations. We set the minimum
length of the query sequence to be 512. Thus, the window
size of FRM becomes 5 12, and that of Dual Match 256. We
use 6 features4, as has been done in FRM. We use 5 12,768,
and 1024 as the lengths of query sequences. They are uni-
formly distributed over various selectivities5.

In FRM, the average number of points contained in an
MBR varies depending on the estimated tolerance E’ used in
the heuristics. This number, in turn, affects the number of
false alarms and the size of the index. In the experiments,
we make the index sizes and the storage requirements ap-
proximately the same-the difference is less than 10%-for
fair comparison of the two methods. This is done by con-
trolling e’ to make the number of points in an MBR for FRM
and the number of entries in the disjoint window (window
size) for Dual Match approximately the same and, in turn, to
make the number of MBRs stored in FRM and the number
of transformed points stored in Dual Match approximately
the same. We further classify those experiments into two
categories: 1) those using Wavelet(Case A) and 2) those
using DFT(Case B). In addition, we also perform experi-
ments for the case where the estimated tolerance E‘ is 0.25,
the same value used in the original experiments done in
FRM (Case C).

For the experimental results, we measure the relative
number of candidates, the relative number of page ac-
cesse@, and the relative wall clock time of the two meth-
ods on a dedicated machine. We generate query sequences
from the data sequences by taking subsequences of length
Len(Q) starting from random offsets[5]. To avoid ef-
fects of noise, we experiment with 10 different query se-
quences of the same length and use the average as the re-
sult. We perform experiments for selectivities in the range
10-6-10-1 [5]. For STOCK-DATA, however, the mini-
mum selectivity tested is approximately 3.0 x loF6 since we
have less than 3291 12 subsequences. We obtain the desired
selectivity by controlling the tolerance e for each query.

4With DFT, we have used the real part of the fourth complex number
instead of the imaginary part of the first one, which is 0.

of subse uences that are in r-match with
SSelectivity(Q) = jf# of all &a subsequences of length L ~ ~ C Q P
6# of page accesses = # o f data page accesses + #of index page accesses

269

ftp://ftp.santafe.edu
http://kdd.ics.uci.edu/databases/synthetic/synthetic.html

Experimental Results
Here, we present the experimental results. We first ex-

plain in detail the results for Case A and then briefly men-
tion those for Cases B and C.

1) STOCK-DATA: Figure 7 shows the experimental re-
sults using Wavelet for STOCK-DATA. Figure 7 (a) shows
the relative number of candidates, Figure 7(b) the rela-
tive number of page accesses, and Figure 7(c) the rela-
tive wall clock time. In the figure, when the selectivity is

Selectivity

(a) The relative number of candidates
less than lop3, Dual Match significantly reduces the num-
ber of candidates to as little as of that for FRM, re-
duces the number of page acccsses by up to 4.49 times, and
improves performance up to 10.1 -fold. When the selectiv-
ity is in the range 10-3-10-2, Dual Match shows perfor-
mance slightly better than FRM in all three measures. On

DualMatch increases the number of candidates by up to

' 4 4 9
e .

0 . - OH16 the other hand, when the selectivity is greater than * L
(=&

i w ins in' in ' 1 0 2 in1
= 007 ' ""'": """': ' .----: ' ' " ' Y

1.18 times, increases the number of page accesses by up to
1.23 times, and degrades performance by up to 1.2 1 times
that of FRM. The increased number of candidates and per-
formance degradation for higher selectivities are due to the
window size effect; at the same time, the point-filtering ef-
fect is less eminent because the relative number of false
alarms to the total number of candidates becomes smaller
in higher selectivities.

In Figure 7, the relative number of candidates is much
higher than the relative number of page accesses and the
relative wall clock time. The reason for this discrepancy
is that adjacent subsequences are similar, and thus, can be
accessed together being stored in the same data page. That
is, if the subsequence S[i : j] of the sequence S is similar
to the query sequence Q, then many adjacent subsequences
of S[i : j] , including S[i - 1 : j - 11 and S[i + 1 : j + 11,
may very well be stored in the same data page. Compared to
Dual Match, FRM accesses more (non-qualifying) adjacent
subsequences included in the candidate set since many of
them are represented together by one MBR in the index.
Nevertheless, since those adjacent ones tend to be accessed
together from the same data page, the relative number of
I/O's-accordingly, the relative wall clock time-is smaller
than the relative number of candidates.

2) WALK-DATA: The results using Wavelet for WALK-
DATA show the same tendency as in Figure 7. We omit
the detailed results of this experiment because of space lim-
itation of the paper. See the reference [9] for the detailed
result.

3) PERIODIC-DATA: Figure 8 shows the results us-
ing Wavelet for PERIODIC-DATA. Here, we have much
larger improvement. When the selectivity is less than
Dual Match drastically reduces the number of candidates to
as little as of that for FRM, reduces the number of
page accesses by up to 26.9 times, and improves the perfor-
mance up to 430-fold. PERIODIC-DATA has the character-

_ _ ._ .. -_
Selectivity

(b) The relative number of page accesses

106 ius 104 1u3 iuz 101
".U

Selechvlty

(c) The relative wall clock time

Figure 7. Performance comparison of Dual Match and FRM
using Wavelet for STOCK-DATA.

istic that the changes among adjacent entries are relatively
large. Accordingly, adjacent windows in PERIODIC-DATA
tend to have distances among them larger than in STOCK-
DATA. Thus, in FRM that stores MBRs of multiple adjacent
windows, many windows far apart from one another can be
included in the same MBR. Since these windows are in-
cluded in the candidate set together, many false alarms are
generated. In contrast, Dual Match does not cause this prob-
lem by storing individual points rather than MBRs. For this
reason, PERIODIC-DATA shows larger relative number of
candidates, relative number of page accesses, and relative
wall clock time than STOCK-DATA does.

The experimental results for Case B and Case C are sim-
ilar to those for Case A. Table 2 summarizes the results for
the three cases. In all three cases, Dual Match outperforms
FRM significantly in lower selectivities, with slight degra-
dation in higher selectivities.

In summary, Dual Match drastically improves the perfor-
mance over FRM due to the point-filtering effect for lower
selectivities, but show slight degradation (less than 29%) for
higher selectivities due to the window size effect. For very

270

5

271

ŝ 10000

@ 1000
% % 100
- 3 0 mated tolerances e'. G Z
; 10

*; 1

Table 2. Experimental results of Dual Match and FRM for
different lower-dimensional transformations and the esti- - - U13

r C a m

It

We have performed extensive experiments using vari-
ous types of data sets, feature extraction functions, and
the estimated tolerances E’ (used in FRM). In most cases,
Dual Match drastically reduces the number of candidates
and improved performance. In particular, for lower selec-
tivities (less than Dual Match reduces the number of
candidates to as little as of that for FRM, reduces the
number of page accesses by up to 26.9 times, and improves
performance up to 430-fold. For selectivities in between
(Dual Match shows performance slightly bet-
ter than that of FRM. On the other hand, for higher selec-
tivities(more than it shows a very minor degrada-
tion (less than 29%) by all three measures. This degradation
is mainly due to the window size effect. In general, in large
databases, users will require low selectivities to find only
small number of similar subsequences. Thus, Dual Match
will be an effective tool for large database applications.

Dual Match also provides excellent performance in in-
dex creation. Experimental results show that it is 4.10-25.6
times faster than FRM in building indexes of approximately
the same size. We obtain this result because DualMatch
requires only about 1/w of lower-dimensional transforma-
tions that FRM does.

Overall, these results indicate that our approach provides
a new paradigm in subsequence matching that improves
performance significantly in many variations and applica-
tions based on the FRM approach. Dual Match can also be
used with newer types of transformations such as moving
average transformation, shifting and scaling, and normal-
ization. We are currently investigating into detailed issues
as a further study.

Acknowledgements The authors benefited from visiting
the Computer Science Department of Stanford University in
Summers 1999 and 2000 in completing the work presented
in this paper. This work was supported by the Korea Sci-
ence and Engineering Foundation (KOSEF) through the Ad-
vanced Information Technology Research Center (AITrc).

References

[l] Agrawal, R., Faloutsos, C., and Swami, A., “Efficient Simi-
larity Search in Sequence Databases,” In Proc. the 4th Int’l
Con$ on Foundations of Data Organization and Algorithms,
Chicago, Illinois, pp. 69-84, Oct. 1993.

[Z] Agrawal, R., Lin, K.-I., Sawhney, H. S., and Shim, K., “Fast
Similarity Search in the Presence of Noise, Scaling, and
Translation in Time-Series Databases,” In Proc. the 21st
Int’l Con5 on Very Large Data Bases, Zurich, Switzerland,
pp. 490-501, Sept. 1995.

[3] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B.,
“The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles,” In Proc. Int’l Con5 on Manage-
ment of Data, ACM SIGMOD, Atlantic City, New Jersey,
pp. 322-331, May 1990.

41 Chan, K.-P. and Fu, A. W.-C., “Efficient Time Series Match-
ing by Wavelets,” In Proc. the 15th Int’l Con$ on Data En-
gineering, Sydney, Australia, pp. 126-133, Feb. 1999.

51 Faloutsos, C., Ranganathan, M., ,and Manolopoulos, Y.,
“Fast Subsequence Matching in Time-Series Databases,” In
Proc. Int’l Con5 on Management ofData, ACM SIGMOD,
Minneapolis, Minnesota, pp. 419-42.9, May 1994.

[6] Gaede, V. and Guenther, O., “Multidimensional Access
Methods,” ACM Computing Surveys, Vol. 30, No. 2, pp. 170-
231, June 1998.

171 Guttman, A., “R-trees: A Dynamic Index Structure for Spa-
tial Searching,” In Proc. Int’l Conj on Management ofData,
ACM SIGMOD, Boston, Massachusetts, pp. 47-57, June
1984.

[8] Jagadish, H. V., Mendelzon, A. O., and Milo, T., “Similarity-
Based Queries,” In Proc. the 14th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles qf Database Systems, San
Jose, California, pp. 36-45, May 1995.

[9] Moon, Y.-S., Whang, K.-Y., and Loh, W.-K., Ef-
ficient Time-Series Subsequence Matching Using Du-
ality in Constructing Windows, AITrc Technical Re-
port 00-1 1-001, Advanced Infomiation Technology Re-
search Center (AITrc), KAIST, Taejeon, Korea, Jan. 2000,
(http://aitrc.kaist.ac.kr/research/search.html).

IO] Rafiei, D. and Mendelzon, A., “Similarity-Based Queries for
Time Series Data,” In Proc. Int’l Con$ on Management of
Data, ACM SIGMOD, Tucson, Arizona, pp. 13-25, May
1997.

1 I] Rafiei, D., “On Similarity-Based Queries for Time Series
Data,” In Proc. the 15th Int’l Con$ on Data Engineering,
Sydney, Australia, pp. 410-417, Feb. 1999.

[I21 Seeger, B. and Kriegel, H.-P., ‘The Buddy-Tree: An Effi-
cient and Robust Access Method for Spatial Data Base Sys-
tems,” In Proc. the 16th Int’l Cor$ on Very Large Data
Bases, Brisbane, Queensland, Australia, pp. 590-601, Aug.
1990.

[I31 Weber, R., Schek, H.-J., and Blott, S., “A Quantitative Anal-
ysis and Performance Study for Similarity-Search Methods
in High-Dimensional Spaces,” In Proc. the 24th Int’l Con$
on Very Large Data Bases, New York City, New York, pp.

[141 Whang, K.-Y. and Krishnamurthy, R., Multilevel Grid Files,
IBM Research Report RC11516, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, Nov. 1985.

[I51 Whang, K.-Y., Kim, S.-W., and Wiederhold, G., “Dynamic
Maintenance of Data Distribution for Selectivity Estima-
tion,” The VLDB Joumal, Vol. 3, No. 1, pp. 29-5 1, Jan. 1994.

[I61 Yi, B.-K., Jagadish, H. V., and Faloutsos, C., “Efficient Re-
trieval of Similar Time Sequences Under Time Warping,” In
Proc. the 14th Int’l Con$ on Data Engineering, Orlando,
Florida, pp. 201-208, Feb. 1998.

194-205, Aug. 1998.

272

http://aitrc.kaist.ac.kr/research/search.html

