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Abstract 
Automatic Summary Tables (ASTs), more commonly known as 
materialized views, are widely used to enhance query 
performance, particularly for aggregate queries. Such queries 
access a huge number of rows to retrieve aggregated summary 
data while performing multiple joins in the context of a typical 
data warehouse star schema. To keep ASTs consistent with their 
underlying base data, the ASTs are either immediately 
synchronized or fully recomputed. This paper proposes an 
optimization strategy for simultaneously refreshing multiple 
ASTs, thus avoiding multiple scans of a large fact table (one pass 
for  AST computation). A query stacking strategy detects common 
sub-expressions using the available query matching technology 
of DB2. Since exact common sub-expressions are rare, the novel 
query sharing approach systematically generates common sub- 
expressions for a given set of ,,related" queries, considering 
diflerent predicates, grouping expressions, and sets of base 
tables. The theoretical framework, a prototype implementation of 
both strategies in the IBM DB2 UDB/UWO database system, and 
performance evaluations based on the TPC/R data schema are 
presented in this paper. 

1. Introduction 

Data Warehousing has inspired the database community 
tremendously. Many new ideas were developed in this 
context over the last few years. At the same time, many 
old ideas have come to a rejuvenation and were adapted to 
the warehouse application scenario. We follow the same 
approach and pick up the idea of Mass Query Optimization 
(MQO: [6] ,  [ 113) to simultaneously compute multiple 
ASTs. The approach, performing an initial population or a 
full refresh of a set of ASTs ([4]) within a single pass hides 
a tremendous optimization potential. 

In this paper we outline the currently existing MQO 
framework of the IBM DB2 UDB/UWO database system 
and propose an extension to this framework to 
simultaneously compute the set of underlying queries of 
registered ASTs. The general idea of our proposed 
optimization technique is to massage a query graph in two 
ways: if two queries share a common subexpression, we 
may utilize it. However, if two queries are similar but do 
not exhibit a common subexpression relationship, we 
design, build and inject a minimal subgraph, acting as a 
common subexpression for these queries. 
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IBM Aimaden Research Center 
650 Harry Road, San Jose CA, 95 120, U.S.A. 
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Contribution of the Paper 
Although not restricted to this area, we demonstrate the 

feasibility of our optimization technique in the context of 
simultaneously refreshing multiple ASTs by optimizing 
the corresponding view definition queries. In detail, the 
paper provides contribution in the following areas: 

The Query Graph Model and a generic MQO framework 
for query matching based on [ 161 is described. 
Since the proposed optimization technique does not only 
recognize existing common sub-expressions but 
artificially generates generic common sub-expressions, it 
applies to a much wider class of queries than prior work. 

0 The proposed techniques are independent of specific 
query patterns, implying that ASTs over (nearly) 
arbitrary queries (nested, correlated, ...) may be subject of 
optimization. 
The presentation of our approach and all performance 
evaluations are based on the TPC-H/R database schema 

We give some performance figures based on a prototype 
implementation within the IBM DB2 UDB/UWO 
database system. 
While existing work on Mass Query Optimization 
focuses on the theoretical perspective, we give a detailed 
description on how to implement MQO techniques. We 
are not aware of any other work addressing this issue. 

([131). 

Structure of the Paper 
The following section sketches the query matching 

framework of the IBM DB2 UDB/UWO database system. 
Section 3 explains the application of these matching 
techniques and introduces the query stacking optimization 
approach. Section 4 focuses on the novel strategy of query 
sharing, which is evaluated by means of experiments in 
section 5. Section 6 discusses related work in the area of 
simultaneously optimizing multiple queries. The paper 
closes with a summary in section 7. 

' The work was performed while author was visiting scientist at the 1BM 
Almaden Research Center. 
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2. The DB2 Query Matching Framework 

The DB2 query matching framework provides a sound 
basis for identifying common sub-expressions in query 
graphs. This section outlines the basic concepts of the DB2 
Query Graph Model (QGM, [SI) and summarizes nec- 
essary conditions to successfully establish a match 
relationship between two queries. For a detailed descrip- 
tion of the DB2 matching technique in the context of 
transparently routing user queries to existing summary 
tables, we refer to [16]. 

2.1. Example 
To illustrate the proposed techniques, consider the 

following query computing the overall quantity (sum-qty), 
the average discount (avg-disc), the sum of base prices 
(sum-base-price), and the sum of prices after discount 
(sum-disc-price) per order status with a quantity greater 
than 5 restricted to orders with a medium priority: 
SELECT o-orderstatus 

SUM(l-quantity) AS sum-qty, 
AVG(l-discount) AS avg-disc, 
SUM(l-extendedprice) AS sum-base-price, 
SUM(!-extendedprice'(1-I-discount)) AS 

sum-disc-price 
FROM lineitem, orders 
WHERE I-orderkey = o-orderkey 
AND o-orderpriority = '3-MEDIUM' 
GROUP BY o-orderstatus 
HAVING MIN(l-quantity) > 5 

This query (and all succeeding examples) are based on 
the TPC-WR database schema ([13]), where the table 
lineitem holds transactional data, which are evaluated 
according to the three 'dimensions' of orders, parts, and 
suppliers. 

The order and supplier dimensions exhibit a hierarchical 
structure according to the location of the customer placing 
an order and according to the location of the supplier. It is 
important to mention that it is advisable to explicitly 
specify these 1-to-N relationships in terms of referential 
integrity constraints during DDL time. 

2.2. Overview of the DB2 Query Graph Model 
In DB2, queries are parsed and internally represented by 

a single QGM graph. The corresponding graph for the 
above sample query is depicted in figure 1. In general, the 
QGM data structures consist of boxes which are connected 
by directed arcs (quantifiers). Boxes represent data 
sources, e.g. base tables or table functions, and logical 
operators. Select boxes stand for applying local predicates 
andor performing join operations. Group-by boxes 
aggregate along grouping columns, complex grouping 
expressions using CUBE(), ROLLUP(), GROUPING SETS() 
expressions, or a combination of both ([3]). Quantifiers 
denote the data streams flowing from one box to another 
one. 

PRD1:- iTr!I;z;:%Jm. o_o&nratw. 

SUM(J.artmd.4,tim ' (1 CdranlJJ AS um.drgn-, 

COUNT(.dsrcmtJ AS Lz 
GRP 0-ORDERSTATUS groupby M J M I ~ ~ ~ * ~ ,  AS w 

,C9u"rlY.Csr"m, J.dx;arr. o.ae+nafYI 

PRDI: LORDERKEY I 0-ORDERNEY 
PRD2: LORDERPPJORlTY. 'WEM sB/eCt 

o.ae+l*sy. 
0.adWa.lw. 
O.ae+mmnV 

J.ae+l*sy. 
CWW. l-*"p"C... 

J-,jXd .,. . . . . . . . . . . . . . . . . :$~fi6fi: ::.&+j$::: 

Figure 1: Sample QGM graph 

Each box may have multiple outgoing quantifiers 
(consumers), i.e. a specific box may be a child of more 
than one parent box. A box with multiple outgoing 
quantifiers usually represents the root of a QGM sub-graph 
which is considered a common sub-e.rpression. 

The output of a box corresponds to the set of columns 
which are produced by this box. Such columns may either 
be single columns or complex expressions which are 
potentially derived from multiple incoming columns, e.g. 
SALES*PRICE AS REVENUE. Thus each box realizes some 
kind of projection operator, providing only those columns 
that are consumed by at least one parent box. Moreover it 
is obvious that multiple incoming c~~lumns  can contribute 
to a single output column and vice versa a single incoming 
column can appear in multiple output columns, e.g. 
PRICE*TAX AS X and PRICE'DISCOUNT AS Y. Additionally, 
a box can absorb incoming columns (for example if that 
column is only needed for a local predicate but not part of 
the output column list) or arbitrarily produce outgoing 
columns (for example when a single column is selected 
twice). 

If a box has more than one outgohg quantifier then any 
subset of the output columns of that box may flow along 
any outgoing quantifier, thus splitting the producing data 
stream arbitrarily. For example the columns PRICE'TAX 
and PRICE'DISCOUNT may be useld by different parent 
boxes. 

2.3. Overview of the DB2 Query Matching 
Technique 

To model common parts (i.e. sub-graphs) of two 
queries, relationships between those queries are recorded 
on a box-by-box level using a 'match' relationship. In the 
context of a match, a box is called a subsumer, if it 
provides at least all the data, which are necessary to 
compute the output of the corresponding subsumee box 
(figure 2). If the adjustment of the data requires some kind 
of additional work, then a compensation box is created 
during match recording. These compensation boxes 
provide the missing part for successfully substituting a 
subsumee by the corresponding subsumer. 

General Matching Conditions 
Recording a match between two QGM boxes requires 
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that both candidate boxes exhibit the same box type and 
that base table boxes refer to the same data source. 
Moreover the expressions comprising the result of the 
subsumee box must be derivable from the subsumer box. 
Simple columns must be generated by the subsumer. Col- 
umns consisting of complex expressions must be 
computable from an expression of the subsumer. For 
example, if the subsumee has a COUNT(X) column then 
the subsumer also has to produce a COUNT(X) column. 
Note that the corresponding compensation box has to 
sum up the COUNT()-figures of the subsumer, in order to 
correctly retrieve COUNT()-figures of the subsumee. 

Figure 2: Example of a Match and a Compensation 

To record a match between two select boxes, the local 
predicates of the subsumer must be equal or weaker than 
the predicates of the subsumee. In general, the 
compensation box inherits all local predicates of the 
subsumee box that are not present in the subsumer. If the 
local predicates of a subsumer and subsumee are 
identical, then no compensation predicate is necessary. 

Join predicates of two boxes must in general match 
exactly and the two candidate boxes must reference the 
same set of children. However, the existence of a loss- 
less join (implemented via RI constraints) allows two 
exceptions to this general rule: 

8 Extra Child Compensation 

Match Conditions for  Local Predicates 

Matching Conditions for Joins 

The matching conditions for joins are also fulfilled, if 
each child table of the subsumer, which is not a child 
table of the subsumee is connected to the subsumer 
through an RI join, i.e. a lossless join. 

Each child table of the subsumee, which is not a child 
of the subsumer is re-joined in the compensation box, 
independent of the type of the join. This of course 
requires that the necessary join column survives the 
subsumer. 

Rejoin of Additional Children 

Match Conditions for Grouping Columns 
The grouping expression of the subsumee must be 
derivable from the grouping expression of the subsumer. 
In general both boxes may exhibit arbitrary complex 
grouping expressions. For the remainder of the paper we 
restrict the presentation to simple grouping columns 
where the subsumee grouping columns must be a subset 
of the subsumer grouping columns*. 

2.4. Summary of Matching Conditions 
To summarize the conditions for recording box-level 

matches between two queries, let us refer to the refresh of 
the two Automatic Summary Tables ASTl and AST2: 

CREATE SUMMARY TABLE astl AS ( 
SELECT I-shipmode, n-name, 

SUM(l-quantity) AS sum-qty, 
SUM(l-extendedprice) as sumgrice, 
COUNT(*) as count-order 
lineitem, orders, customer, nation, region 
Lorderkey = o-orderkey AND 0-custkey = c-custkey 
c-nationkey = n-nationkey AND n-regionkey E r-regionkey 

GROUP BY I-shipmode. n-name ) ... 

CREATE SUMMARY TABLE as12 AS ( 
SELECT I-shipmode, I-shipinstruct. n-name, n-regionkey, 

FROM 
WHERE 

AND 
AND r-name = 'EUROPE 

SUM(l-quantity) AS sum-qty. 
SUM(l-extendedprice) as sumgrice. 
COUNT(') as count-order 

FROM lineitem, orders, customer, nation 
WHERE I-orderkey = o-orderkey 

AND o-custkey = c-custkey 
AND c-nationkey = n-nationkey 

GROUP BY I-shipmode, I-shipinstruct. n-name, n-regionkey ) ... 

If we consider ASTl in the role of a subsumee and AST2 
in the role of a subsumer, then the lower select boxes 
match because both boxes have the same join predicate 
with regard to the set of child tables and only ASTl has a 
local predicate. Moreover, the extra child table of AST1, 
region, is joined using the primary/foreign key relationship 
of nation and region table. Additionally, ASTP produces a 
superset of columns with regard to AST1. The group-by 
boxes also match, because the grouping columns of ASTl 
are a subset of the grouping columns of AST2 and AST2 
produces all aggregate function columns, which are needed 
for the computation of ASTl. 

3. Using Common Sub-Expressions 

The first strategy, which is pursued in a first place in 
optimizing the execution of a multiple AST refresh is 
called query stacking. The system tries to 'order' the 
execution of the queries and use the result of a previous 
query for the computation of the current and succeeding 
queries. This strategy may be seen as an application of the 
existing query matching framework of DB2. The achieved 
detection and utilization of common sub-expressions 
proves extremely powerful in the presence of aggregation 
operations, where aggregation dependencies can be 
exploited to perform stacking of queries. 

*Note that additionally the set of group-by columns of the subsumer has to 

encompass all local predicate columns of the subsume. 
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a) 151 Level ME4ching wlhConpmsalim 

b) 2ndL-I M3lchhgvithCmpmaUm 

Figure 3: Matching with Compensation 

To record matches and generate compensations, each 
query graph is traversed in a bottom-up manner. The 
attempt is made to bring two boxes at the same level of 
each query graph into a subsumee-subsumer relationship. 
If a match between two boxes was successfully 
established, all combinations of the parent boxes become 
subject of recording further matches. 

To refer to the ongoing example, the lowest select 
boxes for ASTl and AST2 fulfill the necessary conditions. 
In a first step (figure 3a, (l)), the subsumee box is copied, 
the predicates are adjusted according to the rules 
introduced in the preceding section and a quantifier 
between the current subsumer box and the new com- 
pensation box is created (2). Since the subsumee box has 
an extra incoming quantifier from the region table, a new 
quantifier fiom the region table is added to the 
compensation box (3). 

For recording a match at a further level of a query 
graph, the already existing compensation box is pulled up 
to the new subsumer box (group by box in the ongoing 
example of figure 3b) by first copying the box ( 1 )  and then 
swinging the quantifier from the subsumer box below to 
the current subsumer box (2). Incoming quantifiers from 
base tables remain unchanged. Thereafter, the current 
subsumee box is copied (3) and the incoming quantifier is 
swung to the new compensation box (4). 

Finally, the query graph of the subsumee is substituted 
by the compensation graph built during the generation of 
the matches. Figure4 shows the situation after applying 
the query stacking technique to the two sample ASTs. The 
upper half of that new graph corresponds to the newly 
generated compensation graph, reflecting the 'old' 
subsumee stacked on top of the subsumer. The region table 
is joined and the local predicate restricting the query 
context to 'Europe' is applied in the lowest select box of 
the compensation. 

Figure 4 QGM Graph after Query Stacking 

Summary 
Query stacking, where a single query provides some 

kind of common sub-expression for multiple queries being 
executed at the same time is a well-known technique from 
a theoretical point of view. Apparently stacking is not 
possible if the queries do not follow a strict subsumer- 
subsumee relationship. For example, if AST2 would not 
have n-regionkey as a member of the .grouping column list, 
recording a match between the lower select boxes would 
already fail. 

4. Building A Common Subsumer 

The general idea of query sharing is that, if the query 
stacking technique is not applicable for two given query 
graphs, then the system might come up with an artificially 
constructed common sub-expression, which then can be 
exploited by both queries. To comply with the already 
introduced notion of subsumer and subsumee, we refer to 
such a generated query (sub-)graph as 'common 
subsuner'. Again, we demonstrate our approach in the 
context of the refresh of two summary tables. 

4.1. Example of a Common Subsumer 
To explain the generation process of a common 

subsumer, we again refer to the TPC-I-I/R data schema and 
concentrate on the optimization of the queries executed to 
refresh the following two summary tables: 
SELECT I-shipdate, I-commitdate, 

SUM(1Lquantity) AS sum-qty, 
SUM(l-extendedprice) AS sum-price, 
COUNT(*) AS count-order 

FROM lineitem 
GROUP BY I-shipdate, I-commitdate 

SELECT I-shipdate, I-receiptdate, 
SUM(1Lquantity) AS sum-qty, 
AVG(l-discount) AS avg-disc, 
AVG(l-tax) AS avg-tax, 
COUNT(') AS count-order 

FROM lineitem 
GROUP BY I-shipdate, I-receiptdate 

Since neither the select-clauses nor the group-by- 
expressions are compatible, the execution of the queries 
could not be optimized by only applying the 'Query 
Stacking' technique, i.e. exploiting existing common sub- 
expression. The idea behind the common subsumer, 
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mapped onto this specific example, is to 'massage' the 
global query graph and inject an artifical minimal common 
sub-expression. In general, we have to perform the 
following ,,fixes" to make two boxes share a common 
subsumer: 

uniodadjust the select-lists of the participating queries 
delay the application local predicates to compensation or 
apply a disjunction of local predicates in the common 
subsumer 
keep extra children and add re-join children 
uniodadjust the grouping expressions 

4.2. First Level Common Subsumer 
The level-oriented production of a common subsumer 

box consists in two separate steps of building and 
matching against the common subsumer. 

Phase 1: Building the Common Subsumer 
The general procedure is to copy the candidate 

subsumer box and 'enrich' it with the missing information 
that is needed to make it a valid subsumer for the 
candidate subsumee box. 

canddate 
srhsumer 

mmnwn 
subsimer 

I-shpdate Lrae,pdee 
I,bDICvLT I L ~ n t t x  Ldswnt Liar 

select 

_shpdaa ILwcepIdm 
Lqlmt,r)r l~dsiscolnl l&a 

a)CapyRocass P .Zb oIhaCanddae Subsumr 

&&IS C-Dn 
d s u m e e  3 , . m M ~ ~  s r b s u m  

Lqmmiy, f~eaendo+nca~ 

b) Algmmt Process ollheCardidas Subsume 

Figure 5: Generation of a lst Level Common Subsumer 

Due to the box copy process, the newly generated 
common subsumer box inherits the subsumer's input 
columns*from the common base table as well as its output 
columns (figure 5a). To make the common subsumer a 
subsumer for the subsumee, we have to add the missing 
columns, i.e. those columns which are referenced by the 
subsumee but not by the subsumer to the input of the 
common subsumer. Moreover, all columns, which are 
produced by the subsumee but not by the subsumer have to 
be added. To accomplish this task, we simulate the 
recording of a regular subsumeehbsumer match. Each 
time, the regular matching procedure reports a failure due 
to violating a matching condition, we try to eliminate this 
defect by performing the necessary repairs, i.e. adding 
columns to the input and output of the common subsumer 
box. Figure bb illustrates this step, where the columns 
I-extendprice and I-commitdate are added to the input as well 

"The 'inheritance' ofjoin and local predicates is discussed in subsection 4.6 

as to the output of the common subsumer box. 

Phase 2: Matching against the Common Subsumer 
In the second phase of a common subsumer box 

generation, we use the regular matching procedures again 
to record matches between the candidate subsumee and the 
common subsumer and between the candidate subsumer 
and the common subsumer. Although there already exists a 
temporary match between the subsumee and the common 
subsumer, this match is dropped at the end of the first 
phase and reestablished to guarantee the correct generation 
of the associated compensation box. For the same reason, 
the match between the candidate subsumer and the 
common subsumer is necessary, despite the original 
duplication of the two boxes. It is worth mentioning here 
that the matching against the common subsumer has to be 
successful, because the common subsumer was exactly 
designed for that purpose. Figure 6 shows :he scenario 
after finishing the generation of the common subsumer at 
the first level. 

4.3. Common Subsumer at Higher Levels 
Basically, the generation of a common subsumer at 

higher levels of a query plan consists of the same phases as 
a first level common subsumer generation. However, there 
are some additional steps, which are outlined in this 
subsection. Figure 6 illustrates the procedure according to 
the ongoing sample scenario. 

candidte m m m n  candidate 
subsumee subsrmer subsume! 

Figure 6 Generation of a 2"d Level Common Subsumer 

After copying of the subsumer box (right group-by box 
in figure 6: (l)), this box is fed from the lower box of the 
candidate subsumer. However to be correct, the copy has 
to be fed by the common subsumer box of the level below 
(middle select box in that scenario). To swing the 
incoming quantifier from the subsumer candidate select 
box to the common subsumer select box (2) a column 
mapping between the two boxes is necessary. To generate 
such a column mapping, we can take advantage of the 
already recorded match at the lower level: for each column 
(or expression generating a column) of the subsumee box, 
we are searching the corresponding column in the 
subsumer box of that match and record the corresponding 
column numbers. Since there already exists a match 
between these two boxes, we can guarantee a successful 
generation of that column mapping. 
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In analogy to the first level common subsumer 
generation, the subsumer copy is enriched by the missing 
columns and expressions, which are needed to fulfill a 
subsumer role for the subsumee. Again, missing columns 
have to be added to the input and to the output of that box. 
In contrast to the first-level generation, the two boxes do 
not share a common child box, i.e. a base table. Therefore, 
the existing match between the subsumee and the common 
subsumer at the lower level is used to identify the missing 
columns and add them to the input of the common 
subsumer box (3). Additionally and contrary to the lower 
select boxes, it is worth mentioning that in case of group- 
by boxes not only simple columns, but complete 
expressions like aggregation functions with the 
corresponding parameter columns are transferred from the 
subsumee to the common subsumer (4). In the specific 
example of figure 6, the columns I-commitdate and 
SUM(l-extendedprice) are added to the output of the common 
subsumer. 

After finishing the generation of the common subsumer 
box for that specific level, we again record matches 
between the candidate subsumee and the common 
subsumer and between the candidate subsumer and the 
common subsumer. During that procedure, existing 
compensations are pulled up to the current level and 
extended to compensate the differences at the current 
level. 

4.4. Multiple Children Adjustment 
To cover multiple children during the generation of a 

common subsumer, additional steps are necessary after 
copying the candidate subsumer box. Consider the case 
when the subsumer contains a table which is not refer- 
enced in the candidate subsumee. The inherited quantifier 
to that child is only kept, if the join corresponds to an 
existing referential integrity constraint, where the extra 
child table holds the primary key and the shared table 
(shared between candidate subsumee and candidate 
subsumer) holds the foreign key. Otherwise, the overall 
generation of the common subsumer is aborted. 

Figure 7 shows a sample scenario of two queries, where 
the supplier table is referenced only by the candidate 
subsumer. Since the associated join realizes a 
primary/foreign key relationship (ps-suppkey=s-suppkey), 
the inherited quantifier from the common subsumer box to 
the candidate subsumer box (and the join predicate - 
subsection 4.5) is kept without any modifications (1). 

candidate c o n "  candidate 
subsume subsumr subsumr 

Figure 7: Common Subsumer in the Presence of Joins 

The same strategy applies if the candidate subsumee 
references a table, which is not a child of the candidate 
subsumer. As soon as the join corresponds to a referential 
integrity constraint, a new quantifier from that child table 
is added to the common subsumer box (2). All columns, 
which flow from the child table to the candidate subsumee 
box are also added to this new quantifier and to the output 
of the common subsumer box. 

Since the left query of the ongoing example is grouping 
by part name (p-name), it needs a reference to the part 
table. Thus, a quantifier is added ranging from the part 
table to the common subsumer box and the p-key and 
p-name columns are pulled up. 

Note however that, if the join witlh an extra child does 
not exhibit the characteristics of 'lossless'-ness, no 
common subsumer will be generated for that candidate 
subsumeekandidate subsumer pair. 

4.5. Predicate Adjustment 
The process of predicate adjustment reflects the most 

critical part in building a common subsumer for two given 
queries. The predicate adjustment process must consider 
the following scenarios: 

0 common join predicates 
0 local predicates referring to the ,same base tables 
0 unmatched local predicates 
0 RI-join predicates over not comimon tables 
0 local predicates over not common tables 

After transforming the predicates into conjunctive 
normal form, the process of predicale adjustment consists 
of the following three phases: - Phase I: Predicate Elimination 

All predicates of the common subsumer with no 
matching predicate in the subsumee: referring to the same 
set of tables are eliminated; non-local predicates with at 
least one column coming from a non-shared quantifier 
(i.e. join predicate to an extra child of the subsumer) are 
excluded from this rule. 

All predicates of the subsumee with a corresponding 
predicate referring to the same set of tables are added to 
the common subsumer under the consideration of 
predicate subsumption: 

Phase 11: Predicate Disjunction 

Psee matches exactly Pcser: 
Do nothing, because the predicates are identical. 
Pcser subsumes Psee: 
Do nothing, because Pcser is weaker then Psee. 
Psee subsumes Pcser: 
Eliminate the predicate Pcser from and add Psee to the 
common subsumer. 

0 No predicate subsumption relationship between Psee 
and Pcser: 
Extend the common subsumer predicate to (Pcser OR 
Psee). 

396 

 

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9. 
https://doi.org/10.1109/ICDE.2001.914852 

6  
 

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden



Phase 111: Adding of Extra Child Join Predicates 
In the last phase, those predicates of the candidate 
subsumee are added without modification to the common 
subsumer that are not yet processed within Phase I1 and 
show at least one column coming from a non-shared 
quantifier. To enable the generation of a correct 
compensation later during the match recording step, the 
columns of local predicates of the subsumee with no 
‘matching’ predicate in the common subsumer have to be 
added to the output of the common subsumer. 

The proposed predicate adjustment strategy exhibits a 
relaxation with regard to the ‘combination’ of local pred- 
icates. Consider the following case, where two queries are 
referring to the same tables R and S with local predicates 
on x (Ql) and y (Q2), respectively, e.g. Q1: P(R.x) AND 
P(S.x) and Q2: P(R.y) AND P(S.y) 

A disjunction of these predicates results in (P(R.x) AND 
P(S.x)) OR (P(R.~)  AND P(S.y)) or expressed in conjunctive 
normal from: (P(R.x) OR P(R.y)) AND (P(R.x) OR P(S.y)) AND 
(P(S.x) OR P(R.y)) AND (P(S.x) OR P(S.y)). Generating this 
predicate for a common subsumer would imply that no 
existing index could be exploited due to the disjunctive 
predicates referring to different tables. For this reason, we 
relax the predicate for the common subsumer by 
eliminating the disjunctive terms that reference multiple 
tables, e.g. the two middle terms in the conjunctive normal 
form representation above. It is worth mentioning that this 
predicate relaxation in the common subsumer does not 
have any impact on the query results due to the ’correct’ 
compensations generated during match recording. 
However this relaxation does have impact on the 
cardinality of the data stream and size of temporary tables. 
However, compared to the ‘correct’ predicate, the 
relaxation is not dangerous for the (most expensive) join 
operation, because the mixed terms could not be pushed 
down and applied before the join either. Thus, only 
succeeding operations like sorting for group-by etc. are 
affected by this predicate relaxation. 

4.6. Adjustment of Group-By Columns 
Analogous to predicates in select-boxes, the set of 

grouping columns of the group-by box must be adjusted 
for the generation of the common subsumer for group-by 
boxes. 

In an obvious first step, missing grouping columns of 
the candidate subsumee are added to the set of existing 
grouping columns of the common subsumer. This strategy 
however might turn out very dangerous, because the 
cardinality of the common subsumer data stream can 
increase significantly. With lgbll and lgb21 as the 
cardinalities of the single queries after grouping, the 
cardinality of the common subsumer can increase to lgbll 
* lgb21 in  the worst case. An alternative for other 
application areas might be the union on a per grouping 
basis, i.e. the use of grouping sets ([7], [12]), limiting the 
maximal cardinality of the common subsumer to lgbll + 

lgb21. 
Again, extending the list of grouping columns sounds 

very dangerous with respect to the cardinality of the data 
stream. However, since we target the data warehousing 
application area with a star-schema like database schema, 
restrictions are often made on columns, which are 
functionally dependent on the original grouping columns, 
e.g. year = ‘1999’, group by quarter. Adding such columns 
(like year) to the set of grouping columns does therefore 
not increase the cardinality. 

5. Performance Evaluations 

In this section we give and discuss some results of a 
performance evaluation of the proposed optimization tech- 
niques, based on the prototype implementation in DB2/v7 
using a lOOMByte TPCR scenario. The experiments show 
the runtimes needed for a full refresh of multiple ASTs in 
sequential mode compared to the runtimes needed when 
computed simultaneously by using the proposed common 
subsumer techniques. Moreover, each query refers to the 
same set of base tables (lineitem, orders, customer, nation, 
region as long as not otherwise noted). Different scenarios 
are used to model certain behavior. 

Scenario (A) in figure 8 shows the runtimes for identi- 
cal queries with a difference in the output list. This results 
in a ‘wide’ common subsumer and compensations consist 
of simple projections. Obviously, the speedup again scales 
nearly linearly with the number of queries. Moreover, it is 
nice to observe that the overall execution time with CS is 
independent from the number of participating queries. 
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Figure 8: Common Subsumer for Multiple AST Refresh 

In scenario (B), each query exhibits a local predicate 
referring to the same table, which enables the common 
sub-expression to generate a corresponding disjunctive 
expression and use of potentially existing indexes. As can 
be seen in Figure 8, the generation of a common sub- 
expression still yields a performance gain compared to the 
sequential execution. 

Scenario (C) addresses different sets of grouping 
columns. Each query has four out of five different 
grouping columns. Thus, the common subsumer pre- 
aggregates according to these five grouping columns. As 
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can be seen especially in the case of two queries, the 
compensations are more expensive, thus increasing the 
runtime compared to scenario (A). 

The last scenario (D) simulates a ‘typical’ application of 
a common subsumer as a mixture of scenarios (A), (B), 
and (C). The queries are defined over 11 tables with 
restrictions and grouping columns spread over the par- 
ticipating tables. Without going into detail here, we can 
observe a strong runtime reduction by injecting a common 
subexpression. 

6. Related Work 

The idea of evaluating common parts of a set of queries 
only once, i.e. the detection of common sub-expressions is 
nearly as old as query optimization itself (e.g. [5 ] ) .  First 
serious attempts to apply Mass Query Optimization 
techniques in relational database systems can be found in 
[6] and [l l] .  These papers try to come up with general 
solutions for the detection of existing common sub- 
expressions. As shown for example in [lo], the general 
,,Mass Query Processing“ problem is ”-hard. While these 
articles focus on the theoretical perspective, [2] gives an 
overall framework of MQO. The most interesting point in 
this paper is that they identify subproblems and explain the 
dependencies of different optimization directions. Neither 
aggregation nor the generation of common sub-expression 
are addressed in these articles. 

Newer work related to our application can be found in 
191, [l], [14], and [15]. The work of [9] targets the 
specification of greedy algorithms to cost different plans 
computing common subexpressions within a single query 
of across multiple queries. While this approach addresses 
the algorithmic perspective, we stress the implementation 
perspective. The only approach targeting the same area can 
be found in [14]. This approach is based on the physical 
data access level and tries to come up with an optimal 
access path for multiple queries having similar grouping 
attributes. Our proactive query matching approach 
however is based on logical entities (boxes and quantifiers) 
and applied during query rewrite. This provides the 
advantage that the optimizer must not be extended and that 
our approach can be seamlessly integrated on top of a 
traditional optimizer. Furthermore, applying the 
optimization during rewriting enables us to construct com- 
plex compensation graphs, which would be a very tough 
job for an optimizer. 

7. Summary 

The general idea of the proactive query matching 
technique is to systematically generate a common sub- 
expression for a set of similar queries. This paper gives an 
introduction of the existing matching technology in IBM 
DB2 UDB/UWO and details the necessary extensions to 
design, build and inject an artificial common 
subexpression into a global query graph for multiple local 

queries. The overall strategy is as simple as effective: try 
to establish a match and - if not successful - apply specific 
repair actions to make the match happen. Thus, using the 
regular matching technique we are not only able to identify 
common sub-expression to construct specially designed 
common sub-expressions, which did not exist in the 
original query graphs. Both strategies are prototypical 
implemented and evaluated in the context of 
simultaneously refreshing multiple ASTs but are subject of 
optimization in other application scenarios where the focus 
are complex grouping expression like CUBE(), ROLLUP(), or 
GROUPING SETS(). 
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