

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-787797

Wolfgang Lehner, Bobbie Cochrane, Hamid Pirahesh, Markos Zaharioudakis

fAST Refresh using Mass Query Optimization

Erstveröffentlichung in / First published in:

Proceedings 17th International Conference on Data Engineering. Heidelberg, 02.-
06.04.2001. IEEE, S. 391-398. ISBN 0-7695-1001-9

DOI: https://doi.org/10.1109/ICDE.2001.914852

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-787797
https://doi.org/10.1109/ICDE.2001.914852

fAST Refresh using Mass Query Optimization

Wolfgang Lehner*
University of Erlangen-Nuremberg

Martensstr. 3, Erlangen, 91058, Germany
wolfgang @ luhner.net

Abstract
Automatic Summary Tables (ASTs), more commonly known as
materialized views, are widely used to enhance query
performance, particularly for aggregate queries. Such queries
access a huge number of rows to retrieve aggregated summary
data while performing multiple joins in the context of a typical
data warehouse star schema. To keep ASTs consistent with their
underlying base data, the ASTs are either immediately
synchronized or fully recomputed. This paper proposes an
optimization strategy for simultaneously refreshing multiple
ASTs, thus avoiding multiple scans of a large fact table (one pass
for AST computation). A query stacking strategy detects common
sub-expressions using the available query matching technology
of DB2. Since exact common sub-expressions are rare, the novel
query sharing approach systematically generates common sub-
expressions for a given set of ,,related" queries, considering
diflerent predicates, grouping expressions, and sets of base
tables. The theoretical framework, a prototype implementation of
both strategies in the IBM DB2 UDB/UWO database system, and
performance evaluations based on the TPC/R data schema are
presented in this paper.

1. Introduction

Data Warehousing has inspired the database community
tremendously. Many new ideas were developed in this
context over the last few years. At the same time, many
old ideas have come to a rejuvenation and were adapted to
the warehouse application scenario. We follow the same
approach and pick up the idea of Mass Query Optimization
(MQO: [6] , [113) to simultaneously compute multiple
ASTs. The approach, performing an initial population or a
full refresh of a set of ASTs ([4]) within a single pass hides
a tremendous optimization potential.

In this paper we outline the currently existing MQO
framework of the IBM DB2 UDB/UWO database system
and propose an extension to this framework to
simultaneously compute the set of underlying queries of
registered ASTs. The general idea of our proposed
optimization technique is to massage a query graph in two
ways: if two queries share a common subexpression, we
may utilize it. However, if two queries are similar but do
not exhibit a common subexpression relationship, we
design, build and inject a minimal subgraph, acting as a
common subexpression for these queries.

Bobbie Cochrane, Hamid Pirahesh,
Markos Zaharioudakis

IBM Aimaden Research Center
650 Harry Road, San Jose CA, 95 120, U.S.A.

(bobbiec, pirahesh, markos) @almaden.ibm.com

Contribution of the Paper
Although not restricted to this area, we demonstrate the

feasibility of our optimization technique in the context of
simultaneously refreshing multiple ASTs by optimizing
the corresponding view definition queries. In detail, the
paper provides contribution in the following areas:

The Query Graph Model and a generic MQO framework
for query matching based on [161 is described.
Since the proposed optimization technique does not only
recognize existing common sub-expressions but
artificially generates generic common sub-expressions, it
applies to a much wider class of queries than prior work.

0 The proposed techniques are independent of specific
query patterns, implying that ASTs over (nearly)
arbitrary queries (nested, correlated, ...) may be subject of
optimization.
The presentation of our approach and all performance
evaluations are based on the TPC-H/R database schema

We give some performance figures based on a prototype
implementation within the IBM DB2 UDB/UWO
database system.
While existing work on Mass Query Optimization
focuses on the theoretical perspective, we give a detailed
description on how to implement MQO techniques. We
are not aware of any other work addressing this issue.

([131).

Structure of the Paper
The following section sketches the query matching

framework of the IBM DB2 UDB/UWO database system.
Section 3 explains the application of these matching
techniques and introduces the query stacking optimization
approach. Section 4 focuses on the novel strategy of query
sharing, which is evaluated by means of experiments in
section 5. Section 6 discusses related work in the area of
simultaneously optimizing multiple queries. The paper
closes with a summary in section 7.

' The work was performed while author was visiting scientist at the 1BM
Almaden Research Center.

391
1063-6382/01 $lO.OO,O 2001 IEEE

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9.
https://doi.org/10.1109/ICDE.2001.914852

1

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden

http://luhner.net
mailto:almaden.ibm.com

2. The DB2 Query Matching Framework

The DB2 query matching framework provides a sound
basis for identifying common sub-expressions in query
graphs. This section outlines the basic concepts of the DB2
Query Graph Model (QGM, [SI) and summarizes nec-
essary conditions to successfully establish a match
relationship between two queries. For a detailed descrip-
tion of the DB2 matching technique in the context of
transparently routing user queries to existing summary
tables, we refer to [16].

2.1. Example
To illustrate the proposed techniques, consider the

following query computing the overall quantity (sum-qty),
the average discount (avg-disc), the sum of base prices
(sum-base-price), and the sum of prices after discount
(sum-disc-price) per order status with a quantity greater
than 5 restricted to orders with a medium priority:
SELECT o-orderstatus

SUM(l-quantity) AS sum-qty,
AVG(l-discount) AS avg-disc,
SUM(l-extendedprice) AS sum-base-price,
SUM(!-extendedprice'(1-I-discount)) AS

sum-disc-price
FROM lineitem, orders
WHERE I-orderkey = o-orderkey
AND o-orderpriority = '3-MEDIUM'
GROUP BY o-orderstatus
HAVING MIN(l-quantity) > 5

This query (and all succeeding examples) are based on
the TPC-WR database schema ([13]), where the table
lineitem holds transactional data, which are evaluated
according to the three 'dimensions' of orders, parts, and
suppliers.

The order and supplier dimensions exhibit a hierarchical
structure according to the location of the customer placing
an order and according to the location of the supplier. It is
important to mention that it is advisable to explicitly
specify these 1-to-N relationships in terms of referential
integrity constraints during DDL time.

2.2. Overview of the DB2 Query Graph Model
In DB2, queries are parsed and internally represented by

a single QGM graph. The corresponding graph for the
above sample query is depicted in figure 1. In general, the
QGM data structures consist of boxes which are connected
by directed arcs (quantifiers). Boxes represent data
sources, e.g. base tables or table functions, and logical
operators. Select boxes stand for applying local predicates
andor performing join operations. Group-by boxes
aggregate along grouping columns, complex grouping
expressions using CUBE(), ROLLUP(), GROUPING SETS()
expressions, or a combination of both ([3]). Quantifiers
denote the data streams flowing from one box to another
one.

PRD1:- iTr!I;z;:%Jm. o_o&nratw.

SUM(J.artmd.4,tim ' (1 CdranlJJ AS um.drgn-,

COUNT(.dsrcmtJ AS Lz
GRP 0-ORDERSTATUS groupby M J M I ~ ~ ~ * ~ , AS w

,C9u"rlY.Csr"m, J.dx;arr. o.ae+nafYI

PRDI: LORDERKEY I 0-ORDERNEY
PRD2: LORDERPPJORlTY. 'WEM sB/eCt

o.ae+l*sy.
0.adWa.lw.
O.ae+mmnV

J.ae+l*sy.
CWW. l-*"p"C...

J-,jXd .,. :$~fi6fi: ::.&+j$:::

Figure 1: Sample QGM graph

Each box may have multiple outgoing quantifiers
(consumers), i.e. a specific box may be a child of more
than one parent box. A box with multiple outgoing
quantifiers usually represents the root of a QGM sub-graph
which is considered a common sub-e.rpression.

The output of a box corresponds to the set of columns
which are produced by this box. Such columns may either
be single columns or complex expressions which are
potentially derived from multiple incoming columns, e.g.
SALES*PRICE AS REVENUE. Thus each box realizes some
kind of projection operator, providing only those columns
that are consumed by at least one parent box. Moreover it
is obvious that multiple incoming c~~lumns can contribute
to a single output column and vice versa a single incoming
column can appear in multiple output columns, e.g.
PRICE*TAX AS X and PRICE'DISCOUNT AS Y. Additionally,
a box can absorb incoming columns (for example if that
column is only needed for a local predicate but not part of
the output column list) or arbitrarily produce outgoing
columns (for example when a single column is selected
twice).

If a box has more than one outgohg quantifier then any
subset of the output columns of that box may flow along
any outgoing quantifier, thus splitting the producing data
stream arbitrarily. For example the columns PRICE'TAX
and PRICE'DISCOUNT may be useld by different parent
boxes.

2.3. Overview of the DB2 Query Matching
Technique

To model common parts (i.e. sub-graphs) of two
queries, relationships between those queries are recorded
on a box-by-box level using a 'match' relationship. In the
context of a match, a box is called a subsumer, if it
provides at least all the data, which are necessary to
compute the output of the corresponding subsumee box
(figure 2). If the adjustment of the data requires some kind
of additional work, then a compensation box is created
during match recording. These compensation boxes
provide the missing part for successfully substituting a
subsumee by the corresponding subsumer.

General Matching Conditions
Recording a match between two QGM boxes requires

392

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9.
https://doi.org/10.1109/ICDE.2001.914852

2

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden

that both candidate boxes exhibit the same box type and
that base table boxes refer to the same data source.
Moreover the expressions comprising the result of the
subsumee box must be derivable from the subsumer box.
Simple columns must be generated by the subsumer. Col-
umns consisting of complex expressions must be
computable from an expression of the subsumer. For
example, if the subsumee has a COUNT(X) column then
the subsumer also has to produce a COUNT(X) column.
Note that the corresponding compensation box has to
sum up the COUNT()-figures of the subsumer, in order to
correctly retrieve COUNT()-figures of the subsumee.

Figure 2: Example of a Match and a Compensation

To record a match between two select boxes, the local
predicates of the subsumer must be equal or weaker than
the predicates of the subsumee. In general, the
compensation box inherits all local predicates of the
subsumee box that are not present in the subsumer. If the
local predicates of a subsumer and subsumee are
identical, then no compensation predicate is necessary.

Join predicates of two boxes must in general match
exactly and the two candidate boxes must reference the
same set of children. However, the existence of a loss-
less join (implemented via RI constraints) allows two
exceptions to this general rule:

8 Extra Child Compensation

Match Conditions for Local Predicates

Matching Conditions for Joins

The matching conditions for joins are also fulfilled, if
each child table of the subsumer, which is not a child
table of the subsumee is connected to the subsumer
through an RI join, i.e. a lossless join.

Each child table of the subsumee, which is not a child
of the subsumer is re-joined in the compensation box,
independent of the type of the join. This of course
requires that the necessary join column survives the
subsumer.

Rejoin of Additional Children

Match Conditions for Grouping Columns
The grouping expression of the subsumee must be
derivable from the grouping expression of the subsumer.
In general both boxes may exhibit arbitrary complex
grouping expressions. For the remainder of the paper we
restrict the presentation to simple grouping columns
where the subsumee grouping columns must be a subset
of the subsumer grouping columns*.

2.4. Summary of Matching Conditions
To summarize the conditions for recording box-level

matches between two queries, let us refer to the refresh of
the two Automatic Summary Tables ASTl and AST2:

CREATE SUMMARY TABLE astl AS (
SELECT I-shipmode, n-name,

SUM(l-quantity) AS sum-qty,
SUM(l-extendedprice) as sumgrice,
COUNT(*) as count-order
lineitem, orders, customer, nation, region
Lorderkey = o-orderkey AND 0-custkey = c-custkey
c-nationkey = n-nationkey AND n-regionkey E r-regionkey

GROUP BY I-shipmode. n-name) ...

CREATE SUMMARY TABLE as12 AS (
SELECT I-shipmode, I-shipinstruct. n-name, n-regionkey,

FROM
WHERE

AND
AND r-name = 'EUROPE

SUM(l-quantity) AS sum-qty.
SUM(l-extendedprice) as sumgrice.
COUNT(') as count-order

FROM lineitem, orders, customer, nation
WHERE I-orderkey = o-orderkey

AND o-custkey = c-custkey
AND c-nationkey = n-nationkey

GROUP BY I-shipmode, I-shipinstruct. n-name, n-regionkey) ...

If we consider ASTl in the role of a subsumee and AST2
in the role of a subsumer, then the lower select boxes
match because both boxes have the same join predicate
with regard to the set of child tables and only ASTl has a
local predicate. Moreover, the extra child table of AST1,
region, is joined using the primary/foreign key relationship
of nation and region table. Additionally, ASTP produces a
superset of columns with regard to AST1. The group-by
boxes also match, because the grouping columns of ASTl
are a subset of the grouping columns of AST2 and AST2
produces all aggregate function columns, which are needed
for the computation of ASTl.

3. Using Common Sub-Expressions

The first strategy, which is pursued in a first place in
optimizing the execution of a multiple AST refresh is
called query stacking. The system tries to 'order' the
execution of the queries and use the result of a previous
query for the computation of the current and succeeding
queries. This strategy may be seen as an application of the
existing query matching framework of DB2. The achieved
detection and utilization of common sub-expressions
proves extremely powerful in the presence of aggregation
operations, where aggregation dependencies can be
exploited to perform stacking of queries.

*Note that additionally the set of group-by columns of the subsumer has to

encompass all local predicate columns of the subsume.

393

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9.
https://doi.org/10.1109/ICDE.2001.914852

3

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden

a) 151 Level ME4ching wlhConpmsalim

b) 2ndL-I M3lchhgvithCmpmaUm

Figure 3: Matching with Compensation

To record matches and generate compensations, each
query graph is traversed in a bottom-up manner. The
attempt is made to bring two boxes at the same level of
each query graph into a subsumee-subsumer relationship.
If a match between two boxes was successfully
established, all combinations of the parent boxes become
subject of recording further matches.

To refer to the ongoing example, the lowest select
boxes for ASTl and AST2 fulfill the necessary conditions.
In a first step (figure 3a, (l)), the subsumee box is copied,
the predicates are adjusted according to the rules
introduced in the preceding section and a quantifier
between the current subsumer box and the new com-
pensation box is created (2). Since the subsumee box has
an extra incoming quantifier from the region table, a new
quantifier fiom the region table is added to the
compensation box (3).

For recording a match at a further level of a query
graph, the already existing compensation box is pulled up
to the new subsumer box (group by box in the ongoing
example of figure 3b) by first copying the box (1) and then
swinging the quantifier from the subsumer box below to
the current subsumer box (2). Incoming quantifiers from
base tables remain unchanged. Thereafter, the current
subsumee box is copied (3) and the incoming quantifier is
swung to the new compensation box (4).

Finally, the query graph of the subsumee is substituted
by the compensation graph built during the generation of
the matches. Figure4 shows the situation after applying
the query stacking technique to the two sample ASTs. The
upper half of that new graph corresponds to the newly
generated compensation graph, reflecting the 'old'
subsumee stacked on top of the subsumer. The region table
is joined and the local predicate restricting the query
context to 'Europe' is applied in the lowest select box of
the compensation.

Figure 4 QGM Graph after Query Stacking

Summary
Query stacking, where a single query provides some

kind of common sub-expression for multiple queries being
executed at the same time is a well-known technique from
a theoretical point of view. Apparently stacking is not
possible if the queries do not follow a strict subsumer-
subsumee relationship. For example, if AST2 would not
have n-regionkey as a member of the .grouping column list,
recording a match between the lower select boxes would
already fail.

4. Building A Common Subsumer

The general idea of query sharing is that, if the query
stacking technique is not applicable for two given query
graphs, then the system might come up with an artificially
constructed common sub-expression, which then can be
exploited by both queries. To comply with the already
introduced notion of subsumer and subsumee, we refer to
such a generated query (sub-)graph as 'common
subsuner'. Again, we demonstrate our approach in the
context of the refresh of two summary tables.

4.1. Example of a Common Subsumer
To explain the generation process of a common

subsumer, we again refer to the TPC-I-I/R data schema and
concentrate on the optimization of the queries executed to
refresh the following two summary tables:
SELECT I-shipdate, I-commitdate,

SUM(1Lquantity) AS sum-qty,
SUM(l-extendedprice) AS sum-price,
COUNT(*) AS count-order

FROM lineitem
GROUP BY I-shipdate, I-commitdate

SELECT I-shipdate, I-receiptdate,
SUM(1Lquantity) AS sum-qty,
AVG(l-discount) AS avg-disc,
AVG(l-tax) AS avg-tax,
COUNT(') AS count-order

FROM lineitem
GROUP BY I-shipdate, I-receiptdate

Since neither the select-clauses nor the group-by-
expressions are compatible, the execution of the queries
could not be optimized by only applying the 'Query
Stacking' technique, i.e. exploiting existing common sub-
expression. The idea behind the common subsumer,

394

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9.
https://doi.org/10.1109/ICDE.2001.914852

4

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden

mapped onto this specific example, is to 'massage' the
global query graph and inject an artifical minimal common
sub-expression. In general, we have to perform the
following ,,fixes" to make two boxes share a common
subsumer:

uniodadjust the select-lists of the participating queries
delay the application local predicates to compensation or
apply a disjunction of local predicates in the common
subsumer
keep extra children and add re-join children
uniodadjust the grouping expressions

4.2. First Level Common Subsumer
The level-oriented production of a common subsumer

box consists in two separate steps of building and
matching against the common subsumer.

Phase 1: Building the Common Subsumer
The general procedure is to copy the candidate

subsumer box and 'enrich' it with the missing information
that is needed to make it a valid subsumer for the
candidate subsumee box.

canddate
srhsumer

mmnwn
subsimer

I-shpdate Lrae,pdee
I,bDICvLT I L ~ n t t x Ldswnt Liar

select

_shpdaa ILwcepIdm
Lqlmt,r)r l~dsiscolnl l&a

a)CapyRocass P .Zb oIhaCanddae Subsumr

&&IS C-Dn
d s u m e e 3 , . m M ~ ~ s r b s u m

Lqmmiy, f~eaendo+nca~

b) Algmmt Process ollheCardidas Subsume

Figure 5: Generation of a lst Level Common Subsumer

Due to the box copy process, the newly generated
common subsumer box inherits the subsumer's input
columns*from the common base table as well as its output
columns (figure 5a). To make the common subsumer a
subsumer for the subsumee, we have to add the missing
columns, i.e. those columns which are referenced by the
subsumee but not by the subsumer to the input of the
common subsumer. Moreover, all columns, which are
produced by the subsumee but not by the subsumer have to
be added. To accomplish this task, we simulate the
recording of a regular subsumeehbsumer match. Each
time, the regular matching procedure reports a failure due
to violating a matching condition, we try to eliminate this
defect by performing the necessary repairs, i.e. adding
columns to the input and output of the common subsumer
box. Figure bb illustrates this step, where the columns
I-extendprice and I-commitdate are added to the input as well

"The 'inheritance' ofjoin and local predicates is discussed in subsection 4.6

as to the output of the common subsumer box.

Phase 2: Matching against the Common Subsumer
In the second phase of a common subsumer box

generation, we use the regular matching procedures again
to record matches between the candidate subsumee and the
common subsumer and between the candidate subsumer
and the common subsumer. Although there already exists a
temporary match between the subsumee and the common
subsumer, this match is dropped at the end of the first
phase and reestablished to guarantee the correct generation
of the associated compensation box. For the same reason,
the match between the candidate subsumer and the
common subsumer is necessary, despite the original
duplication of the two boxes. It is worth mentioning here
that the matching against the common subsumer has to be
successful, because the common subsumer was exactly
designed for that purpose. Figure 6 shows :he scenario
after finishing the generation of the common subsumer at
the first level.

4.3. Common Subsumer at Higher Levels
Basically, the generation of a common subsumer at

higher levels of a query plan consists of the same phases as
a first level common subsumer generation. However, there
are some additional steps, which are outlined in this
subsection. Figure 6 illustrates the procedure according to
the ongoing sample scenario.

candidte m m m n candidate
subsumee subsrmer subsume!

Figure 6 Generation of a 2"d Level Common Subsumer

After copying of the subsumer box (right group-by box
in figure 6: (l)), this box is fed from the lower box of the
candidate subsumer. However to be correct, the copy has
to be fed by the common subsumer box of the level below
(middle select box in that scenario). To swing the
incoming quantifier from the subsumer candidate select
box to the common subsumer select box (2) a column
mapping between the two boxes is necessary. To generate
such a column mapping, we can take advantage of the
already recorded match at the lower level: for each column
(or expression generating a column) of the subsumee box,
we are searching the corresponding column in the
subsumer box of that match and record the corresponding
column numbers. Since there already exists a match
between these two boxes, we can guarantee a successful
generation of that column mapping.

395

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9.
https://doi.org/10.1109/ICDE.2001.914852

5

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden

In analogy to the first level common subsumer
generation, the subsumer copy is enriched by the missing
columns and expressions, which are needed to fulfill a
subsumer role for the subsumee. Again, missing columns
have to be added to the input and to the output of that box.
In contrast to the first-level generation, the two boxes do
not share a common child box, i.e. a base table. Therefore,
the existing match between the subsumee and the common
subsumer at the lower level is used to identify the missing
columns and add them to the input of the common
subsumer box (3). Additionally and contrary to the lower
select boxes, it is worth mentioning that in case of group-
by boxes not only simple columns, but complete
expressions like aggregation functions with the
corresponding parameter columns are transferred from the
subsumee to the common subsumer (4). In the specific
example of figure 6, the columns I-commitdate and
SUM(l-extendedprice) are added to the output of the common
subsumer.

After finishing the generation of the common subsumer
box for that specific level, we again record matches
between the candidate subsumee and the common
subsumer and between the candidate subsumer and the
common subsumer. During that procedure, existing
compensations are pulled up to the current level and
extended to compensate the differences at the current
level.

4.4. Multiple Children Adjustment
To cover multiple children during the generation of a

common subsumer, additional steps are necessary after
copying the candidate subsumer box. Consider the case
when the subsumer contains a table which is not refer-
enced in the candidate subsumee. The inherited quantifier
to that child is only kept, if the join corresponds to an
existing referential integrity constraint, where the extra
child table holds the primary key and the shared table
(shared between candidate subsumee and candidate
subsumer) holds the foreign key. Otherwise, the overall
generation of the common subsumer is aborted.

Figure 7 shows a sample scenario of two queries, where
the supplier table is referenced only by the candidate
subsumer. Since the associated join realizes a
primary/foreign key relationship (ps-suppkey=s-suppkey),
the inherited quantifier from the common subsumer box to
the candidate subsumer box (and the join predicate -
subsection 4.5) is kept without any modifications (1).

candidate c o n " candidate
subsume subsumr subsumr

Figure 7: Common Subsumer in the Presence of Joins

The same strategy applies if the candidate subsumee
references a table, which is not a child of the candidate
subsumer. As soon as the join corresponds to a referential
integrity constraint, a new quantifier from that child table
is added to the common subsumer box (2). All columns,
which flow from the child table to the candidate subsumee
box are also added to this new quantifier and to the output
of the common subsumer box.

Since the left query of the ongoing example is grouping
by part name (p-name), it needs a reference to the part
table. Thus, a quantifier is added ranging from the part
table to the common subsumer box and the p-key and
p-name columns are pulled up.

Note however that, if the join witlh an extra child does
not exhibit the characteristics of 'lossless'-ness, no
common subsumer will be generated for that candidate
subsumeekandidate subsumer pair.

4.5. Predicate Adjustment
The process of predicate adjustment reflects the most

critical part in building a common subsumer for two given
queries. The predicate adjustment process must consider
the following scenarios:

0 common join predicates
0 local predicates referring to the ,same base tables
0 unmatched local predicates
0 RI-join predicates over not comimon tables
0 local predicates over not common tables

After transforming the predicates into conjunctive
normal form, the process of predicale adjustment consists
of the following three phases: - Phase I: Predicate Elimination

All predicates of the common subsumer with no
matching predicate in the subsumee: referring to the same
set of tables are eliminated; non-local predicates with at
least one column coming from a non-shared quantifier
(i.e. join predicate to an extra child of the subsumer) are
excluded from this rule.

All predicates of the subsumee with a corresponding
predicate referring to the same set of tables are added to
the common subsumer under the consideration of
predicate subsumption:

Phase 11: Predicate Disjunction

Psee matches exactly Pcser:
Do nothing, because the predicates are identical.
Pcser subsumes Psee:
Do nothing, because Pcser is weaker then Psee.
Psee subsumes Pcser:
Eliminate the predicate Pcser from and add Psee to the
common subsumer.

0 No predicate subsumption relationship between Psee
and Pcser:
Extend the common subsumer predicate to (Pcser OR
Psee).

396

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9.
https://doi.org/10.1109/ICDE.2001.914852

6

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden

Phase 111: Adding of Extra Child Join Predicates
In the last phase, those predicates of the candidate
subsumee are added without modification to the common
subsumer that are not yet processed within Phase I1 and
show at least one column coming from a non-shared
quantifier. To enable the generation of a correct
compensation later during the match recording step, the
columns of local predicates of the subsumee with no
‘matching’ predicate in the common subsumer have to be
added to the output of the common subsumer.

The proposed predicate adjustment strategy exhibits a
relaxation with regard to the ‘combination’ of local pred-
icates. Consider the following case, where two queries are
referring to the same tables R and S with local predicates
on x (Ql) and y (Q2), respectively, e.g. Q1: P(R.x) AND
P(S.x) and Q2: P(R.y) AND P(S.y)

A disjunction of these predicates results in (P(R.x) AND
P(S.x)) OR (P(R.~) AND P(S.y)) or expressed in conjunctive
normal from: (P(R.x) OR P(R.y)) AND (P(R.x) OR P(S.y)) AND
(P(S.x) OR P(R.y)) AND (P(S.x) OR P(S.y)). Generating this
predicate for a common subsumer would imply that no
existing index could be exploited due to the disjunctive
predicates referring to different tables. For this reason, we
relax the predicate for the common subsumer by
eliminating the disjunctive terms that reference multiple
tables, e.g. the two middle terms in the conjunctive normal
form representation above. It is worth mentioning that this
predicate relaxation in the common subsumer does not
have any impact on the query results due to the ’correct’
compensations generated during match recording.
However this relaxation does have impact on the
cardinality of the data stream and size of temporary tables.
However, compared to the ‘correct’ predicate, the
relaxation is not dangerous for the (most expensive) join
operation, because the mixed terms could not be pushed
down and applied before the join either. Thus, only
succeeding operations like sorting for group-by etc. are
affected by this predicate relaxation.

4.6. Adjustment of Group-By Columns
Analogous to predicates in select-boxes, the set of

grouping columns of the group-by box must be adjusted
for the generation of the common subsumer for group-by
boxes.

In an obvious first step, missing grouping columns of
the candidate subsumee are added to the set of existing
grouping columns of the common subsumer. This strategy
however might turn out very dangerous, because the
cardinality of the common subsumer data stream can
increase significantly. With lgbll and lgb21 as the
cardinalities of the single queries after grouping, the
cardinality of the common subsumer can increase to lgbll
* lgb21 in the worst case. An alternative for other
application areas might be the union on a per grouping
basis, i.e. the use of grouping sets ([7], [12]), limiting the
maximal cardinality of the common subsumer to lgbll +

lgb21.
Again, extending the list of grouping columns sounds

very dangerous with respect to the cardinality of the data
stream. However, since we target the data warehousing
application area with a star-schema like database schema,
restrictions are often made on columns, which are
functionally dependent on the original grouping columns,
e.g. year = ‘1999’, group by quarter. Adding such columns
(like year) to the set of grouping columns does therefore
not increase the cardinality.

5. Performance Evaluations

In this section we give and discuss some results of a
performance evaluation of the proposed optimization tech-
niques, based on the prototype implementation in DB2/v7
using a lOOMByte TPCR scenario. The experiments show
the runtimes needed for a full refresh of multiple ASTs in
sequential mode compared to the runtimes needed when
computed simultaneously by using the proposed common
subsumer techniques. Moreover, each query refers to the
same set of base tables (lineitem, orders, customer, nation,
region as long as not otherwise noted). Different scenarios
are used to model certain behavior.

Scenario (A) in figure 8 shows the runtimes for identi-
cal queries with a difference in the output list. This results
in a ‘wide’ common subsumer and compensations consist
of simple projections. Obviously, the speedup again scales
nearly linearly with the number of queries. Moreover, it is
nice to observe that the overall execution time with CS is
independent from the number of participating queries.

Ql
3

3)

a
a,

15

n
5

A B C D A B C D A B C D

A dfhwcenresllt d m
a ea9lW b l b w local pedcaerrrerrg b the salT3trtg
c e a c h q u s y b 4 o l l d 5 9 I g d m
DnixhledAELm3Cwthdnasriltablas

Figure 8: Common Subsumer for Multiple AST Refresh

In scenario (B), each query exhibits a local predicate
referring to the same table, which enables the common
sub-expression to generate a corresponding disjunctive
expression and use of potentially existing indexes. As can
be seen in Figure 8, the generation of a common sub-
expression still yields a performance gain compared to the
sequential execution.

Scenario (C) addresses different sets of grouping
columns. Each query has four out of five different
grouping columns. Thus, the common subsumer pre-
aggregates according to these five grouping columns. As

397

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9.
https://doi.org/10.1109/ICDE.2001.914852

7

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden

can be seen especially in the case of two queries, the
compensations are more expensive, thus increasing the
runtime compared to scenario (A).

The last scenario (D) simulates a ‘typical’ application of
a common subsumer as a mixture of scenarios (A), (B),
and (C). The queries are defined over 11 tables with
restrictions and grouping columns spread over the par-
ticipating tables. Without going into detail here, we can
observe a strong runtime reduction by injecting a common
subexpression.

6. Related Work

The idea of evaluating common parts of a set of queries
only once, i.e. the detection of common sub-expressions is
nearly as old as query optimization itself (e.g. [5]) . First
serious attempts to apply Mass Query Optimization
techniques in relational database systems can be found in
[6] and [l l] . These papers try to come up with general
solutions for the detection of existing common sub-
expressions. As shown for example in [lo], the general
,,Mass Query Processing“ problem is ”-hard. While these
articles focus on the theoretical perspective, [2] gives an
overall framework of MQO. The most interesting point in
this paper is that they identify subproblems and explain the
dependencies of different optimization directions. Neither
aggregation nor the generation of common sub-expression
are addressed in these articles.

Newer work related to our application can be found in
191, [l], [14], and [15]. The work of [9] targets the
specification of greedy algorithms to cost different plans
computing common subexpressions within a single query
of across multiple queries. While this approach addresses
the algorithmic perspective, we stress the implementation
perspective. The only approach targeting the same area can
be found in [14]. This approach is based on the physical
data access level and tries to come up with an optimal
access path for multiple queries having similar grouping
attributes. Our proactive query matching approach
however is based on logical entities (boxes and quantifiers)
and applied during query rewrite. This provides the
advantage that the optimizer must not be extended and that
our approach can be seamlessly integrated on top of a
traditional optimizer. Furthermore, applying the
optimization during rewriting enables us to construct com-
plex compensation graphs, which would be a very tough
job for an optimizer.

7. Summary

The general idea of the proactive query matching
technique is to systematically generate a common sub-
expression for a set of similar queries. This paper gives an
introduction of the existing matching technology in IBM
DB2 UDB/UWO and details the necessary extensions to
design, build and inject an artificial common
subexpression into a global query graph for multiple local

queries. The overall strategy is as simple as effective: try
to establish a match and - if not successful - apply specific
repair actions to make the match happen. Thus, using the
regular matching technique we are not only able to identify
common sub-expression to construct specially designed
common sub-expressions, which did not exist in the
original query graphs. Both strategies are prototypical
implemented and evaluated in the context of
simultaneously refreshing multiple ASTs but are subject of
optimization in other application scenarios where the focus
are complex grouping expression like CUBE(), ROLLUP(), or
GROUPING SETS().

References
[l] Agrawal, S.; Agrawal, R.; Deshpande, P. M.; Gupta, A.;
Naughton, J.F.; Ramakrishnan, R.; Sarawagi, S.: On the-
Computation of Multidimensional Aggregafes. In: VLDB’96

[2] Alsabbagh, J.R.; Raghavan, V.V.: A Fcamework for Multiple
Query Optimization, In: RIDE’92

[3] Gray, J.; Bosworth, A.; Layman, A.; Pirahesh, H.: Data Cube:
A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Total. In: ICDE’96

[4] Gupta, A.; Mumick, LS.: Materialized Views: Techniques,
Implementations, and Applications, MIT Press, 1999
[5] Hall, P.V.: Common subexpression identification in general
algebraic systems. Technical Report UKSC 0060, IBM United
Kingdom Scientific Centre, Nov, 1974.
[6] Jarke, M.: Common subexpression isolation in multiple query
optimization. In: Query Processing in Database Systems, 1984
[7] Lehner, W.; Sidle, R.; Pirahesh, H.; Cochrane, B.:
Maintenance of Automatic Summary Tables in IBM DB2/UDB.
In: SIGMOD’2000

[8] Pirahesh, H.; hung, C.; Hasan, W.: A lRule Engine for Query
Transformation in Starburst and IBM DB2 C/S DBMS. In:
ICDE’97

[9] Roy, P.; Seshadri, S.; Sudarshan, S.; Bhobe, S.: Efficient
Algorithms for Multi Query Optimization. In: SIGMOD’2000

[101 Sellis, T.; Ghosh, S.: On the Multiple-Query Optimization
Problem. In: IEEE Transactions on Knowledge and Data
Engineering 2(1990)2

[l l] Sellis, T.K.: Multiple Query Optimization. In: ACM
Transactions on Database System, 13(1988)1

[121 N.N.: ISO/IEC 9075:1999 Information technology --
Database languages -- SQL, 2000

[13] N.N.: TPC-R Benchmark Specification Rev. 1.0.1.
Transaction Processing Performance Council, 1999
[14] Yang, J.; Karlapalem, K.; Li, Q.: Algorithms for
Materialized View Design in Data Warehousing Environment.
In: VLDB’97

[15] Zhao, Y.; Deshpande, P.M.; Naughton, J.F.; Shukla, A.:
Simultaneous Optimization and Evaluation of Multiple
Dimensional Queries. In: SIGMOD’98
[16] Zaharioudakis, M.; Cochrane, R.; Pirahesh, H.; Lapis, G.;
Urata, M.: Answering Complex SQL Queries Using Summary
Tables. In: SIGMOD’2000

398

Final edited form was published in "Proceedings 17th International Conference on Data Engineering", Heidelberg, 2001. ISBN 0-7695-1001-9.
https://doi.org/10.1109/ICDE.2001.914852

8

Provided by Sächsiche Landesbibliothek Staats- und Universitätsbibliothek Dresden

	fAST_refresh_using_mass_query_optimization_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Wolfgang Lehner, Bobbie Cochrane, Hamid Pirahesh, Markos Zaharioudakis
	fAST Refresh using Mass Query Optimization

	fAST_refresh_using_mass_query_optimization_PP.pdf

