Cache-Aware Query Routing in a Cluster of Databases

Uwe Rohm Klemens Bhm Hans-dig Schek
Swiss Federal Institute of Technology
ETH Zentrum, 8092 Zurich, Switzerland
{roehm,boehm,schék@inf.ethz.ch

Abstract via aninput queue. The coordinator decides on the
execution order and the routing of the queries. This
We investigate query routing techniquesinaclus- paper assumes full replication. This gives us max-
ter of databases for a query-dominant environment. imum flexibility where to execute a query. Given
The objective is to decrease query response time. this, our objective is to base the routing decision on
Each component of the cluster runs an off-the-shelf the states of the component caches. This brings up a
DBMS and holds a copy of the whole database. The number of questions:
cluster hasa coordinator that routes each query toan

appropriate component. Considering queries of real- e How to obtain or at least approximate the state
istic complexity, eg., TPC-R, this article addresses of a component cache? In a cluster architecture,
the following questions: Can routing benefit from with components being black-boxes, one cannot
caching effects due to previous queries? Snce our access the cache directory and look up the con-
components are black-boxes, how can we approxi- tent of the cache.

mate their cache content? How to route a query,
given such cache approximations? To answer these
questions, we have developed a cache-aware query
router that is based on signature approximations of
gueries. e report on experimental evaluations with
the TPC-R benchmark using our PowerDBdatabase
cluster prototype. Our main result is that our ap-
proach of cache approximationrouting is better than
state-of-the-art strategies by a factor of two with re-
gard to mean response time.

e How to quantify the benefit from evaluating a
given query on a particular component, given
an approximation of the cache state? With ‘low-
level’ data objects, i.e., disk pages and page ac-
cess operations, the caching benefit is either 1
(= page isinthe cache) or 0 (= page is not in the
cache). When looking at queries that possibly
refer to a number of relations, we need a more
sophisticated model.

e Having estimated that benefit, how to actually
route queries? Are the cache states the only pa-
1. Introduction rameter of the routing decision?

Which performance improvements can be
achieved using such aache approximation
router? How does such a router compare to
one that has apriori knowledge regarding the
caching benefit?

[J
A cluster of databases is becoming a cost-effective
alternative to multiprocessor database management
systems on mainframes. Instead of scaling up the
idea is to “scale out” [8] by adding more database
components to the cluster. The challenge with such
an architecture is to coordinate the cluster compo- Our interest is to learn how much we can achieve
nents in order to provide a simple database syst@gmquantitative terms with simple mechanisms ad-
view to the clients. dressing these questions. We investigate OLAP
The object of this present investigation is a clustueries, i.e., queries that are /O intensive and long
ter of relational databases, i.e., eammponent of running. Our general idea is to derive the cache
the cluster runs an off-the-shelf RDBMS. The archg¢ontent or at least an approximation of it from the
tecture is coordination-based (cf. Figure 1). Clientpieries that a component has evaluated most re-
communicate only with a distinguished node, the cently. Throughout this paper, we will work with
ordinator. Incoming queries arrive at the coordinatovarious approximations of the content of a cache with

different degrees of sophistication. We will refer tpresently conducted at ETH Zurich. The objective
such an approximation briefly aache state. We will is to build a high-performance DBMS using off-the-
also discuss and evaluate alternative definitions of thieelf hardware and software components as much as
benefit of a cache statefor a query. Based on the ben-possible. Another research interestafwerDB be-

efit values, the coordinator routes the queries. Tligles query routing, is scheduling at the coordinator
may also include reordering of the input queue. level. However, this is not the topic of this paper.

In more detail, we proceed in two steps: first, The remainder of this paper has the following
we consider the case that the set of queries is fixattucture: The subsequent section discusses related
Note that other work on query routing limits itselfwork. In Section 3, we give an overview of query
to this restrictive case [14, 1]. We for our part se@uting in a coordination-based architecture. Sec-
this case as an upper bound of the benefit of caclien 4 describes different routers compared in this
aware routing. It allows to pre-compute benefits giaper, signature-based approximation of query re-
cache states for queries. As a second step, we cauits, and corresponding benefit models. Section 5
sider the general case where queries are arbitrarydéscribes the results of our performance evaluations.
this case, we dynamically compute the caching be®ection 6 concludes the paper.
efit by approximating the sets of tuples accessed by
queries. We have run extensive experiments usin@ aRelated \Wor k
prototype system. By using all queries of the TPC-R
benchmark (and not only a subset), our experimen- op important issue that seems to be closely re-
tal setup is realistic. We have evaluated the differgje to the topic of this paper is distributed caching
approaches using two metrics: mean response ti §, 13]. There, the underlying assumption is that
and throughput. The experiments study the effect 9f o, component has a page cache. An important ob-
varying cache sizes as well as of different numbetsy ation is that it may be cheaper to fetch pages
of co.mponents. This present investigation does NP4 a remote cache than from disk [13]. Work
consider update statements. on distributed caching addresses the questions where

Our main results are as follows: Cache apg fetch the pages and how appropriate replacement
proximation based query routing significantly repicies look like. For example, instead of just drop-
duces mean response times, as compgred to rou ﬁ‘% a page from a cache, we might transfer it to an-
schemes that are not cache-aware. Different defifiner cache [15]. Distributed caching is also an issue
tions of ‘benefit’ fare differently with the two evalu-;, \waww proxy management [6] and with regard to
ation metrlcs. We obtained the best' resu'lts V\{hen WBerating systems (global memory management) [7].
approximated the cache content using bit string Sigrever, these investigations evaluate cache main-
natures of queries and normalized the benefit valugiance policies. Their basic assumption is that the
with the execution costs of statements. Such a ropiche manager can be implemented from scratch or
ing algorithm more than halves mean response timgy; ot |east the cache directory is accessible. We in

as compared to non-cache-aware strategies. S realistically assume that the cache directory is
our approach deals with conjunctive SQL queries agdt of 5 component and hence is not readable from

black-box components, we believe thatitis very gegyside. In consequence, caching strategies for dis-
eral, and that our results are remarkable. tributed systems cannot be implemented on top of

Clients off-the-shelf database components. Another differ-
ence between our approach and other work on dis-
queries Y’ tributed caching is as follows: we consider complex
Coordinator OLAP queries instead of simple access operations to
‘low-level’ data objects, i.e., page reads.
A Another recent issue with regard to caching is
([) Cluster of Databases refined cache admission and replacement strategies,
EX EX e known assemantic caching: [11] gaghes query re-
sults as a whole based on a sophisticated cost model.
Bgt it relie.s on an exact query match. [12] refines
- - = this work in that it looks for cached query results
Component1 Component 2 Component 3 Component n which subsume a submitted query. [4] goes into

a similar direction by introducing the notion of
mainder query. Such a query retrieves only data that
This work is part of the PowerDB project is not already in the cache. [5] explicitly considers

Figure 1. Architecture of PowerDB.

aggregate relationships for cache management amdcute queries in parallel. In our terminologyut-

computation of remainder queries. Work on semaimg of a (singl€) query is the decision which compo-

tic caching is usually based on assumptions differamnt shall execute a query.

from our current ones. However, there is a relation- The coordinator processes the input queue period-

ship between semantic caching and this work hereally or if the queue exceeds a certain threshold size.

Consider a DBMS that is a component in a compo&iven this,routing of a set of queries consists of two

ite system. Furthermore, assume that it implemesteps: first, the coordinator decides in which order to

semantic caching. In this case, cache approximationte the queries in the input queue. Second, itroutes

could take the particular relationship between queridee individual queries in this order. We illustrate both

and cache content into account as well in order $teps by means of one specific routing algorithm:

yield better results. But as far as we know, this Erst-Come-First-Free-Server (FCFFS routing.

currently not the case for the components considered

in this study. 3.2. First-Come-First-Free-Server Routing
“Transaction routing” [1, 14, 16] means “query

routing” in many cases. For a good overview and wjith FCFFS routing, the coordinator iterates

classification we refer to [9]. Previous work oRnrough the input queue according to a first-come-

transaction routing again assumes the cache managsi.served policy. For each query, it invokes the

to be open and manipulable. Furthermore, it onppyting algorithm — as long as there are free com-

considers page-level access operations, but not Sginents. The coordinator also passes the list of com-

queries. In a previous investigation [10], we hav§onents which can execute the query to the router. In
compared several non-cache-aware routing strategies

for OLAP queries in a blaqk-box scenario. We ha\.’ﬁnction FCFFS_Routing (i st<Comp> conps.
concentrated on the question whether OLAP queries Query q) : Comp
should be evaluated in parallel or consecutively. [t .
has turned out that parallel execution of such com-'g; 4 e_sort (conps, | oad_conparison()):
plex queries leads to I/O trashing in most cases. Thisif (conps[0].1o0ad == 0) then
deteriorates performance. Hence, in this work, we return conps[0] ;

restrict the degree of multiprogramming for OLAP else

queries to one. Another finding of [10] has been that return nil;

rearranging the input queue based only on estimagsd

execution times does not yield significant improve=

ments in an OLAP scenario. Figure 2. FCFFSrouting algorithm.

)) step two, theFCFFSalgorithm routes the query to
3. Basic Aspects of Query Routing the first free component. It does so by sorting the list
of components by the number of queries currently
Before we describe cache approximation roudctive on the components, i.e., their load (cf. Fig-
ing in Section 4, we review query routing in &ire 2). The load of the components is a typical run-
coordination-based architecture. We discuss batifoe statistic maintained by the coordinator. The first
aspects of query routing which are independent @mponent with load 0, i.e., the first free component
the actual routing algorithm and we describe one spgé-finally chosen. FCFFS corresponds tdalance-
cific routing algorithm for illustrative purposes. Thighe-Number-of-Queriesouting [10, 1] with a degree

algorithm also serves as reference in our evaluatiodf multiprogramming of one. Obviously, the routing
decision in the case of this simple algorithm is in-

3.1. Routing in a Coor dination-Based System dependent of the current query. This is the starting
- point of our present work.

In a coordination-based architecture like Pow- . .)
erDB, clients issue their queries to a distinguishéil Cache Approximation Query Routing
node of the database cluster, the coordinator (cf. Fig-
ure 1). More precisely, the clients place incoming The objective of query routing is to reduce query
gueries into the input queue of the coordinator. Iresponse time. The execution times of queries — es-
the context of this paper, client queries are decisigpecially OLAP queries — are dominated by 1/O costs.
support SQL queries. We also assume full replicatidhile caching plays a major role for performance
of the data. Hence, different components are abledbquery evaluation, a simple routing algorithm like

FCFFSis not aware of caching effects. In the followbenefit of a cache state for a query as follows: itis the
ing, we investigatecache approximation (CA) rout- reduction of disk accesses, as compared to the execu-
ing strategies. In our terminology, cache approxiion on a flushed cache. The assumption that the set
mation routing approximates the cache contents fofr possible queries is fixed allows to determine the
routing to achieve maximum benefit from the conbenefit values in advance. They are stored in a static
ponent caches. benefit matrix. The matrix may comprise absolute or

Our investigation of cache approximation routingelative benefits. Consequently, we distinguish two
consists of two steps. The first step relies on presuter variants, which we callAabsand CArel.
computed benefits. The second step dynamically es-

timates the benefit of a cache state for a query. TBfching Benefit Matrix. In order to determine

treatment of the input queue is the same for both ape penefit matrix for our TPC-R scenario, we in-

proaches. We will discuss this particular aspect firgfestigated the queries with fixed parameters. Note
that this is a very restrictive assumption. We first

4.1. Input Queue Reordering measured the cache misses of each query when ex-
ecuted on a flushed database cache (i.e. contain-

Cache approximation routing estimates the beriag no page of the database). We denote this with

fit of a cache state for a query. The idea is that ti&:cheMisses prushedcache. Then, we measured the

execution time of a query is minimal at the compatisk accesses of the query when it executed after an-

nent whose cache contains the largest subset of dgteer query. This value is calle@acheMisses sftey.

that will be accessed by the query. As we explain®@@dr CAabs the benefit matrix contains the absolute

in Subsection 3.1, query routing for a set of querigifference between both numbers:

consists of two steps: the coordinator first decides on

the processing order for the queries in its input queue CacheMissespiushedcache — CacheMisses g ter

before it routes the individual queries. h | . h . ity th
In case of cache approximation routing, in Step"l1 the case ofCArel routing, the entries specify the

the coordinator no longer processes its input quelfi@tivé improvement of cache misses in percent, cal-
in a first-come-first-served manner. Instead, the ¢gtated by the following formula:
ordinator reorders the queries in the input queue ac- CacheMisses s frer
cording to the estimated benefit values. The query
for which the routing algorithm estimates the highest
benefit is executed first. However, the coordinatdhe higher these values, the more the current query
has to ensure that all queries are still processed. Tslaould benefit from the cache content. Figure 3
is, it must avoid starvation of queries with low beneshows the relative benefit matrix for the TPC-R
fit values. Consequently, the coordinator tags queriggeries and a cache size of 40000 pages. The higher
with an age and reorders the input queue accorditing benefit values, the darker the corresponding ma-
to both benefit and age of the queries. trix cell.

In Step Il, the routing algorithm decides on the Figure 3 shows that most queries are faster when
target component to execute the current query. Iheing executed a second time. This is what one
the following, we discuss several approaches to sughuld expect. But the benefit matrix is not sym-
cache approximation routers. metric. High values typically occur if the subsequent

guery is small with regard to its total number of disk
4.2. Cache-Approximation Routing using accesses. Consider, for example, the TPC-R queries
Pre-Computed Caching Benefits Q13, Q14, Q15, Q17, or Q19. These are less I/O
intensive queries. Therefore, their execution time

For this subsection, we assume that the set of p§§0ngly varies depending on the overlap of data ac-
sible queries is known in advance. This allows @£Ssed by them and the previous query. On the other
make use of previously recorded runtime statistiégnd, an I/O intensive query like Q7 or Q18 cannot
on these queries. In more concrete terms, we defigefit much when run after such a short query.
the cache state of a component as the query most re-
cently executed there. The hypothesis is that OLARouting Algorithm. Both CAabsandCArel keep
gueries typically access more data than fits into tlrack of the last query executed at the components.
cache. Hence, we only need to consider the mdstey choose the component promising the least I/O
recent query because all unnecessary data loadeafigrt based on caching benefit values. The gen-
previous queries will be swapped out. We define tleeal algorithm is illustrated in Figure 4. The pre-

_ ki) % 100
CacheMissespiushedCache

previous query

Q1
Q2
Q3
Q4
Qs
Q6
Q7
Qs
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22

subsequent query

QL Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0 Qi1 Q12 Q13 QI4 Q15 Q16 Q17 QI8 Q19 Q20 Q21 Q22
0% 0% | 35% 12% DN 10% 15% 0% 0% 12% [22% 0% 1% MM 3% 12% 6% 0%
0% 13% 0% 0% 4% 0% 3% 11% 8% 0% 7% 0% 0% 0% 4% 4% 1% 0% 8% 15% 4% 0%
0% 0% 21% NN 26% 7% | 24% 33% 0% 34% 0% 7% 13% 0% 1% | 29% 1% 6% |28% 1%
% 0% 100% | 64% 2% |20% BEZN 0% 0% | 21% 27% 0% 0% - 1% 5% - 0%
0% 0% 33% 25% Meed 8% |[21% 38% 0% 0% 10% 16% 0% 1% |20% 1% 7% 28% 1%
0% 0% | 34% 22% MEACIRETIN 9% - 26% 0% 0% | 21% - 0% 1% 2% 12% 6% 0%
0% 0% |21% 15% 381% 31% 16% 10% 29% 15% 0% 37% 0% 8% 15% 0% 1% | 32% 2% 8% 19% 1%
0% 1% 16% | 31% MM 1406 NI 36% 15% 82% 1% 81% | 1% 3% 7% 1% 0% 18% 1% 4% - 1%
0% 0% |21% | 17% 26% 29% 39% 6% 18% 8% 0% 6% 120 0% 1% | 34% 2% 14% 20% 0%
% 0% 9% 0% 0% | 20% 27% 0% 0% | 24% 1% 5% 25% 2%
0% 3% 0% 0% 0% 0% 1% 1% 1% 0% 0% 1% 1% 0% 0% 0% 5% 1% 0%
0% 0% |31% 24% WZNEIEN 8% 0% 18% |34% 0% 1% - 2% 11% 16% 0%
0% 0% 10% 87% [69% [RCIENNCA) 0% | 25% 1% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 74% 9% |38% 0% REZN 0% BZVIRZUN 0% 1% 5% 12% 5% 0%
% 1% TN 62% 99% | 64% [RUCA 1% R 0% (A 196 106 P 3% 13% 7% 0%
0% 2% 0% 0% 1% 0% 1% 3% 2% 0% 35% 0% 0% 0% 1% 1% 0% 0% 2% 6% 1% 0%
0% 0% | 32% 10% 10% - 12% 0% - 0% 10% 19% 0% 5% 11% 4% 0%
0% 0% 12% 14% 27% 19% 25% 4% 18% 11% 0% 20% 0% 5% 9% 0% 1% 0% 1% 5% 16% 0%
0% 0% | 28% 10% 39% 13% 12% 0% 0% 10% 19% 0% 2% A 11% 4% 0%
0% 2% | 30% 11% 10% [EEDA 13% 3% 0% 10% [21% 1% 1% 2% 6% 0%
0% 0% | 28% 21% 7% | 38% 17% 0% 0% 9% 17% 0% 1% 2% 10% | 29% 0%
0% -
Cache Hit Improvement: [Jow-19% 20%-39% [40%-59% [e0%-79% [s0%-100%

Figure 3. Relative caching benefit matrix of CArel router for TPC-R queries.

function CA_Routing (

| i st<Conp> conps,

Query q) Conp
var ca_benefit :matrix[22, 22] ofint:=(...);
choi ce Node; benefit int;

begin
benefit -1;

for cin conps dobegin
if ca_benefit[c.last][q]>benefit then
benefit: = ca_benefit[c.last][q];
1= c;

choi ce

fi

end; return choi ce;

end

Figure 4. CArel routing algorithm.

different cache approximation schemes.

4.3. Dynamic Cache Approximation

In the previous subsection, we have assumed®
known set of possible queries.

disk pages. Any data needed for query execution is
loaded into a component cache in form of disk pages.
Ideally, the state of a cache would be defined as its
set of pages. But with the black-box assumption, the
coordinator has no access to the cache directory of
the components. Hence, we must rely on informa-
tion collected separately. Intuitively, the set of tu-
ples accessed by a query indirectly defines the set of
data pages read from disk during execution. Con-
sequently, our idea is to approximate cache states
by approximations of the set of tuples accessed by
a query. This can be done with different degrees of
precision. The following subsections reflect this.

4.3.1. Cache Approximation via FROM-Clauses
computed caching benefits allow for optimal rout-))
ing decisions. The router can predict the number ffStraightforward approach to approximate the set of

cache misses of the queries. Hence, cache apprBiles accessed by a query isto keep track of the rela-
mation routing based on pre-computed benefit valUé"S accessed. This is simply achieved by analyzing

will serve as an orientation guide for evaluating th'® FROM clause of the query. We approximate the
state of component caches by the set of relations ac-

cessed by the most recengjueries. Let)$ denote
the ith most recent query executed at comporent
i.e., QY is the last query. We define the cache state

We drop this as-

sumption in this subsection. In contrast @Aabs
andCArel, which only keep track of the most recent

query, we will describe cache states more explicitly. state(C,n)

The typical granularity of component caches are

%follows:

rels(Q)

{R | R contained in FROM
clause of query @}

U rels(Q

1<i<n

)

7

Further, we define the benefit of the cache statesaft in the bit string (cf. Table 1). The hash function
component for query() by the size of intersectionmust be order-preserving, i.e.< y = h(z) <h(y).
of the cache state and the FROM clause of the query:

benefit(Q, C, n) := |state(C,n) N rels(Q)| S prec(l)sig(gi%, a’g)) bgisﬁs(znst)

Subsequently, we refer to a router that implements:, <= 0..011...1 f(const)..0]
this strategy a&€AF router. >, >= 1..110...0 [last bit .A(const)]
#,7,like 1..111...1 all bits set

4.3.2. Cache Approximation viaQuery Signatures

Table 1. Selection predicate signatures.
The above approach relies on a very rough approxi-
mation of queried data. It does not take into accoultin predicate Signatures. In a second step, we
which portions of the relations are actually accesssgnerate signatures for join predicatgs;, of the
by a query. These are described by each query prggh, (ag © az) of queryQ. This will result in
icate. However, quantifying the exact overlap of thg, . predicate signatures-edsig(p;oim, ar, Q) and
sets of tuples specified by two different predicat%%dsig(pjom’aL’ Q). They approximate the two
having common at'tributes is difficult. Consequer'lt'l)‘é,etS of tuples accessed in the joined relatibrend
we further approximate the set of tuples specifieq regpectively. Our approach to join-predicate sig-
by a predicate using bit string signatures. By doingy,re generation makes a distinction between two
so, we reduce the calculation of benefits to bit strir&ses, namely equi-joins along foreign key relation-
comparisons. This can be done efficiently. ships and all other join predicates.
! . The second case is simple: predicate signatures
Query Sgnature) Generat]on. Ou'r approach have all bits set. This also holds for all other kinds of
works with three different kinds of signatures: th'f:‘:redicates, e.g., comparisons with sub-queries. With
query signature, which in fact is a set of signaturesregard to the first case, w.l.o.g., let be the key
each together with a query attributegttribute attribute. LetA, denote abitwise and operation,
signatures for each attribute occurring in a predicateel () the relation in which the attributeoccurs and
of the query, and for each occurrence of an attributérs(z) the set of attributes occuring in = can ei-
in a query predicate aredicate signature for the ther be a relation, a predicate, or a query. Finally, let
attribute. The bits set in a query signature represeftt/ects(a, Q) denote the set of selection predicates

the data range possibly being accessed by the quhduery @ over attributes. With this, the genera-
We build a query signature using disjoint codin n of the predicate signatures for equi-joins along

[2], i.e., we generate one attribute signature for eacq{e'gh key relationships is defined as follows:
query attribute. This in turn is based on theery predsig(pjoin, ar, Q) =

graph: Each node of the query graph represents /\b /\b predsig(p, a, Q)> if o,
relation accessed by the query. Each edge of thfacattrs(rei(ar)) * peseicets(a,Q)

qguery graph stands for a join predicate betwee

relations. A select predicate is represented by af 1...111...1 otherwise.
edge that forms a cycle. Note that a query graph iﬁredsig(pjom,aL, Q) =

defined only for conjunctive queries. Given a queNpredsig(pjoin, ar, @), ar = attrs(pjoin)\{ar}
graph, we first generate a predicate signature forrl B trs(pins
each occurrence of an attribute in a query predica\f\’e.ere “« X g’jeestt:;((fejf(’g))+ selects(a, Q) # 0)
Then, we intersect the predicate signatures for an I ’

attribute to obtain its attribute signature. In more We first generateredsig(p;join,ar, @), the sig-
detail, we proceed in four steps: nature for the key attributer. We make use of the

signatures already generated in the first step: we in-
Selection Predicate Signatures. In a first step, tersect all existing signatures of selection predicates
we consider each selection predicate; of the (innermost bitwise and) for attributes of the relation
form (a © const) of query@. The correspond- of ap (outermost bitwise and). If there is no selec-
ing predicate signature is a bit string, denoted hion predicate on any attribute @, i.e., « does not
predsig(pser, a, Q). Itis generated according to thenold, we set all bits. The rationale is to approximate
following scheme: The hash functidt) transforms the set of tuples selected B We use the same bit
constantonst into a bit position. Depending on thestring for the signature of the foreign key attribute,
comparison operat®@, only the corresponding bitortoo. This models the access on the corresponding
a whole bit range starting or ending at this position igin tuples in’.

Attribute Signatures. In the next step, we com- Hence, the query signature of Q4 looks as follows:
bine the predicate signatures to attribute signature§l-g(Q4) —{ (O_OrderDate,00110000)

Let preds(a, @) denote the set of all predicates of (O_Order K ey, 00110000),

query) in which attributea occurs. An attribute (L_Order K ey, 00110000),
signature for an attribute is a bit string denoted (L-ReceiptDate, 11111111),

by attrsig(a, @). We generate it by intersecting all (L-CommitDate,11111111) } N

predicate signatures for attribute Cache State Approximation. How do these pred-

. . icate signatures facilitate dynamic cache approxima-
attrsig(a, Q)) 1= /\b predsig(p, a, Q) tion? Recall that bits set represent the data range
p€preds(a,Q) possibly accessed by a statement. Therefore, we
define the approximated cache state of components
Query Signatures. Finally, the query signaturepy means of the predicate signatures of the reeent
for query @, denoted bysig(Q), is the set of gtatements executed:
(attribute, bitstring) pairs defined as follows: state(C,n) == U 5ig(QF)

sig(Q) =1 (a,attrsig(a, Q)) | 1<i<n
a € attrs(Q) : preds(a,Q) # 0 } The parameten is the history length which allows
to adjust the degree of approximation.
Examplel. Consider TPC-R query Q4:

SELECT O GrderPriority, COUNT(*) Bgnel‘lt Model. As a final step, we define the ben-
FROM Orders efit of the cache state of a componéntor query(.
WHERE O Or der Dat e >=' 01- JAN- 1995’ (P1) T'he.unglerlying hypothesis is as fpllows: .thg more
AND O OrderDate < *‘01- APR- 1995’ (p2) Dbits in signatures of the same attribute coincide, the
AND EXI STS (SELECT * FROM Lineltem more data accessed by the query is already cached
WHERE L_OrderKey = O OrderKey (P3) by the component, because the previous queries have
AND L_Cormmit Date < L_ReceiptDate) (P4) accessed similar data. L#%() be a function which
GROUP BY O OrderPriority ...; counts the number of bits set in a bit string. Then, the

The query contains four predicates: two selectifNefitis:benefit(@, C',n) =
predicatesP, and P, on O.OrderDate. Psis a H#o(bsq Ay bser) ifa=a’
join predicate between the two relatio@ der s Z Z ’
andLi nel t em and P, a self-join on attributes of (4,6s5,) (a’,65./)

Li nel tem Assume that(‘01-JAN-1995) = 4 € sig(Q) € state(C,n)

andh('01-APR-1995] = 5. Then, with a signature g il refer to a cache approximation router which
size of 8 bit3, the following six predicate signatures aq this benefit model as2AS router
will be generated: '

0 otherwise.

predsig(Py, O_Order Date, (Q4) = 11110000 Refined Benefit Model. The benefit model o£AS
predsig(P», 0_Order Date,Q4) = 00111111 routing yields higher benefit values the more bits of
predsig(Ps, 0_Order Key, Q4) = 00110000 the signatures match. This approach tends to pre-

Ps, L_Order Key, Q4)
Py, L_ReceiptDate, (}4)
Py, L_.CommitDate, Q4)

predsig
predsig
predsig

00110000 fer queries with signatures where many bits are set.
HIITLIL - hege gre normally multi-join queries with few selec-
I e predicates. In order to minimize mean response
The signature of the join attributes are derived frofiine, another idea is to execute short queries as soon
the two predicate signatures fOrQr der Dat e. The as possible. To achieve this, we refine our benefit
last predicateP’; does neither contain a constant nanodel. It now takes the actual execution costs of a
a key attribute. We can only ‘approximate’ it by twayuery into account. To do so, the coordinator records
signatures with all bits set. Next, all predicate signghe execution times of each query. If the same query
tures are intersected into single attribute signaturess executed another time, its benefit value is finally

00110000 normalized with the recorded execution time:

=== = ==

attrsig(O_Order Date, (}4) = ()
attrsig(O_OrderKey,Q4) = 00110000 : _ benefit(Q,Cyn
attrsig(L_OrderKey,Q4) = 00110000 normalized benefit(Q, C'n) = ewecution_timeg
attrsig(L_ReceiptDate,Q4) = 11111111 . . . —
attrsig(L_CommitDate,Q4) = 11111111 In case a query is executed the first time, we deliber

ately set its execution time to 1. We will refer to this
LActually, PowerDBuses 128 bit signatures. variant asCASweightedrouter.

Discussion. While having developed a number ofwitched 100 MBit Fast-Ethernet LAN. We used OR-
cache approximation methods by now, more sophScLE 8.0.4 as component database system with a
ticated ones are still conceivable. For instance, tbache size of 40000 pages. Each component database
router could access the query optimizers of the comvas generated and populated according to the speci-
ponent DBMSs and take the actual query plans infication of the TPC-R benchmark [3] with a scaling
account as well. The rationale is to avoid concufactor of 0.1. We fully replicated the data and the
rent scan and random access operations. Anotherimelexes on all nodes.
finement could consider attribute selectivities and the The client issued a stream consisting of 220 TPC-
data distribution. As a further example, the routd® queries to the coordinator with an inter arrival time
could try to differentiate between index-based accesgh random distribution of up to 5 seconds. The exe-
methods and full scans. Finally, we could try to cagution order of the queries in the stream corresponds
ture the case that the amount of data retrieved to ptothe permutation orders 0 to 9 of the TPC-R specifi-
cess a query exceeds the cache size. cation. The client measured both the query through-
However, our intention was to develop simplgut and the mean query response time for such a
but efficient cache approximation schemes for blacktream. Each data point represents the average value
box components. The possible refinements just mexfi-at least five measurements. The standard devia-
tioned do not exactly meet this criterion. For intion typically has been around 6% of the mean value
stance, analyzing the query plan is highly platfornwhich is sufficiently low.
specific and induces much additional complexity. In-
stead, we now see the necessity to evaluate the r@2. | nfluence of Cache History Length
ing algorithms developed so far. In particular, we
must compare the routing schemes based on realistiq;irst, we are interested in the influence of the

assumptions to the ‘good’ ones, serving as orien@sche history length on the accuracy of the approx-
tion guides. If the difference is not too big, furthefmation schemes. Therefore, we fix the cluster size
refinements will not yield significant |mprovements(8 nodes) and vary the number of previous queries

) recorded for cache approximation from one up to ten.
5. Evaluation The results are shown in Figure 5. We see that the

We present the main results of an extensive ev Mean Response Time (MRT)
ation of the following routing strategies:

200

FCFFS. First-Come-First-Free-Servesuting which
is not cache-aware. Its performance serves ¢
orientation point for the other strategies.

=
o
o

seconds
ki
|
|
|
{
&

1
|
X
|
|
T
i
(
X
\

CAabs. Cache approximation routing, whose st¢ F—
caching benefit matrix contains absolute ca
miss improvements.

o
=}

. . . 0 T T T T T T T T
CArel. Cache approximation routing based on a T 2 3 4 5 & 71 8 9 10
ative caching benefit matrix. cache history length

[+~ FCFFS -o- CAS —% CASweighted|

CAF. Dynamic cache approximation routing based
on the FROM clause of queries. Figure 5. MRT Influence of history size.

CAS. Dynamic cache approximation routing bas

e
. : namic cache approximation routers yield a general
on predicate signatures. 9y a PP y 9

improvement of mean response time between 45%
CASweighted. Like CAS, but with a refined benefitand 55%, as compared ®©CFFS However, with

model using normalized benefits. our present scenario of OLAP queries, increasing the
cache history maintained by the dynamic cache ap-
5.1. Experimental Setup proximation routers does not improve their perfor-

mance. On the contrary, the mean response times
Allmeasurements have been carried out on a clug- both CAS and CASweightedrouting become
ter of PCs (Pentium Il, 400 MHz, 128 MBytes) unslightly worse with longer histories. This is due to the
der Windows NT 4.0. The coordinator ran on a sepemplex queries we are investigating: about half of
arate PC. All computers were interconnected bytlae TPC-R queries access more database pages than

(a) Throughput (b) Mean Response Time -- MRT
3500

0,30 3000 \\
2500 \

2000 \

seconds
-

1500 4 i\

TPC-R queries per second

° ° ° °
= =S 2 2
3 & 5 &

»

1000 3

500

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
cluster size cluster size

-

[-m FCFFS —+ CAabs -~ CArel -+ CAF —- CAS —x- CASweighted | [FCFFS —+ CAabs -~ CArel + CAF —-CAS —< CASweighted|

Figure 6. Throughput (a) and mean response times (b) with different routers.

can be cached. Therefore, it is not surprising that theuting, this reordering of the input queue cuts down
cache state is sufficiently described by the most mean response time on a one node ‘cluster’ by 80%.
cently executed query. Consequently, we will use a |5 Figure 7, we ‘zoom in’ to make the differ-
cache history length of one in the following experiances of the five cache approximation routers more
ments. However, note that this consequence is NQYi@ar by scaling to the results BCFFS The rela-
general one, e.g., as if we would experiment withtge throughput of the cache approximation routers

workload consisting of short OLTP queries. strongly varies between 120 and 240 percent of the
FCFFS throughput. With a cluster size of eight
5.3. Scalability of Routing Algorithms nodes, the static cache approximation routers still

yield a throughput that is better by about 40%. The

Next, we are interested in the overall performanéynamic approximation routers achieve a slightly
of the different routing algorithms for different cluslower throughput than the routers based on pre-
ter sizes (up to 8 nodes). Figure 6 shows the throudgimputed benefit values. They end up with around
put and mean response times of the query stregRP0 improvement as compared to FCFFS.
with the different routing algorithms and increasing We can distinguish the different routers even bet-
cluster size. First, these experiments confirm our ter if we look at the improvement of mean response
sults reported in [10]. All routing algorithms show aimes (cf. Figure 7(b)). Due to its pre-computed
nearly linear increase in throughput with increasirgnhowledge of the benefits for all querigArel rout-
cluster size. Subsequently, we will use the straighitg yields the lowest mean response times. They are
forward approach oFCFFSas a basis for our com-between 20% and 30% of the onef6€FFS That is,
parisons. All cache approximation routers yield beGArel routing improves the mean response time by
ter results tharFCFFS However, there is a trade-a factor of 3. This is the yardstick for the dynamic
off between throughput and mean response time wapproaches. The straightforwa@h\F router, which
cache approximation routing. For exampl@Aabs approximates cache states by the FROM clause of the
routing achieves higher throughput th@Arel rout- queries, achieves about 10% better mean response
ing. In contrastCArel yields shorter mean responséimes thanFCFFS This is the worst mean response
times thanCAabs The reason is thaCAabsrout- time of all cache-aware routers. It is inferior to
ing prefers longer queries due to their higher benefite cache approximation routers which use predicate
even if the improvement relative to the overall quersignatures: CAS routing improves mean response
length might be smaller. The opposite is true for théme by around 40% as compared FRCFFS This
CArel router relying on the relative improvementsis even better thaiCAabs routing which uses pre-
Now short queries are preferred. The same is true fdous knowledge about the absolute cache miss im-
CAS and CASweightedrouters, respectively. provements of the queries. With the refined benefit

An interesting observation is that cache approriodel of CASweighted we nearly reach the opti-
imation routing is already faster than FCFFS witmal result of the stati€Arel router. CASweighted
a ‘cluster’ consisting of only one node (cf. Figyields around 55% faster mean response times, i.e., it
ure 6(b)). This is due to the reordering of the inpus better tharFCFFSby a factor of 2. This is remark-
gueue. In Section 4.1, we explained that the coordible, as in contrast tGArel it fully conforms to the
nator uses &heapest-action-first policy in conjunc- black-box principle, with no unrealistic assumptions
tion with cache approximation routers. Wi@Arel (e.g., no fixed parameters) on the queries.

(a) Throughput scaled to FCFFS (b) Mean Response Time scaled to FCFFS

»
3
3

I
©
3

I
@
3

I
=
3

factor of throughput of FCFFS
factor of MRT of FCFFS

I
N
S

,4
3
3

°

)

38

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
cluster size cluster size

[=—CAabs —o- CArel —+ CAF ——CAS —< CASweighted| [+~ CAF ——CAabs —- CAS -+ CASweighted -0~ CArel|

Figure 7. Throughput (a) and mean response time (b), as compared to FCFFS

6. Conclusions [2] W. W. Chang and H.-J. Schek. A signature access
method for the starburst database system.Priox

A cluster of databases is an interesting cost-__ ceedingsof VLI?B’89, pages 1ﬁ5—153, 198f_9. _
effective alternative to mainframes. In odBowerpB 13 T- P P Council. TPC-R benchmark specificationrev.

. L . 1.0.1. Technical report, Transaction Processing Per-
project, we pursue a coordination-based approach: a .

. - formance Council, July 1999.
central node, the coordinator, cqordmates a clustgly) s par, M. J. Franklin, B. T. Jonsson, D. Srivastava,
of database systems. The coordinator decides what and M. Tan. Semantic data caching and replacement.
to store at each component and where to evaluate |n Proceedingsof VLDB' 96, pages 330—341, 1996.
queries. Assuming full replication, we are interested5] P. M. Deshpande and J. F. Naughton. Aggregate
in query routing strategies to decrease query response aware caching for multi-dimensional queriesPho-
time. The underlying observation is that query evalu- EeeglngslfngBTJZ(?A(JIO, p%ges 137';152%203)0. <
ation performance strongly relies on caching. But in6] L. Fan, P. .ao' - /AMelda, and A. . broder. sum-
. . o mary cache: A scalable wide-area web cache sharing

a composite system withlack-box components it is

. protocol. InProceedingsof SGCOMM'’ 98, 1998.
impossible to directly manipulate or retrieve the con-;71 m. 3. Freely et al. Implementing global memory

tent of the component caches. In this paper, we pre- " management in a workstation cluster. Rroc. 15th
sented a new approach to query routing over black- ACM Symp. on Operating System Principles, 1995.

box components, namely signature-based cache aj8] J. Gray. How high is high performance transaction
proximation routing. We make use of predicate sig- ~ Processing? Presentation on the 1999 HPTS Work-
natures, i.e., bit string approximations of the data__ Shop, Asilomar, CA, Oct. 1999. o
ranges accessed by a query. We base the routing 0[81 E. Rahm. A framework for workload allocation in

- distributed transaction processing syster8gstems
cision on these signatures: the coordinator approxi- Software Journal, 18:171-190, 1992.

mates the caches of the components by the SignatuiRf u. Rohm, K. Bshm, and H.-J. Schek. OLAP query
of the recently executed queries. The coordinator ar- = routing and physical design in a database cluster. In
ranges its input queue so that the query promising Proceedingsof EDBT2000, pages 254268, 2000.

the highest benefit from caching effects is processéd] P. Scheuermann, J. Shim, and R. Vingralek. Watch-
first. It routes this query to that component with the ~ man: A data warehouse intelligent cache manager.
largest signature overlap. In a quantitative evalua-_ 'n Proceedingsof VLDB'96, Bombay, India, 1996.

tion using a realistic set of OLAP queries, we hav 2] J. Shim, P. Scheuermann, and R. Vingralek. Dy-

. . . i hi f Its for decisi t
shown that cache approximation based query routing ngé%iaﬁrgﬂgcoofqgﬁﬁ s;azegrzsjglzsg] igggor

can more than halve mean response times. Note tE@t] M. Sinnwell and G. Weikum. A cost-model-based
this resultis a very general one. On the one hand, the online method for distributed caching. Rroceed-
signatures can be generated for arbitrary conjunctive ingsof ICDE’97, Birmingham, UK, 1997.
SQL queries. On the other hand, our approach rg4] A. Thomasian. A performance study of dynamic load
spects that components may be black-boxes. balancing in distributed systems. Ruoceedings of
ICDCS 87, Berlin, Germany, pages 178-184, 1987.
[15] S. Venkataraman, J. F. Naughton, and M. Livny.
References Remote load-sensitive caching for multi-server
database system. Rroceedingsof ICDE, 1998.
[1] M. J. Carey, M. Livny, and H. Lu. Dynamic task allo- [16] P. Yu, D. Cornell, D. Dias, and B. lyer. Analysis of
cation in a distributed database systemPioceed- affinity based routing in multi-system data sharing.
ings of the ICDCS 85, pages 282-291, May 1985. Performance Evaluation, 7:87—-109, 1987.

