
Cache-Aware Query Routing in a Cluster of Databases

Uwe Röhm Klemens B¨ohm Hans-J¨org Schek
Swiss Federal Institute of Technology

ETH Zentrum, 8092 Zurich, Switzerland
froehm,boehm,schekg@inf.ethz.ch

Abstract

We investigate query routing techniques in a clus-
ter of databases for a query-dominant environment.
The objective is to decrease query response time.
Each component of the cluster runs an off-the-shelf
DBMS and holds a copy of the whole database. The
cluster has a coordinator that routes each query to an
appropriate component. Considering queries of real-
istic complexity, e.g., TPC-R, this article addresses
the following questions: Can routing benefit from
caching effects due to previous queries? Since our
components are black-boxes, how can we approxi-
mate their cache content? How to route a query,
given such cache approximations? To answer these
questions, we have developed a cache-aware query
router that is based on signature approximations of
queries. We report on experimental evaluations with
the TPC-R benchmark using our PowerDBdatabase
cluster prototype. Our main result is that our ap-
proach of cache approximation routing is better than
state-of-the-art strategies by a factor of two with re-
gard to mean response time.

1. Introduction

A cluster of databases is becoming a cost-effective
alternative to multiprocessor database management
systems on mainframes. Instead of scaling up the
idea is to “scale out” [8] by adding more database
components to the cluster. The challenge with such
an architecture is to coordinate the cluster compo-
nents in order to provide a simple database system
view to the clients.

The object of this present investigation is a clus-
ter of relational databases, i.e., eachcomponent of
the cluster runs an off-the-shelf RDBMS. The archi-
tecture is coordination-based (cf. Figure 1). Clients
communicate only with a distinguished node, theco-
ordinator. Incoming queries arrive at the coordinator

via an input queue. The coordinator decides on the
execution order and the routing of the queries. This
paper assumes full replication. This gives us max-
imum flexibility where to execute a query. Given
this, our objective is to base the routing decision on
the states of the component caches. This brings up a
number of questions:

� How to obtain or at least approximate the state
of a component cache? In a cluster architecture,
with components being black-boxes, one cannot
access the cache directory and look up the con-
tent of the cache.

� How to quantify the benefit from evaluating a
given query on a particular component, given
an approximation of the cache state? With ‘low-
level’ data objects, i.e., disk pages and page ac-
cess operations, the caching benefit is either 1
(= page is in the cache) or 0 (= page is not in the
cache). When looking at queries that possibly
refer to a number of relations, we need a more
sophisticated model.

� Having estimated that benefit, how to actually
route queries? Are the cache states the only pa-
rameter of the routing decision?

� Which performance improvements can be
achieved using such acache approximation
router? How does such a router compare to
one that has apriori knowledge regarding the
caching benefit?

Our interest is to learn how much we can achieve
in quantitative terms with simple mechanisms ad-
dressing these questions. We investigate OLAP
queries, i.e., queries that are I/O intensive and long
running. Our general idea is to derive the cache
content or at least an approximation of it from the
queries that a component has evaluated most re-
cently. Throughout this paper, we will work with
various approximations of the content of a cache with

different degrees of sophistication. We will refer to
such an approximation briefly ascache state. We will
also discuss and evaluate alternative definitions of the
benefit of a cache state for a query. Based on the ben-
efit values, the coordinator routes the queries. This
may also include reordering of the input queue.

In more detail, we proceed in two steps: first,
we consider the case that the set of queries is fixed.
Note that other work on query routing limits itself
to this restrictive case [14, 1]. We for our part see
this case as an upper bound of the benefit of cache-
aware routing. It allows to pre-compute benefits of
cache states for queries. As a second step, we con-
sider the general case where queries are arbitrary. In
this case, we dynamically compute the caching ben-
efit by approximating the sets of tuples accessed by
queries. We have run extensive experiments using a
prototype system. By using all queries of the TPC-R
benchmark (and not only a subset), our experimen-
tal setup is realistic. We have evaluated the different
approaches using two metrics: mean response time
and throughput. The experiments study the effect of
varying cache sizes as well as of different numbers
of components. This present investigation does not
consider update statements.

Our main results are as follows: Cache ap-
proximation based query routing significantly re-
duces mean response times, as compared to routing
schemes that are not cache-aware. Different defini-
tions of ‘benefit’ fare differently with the two evalu-
ation metrics. We obtained the best results when we
approximated the cache content using bit string sig-
natures of queries and normalized the benefit values
with the execution costs of statements. Such a rout-
ing algorithm more than halves mean response time,
as compared to non-cache-aware strategies. Since
our approach deals with conjunctive SQL queries and
black-box components, we believe that it is very gen-
eral, and that our results are remarkable.

Coordinator

Component 1 Component 2 Component 3 Component n

DB1

DBMS1 ...

...

Cluster of Databases

Clients

queries

DB2

DBMS2

DB3

DBMS3

DBn

DBMSn

Router

Input Queue

Figure 1. Architecture of PowerDB.

This work is part of thePowerDB project

presently conducted at ETH Zurich. The objective
is to build a high-performance DBMS using off-the-
shelf hardware and software components as much as
possible. Another research interest ofPowerDB, be-
sides query routing, is scheduling at the coordinator
level. However, this is not the topic of this paper.

The remainder of this paper has the following
structure: The subsequent section discusses related
work. In Section 3, we give an overview of query
routing in a coordination-based architecture. Sec-
tion 4 describes different routers compared in this
paper, signature-based approximation of query re-
sults, and corresponding benefit models. Section 5
describes the results of our performance evaluations.
Section 6 concludes the paper.

2. Related Work

An important issue that seems to be closely re-
lated to the topic of this paper is distributed caching
[15, 13]. There, the underlying assumption is that
each component has a page cache. An important ob-
servation is that it may be cheaper to fetch pages
from a remote cache than from disk [13]. Work
on distributed caching addresses the questions where
to fetch the pages and how appropriate replacement
policies look like. For example, instead of just drop-
ping a page from a cache, we might transfer it to an-
other cache [15]. Distributed caching is also an issue
in WWW proxy management [6] and with regard to
operating systems (global memory management) [7].
However, these investigations evaluate cache main-
tenance policies. Their basic assumption is that the
cache manager can be implemented from scratch or
that at least the cache directory is accessible. We in
turn realistically assume that the cache directory is
part of a component and hence is not readable from
outside. In consequence, caching strategies for dis-
tributed systems cannot be implemented on top of
off-the-shelf database components. Another differ-
ence between our approach and other work on dis-
tributed caching is as follows: we consider complex
OLAP queries instead of simple access operations to
‘low-level’ data objects, i.e., page reads.

Another recent issue with regard to caching is
refined cache admission and replacement strategies,
known assemantic caching: [11] caches query re-
sults as a whole based on a sophisticated cost model.
But it relies on an exact query match. [12] refines
this work in that it looks for cached query results
which subsume a submitted query. [4] goes into
a similar direction by introducing the notion ofre-
mainder query. Such a query retrieves only data that
is not already in the cache. [5] explicitly considers

aggregate relationships for cache management and
computation of remainder queries. Work on seman-
tic caching is usually based on assumptions different
from our current ones. However, there is a relation-
ship between semantic caching and this work here.
Consider a DBMS that is a component in a compos-
ite system. Furthermore, assume that it implements
semantic caching. In this case, cache approximation
could take the particular relationship between queries
and cache content into account as well in order to
yield better results. But as far as we know, this is
currently not the case for the components considered
in this study.

“Transaction routing” [1, 14, 16] means “query
routing” in many cases. For a good overview and
classification we refer to [9]. Previous work on
transaction routing again assumes the cache manager
to be open and manipulable. Furthermore, it only
considers page-level access operations, but not SQL
queries. In a previous investigation [10], we have
compared several non-cache-aware routing strategies
for OLAP queries in a black-box scenario. We have
concentrated on the question whether OLAP queries
should be evaluated in parallel or consecutively. It
has turned out that parallel execution of such com-
plex queries leads to I/O trashing in most cases. This
deteriorates performance. Hence, in this work, we
restrict the degree of multiprogramming for OLAP
queries to one. Another finding of [10] has been that
rearranging the input queue based only on estimated
execution times does not yield significant improve-
ments in an OLAP scenario.

3. Basic Aspects of Query Routing

Before we describe cache approximation rout-
ing in Section 4, we review query routing in a
coordination-based architecture. We discuss basic
aspects of query routing which are independent of
the actual routing algorithm and we describe one spe-
cific routing algorithm for illustrative purposes. This
algorithm also serves as reference in our evaluation.

3.1. Routing in a Coordination-Based System

In a coordination-based architecture like Pow-
erDB, clients issue their queries to a distinguished
node of the database cluster, the coordinator (cf. Fig-
ure 1). More precisely, the clients place incoming
queries into the input queue of the coordinator. In
the context of this paper, client queries are decision-
support SQL queries. We also assume full replication
of the data. Hence, different components are able to

execute queries in parallel. In our terminology,rout-
ing of a (single) query is the decision which compo-
nent shall execute a query.

The coordinator processes the input queue period-
ically or if the queue exceeds a certain threshold size.
Given this,routing of a set of queries consists of two
steps: first, the coordinator decides in which order to
route the queries in the input queue. Second, it routes
the individual queries in this order. We illustrate both
steps by means of one specific routing algorithm:
First-Come-First-Free-Server (FCFFS) routing.

3.2. First-Come-First-Free-Server Routing

With FCFFS routing, the coordinator iterates
through the input queue according to a first-come-
first-served policy. For each query, it invokes the
routing algorithm – as long as there are free com-
ponents. The coordinator also passes the list of com-
ponents which can execute the query to the router. In

function FCFFS Routing (list<Comp> comps,
Query q) : Comp

begin
stable sort(comps, load comparison());
if (comps[0].load == 0) then

return comps[0];
else

return nil;
end

Figure 2. FCFFSrouting algorithm.

step two, theFCFFS algorithm routes the query to
the first free component. It does so by sorting the list
of components by the number of queries currently
active on the components, i.e., their load (cf. Fig-
ure 2). The load of the components is a typical run-
time statistic maintained by the coordinator. The first
component with load 0, i.e., the first free component
is finally chosen. FCFFS corresponds toBalance-
the-Number-of-Queriesrouting [10, 1] with a degree
of multiprogramming of one. Obviously, the routing
decision in the case of this simple algorithm is in-
dependent of the current query. This is the starting
point of our present work.

4. Cache Approximation Query Routing

The objective of query routing is to reduce query
response time. The execution times of queries – es-
pecially OLAP queries – are dominated by I/O costs.
While caching plays a major role for performance
of query evaluation, a simple routing algorithm like

FCFFSis not aware of caching effects. In the follow-
ing, we investigatecache approximation (CA) rout-
ing strategies. In our terminology, cache approxi-
mation routing approximates the cache contents for
routing to achieve maximum benefit from the com-
ponent caches.

Our investigation of cache approximation routing
consists of two steps. The first step relies on pre-
computed benefits. The second step dynamically es-
timates the benefit of a cache state for a query. The
treatment of the input queue is the same for both ap-
proaches. We will discuss this particular aspect first.

4.1. Input Queue Reordering

Cache approximation routing estimates the bene-
fit of a cache state for a query. The idea is that the
execution time of a query is minimal at the compo-
nent whose cache contains the largest subset of data
that will be accessed by the query. As we explained
in Subsection 3.1, query routing for a set of queries
consists of two steps: the coordinator first decides on
the processing order for the queries in its input queue,
before it routes the individual queries.

In case of cache approximation routing, in Step I
the coordinator no longer processes its input queue
in a first-come-first-served manner. Instead, the co-
ordinator reorders the queries in the input queue ac-
cording to the estimated benefit values. The query
for which the routing algorithm estimates the highest
benefit is executed first. However, the coordinator
has to ensure that all queries are still processed. That
is, it must avoid starvation of queries with low bene-
fit values. Consequently, the coordinator tags queries
with an age and reorders the input queue according
to both benefit and age of the queries.

In Step II, the routing algorithm decides on the
target component to execute the current query. In
the following, we discuss several approaches to such
cache approximation routers.

4.2. Cache-Approximation Routing using
Pre-Computed Caching Benefits

For this subsection, we assume that the set of pos-
sible queries is known in advance. This allows to
make use of previously recorded runtime statistics
on these queries. In more concrete terms, we define
the cache state of a component as the query most re-
cently executed there. The hypothesis is that OLAP
queries typically access more data than fits into the
cache. Hence, we only need to consider the most
recent query because all unnecessary data loaded by
previous queries will be swapped out. We define the

benefit of a cache state for a query as follows: it is the
reduction of disk accesses, as compared to the execu-
tion on a flushed cache. The assumption that the set
of possible queries is fixed allows to determine the
benefit values in advance. They are stored in a static
benefit matrix. The matrix may comprise absolute or
relative benefits. Consequently, we distinguish two
router variants, which we callCAabsandCArel.

Caching Benefit Matrix. In order to determine
the benefit matrix for our TPC-R scenario, we in-
vestigated the queries with fixed parameters. Note
that this is a very restrictive assumption. We first
measured the cache misses of each query when ex-
ecuted on a flushed database cache (i.e. contain-
ing no page of the database). We denote this with
CacheMissesFlushedCache. Then, we measured the
disk accesses of the query when it executed after an-
other query. This value is calledCacheMissesAfter .
For CAabs, the benefit matrix contains the absolute
difference between both numbers:

CacheMissesFlushedCache �CacheMissesAfter

In the case ofCArel routing, the entries specify the
relative improvement of cache misses in percent, cal-
culated by the following formula:

(1�
CacheMissesAfter

CacheMissesFlushedCache
) � 100

The higher these values, the more the current query
should benefit from the cache content. Figure 3
shows the relative benefit matrix for the TPC-R
queries and a cache size of 40000 pages. The higher
the benefit values, the darker the corresponding ma-
trix cell.

Figure 3 shows that most queries are faster when
being executed a second time. This is what one
would expect. But the benefit matrix is not sym-
metric. High values typically occur if the subsequent
query is small with regard to its total number of disk
accesses. Consider, for example, the TPC-R queries
Q13, Q14, Q15, Q17, or Q19. These are less I/O
intensive queries. Therefore, their execution time
strongly varies depending on the overlap of data ac-
cessed by them and the previous query. On the other
hand, an I/O intensive query like Q7 or Q18 cannot
benefit much when run after such a short query.

Routing Algorithm. BothCAabsandCArel keep
track of the last query executed at the components.
They choose the component promising the least I/O
effort based on caching benefit values. The gen-
eral algorithm is illustrated in Figure 4. The pre-

previous query

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Q1 0% 0% 35% 12% 49% 54% 69% 10% 51% 15% 0% 54% 0% 12% 22% 0% 1% 68% 3% 12% 6% 0%

Q2 0% 13% 0% 0% 4% 0% 3% 11% 8% 0% 7% 0% 0% 0% 4% 4% 1% 0% 8% 15% 4% 0%

Q3 0% 0% 68% 21% 61% 26% 47% 7% 24% 33% 0% 34% 0% 7% 13% 0% 1% 29% 1% 6% 28% 1%

Q4 0% 0% 20% 100% 64% 40% 47% 4% 20% 72% 0% 50% 0% 21% 27% 0% 0% 46% 1% 5% 50% 0%

Q5 0% 0% 33% 25% 95% 52% 39% 8% 21% 38% 0% 56% 0% 10% 16% 0% 1% 20% 1% 7% 23% 1%

Q6 0% 0% 34% 22% 81% 100% 55% 9% 49% 26% 0% 93% 0% 21% 40% 0% 1% 63% 2% 12% 6% 0%

Q7 0% 0% 21% 15% 31% 31% 16% 10% 29% 15% 0% 37% 0% 8% 15% 0% 1% 32% 2% 8% 19% 1%

Q8 0% 1% 16% 31% 70% 14% 62% 36% 15% 32% 1% 31% 1% 3% 7% 1% 0% 18% 1% 4% 54% 1%

Q9 0% 0% 21% 17% 26% 29% 39% 6% 56% 18% 8% 34% 0% 6% 12% 0% 1% 34% 2% 14% 20% 0%

Q10 0% 0% 42% 61% 91% 40% 43% 9% 20% 91% 0% 49% 0% 20% 27% 0% 0% 24% 1% 5% 25% 2%

Q11 0% 3% 0% 0% 0% 0% 1% 1% 1% 0% 46% 0% 0% 0% 1% 1% 0% 0% 0% 5% 1% 0%

Q12 0% 0% 31% 24% 74% 81% 57% 8% 42% 27% 0% 100% 0% 18% 34% 0% 1% 52% 2% 11% 16% 0%

Q13 0% 0% 10% 44% 87% 0% 69% 1% 0% 44% 0% 25% 1% 0% 0% 0% 0% 0% 0% 0% 82% 0%

Q14 0% 0% 32% 40% 55% 74% 50% 9% 38% 46% 0% 73% 0% 74% 74% 0% 1% 50% 5% 12% 5% 0%

Q15 0% 1% 41% 37% 62% 99% 64% 10% 50% 43% 1% 97% 0% 52% 100% 1% 1% 66% 3% 13% 7% 0%

Q16 0% 2% 0% 0% 1% 0% 1% 3% 2% 0% 35% 0% 0% 0% 1% 1% 0% 0% 2% 6% 1% 0%

Q17 0% 0% 32% 10% 44% 47% 61% 10% 45% 12% 0% 46% 0% 10% 19% 0% 100% 61% 5% 11% 4% 0%

Q18 0% 0% 12% 14% 27% 19% 25% 4% 18% 11% 0% 20% 0% 5% 9% 0% 1% 0% 1% 5% 16% 0%

Q19 0% 0% 28% 10% 39% 43% 55% 13% 43% 12% 0% 43% 0% 10% 19% 0% 2% 57% 100% 11% 4% 0%

Q20 0% 2% 30% 11% 41% 46% 57% 10% 85% 13% 3% 46% 0% 10% 21% 1% 1% 57% 2% 100% 6% 0%

Q21 0% 0% 28% 21% 44% 41% 56% 7% 38% 17% 0% 46% 0% 9% 17% 0% 1% 56% 2% 10% 29% 0%

Q22 0% 0% 0% 0% 0% 0% 0% 41% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 46%

Cache Hit Improvement: 0%-19% 20%-39% 40%-59% 60%-79% 80%-100%

su
b

se
q

u
en

t
q

u
er

y

Figure 3. Relative caching benefit matrix of CArel router for TPC-R queries.

function CA Routing (list<Comp> comps,
Query q) : Comp

var ca_benefit : matrix[22,22] of int:=(...);
choice : Node; benefit : int;

begin
benefit := -1;
for c in comps do begin

if ca_benefit[c.last][q]>benefit then
benefit:= ca_benefit[c.last][q];
choice := c;

fi
end; return choice;

end

Figure 4. CArel routing algorithm.

computed caching benefits allow for optimal rout-
ing decisions. The router can predict the number of
cache misses of the queries. Hence, cache approxi-
mation routing based on pre-computed benefit values
will serve as an orientation guide for evaluating the
different cache approximation schemes.

4.3. Dynamic Cache Approximation

In the previous subsection, we have assumed a
known set of possible queries. We drop this as-
sumption in this subsection. In contrast toCAabs
andCArel, which only keep track of the most recent
query, we will describe cache states more explicitly.

The typical granularity of component caches are

disk pages. Any data needed for query execution is
loaded into a component cache in form of disk pages.
Ideally, the state of a cache would be defined as its
set of pages. But with the black-box assumption, the
coordinator has no access to the cache directory of
the components. Hence, we must rely on informa-
tion collected separately. Intuitively, the set of tu-
ples accessed by a query indirectly defines the set of
data pages read from disk during execution. Con-
sequently, our idea is to approximate cache states
by approximations of the set of tuples accessed by
a query. This can be done with different degrees of
precision. The following subsections reflect this.

4.3.1. Cache Approximation via FROM-Clauses

A straightforward approach to approximate the set of
tuples accessed by a query is to keep track of the rela-
tions accessed. This is simply achieved by analyzing
the FROM clause of the query. We approximate the
state of component caches by the set of relations ac-
cessed by the most recentn queries. LetQC

i denote
the ith most recent query executed at componentC,
i.e., QC

1 is the last query. We define the cache state
as follows:

rels(Q) := fR j R contained in FROM

clause of query Qg

state(C; n) :=
[

1�i�n

rels(QC
i)

Further, we define the benefit of the cache state of
componentC for queryQ by the size of intersection
of the cache state and the FROM clause of the query:

bene�t(Q ;C ; n) := jstate(C; n)\ rels(Q)j

Subsequently, we refer to a router that implements
this strategy asCAF router.

4.3.2. Cache Approximation via Query Signatures

The above approach relies on a very rough approxi-
mation of queried data. It does not take into account
which portions of the relations are actually accessed
by a query. These are described by each query pred-
icate. However, quantifying the exact overlap of the
sets of tuples specified by two different predicates
having common attributes is difficult. Consequently,
we further approximate the set of tuples specified
by a predicate using bit string signatures. By doing
so, we reduce the calculation of benefits to bit string
comparisons. This can be done efficiently.

Query Signature Generation. Our approach
works with three different kinds of signatures: the
query signature, which in fact is a set of signatures,
each together with a query attribute,attribute
signatures for each attribute occurring in a predicate
of the query, and for each occurrence of an attribute
in a query predicate apredicate signature for the
attribute. The bits set in a query signature represent
the data range possibly being accessed by the query.
We build a query signature using disjoint coding
[2], i.e., we generate one attribute signature for each
query attribute. This in turn is based on thequery
graph: Each node of the query graph represents a
relation accessed by the query. Each edge of the
query graph stands for a join predicate between
relations. A select predicate is represented by an
edge that forms a cycle. Note that a query graph is
defined only for conjunctive queries. Given a query
graph, we first generate a predicate signature for
each occurrence of an attribute in a query predicate.
Then, we intersect the predicate signatures for an
attribute to obtain its attribute signature. In more
detail, we proceed in four steps:

Selection Predicate Signatures. In a first step,
we consider each selection predicatepsel of the
form (a � const) of queryQ. The correspond-
ing predicate signature is a bit string, denoted by
predsig(psel; a;Q). It is generated according to the
following scheme: The hash functionh() transforms
constantconst into a bit position. Depending on the
comparison operator�, only the corresponding bit or
a whole bit range starting or ending at this position is

set in the bit string (cf. Table 1). The hash function
must be order-preserving, i.e.,x<y) h(x)�h(y).

� predsig(psel; a;Q) bits set
= 0 ... 010 ... 0 bith(const)

<, <= 0 ... 011 ... 1 [h(const)::0]
>, >= 1 ... 110 ... 0 [last bit ..h(const)]
6=,:,like 1 ... 111 ... 1 all bits set

Table 1. Selection predicate signatures.

Join Predicate Signatures. In a second step, we
generate signatures for join predicatespjoin of the
form (aR � aL) of queryQ. This will result in
two predicate signaturespredsig(pjoin; aR; Q) and
predsig(pjoin; aL; Q). They approximate the two
sets of tuples accessed in the joined relationsL and
R, respectively. Our approach to join-predicate sig-
nature generation makes a distinction between two
cases, namely equi-joins along foreign key relation-
ships and all other join predicates.

The second case is simple: predicate signatures
have all bits set. This also holds for all other kinds of
predicates, e.g., comparisons with sub-queries. With
regard to the first case, w.l.o.g., letaR be the key
attribute. Let^b denote abitwise and operation,
rel(a) the relation in which the attributea occurs and
attrs(x) the set of attributes occuring inx. x can ei-
ther be a relation, a predicate, or a query. Finally, let
selects(a;Q) denote the set of selection predicates
of queryQ over attributea. With this, the genera-
tion of the predicate signatures for equi-joins along
foreign key relationships is defined as follows:
predsig(pjoin ; aR;Q) :=8>>>><
>>>>:

^
b

a2attrs(rel(aR))

� ^
b

p2selects(a;Q)

predsig(p; a; Q)

�
if �;

1:::111:::1 otherwise.

predsig(pjoin ; aL;Q) :=
predsig(pjoin ; aR;Q); aR = attrs(pjoin)nfaLg

where � = (aR 2 attrs(pjoin)
^ 9a 2 attrs(rel(aR)) : selects(a;Q) 6= ;)

We first generatepredsig(pjoin; aR; Q), the sig-
nature for the key attributeaR. We make use of the
signatures already generated in the first step: we in-
tersect all existing signatures of selection predicates
(innermost bitwise and) for attributes of the relation
of aR (outermost bitwise and). If there is no selec-
tion predicate on any attribute ofR, i.e.,� does not
hold, we set all bits. The rationale is to approximate
the set of tuples selected inR. We use the same bit
string for the signature of the foreign key attribute,
too. This models the access on the corresponding
join tuples inL.

Attribute Signatures. In the next step, we com-
bine the predicate signatures to attribute signatures.
Let preds(a;Q) denote the set of all predicates of
queryQ in which attributea occurs. An attribute
signature for an attributea is a bit string denoted
by attrsig(a;Q). We generate it by intersecting all
predicate signatures for attributea:

attrsig(a;Q) :=
^

b
p2preds(a;Q)

predsig(p; a;Q)

Query Signatures. Finally, the query signature
for query Q, denoted bysig(Q), is the set of
(attribute; bitstring) pairs defined as follows:

sig(Q) := f (a; attrsig(a;Q)) j
a 2 attrs(Q) : preds(a;Q) 6= ; g

Example 1. Consider TPC-R query Q4:

SELECT O_OrderPriority, COUNT(*)
FROM Orders
WHERE O_OrderDate >=‘01-JAN-1995’ (P1)

AND O_OrderDate < ‘01-APR-1995’ (P2)
AND EXISTS (SELECT * FROM LineItem
WHERE L_OrderKey = O_OrderKey (P3)
AND L_CommitDate < L_ReceiptDate) (P4)

GROUP BY O_OrderPriority ...;

The query contains four predicates: two selection
predicatesP1 andP2 on O OrderDate. P3 is a
join predicate between the two relationsOrders
andLineItem, andP4 a self-join on attributes of
LineItem. Assume thath(‘01-JAN-1995’) = 4
andh(‘01-APR-1995’) = 5. Then, with a signature
size of 8 bits1, the following six predicate signatures
will be generated:

predsig(P1;O OrderDate;Q4) = 11110000
predsig(P2;O OrderDate;Q4) = 00111111
predsig(P3;O OrderKey;Q4) = 00110000
predsig(P3; L OrderKey;Q4) = 00110000
predsig(P4; L ReceiptDate;Q4) = 11111111
predsig(P4; L CommitDate;Q4) = 11111111

The signature of the join attributes are derived from
the two predicate signatures forO OrderDate. The
last predicateP4 does neither contain a constant nor
a key attribute. We can only ‘approximate’ it by two
signatures with all bits set. Next, all predicate signa-
tures are intersected into single attribute signatures:

attrsig(O OrderDate;Q4) = 00110000
attrsig(O OrderKey;Q4) = 00110000
attrsig(L OrderKey;Q4) = 00110000
attrsig(L ReceiptDate;Q4) = 11111111
attrsig(L CommitDate;Q4) = 11111111

1Actually,PowerDBuses 128 bit signatures.

Hence, the query signature of Q4 looks as follows:

sig(Q4) = f (O OrderDate; 00110000);
(O OrderKey; 00110000);
(L OrderKey; 00110000);
(L ReceiptDate; 11111111);
(L CommitDate; 11111111) g �

Cache State Approximation. How do these pred-
icate signatures facilitate dynamic cache approxima-
tion? Recall that bits set represent the data range
possibly accessed by a statement. Therefore, we
define the approximated cache state of components
by means of the predicate signatures of the recentn

statements executed:

state(C; n) :=
[

1�i�n

sig(QC
i)

The parametern is the history length which allows
to adjust the degree of approximation.

Benefit Model. As a final step, we define the ben-
efit of the cache state of a componentC for queryQ.
The underlying hypothesis is as follows: the more
bits in signatures of the same attribute coincide, the
more data accessed by the query is already cached
by the component, because the previous queries have
accessed similar data. Let#b() be a function which
counts the number of bits set in a bit string. Then, the
benefit is:bene�t(Q;C; n) :=

X
(a; bsa)
2 sig(Q)

X
(a0; bs

a0)

2 state(C;n)

(
#b(bsa ^b bsa0) if a=a

0
;

0 otherwise.

We will refer to a cache approximation router which
uses this benefit model as aCAS router.

Refined Benefit Model. The benefit model ofCAS
routing yields higher benefit values the more bits of
the signatures match. This approach tends to pre-
fer queries with signatures where many bits are set.
These are normally multi-joinqueries with few selec-
tive predicates. In order to minimize mean response
time, another idea is to execute short queries as soon
as possible. To achieve this, we refine our benefit
model. It now takes the actual execution costs of a
query into account. To do so, the coordinator records
the execution times of each query. If the same query
is executed another time, its benefit value is finally
normalized with the recorded execution time:

normalized bene�t (Q;C; n) :=
bene�t (Q;C; n)

execution timeQ

In case a query is executed the first time, we deliber-
ately set its execution time to 1. We will refer to this
variant asCASweightedrouter.

Discussion. While having developed a number of
cache approximation methods by now, more sophis-
ticated ones are still conceivable. For instance, the
router could access the query optimizers of the com-
ponent DBMSs and take the actual query plans into
account as well. The rationale is to avoid concur-
rent scan and random access operations. Another re-
finement could consider attribute selectivities and the
data distribution. As a further example, the router
could try to differentiate between index-based access
methods and full scans. Finally, we could try to cap-
ture the case that the amount of data retrieved to pro-
cess a query exceeds the cache size.

However, our intention was to develop simple,
but efficient cache approximation schemes for black-
box components. The possible refinements just men-
tioned do not exactly meet this criterion. For in-
stance, analyzing the query plan is highly platform-
specific and induces much additional complexity. In-
stead, we now see the necessity to evaluate the rout-
ing algorithms developed so far. In particular, we
must compare the routing schemes based on realistic
assumptions to the ‘good’ ones, serving as orienta-
tion guides. If the difference is not too big, further
refinements will not yield significant improvements.

5. Evaluation

We present the main results of an extensive evalu-
ation of the following routing strategies:

FCFFS. First-Come-First-Free-Serverroutingwhich
is not cache-aware. Its performance serves as an
orientation point for the other strategies.

CAabs. Cache approximation routing, whose static
caching benefit matrix contains absolute cache
miss improvements.

CArel. Cache approximation routing based on a rel-
ative caching benefit matrix.

CAF. Dynamic cache approximation routing based
on the FROM clause of queries.

CAS. Dynamic cache approximation routing based
on predicate signatures.

CASweighted. Like CAS, but with a refined benefit
model using normalized benefits.

5.1. Experimental Setup

All measurements have been carried out on a clus-
ter of PCs (Pentium II, 400 MHz, 128 MBytes) un-
der Windows NT 4.0. The coordinator ran on a sep-
arate PC. All computers were interconnected by a

switched 100 MBit Fast-Ethernet LAN. We used OR-
ACLE 8.0.4 as component database system with a
cache size of 40000 pages. Each component database
was generated and populated according to the speci-
fication of the TPC-R benchmark [3] with a scaling
factor of 0:1. We fully replicated the data and the
indexes on all nodes.

The client issued a stream consisting of 220 TPC-
R queries to the coordinator with an inter arrival time
with random distributionof up to 5 seconds. The exe-
cution order of the queries in the stream corresponds
to the permutation orders 0 to 9 of the TPC-R specifi-
cation. The client measured both the query through-
put and the mean query response time for such a
stream. Each data point represents the average value
of at least five measurements. The standard devia-
tion typically has been around 6% of the mean value
which is sufficiently low.

5.2. Influence of Cache History Length

First, we are interested in the influence of the
cache history length on the accuracy of the approx-
imation schemes. Therefore, we fix the cluster size
(8 nodes) and vary the number of previous queries
recorded for cache approximation from one up to ten.
The results are shown in Figure 5. We see that the

Mean Response Time (MRT)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10
cache history length

se
co

nd
s

FCFFS CAS CASweighted

Figure 5. MRT Influence of history size.

dynamic cache approximation routers yield a general
improvement of mean response time between 45%
and 55%, as compared toFCFFS. However, with
our present scenario of OLAP queries, increasing the
cache history maintained by the dynamic cache ap-
proximation routers does not improve their perfor-
mance. On the contrary, the mean response times
of both CAS and CASweighted routing become
slightly worse with longer histories. This is due to the
complex queries we are investigating: about half of
the TPC-R queries access more database pages than

(a) Throughput

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

1 2 3 4 5 6 7 8

cluster size

T
P

C
-R

qu
er

ie
s

pe
r

se
co

nd

FCFFS CAabs CArel CAF CAS CASweighted

(b) Mean Response Time -- MRT

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

cluster size

se
co

nd
s

FCFFS CAabs CArel CAF CAS CASweighted

Figure 6. Throughput (a) and mean response times (b) with different routers.

can be cached. Therefore, it is not surprising that the
cache state is sufficiently described by the most re-
cently executed query. Consequently, we will use a
cache history length of one in the following experi-
ments. However, note that this consequence is not a
general one, e.g., as if we would experiment with a
workload consisting of short OLTP queries.

5.3. Scalability of Routing Algorithms

Next, we are interested in the overall performance
of the different routing algorithms for different clus-
ter sizes (up to 8 nodes). Figure 6 shows the through-
put and mean response times of the query stream
with the different routing algorithms and increasing
cluster size. First, these experiments confirm our re-
sults reported in [10]. All routing algorithms show a
nearly linear increase in throughput with increasing
cluster size. Subsequently, we will use the straight-
forward approach ofFCFFSas a basis for our com-
parisons. All cache approximation routers yield bet-
ter results thanFCFFS. However, there is a trade-
off between throughput and mean response time with
cache approximation routing. For example,CAabs
routing achieves higher throughput thanCArel rout-
ing. In contrast,CArel yields shorter mean response
times thanCAabs. The reason is thatCAabs rout-
ing prefers longer queries due to their higher benefit
even if the improvement relative to the overall query
length might be smaller. The opposite is true for the
CArel router relying on the relative improvements.
Now short queries are preferred. The same is true for
CAS andCASweightedrouters, respectively.

An interesting observation is that cache approx-
imation routing is already faster than FCFFS with
a ‘cluster’ consisting of only one node (cf. Fig-
ure 6(b)). This is due to the reordering of the input
queue. In Section 4.1, we explained that the coordi-
nator uses acheapest-action-first policy in conjunc-
tion with cache approximation routers. WithCArel

routing, this reordering of the input queue cuts down
mean response time on a one node ‘cluster’ by 80%.

In Figure 7, we ‘zoom in’ to make the differ-
ences of the five cache approximation routers more
clear by scaling to the results ofFCFFS. The rela-
tive throughput of the cache approximation routers
strongly varies between 120 and 240 percent of the
FCFFS throughput. With a cluster size of eight
nodes, the static cache approximation routers still
yield a throughput that is better by about 40%. The
dynamic approximation routers achieve a slightly
lower throughput than the routers based on pre-
computed benefit values. They end up with around
20% improvement as compared to FCFFS.

We can distinguish the different routers even bet-
ter if we look at the improvement of mean response
times (cf. Figure 7(b)). Due to its pre-computed
knowledge of the benefits for all queries,CArel rout-
ing yields the lowest mean response times. They are
between 20% and 30% of the one ofFCFFS. That is,
CArel routing improves the mean response time by
a factor of 3. This is the yardstick for the dynamic
approaches. The straightforwardCAF router, which
approximates cache states by the FROM clause of the
queries, achieves about 10% better mean response
times thanFCFFS. This is the worst mean response
time of all cache-aware routers. It is inferior to
the cache approximation routers which use predicate
signatures:CAS routing improves mean response
time by around 40% as compared toFCFFS. This
is even better thanCAabs routing which uses pre-
vious knowledge about the absolute cache miss im-
provements of the queries. With the refined benefit
model of CASweighted, we nearly reach the opti-
mal result of the staticCArel router. CASweighted
yields around 55% faster mean response times, i.e., it
is better thanFCFFSby a factor of 2. This is remark-
able, as in contrast toCArel it fully conforms to the
black-box principle, with no unrealistic assumptions
(e.g., no fixed parameters) on the queries.

(a) Throughput scaled to FCFFS

1,00

1,20

1,40

1,60

1,80

2,00

2,20

2,40

1 2 3 4 5 6 7 8

cluster size

fa
ct

or
of

th
ro

ug
hp

ut
of

F
C

F
F

S

CAabs CArel CAF CAS CASweighted

(b) Mean Response Time scaled to FCFFS

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1 2 3 4 5 6 7 8

cluster size

fa
ct

or
of

M
R

T
of

F
C

F
F

S

CAF CAabs CAS CASweighted CArel

Figure 7. Throughput (a) and mean response time (b), as compared to FCFFS.

6. Conclusions

A cluster of databases is an interesting cost-
effective alternative to mainframes. In ourPowerDB
project, we pursue a coordination-based approach: a
central node, the coordinator, coordinates a cluster
of database systems. The coordinator decides what
to store at each component and where to evaluate
queries. Assuming full replication, we are interested
in query routing strategies to decrease query response
time. The underlying observation is that query evalu-
ation performance strongly relies on caching. But in
a composite system withblack-box components it is
impossible to directly manipulate or retrieve the con-
tent of the component caches. In this paper, we pre-
sented a new approach to query routing over black-
box components, namely signature-based cache ap-
proximation routing. We make use of predicate sig-
natures, i.e., bit string approximations of the data
ranges accessed by a query. We base the routing de-
cision on these signatures: the coordinator approxi-
mates the caches of the components by the signatures
of the recently executed queries. The coordinator ar-
ranges its input queue so that the query promising
the highest benefit from caching effects is processed
first. It routes this query to that component with the
largest signature overlap. In a quantitative evalua-
tion using a realistic set of OLAP queries, we have
shown that cache approximation based query routing
can more than halve mean response times. Note that
this result is a very general one. On the one hand, the
signatures can be generated for arbitrary conjunctive
SQL queries. On the other hand, our approach re-
spects that components may be black-boxes.

References

[1] M. J. Carey, M. Livny, and H. Lu. Dynamic task allo-
cation in a distributed database system. InProceed-
ings of the ICDCS’85, pages 282–291, May 1985.

[2] W. W. Chang and H.-J. Schek. A signature access
method for the starburst database system. InPro-
ceedings of VLDB’89, pages 145–153, 1989.

[3] T. P. P. Council. TPC-R benchmark specification rev.
1.0.1. Technical report, Transaction Processing Per-
formance Council, July 1999.

[4] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava,
and M. Tan. Semantic data caching and replacement.
In Proceedings of VLDB’96, pages 330–341, 1996.

[5] P. M. Deshpande and J. F. Naughton. Aggregate
aware caching for multi-dimensional queries. InPro-
ceedings of EDBT2000, pages 167–182, 2000.

[6] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-
mary cache: A scalable wide-area web cache sharing
protocol. InProceedings of SIGCOMM’98, 1998.

[7] M. J. Freely et al. Implementing global memory
management in a workstation cluster. InProc. 15th
ACM Symp. on Operating System Principles, 1995.

[8] J. Gray. How high is high performance transaction
processing? Presentation on the 1999 HPTS Work-
shop, Asilomar, CA, Oct. 1999.

[9] E. Rahm. A framework for workload allocation in
distributed transaction processing systems.Systems
Software Journal, 18:171–190, 1992.

[10] U. Röhm, K. Böhm, and H.-J. Schek. OLAP query
routing and physical design in a database cluster. In
Proceedings of EDBT2000, pages 254–268, 2000.

[11] P. Scheuermann, J. Shim, and R. Vingralek. Watch-
man: A data warehouse intelligent cache manager.
In Proceedings of VLDB’96, Bombay, India, 1996.

[12] J. Shim, P. Scheuermann, and R. Vingralek. Dy-
namic caching of query results for decision support
systems. InProc. of SSDBM, pages 254–263, 1999.

[13] M. Sinnwell and G. Weikum. A cost-model-based
online method for distributed caching. InProceed-
ings of ICDE’97, Birmingham, UK, 1997.

[14] A. Thomasian. A performance study of dynamic load
balancing in distributed systems. InProceedings of
ICDCS’87, Berlin, Germany, pages 178–184, 1987.

[15] S. Venkataraman, J. F. Naughton, and M. Livny.
Remote load-sensitive caching for multi-server
database system. InProceedings of ICDE, 1998.

[16] P. Yu, D. Cornell, D. Dias, and B. Iyer. Analysis of
affinity based routing in multi-system data sharing.
Performance Evaluation, 7:87–109, 1987.

