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Abstract

Reporting functions reflect a novel technique to formu-
late sequence-oriented queries in SQL. They extend the
classical way of grouping and applying aggregation func-
tions by additionally providing a column-based ordering,
partitioning, and windowing mechanism. The application
area of reporting functions ranges from simple ranking que-
ries (TOP(n)-analyses) over cumulative (Year-To-Date-
analyses) to sliding window queries. In this paper we dis-
cuss the problem of deriving reporting function queries from
materialized reporting function views, which is one of the
most important issues in efficiently processing queries in a
data warehouse environment. Two different derivation algo-
rithms including their relational mappings are introduced
and compared in a test scenario.

1. Introduction

A data warehouse together with OLAP and data mining
tools reflects an asset for every organization in the decision
making process. While recent work in optimizing database
technology for this application area has concentrated on
specifying complex grouping conditions (like CUBE(), ROL-
LUP(), and GROUPING SETS(); [5]) and materialized view design
(e.g. [9], [18], [3],...), more complex statistical analyses
often require sequence semantics. Such applications range
from simple ranking queries and Year-To-Date analyses to
complex pattern matching and similarity algorithms. In
summary, sequence processing is demanded by many appli-
cations, and is — from a complexity perspective — far beyond
the simple computational model of OLAP.

Overview of Reporting Functions

Recent developments consider these requirements by
introducing the SQL extension of Reporting (or OLAP)
Functions ([10], [13], [17]) extending aggregation by col-
umn-wise partitioning, ordering, and optional dynamic win-
dowing. The following example illustrates the concept of
reporting functions with regard to the tables c_transactions
holding credit card transactions and 1_locations with a map-
ping of shops to geographic information like cities and
regions. The query below returns the actual date, the
amount of each transaction and four reporting function col-
umns for customer 4711.

SELECT c_date, c_transaction,
SUM(c_transaction) OVER -- overall cumulative sum
( ORDER BY c_date ROWS UNBOUNDED PRECEDING ) AS cum sum_total,

1

SUM(c_transaction) OVER -- cumulative sum per month
( PARTITION BY month(c_date) ORDER BY c_date
ROWS UNBOUNDED PRECEDING ) AS cum_sum_month,
AVG(c_transaction) OVER -- centered 3 day moving average
( PARTITION BY month(c_date), 1_region ORDER BY c_date
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_3mvg_avg,
AVG(c_transaction) OVER -- prospective 7 day moving average
( ORDER BY c_date
ROWS BETWEEN CURRENT ROW AND 6 FOLLOWING) AS c_7mvg_avg
FROM c_transactions, 1_Tocations
WHERE c_locid = 1_Tlocid AND c_custid = 4711;

Reporting Functions are defined with the OVER()-clause
following a regular aggregation function thus algorithmi-
cally declaring the scope of the aggregation function for
each single incoming tuple. According to [10] and [13],
figure 1 gives the corresponding general syntax diagram.
The 0RDER BY-clause of a reporting function determines the
local sort order of each column independent of any optional
global oRDER BY-clause. The scope of the aggregation func-
tion is determined by a window aggregation group specifi-
cation. For example, the first two reporting function col-
umns of the example above exhibit a scope from the first’
to the current tuple, thus implementing cumulative seman-
tics. The notion of a ’first’ tuple may optionally be further
refined by applying a partition clause: The pointer to the
*first’ tuple is reset for each new partition defined in the PAR-
TITION BY-clause, so that the running sum of the credit card
transactions are computed on a monthly basis in the second
reporting function. The columns ¢ 3mvg_avg and c_7mvg_avg
demonstrate the specification of sliding windows: To com-
pute a single output value for c¢_3mvg_avg, the left, the current,
and the right tuples are considered to retrieve the local aver-
age value. Smoothing of sequence data is one of the most
relevant applications for sliding windows. It is important to
notice here that in opposite to regular aggregation functions
in the context of a global group-by, reporting functions do
not shrink the data volume but produce one output value for
each single input value.

Related Work

Sequence processing is one of the most intensively stud-
ied problems in database technology. Different proposals
range from special data models like SEQ ([16]) over the
introduction of special sequence operators ([19], [7]) to

L OVER ( ) J
—
clause clause
window

aggr. group

Fig. 1: Syntax Diagram ([10])

Function(arg)
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complex algorithms like similarity search or pattern recog-
nition operating in a special sequence-oriented environ-
ment. However, tightly integrating sequence processing
techniques into the relational context and considering the
derivation problems in the presence of materialized views
has not been addressed in prior work.

The overall processing strategy in evaluating reporting
functions is the following: In a first step, (after performing
necessary joins and selections) an optionally existing global
group by-operation is executed. Specifying queries with
complex grouping conditions ([5]) and deriving queries
from views at that level of detail reflect a very well studied
problem (e.g. [20]) and are not further discussed in the con-
text of the paper. The second and third step in evaluating
reporting functions consists in defining column-wise parti-
tions and sorting the data within each partition. Again, con-
sidering sort orders in the context of derivation problems is
a well understood problem and discussed for example in [6],
[1], or [14]. However, deriving queries from materialized
data with an additional window specification within each
partition is still an open issue, which at the same time is dis-
cussed in this paper.

Contribution and Organization of the Paper

Reporting functions reflect an important piece in an ana-
lytical environment, needed to exploit the benefit of inte-
grated data usually gathered in a data warehouse. However,
implementing sequence operations within a relational
engine causes tremendous effort, because traditional opera-
tor design is not well suited for caching data to compute
cumulative sequences or grouping data on a column basis.
Hence this paper presents a comprehensive study of dealing
with sequence data from two perspectives. On the one hand,
given recursive algorithms may be used in the presence of
special techniques like internal caches. On the other hand,
we always give an operator pattern of each algorithm, spec-
ified within the pure relational model. Although not very
efficient, this approach provides at least an easy way of
implementing reporting functionality useful for cutting
down developing time and costs. The given operator pat-
terns may be applied in query rewrite directly after parsing
the query exhibiting a reporting function.

The following section formally introduces the concept of
sequences, outlines strategies to compute sequence values,
and gives rules to incrementally maintain materialized
sequence views. Section 3 presents basic techniques for
working with cumulative and sliding window sequences.
Section 4 and section 5 address the problem of deriving
sliding window queries from materialized views defined
over sequences with a different window size. After that,
section 6 gives a short insight in generalizing the previous
concepts for reporting function sequences involving order-
ing and partitioning. Section 7 finally presents some empir-

2

ical evaluations of the algorithms explained in section 4 and
section 5. The paper closes with a summary and conclusion
in section 8.

2. Simple Reporting Function Sequences

As shown in the previous example, a single reporting
function represents a sequence specification. This section
classifies different sequence types and formalizes the oper-
ations.

2.1. Definition of Sequences

Without loss of generality we assume that raw data val-
ues x; only exist for positive values of i. For other i x; is set
to zero.

Definition: Simple Sequence

A simple sequence x is defined as a triple (S, W, F,)
where S is a tuple (S;, Sp) specifying start and stop posi-
tions of the sequence. W is a tuple (W;, Wy) defining the
operational scope of each position; W, and Wy, are a list
of functions computing the lower and upper bound of the
window at each sequence position, i.e. W = <w; (1),
wr(2), ..., wp(n)> and Wy = <wg(1), wy(2), ..., wy(n)>.
F, is a regular aggregation function computing the result
of each set of input values of a given window.

The previous definition implies that the result of the
reporting function defined by a simple sequence (S, W, F,)
at position k (S;<k<Sy) is computed by x(k) = x;, =
Eyxwi(k), x(wi(k)+1), ..., x(wy(k)-1), x(wy(k))}. Without
loss of generality, we furthermore assume that a simple
sequence starts at position S; =/ and ends at position Sy=n,
where 7 is the cardinality of the sequence. The window size
of a sequence at a position k is then defined by W(k) =
I+wy(k)-w, ().

In general, we may distinguish two different types of
simple sequences with regard to the shape of the specified
window:

* Cumulative Windows: The range of cumulative windows
(for example to compute year-to-date queries) is algorith-
mically determined by wy (k)=0 and wy(k)=k (1<k<n), so
that the window size at position k is W(k)=1+W(k-1) for
k>1and W(1)=1.

* Sliding Windows: Sliding windows are defined by a fixed
relative distance to the lower and upper bound of the win-
dow at a specific position, so that wy(k)=k-l and
wy(k)=k+h with [ and & as arbitrary but constant integer
values. Obviously the window size yields W(k)=1+I+h
(I1<ks<n).”

* For easier handling, we assume that />0, />0, and [+h>0. This implies
that the lower bound is left of £ and the upper bound is located right of 4.
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Since the handling of sliding windows is more complex
than cumulative windowing and all techniques proposed for
sliding windows are easily transferable to cumulative win-
dowing sequences, we concentrate on sliding window
sequences defined by (7, #) with />0,h>0 starting at position
1 with n input values x; (/<i<n) in the following discussions.
From the set of aggregation functions (SUM, COUNT,
AVG, MIN, MAX), we emphasize the SUM aggregation
function, because COUNT is trivial (either constant or the
current position) and AVG may be directly derived from
SUM and COUNT. The semi-algebraic functions MIN and
MAX are mentioned whenever the application is permitted.

This means that the value of the sequence X at a certain
point k is defined as the sum of all values x; from the lower
bound (x;_;) up to the upper bound of the window (x;p).
Because of our earlier assumption it is clear that x; = 0 for
k<-hand k> n+l

2.2. Computing Sequences

The naive way of computing sequence data is to follow
the explicit form, i.e. x; = Fy{x(wi(k)), x(wp(k)+1),
x(wy(k)-1), x(wgy(k))}. A relational mapping without
explicit support of reporting functionality inside the rela-
tional engine is depicted in figure 2 for the sample query
computing a centered sliding window of size 3.

SELECT pos, SUM(val) OVER (ORDER BY pos

ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
FROM seq;

As can be seen, simulating
sequence-processing within the
relational model requires the
execution of a self join of the e
underlying table. Computing $5.p0s+1)
sequences can be sped up as St P°S/ \SZ R
soon as special operators are S5t seq sz
available. In case of a cumula-
tive sequence, it is obvious that the sequence value X, can
be computed by referring to the preceding value and the raw
data at the current position, i.e.

Xpi= X T

T s4.pos, val

Ypos, SUM(val) as val

$4.pos, sp.val

Fig. 2: Relational Mapping

For computing sliding

window sequences, we take Bes o *

into account that two neigh- . % i

bored windows at position £ 7

and k-/ exhibit the following

algebraic

(figure 3)
XX = X g Py

- . k-(1+1) k-l 3
relationship Fig. 3: Sequence Relationship

k+h-1 k+h

Besides other applications, which are exploited in the
following sections, we may use this relationship to compute
sequence data in a pipe-lined style using the following

3

recursion:

Xp = Xgep T Xprp = X1
Instead of performing w(k)+1 operations at every position
to compute the sequence value, referring to the given rela-
tionship requires only three operations independent of the
window size. The cache needs the size of w(k)+2 holding
ik-] and Xp_1-7 up to Xi+h-

2.3. Maintaining Materialized Sequence Data

One of the most characteristic properties of a data ware-
house environment from a database perspective is that
materialized views are stored redundantly in the data ware-
house database to speed up incoming queries. In order to
synchronize materialized views with changes made to the
base tables, views require either a full recomputation or an
incremental update. Updating materialized views in general
is a well-studied problem ([8], [11]). However, incremen-
tally maintaining materialized sequence data in the context
of reporting functions was not considered in prior work. The
following list provides a set of rules to maintain material-
ized sliding window sequence data:

» Update Operation: The update operation changes the
value X, at a single position k to X . All sequence values
which are in the scope of the modified raw data value
have to be updated, so that the general formula for the
new sequence values X; (/<isn) of X’ results in':

X; 1<i<k-h
Xo= 4 X-xptxg k-h<i<k+l
% i>k+l

1

* Insert Operation: Inserting a new raw data value implies
that an additional value is inserted at position & so that the
positions of all values right of £ are incremented. With
w=Il+h+1, the sequence values change according to the
following rule:

X; 1<i<kh
= _ Xt X - X kh<i<k
i Xig ¥ Xp-Xipry  k<i<k+l

Xi] i > k+l

» Delete Operation: For deleting a value x; from a
sequence, the necessary modifications are reflected by the
following rule:

l

Xj 1<i<kh
g = W ez kh<ic<k

Xit] =Xk T Xy kSi<hk+l

Xit1 i>k+l

T Obviously materialized sequence views defined over MIN/MAX aggre-
gation functions are incrementally updateable with min(X;, x;’) resp.
max(x; x; ) for all affected positions.
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As can be seen, incrementally updating sequence data is
more efficient than recomputing the whole sequence,
because only the affected values have to be recomputed.
Even in the presence of insert and delete operations, the
changes to the sequence data remain local.

3. Derivability of Sequence Data

Storing materialized views with reporting functions
requires that incoming queries are able to take advantage of
the existence of the materialized views and can be rewritten
by utilizing these views. This section introduces the concept
of derivability of sequence queries from materialized
sequence data. Although, there is no evident advantage with
regard to the cardinality of materializing sequence data in
opposite to the classical group-by problem ([12]), we iden-
tify many applications making the derivation of sequence
queries necessary. For example, a data warehouse system
may propose a caching strategy of incoming user queries
([4], [21], [15]) to avoid the costly process of explicitly
computing candidates of materialized views ([2], [9]). If
users are heavily relying on sequence processing and the
system is not able to consider the derivation of sequence
queries from materialized sequence views, no support can
be achieved.

A first solution of the problem of deriving sequence que-
ries from materialized sequence data would be to recon-
struct the original raw values using the recursive formula
given below. Although this might be a feasible approach if
the engine supports internal caching and special sequence
operators, we additionally propose explicit forms of deriv-
ing sequence queries, which may be easily incorporated into
relational database engines without much internal rewriting.

3.1. Materialized Cumulative Sequences

This section addresses the problem of deriving single
data points of sequence values if the underlying sequence is
of type cumulative.

Reconstruction of Raw Data Values

A single raw data point x; may be derived from a cumu-
lative sequence by referring to the relationship of two
directly neighbored sequence values, i.e.

Xk S Xk- Xk_]

A pure relational mapping again requires a self join of the
materialized sequence table to retrieve the original data val-
ues (figure 4). A CASE()-statement is used to negate the
sequence value at position k-7, so that a SUM aggregation
function with grouping over the sequence positions yields
the result.

4

T s4.pos, val

Ys1.pos, SUM(CASE WHEN s.pos = s,.pos

THEN s,.val
$1.pos, ELSE (-1)*s,.val
$5.p0S, sp.val END) as val

<] 81-pos IN (sp.pos-1, s5.p0s)
$1.poS S0.pos, sy.val
matseq s matseq s,

Fig. 4: Reconstructing Raw Data Values

Derivation of Sliding Window Sequences

To derive a sliding window sequence y ; defined by (7, /)
from x needs two integers 7 and m so that X, is right justi-
fied with y ; and that X, is summing up everything to the left
of y ;. This idea is clarified in figure 5 and yields the follow-
ing result:

Y= Xievh = Xk-l-1

This formula holds even for small values of &, because
X117 is defined to be 0 for k</+1. In this case, only the first
part of the difference contributes to the final result. The rela-
tional mapping corresponds to figure 4 with adaptations
needed in the sequence positions to compute the new
sequence value ¥ .

a Pk = Xpr1 - X3 — x¥=(2,1)
;k—3_> )_“\\
|| f——
fom( \ o 1 G 3)
1 2 3 k 1 2 3 k

Fig. 5: Sliding Windows from a Cumulative Window Sequence

3.2. Materialized Sliding Window Sequences

In case of deriving data from materialized sliding win-
dow sequences, we may refer to the relationship of two
directly neighbored sequence values. This relationship may
be used to reconstruct the original data values, so that x;, at
position k& is computed using the following expression:

Xj = X g X e+ 1 Xk 1okt 1
1eSp.  Xp '= XjepX fopo ] T X Lh- 1

As we will see in the following example, the only neces-
sary prerequisite for this mechanism to work correctly is the
requirement of completeness, i.e. the existence of the
header and trailer of sequence x. The given recursion can be
transformed (see section 5) into the following explicit form
with w=W(k)=I+h+1 denoting the window size of the
materialized sliding window sequence x:

X = A Cp_p_iw— Xk h—1—iw)
i20
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The summation can be stopped after i,,, because beyond
th1s point the larger value x_j_;,, yields Zero The parameter
Ip is the minimal / fulfilling the following condition:

Xph—iw = 0 < k—h—zupr—h and therefore
) k. P
i 2=
up

w
For example i, can be set to: i, = (ﬁ_‘

up ”

Derivation of Sliding Window Sequences

To illustrate the problem of deriving sliding window que-
ries from a materialized sliding window view, consider the
following example: Given a materialized sequence x=(2,1)
and a sequence query y =(3,1) we may obviously deduce
from figure 6 that the values correspond to each other at the
first three positions. In addition to x 4, 4 also comprises x;,
the first raw data value, i.e. y ;= X s+x;. To avoid raw data
access for x;, we have to use the corresponding x sequence
value, in this case x . Analogous, y 5 can be computed from
x5 and x,. Since x, is unfortunately not accessible, we may
again substitute x, by (x ;-x;) which is the same as (x1 -Xg).
Us1ng the same strategy we are able to retrieve y 4, y 7, and
¥ by (x5-X)), (x3-X,), and (x,-X3). Things are getting
more complicated if we look at position 9 and higher, where
an additional compensation term is necessary.

% - I -
5 — =010 T
X3 — Y2= X2
V3= X3
Ty 3 Vi=X4t %
V) — ~ e o =
% =X5+X;-X
¥ — DT
V=X T X3-X7
V7 =%+ X3-%)
Vg =XgtXy-X3
Vo=Xg +X5-%4+X1-%)
y=31) Vip=%19 T X6- X5 T X5-%;
o0 0
123 n-in YT

Fig. 6: Sample derivation process

Interesting to see is that we are generally able to retrieve
sequence queries from materialized sequence data, if — in
the special case above — we have access to the first atomic
value. Moreover, the computation rules show a regular pat-
tern which might be exploited to speed up the computation.
The necessary prerequisites in general, the formal specifica-
tion of the derivation rules and an algebraic proof are sub-
ject to the following discussions of section 4 and section 5.

Header and Trailer of a Sequence

One of the lessons learnt from the above example was the
need of ’some’ data outside the sequence specification,
which leads to the notion of a complete sequence.

Definition: Complete Simple Sequence (CSS)
A simple sequence is complete if the sequence represen-
tation exhibits a sequence header and a sequence trailer.
A header consists of all sequence values for positions

5

ranging from -eo to 0; analogous, a trailer of a sequence is
defined as the set of sequence values for positions ranging
from n+1 to eo.

1

As shown in figure 7,
the interesting part of a
header/trailer consists of
the sequence values for
positions -4+1 to 0 (x,
in the example) and n+/
to n+/(x,;and X4, in
the example), because RN EY o
given raw data values at noont2
the positions of / to n Fig. 7: Sample Complete Sequence
still contribute to these
sequence values. Unspecified raw data values at header and
trailer positions are set to x ;=0 (k<I, k>n). A sequence is
said to be left-bounded, if no preceding value contributes to
the window, i.e. /=0, and right-bounded, if 2=0.

.
e — — - —

Xy p—

|
-
I-
-
[
[
[
[
[
[
[
|

|
|
|
|
|
|
|
'
1

4. The MaxO Algorithm

Deriving sliding window queries from materialized
sequence data may be achieved in many ways. We propose
two alternative algorithms which are subject of description
in this and the following section. The MaxOA, which stands
for “Maximal 0verlappmg Algorithm” tries to retrieve a
new sequence value y; with a coarser Wlndow granularity
by referring to materialized sequence values X providing
maximal overlapping.

Preconditions

Although for merely technical reasons, we assume that
the window size of the query must not be larger than twice
the window size of the materialized sliding window
sequence:

O wik) >=wk)
D wyk) =1+ w(k),
where w() denotes the window positions of sequence
I,h,) and w’() represents the window specification of
sequence y =(ly,h) reflecting the user query. Given these
equations, we may deduce that — with the same upper bound
h — the lower bound of y is restricted to ly < h-1+21,.

4.1. Derivation Pattern for Sequences Sharing a
Common Bound

The first step in tackling the problem of deriving
sequence queries from materialized sequence data focusses
on sequences sharing either the lower or upper bound, i.e.
the / or & parameter within the window definition. Without
loss of generality, we assume that both sequences exhibit
the same parameter 4 = h, = h,, so that the materialized
sequence x is defined as x =(/,,4) and the deriving sequence
may be specified as y =(I,h).
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The basic procedure to retrieve a value of ¥y from
sequence values of x is to add xpand X with k' = k- (L),
so that the lower bound of x;, w; (k’), corresponds to the
lower bound of y 4, i.e. w'(k)= L

Definition: Coverage Factor Al
The coverage factor Al = [,-[, > 0 denotes the shift dis-
tance which is required to perform a coverage for values
of the derived sequence.

Adding sequence values x; and X;_,; introduces an error
term as soon as the window size of y is less than 2/¥,. The
error term, denoted z; in figure 8, is again a regular
sequence of type (I,,h-Al), called compensation sequence.
Computing the new value for y is reduced to the evalua-
tion of the correspondmg compensatlon sequence, i.e.

Vii=Xpt Xpnr- Zp

Al %= (%)
—_———

Xy

(k=Al)-1, -1 k

x

(k-Al)+h k+h

Fig. 8: Coverage using a Compensation Sequence

Definition: Compensation Sequence =z
A compensation sequence z represents the error term z;,
created by deriving a value y ; by adding x; and x;_;.

To compute the error term z; of a compensation
sequence, we rely on the same principle as for computing a
sequence in a pipelined fashion (section 2.2). Figure 9 illus-
trates the relationship of z; and x_,, of the following equa-
tion:

Zp T XeAl+Ap) = Zk-(Ap+al) T Xkeal

The parameter Ap denotes the number of positions
needed, so that two values from the materialized sequence
X, namely X;_;and X g_as+ 4> Overlap in exactly Al-1 posi-
tions.

Definition: Overlap Factor Ap
The overlap factor Ap of a compensation sequence deter-
mines the number of positions used to establish a direct
relationship between entries of the compensation
sequence and the original sequence data.

The overlap factor may be retrieved from the distance of
the upper bound of the sequence window of x f-(Al+Aw) and
the lower bound of the sequence value x;_p; (Figure 9):

wyk-(Al+Ap)) - wi(k-Al) = Al - 1

k-(Al+Ap)+h-(k-Al)-1)=Al-1
and therefore

Ap = 1+] +h-Al

6

Xk-(Al+4p) Zk

Zk( A+ Ap) X

~- 4 - - -

kAL, (k-(Al+4p)+h
Fig. 9: Overlap Factor
Summary of Sequence Derivation

Having constructively generated the single steps of
deriving a sequence query from materialized sequence data,
we may now give a general rule for deriving sequence val-
ues from materialized sliding windows.

Theorem: Sequence Derivation (MaxOA)
A sequence y=(l,h) is derivable from a complete
sequence x=(l,, #) using the following algorithm (Iy<h-
1+21):
YIS Xk ¥ Xpar- Zp
where z, is the compensation sequence defined as z =(k-
wr(k), wy(k-Al)-k) and computed by the following rule:
Zk T XkAlT Xk-(Al+Ap) T Zk-(Al+Ap)
The coverage factor A/ and the overlap factor Ap are com-
puted by:
Al =1-l,> 0
Ap = 1+l +h-Al

Clarification: The proof of the derivation theorem is inten-
tionally omitted due to space restrictions. However, we
refer to the constructive way of introducing the formula.

Explicit From versus Recursive Form

Since we are focussing on implementing sequence deri-
vation within a relational environment, it might be advis-
able to find a proper explicit form of the derivation formula
given above.

Theorem: Explicit Form of Sequence Derivation
A sequence y =(l,h) is derivable from a complete
sequence x=(I,, h) according to the following explicit
formula (1, <h-1+21,):
V=Xt A )ch—[(Al+Ap) - a 55k—((i+ DA +iAp)

i=1 i=1

Proof:We proof the theorem 1 by mductlon
(a) k=1: obvious because y ; = x;
(b) Due to the window-based character, we are not able to
prove the theorem directly from & to k+1. Instead we have
to prove this transition from & to k+(Al+Ap), from k+1 to
k+(Al+Ap)+1, up to k+(Al+Ap)-1 to k+2(Al+Ap).

o kto k+(Al+Ap):

y k+(Al+Ap) =X k+(Al+Ap) T

A Xp_(i-1)(Al+ap) © A& Xk (iAl+(i-1)Ap)
i=1 i=1
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= Xpralvap) T X T

A& Yi_ial+ap) T kAT A Xp_((i+ DAL+ inp)
i=1 i=1

=Vt Xpranap) - Xkal
()= (XkTXArz) + X al+ap) = XAl (T X k-pp~X knp)
= Xpral+ap) T Xkap - (Xhepp T Xp- Zp)

= Xp+al+ap) T Xicap ~ ZkAp
The transition marked with (*) uses the recursive form
of the sequence derivation.

* The cases for k+1 to k+(Al+Ap)+1, ..., and k+(Al+Ap)-
1 to k+2(Al+Ap) are similar to the one above and are
therefore not shown explicitly. Qa

Relational Pattern of MaxOA

The relational operator pattern to implement the MaxOA
derivation algorithm (figure 10) is based on the explicit
form and can be seen as an extension of the pattern to recon-
struct raw data values from cumulative queries
(section 3.1). The inner query joining s; and s, corresponds
to the two sums computing the compensation terms. Again,
a CASE-statement is used to perform necessary negations
yielding the correct operand for the SUM aggregation func-
tion in a subsequent grouping operation. The result of the
inner query is joined again using a left outer join to preserve
the original sequence values at the lower positions not
exhibiting a compensation term from the inner query.
Again, a CASE-statement is used for generating positive and
negative terms.

2. General MaxOA Derivation Pattern

The MaxOA is introduced in the former subsection with
the restriction of sharing the common upper window bound.
This subsection extends this framework to derive a
sequence y =(ly, hy) from a sequence x=(lyhy) with the

T s.pos, s.val + COALESCE(val, 0)
T SPOS =s1.pos
—

¥s,.pos,
SUM(CASEWHEN MOD(s.pos, Al+Ap) = MOD(s,.pos, Al+Ap))
THEN s,.val
$1.pos, ELSE (-1)*s,.val

S5.pos,
soval END) as val

matseq s

((s1.pos > sp.pos) AND
MOD (s1.pos, Al+Ap) = MOD(s,.pos, Al+Ap))

s1 pos - (Al+Ap) > s,.pos) AND
(MOD(s4.pos - Al, Al+Ap) = MOD(s,.pos, Al+Ap))
$1.p0S $5.p0S, Sp.val

matseq s; matseq sy

Fig. 10: Relational Operator Pattern for MaxOA

7

coverage factors Al = [\~ > 0 and Ah = hy-h, > 0. Using
two single side derivation mechanisms, we give the general
derivability algorithm:

Theorem: Double Side Sequence Derivability

1} sequence ¥ =(ly, hy) is derivable from a sequence
1.,h,) by applying the single side derivation pattern
twice
V= Fit G-z + Girran- 26
where z;~ and z;” are the compensation sequences
deﬁned as:
2k = Y- Xearrap + Ziay”
Zk T XgrAh - Xk+(Al+Ag) T ZktAg
The coverage and overlap factors are then determined by:
Al'= Il > 0 and Ah = hy-h, > 0
Ap = 1+h,+l-Al and Aq = 1+ +h -Ah
The explicit formula is constructed following the same
way. o o
YT Xt A Xp_iai+ap) T A Xk—((i+ DA+ idp)
w =1 w i=1
T A Y+ Ag) T & Xk—((i-1)Ah+iAg)
i=1 i=1

Clarification: Instead of giving a complete proof, we refer
the reader to figure 11 extending figure 9 with regard to
the general derivation pattern.

zi (N SN Ah
e
s ah
Al 2= (x,0% )
—_—~
;_’ 1
Xk-Al |
|
- |
X |
- |
Vi |
1
'
(k-Al)-1,. k-1, (k+Ah)+1, k (k-Al)+h, k+h, (k+Ah)+h,

Fig. 11: Maximal Overlaping Double Side Variant

Obviously, the relational mapping of the general deriva-
tion pattern can be easily adapted from the restricted case,
discussed in the preceding subsection. We may add here that
— in comparison to MinOA —MaxOA can be used to handle
materialized sequence views defined over MIN/MAX. It is
easy to see that y ; := min(X;_a, Xy+as) in the general case.

5. The MinO Algorithm

Another alternative for deriving sequence queries from
materialized sequence data consists in the approach of con-
sidering a relationship with minimal overlapping. In con-
trast to the method presented in the preceding section, the
proposed MinOA (“Minimal Overlapping Algorithm’)
results in easier specification, but does not allow the deriva-
tion of MIN/MAX sequences. Again, we consider the SUM
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derivation of a sliding Wmdow sequence =(l,,h,) from a
materialized sequence x=(l,,h,) with coverage factors
Al=l-I, and Ah=h,-h,.

Basic Derivation Pattern

The MinOA may be seen as an direct extension of the
algorithm reconstructing single data points from a material-
ized sequence of windows (section 3.1). Two complete
sequences are constructively generated so that their differ-
ence returns exactly the desired sequence values y
(figure 12):

h

N

|
a .= ktdh-hy-l-1 —
I
| —
Positive Sequence [ % i
‘ : Teean
~ |
Yk
Negative Sequence | « k‘L h k|+ "
y
_ \ﬁf—l

Kl ) BT, b '

Fig. 12: Minimal Overlap Algorithm

* Positive Sequence: The head of the positive sequence is
adjusted so that it is right justified with y ;. Therefore the
center of this head is k+Ah, i.e. it is designated by X -
The remaining elements of the positive sequence are com-
puted by shifting the center to the left by multiples of ..
The number of shifts is finite because X will be zero if
k<—h,.

* Negative Sequence: The negative sequence has to fill the
gap between the origin and y ;. So the center of the head
of this sequence is found by going backwards from & to
the beginning of y ;. (~h,) and additionally h,+1 to come
from the upper bound to the center resulting in
Xpo (I +h +1)- The remaining elements of the sequence
are again generated by left shifting in multiples of the
window size W,. Again this sequence is finite.

Theorem: Sequence Derivation (MinOA)
A sequence y =(l,h,) is derivable from a complete
sequence J}=(lx, h,) by the following explicit formula:
& Xkvan-iw, - A%,
i=0 i=1

Y=

Clarification: We intentionally omit a formal proof here
because of the constructive way of affiliating the formu-
las. However, it might be worth mentioning here that the
upper bound of the summations in the explicit form can be
limited as well by a parameter i,,,, which is the minimal i

up>
fulfilling the following condition: K+ h
Xewnh—i w =0Ek+Ah—i  w < hii,, >—
upx Wy

. . k+h
For example i, can be set to: i, = { f‘

Wy

8

T s,.pos, val

¥s,.pos,
SUM(CASE WHEN MOD(s;.pos, 1+Al+Ah) = MOD(s,.pos, 1+Al+Ah))
S4.pos, THEN sp.val
S$2.P0s, ELSE (-1)*s,.val
so.val END) as val

((s1.pos > s,.pos) AND
(MOD(s1 pos + Ah, 1+Al+Ah) = MOD(s,.pos, 1+Al+Ah))

s1 pos - (1+Al+Ah) > s,.pos) AND
(MOD(s4.pos - Al, 1+Al+Ah) = MOD(s,.pos, 1+Al+Ah))
$1.pos S2.pos, sy.val

matseq s; matseq s,

Fig. 13: Relational Operator Pattern for MinOA

Relational Pattern of MinOA

The relational pattern to implement the MinOA approach
is again adapted from the pattern deriving single raw data
values from a materialized sequence view (section 2.2). In
comparison to MaxOA, the MinOA does not need a second
join with the materialized view, because the explicit form
given above does not exhibit a third operand. However, a
left outer join is used again, to prevent the elimination of the
first sequence values.

6. Reporting Function Sequences

As illustrated in the introduction, reporting functions
allow the optional specification of a complex ordering and
partitioning scheme. This section emphasizes these per-
spectives from the derivability point of view. In a preparing
step, working with a linear ordering over multiple columns
requires a positioning function returning the global position
of a multidimensional sequence entry. Moreover, we finally
extend the notion of simple sequences to reporting
sequences formally reflecting the power of reporting func-
tions in SQL.

Definition: Position Function
A position function pos: N* — N returns a global position
k according to the linear ordering of the list of the param-
eters ky,....k,, 1.e. pos(ky,....k,) = k.
For n = 1, the position function is equivalent to id().

Definition: Reporting Sequences
A reporting sequence is a simple sequence extended by a
partitioning scheme consisting of a set of partitioning
attributes and an ordering scheme consisting of a list of
ordering columns k;,...,k,,.

6.1. Ordering Reduction

A first direction when considering deriving reporting
sequences ordered according to multiple columns occurs if
a sequence y has to be derived from a sequence x by reduc-
ing the number of ordering columns (k,....k,) to (k... k,_;).
Reducing the number of ordering columns implies some
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aggregation semantics, because sequence data which is no
longer ordered wrt. a column £; is invariant wrt. that column
and sequence values identified by different k;-values have to
be collapsed into a single sequence value. To perform the
collapsing process of x-values into y-values within the
given framework of derivability, we require that the prefix
of the linear ordering scheme remains preserved or — in
other words — the list of ordering columns may be reduced
from right to the left starting with &, and keeping at least k;.

Lemma: Derivation of Reporting Sequences by Ordering

Reduction
A reporting function y is derivable from a reporting func-
tion x, y < Xx, by preserving a prefix of the ordering
scheme of x, i.e.

y (kpekiny) < x(k;, kg pds 1)
The window specification of y results dependent on the
global position k in:

w'r(k) =k -pos((ky,...k, ) — 1, 1, ... 1)

w'g(k) = pos((ky,...k, )1, 1,...1) —k—1

The basic idea of this derivation approach is that the
first’ sequence entry of y with regard to the remaining
ordering columns is derived from X. To achieve the correct
results with overlapping windows, we refer to the new win-
dow specification and use the same derivation process as in
the case of simple sequences, i.e. MinOA or MaxOA. The
specification of the window boundaries makes heavy use of
the pos()-function when computing the next lower or upper
address wrt. the remaining ordering columns. For example,
suppose the right most ordering column of the three-column
sequence address (2,4,2) has to be eliminated (i.e. j=7). The
lower bound of the corresponding window is then evaluated
by

wi(k) = k-pos((2,4)-1, 1) =
=k—pos((2,3), 1) =k—pos(2,3,1),
and analogously the upper bound yields
wy(k) =k - pos((2,4)+1, 1) =
=k—pos((3,1), 1) =k—pos(3,1,1).

6.2. Partitioning Reduction

Within a derivation process, not only the number of
ordering columns but also the number of partitioning col-
umns may be reduced. In general, the partitioning mecha-
nism defines the restart conditions for the proposed
sequence specification. An example is shown in the intro-
duction where the cumulative transaction sum is computed
on a total and on a monthly basis. As seen in section 3.2,
additional information (header/trailer) is needed at the
beginning of a sequence to accomplish a correct derivation
process. Therefore, we may learn that a sequence has to pro-
vide a header/trailer for each partition. This leads to the
notion of a complete reporting function and specification of
derivation requirements in the case of partitioning reduc-
tion.

9

Definition: Complete Reporting Function
A reporting function is complete if it provides header/
trailer information for each partition resulting from the
given partitioning scheme.

Lemma: Derivation of Reporting Sequences by Partition-
ing Reduction
A reporting function y is derivable by partitioning reduc-
tion from a reporting function X, if x is complete.

7. Evaluation Considerations

The presented algorithms to compute reporting functions
and derive reporting function queries from materialized
views were implemented in SQL and tested using IBM
DB2V7.1 running on a PII-466 Linux machine.

Table 1 illustrates measured query runtimes to compare
execution times for computing sequence values from raw
data. As we can see and as we might have expected, the use
of existing reporting functionality inside the database
engine is always beneficial. However, we can observe that
the performance of the self join method to simulate report-
ing functionality heavily relies on the existence of an index
on the sequence position. Query execution time is then
roughly cut down by 95% and is approximately double the
time needed with the support of reporting functionality.

#seq no primary index with primary key index
values reporting self join reporting self join
func. method functionality| method
5.000 0.751s 39.016s 0.701s 1.822s
10.000 1.482s 157.656s 1.492s 3.675s
15.000 | 2.244s 357.774s 2.284s 5.528s

Table 1: Computing Sequence Data

In opposite to the complete recomputation, we compare
MinOA and MaxOA in a second scenario (including pri-
mary key indexes). As we can see in table 2, we considered
four alternative implementations. The MaxOA as well as
the MinOA were implemented with a disjunctive join pred-
icate and as a union over queries with simple predicates. We
may observe from the experimental runs that the execution
of disjunctive join predicates is far more beneficial than
splitting the query and computing each partition for itself.
Moreover, we can see that the overall query runtimes
behave not in a linear manner, so that the approach of recon-
structing sequence values in a relational way without any
other special operators is not advisable for large sequences.

MaxOAlgorithm MinO Algorithm
# seq .. . union of sim- | . . . union of
values ST ple pred. que- disjunctive simple pred
predicate . predicate e
ries queries
100 0,184 0,650 0,288 0,479
500 3,290 7,800 6,401 6,253

Table 2: Computing Sequence Data
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MaxOAlgorithm MinO Algorithm
# seq .. . union of sim- | .. . . union of
values disi uI?CthB ple pred. que- disj ugctwe simple pred.
predicate . predicate .
ries queries
1000 12,819 35,883 25,137 28,023
1500 28,621 81,995 55,823 63,091
2000 50,663 149,223 99,598 120,739
3000 727,998 542,216 576,296 272,575
5000 | 2063,054 1561,459 1635,215 765,280

Table 2: Computing Sequence Data

To put it into a nutshell, we may conclude from the
experiments that simulation of reporting functionality is
feasible as soon as we can rely on the existence of an index
structure which can be exploited during join processing.
From the derivation process, we can see that working with
a disjunctive join predicate is more beneficial compared to
two independent queries with simple predicates. The com-
parison of MinOA and MaxOA does not produce a real win-
ner. Although from a theoretical perspective MinOA should
be more economical, MaxOA 1is applicable to a broader
spectrum of aggregation functions, especially with regard to
MIN() and MAX() aggregation functions.

8. Summary and Conclusion

Within this paper we address the topic of sequence data
processing in a data warehouse environment. Inspired by
many applications in the warehouse context, sequence pro-
cessing is attracting more and more attention in the rela-
tional database community. The introduction of reporting
functions as the SQL extension underlines this importance.
However, this functionality needs to be incorporated into
the database technology especially used within the focussed
application area. This is certainly not an easy but time and
resource consuming task. Using our work, reporting func-
tion processing in the context of materialized views can be
achieved without extending the internal structure of the
database engine.

After an informal introduction of reporting functions in
SQL and formally introducing the concept of a sequence
defined using the OVER()-clause, the paper focusses on the
problem of deriving sequence queries from materialized
sequence data. We propose two alternative algorithms
MaxOA and MinOA and give a relational representation
without any specific sequence functionality required. The
paper closes with a short comparative evaluation of these
algorithms. Although this paper addresses some problems
arising in the context of evaluating sequence queries in a
set-oriented relational data and processing model, many
other issues remain open. In summary, we think that
sequence processing is a tremendously interesting area with
a huge potential for research as well as for commercial
development.

10
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