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Abstract 
Overlapping and multi-version techniques are two 
popular frameworks that transform an ephemeral index 
into a multiple logical-tree structure in order to support 
versioning databases. Although both frameworks have 
produced numerous efficient indexing methods, their 
performance analysis is rather limited; as a result there is 
no clear understanding about the behavior of the 
alternative structures and the choice of the best one, 
given the data and query characteristics. Furthermore, 
query optimization based on these methods is currently 
impossible. These are serious problems due to the 
incorporation of overlapping and multi-version 
techniques in several traditional (e.g., banking) and 
emerging (e.g., spatio-temporal) applications. In this 
paper, we propose frameworks for reducing performance 
analysis of overlapping and multi-version structures to 
that of the corresponding ephemeral structures, thus 
simplifying the problem significantly. The frameworks 
lead to accurate cost models that predict the sizes of the 
trees, the node accesses and query selectivity. Although 
we focus on B-tree-based structures, the proposed models 
can be employed with a variety of indexes. 
 
1. Introduction 
Versioning are those objects whose attributes change with 
time. Supporting such objects efficiently is crucial for a 
large number of applications. As an example, consider a 
banking system that records the historical changes of 
account balances occurring as a result of withdrawals, 
deposits or money transfers. Old versions of the records 
are not removed, since possible queries may inquire about 
any time in history. Versioning databases constitute the 
core of many temporal, spatio-temporal, decision-making, 
and on-line analytical systems. 

We use the term features to refer to the time-varying 
attributes of versioning objects, which are best modeled 
as intervals in the feature-time space. Figure 1.1 shows an 
example for the banking system. The vertical axis refers 
to account balances (i.e., the features), while the 
horizontal axis corresponds to time. Intervals a1, a2, and 
a3 represent the balance changes of account a: one 
withdrawal at timestamp t1 and one deposit at timestamp 

t2. No change occurs to account b during the 
demonstrated period. Notice that we represent records as 
semi-closed intervals to emphasize that the valid period of 
a record does not include the last timestamp, when a new 
record becomes valid. In the sequel, we say that a record 
(e.g., a2) is alive during its valid period (e.g. [t1, t2)), and 
dead outside it.  

 feature  

time  
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t1 t2  
Figure 1.1: Representation of versioning objects 

An important type of processing in versioning databases 
involves range-interval queries (interval queries for 
short), which consist of two predicates: (i) the time 
interval of interest and (ii) a feature range in the feature 
universe. For the previous example, the feature universe 
is the range defined by the minimum and maximum 
possible balances. The records retrieved by an interval 
query must be alive during the time interval and have 
their features in the feature range, e.g., “find the accounts 
with balances greater than $1000 during March 2001”. 
When the time predicate involves only a single timestamp, 
the query is called a range-timestamp query. 

Access methods for versioning objects have been 
extensively studied in temporal and spatio-temporal 
databases. Most existing methods are based on multiple 
logical-tree structures (MLTS). An MLTS maintains 
several logical trees, each of which is an ephemeral 
structure suitable for indexing objects at a single 
timestamp. To avoid excessive space, consecutive logical 
trees may share common branches so that these branches 
are stored only once. The overlapping and multi-version 
techniques are two popular frameworks for converting 
ephemeral structures into corresponding MLTS.  

Little work has been carried out on analytical models 
for MLTS. Existing analysis merely discusses the 
asymptotic optimality of overlapping and multi-version 
B-trees with respect to timestamp queries. This, however, 
is insufficient in practice due to several reasons. First, in 
most cases asymptotic performance does not accurately 



 

 

reflect the actual cost. Second, interval queries, which are 
more frequent in practice, are not discussed. Third, 
existing analysis cannot be used for other MLTS.  

In this paper, we provide analytical models that, in 
addition to B-trees, can be employed for any MLTS 
provided that there exists an analytical model for the 
corresponding ephemeral structure. For instance, in order 
to analyze the performance of an overlapping (or multi-
version) structure based on R-trees, we only need to 
incorporate the corresponding R-tree models into our 
framework to obtain the cost models for the MLTS. The 
proposed models can accurately predict: (i) the node 
accesses in performing interval and timestamp queries; (ii) 
tree sizes; (iii) query selectivity. Furthermore, the 
formulae are based only on the properties of the raw data 
and the underlying file system; hence, they do not require 
knowledge about the structure of the trees. 

The rest of the paper is organized as follows: Section 
2 surveys overlapping and multi-version structures and 
describes in detail the two frameworks using B-trees as 
the ephemeral structures. Section 3 presents the cost 
models for B-tree-based methods. Section 4 contains an 
extensive experimental evaluation to prove the efficiency 
of the proposed models. Section 5 concludes the paper 
with future directions. 

 
2. Overlapping and Multi-version Methods 
The overlapping technique was first introduced in [BH85] 
to produce a time and space efficient approach to file 
sharing. The idea was applied to B-trees in [BKK+90] 
and R-trees [NS98]. The resulting structures were called 
overlapping B-trees (OVB-trees) and historical R-trees 
(HR-trees), respectively. Tzouramanis et al. [TML99] 
extended OVB-trees by integrating pointers among leaf 
pages, which improve the so-called key-history queries in 
temporal databases. Recently, the technique was also 
applied on Linear Quadtrees [TVM00a]. In a survey 
paper [ST97], Salzberg and Tsotras compared asymptotic 
performance of overlapping methods with other temporal 
access methods in terms of timestamp query performance, 
update costs, and structure sizes. Interval query 
performance was not discussed.  

The multi-version framework was initiated by 
[BGO+96], which proposed the Multi-version B-tree 
(MVB-tree) and proved its optimal asymptotic 
performance. Varman and Verma [VV97] presented a 
variation of MVB-trees, which reduces the size 
requirements by some constant factor. The multi-version 
framework has produced many efficient access methods 
in various scenarios. Methods based on R-trees include 
BTR-trees to index bitemporal databases [KTF98], and 
PPR-trees [KGT] and MVR-trees [TP01] for spatio-
temporal databases. Multi-version linear Quadtrees were 
proposed for image processing in [TVM00b]. 

Furthermore, [JSL+00] and [ZMT+01] employed the idea 
in branched temporal databases and temporal aggregation 
respectively to obtain BT-trees and multi-version SB-
trees. To the best of our knowledge there does not exist 
any work that estimates the structure sizes and 
performance of multi-version methods in terms of node 
accesses when performing interval queries.  

In the rest of the section, we describe the overlapping 
and multi-version frameworks using B-trees as the 
ephemeral structure. Other MLTS can be constructed by 
applying the same transformation algorithms on the 
corresponding ephemeral structures.  

 
2.1 Overlapping B-trees 
The idea behind OVB-trees is to maintain a separate B-
tree for each timestamp in history, but allow consecutive 
trees to share branches as long as the underlying records 
do not change. Insertion and deletion are carried out in a 
way similar to B-trees, except that whenever a shared 
node is to be modified, we duplicate it to a new node 
where the changes are applied instead. Figure 2.1 
illustrates part of an OVB-tree for timestamps 0 and 1. 
Assume that, at timestamp 1, account e changes from its 
previous balance e0 to a new one e1. Therefore, e0 should 
be removed from the B-tree at timestamp 1, while e1 
should be inserted. As shown in the figure, in order not to 
affect the tree at timestamp 0, the removal of e0 causes the 
duplication of E0 creating node E1. Similarly, the insertion 
of e1 spawns new node D1, which contains the entries of 
D0 plus e1. The changes propagate upwards, creating 
nodes B1 and C1. Notice that node A0 is shared by both 
trees, indicating that none of the objects under A0 issue 
any update at timestamp 1. Therefore, considerable space 
may be saved when the number of objects that change at 
each timestamp is relatively small. 

timestamp 0 timestamp 1

R0 R1

C0

E0

e
A0

B0

D0

0

C1B1

E1
D1

a0 b0 c0 d 0 a0 b0 c0 d 0e1

 
Figure 2.1: An OVB-tree example 

To keep track of the roots of the logical B+-trees, an 
OVB-tree maintains a root table, with one entry per root 
block. A timestamp query is directed to the corresponding 
B-tree and search is performed inside this tree only. Thus, 
the query degenerates into an ordinary range query on B-
trees and is handled very efficiently. An interval query 
involving several timestamps should search the 
corresponding trees of the related timestamps. Since a 
node can be pointed to by multiple parents, it is necessary 
to avoid duplicate visits to the same node via different 
parents, which can be achieved via “positive and negative 
pointers” proposed in [TP01].  



 

 

2.2 Multi-version B-trees 
In multi-version structures, each entry has the form <K, tst, 
ted, pointer> where tst (the insertion time) denotes the time 
that the record was inserted in the database, and ted (the 
deletion time) denotes the time that it was deleted1. For 
leaf entries, K denotes the features of an object (e.g., the 
balances of accounts). For an intermediate entry, K 
determines the minimum bounding range of features in 
the subtree alive in its lifespan [tst, ted); its semantics 
follow that of the corresponding ephemeral structure. For 
MVB-trees [BGO+96], K equals the minimum value of 
features in the subtree (the bounding range can be derived 
by considering the value of K in the next entry). The field 
pointer points to the actual record, or a node at the next 
level, for leaf and intermediate entries respectively. When 
a new entry is inserted at timestamp t, tst is set to t and ted 
to “*” (denoting NOW). When an entry is logically 
deleted (due to an update), ted is changed (from *) to t. 
Entries with “*” as deletion time are referred to as live 
entries; otherwise they are dead. Figure 2.2 illustrates an 
example of an MVB-tree. 

<5, 1, *, A>
<43, 1, *, B>

<5, 1, *>

<13, 1, *>
<25, 1, 3>
<27, 1, 3>

<8, 1, *>

<39, 1, 3>

<43, 1, *>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, *>

A BRoot
<72, 1, *>

<83, 1, *>
<95, 1, 3>
<99, 1, *>

<78, 1, *>

C

<72, 1, *, C>

<102, 1, *>  
Figure 2.2: A MVB-tree example 

For each timestamp t and each node except the roots, it is 
required that either none, or at least b⋅Pversion entries are 
alive at t, where Pversion is a tree parameter and b the node 
capacity (for the following examples Pversion=1/3 and b=6). 
This weak version condition ensures that entries alive at 
the same timestamp are mostly grouped together in order 
to facilitate timestamp queries. A weak version underflow 
occurs if this condition is violated (e.g., due to deletion at 
the current time).  

Insertions and deletions differ from those of the 
ephemeral structure (in this case, B-trees) in that 
overflows and underflows are handled differently. Block 
overflow occurs when an entry is inserted into a full node, 
in which case a version split is performed. To be specific, 
all the live entries of the node are copied to a new node, 
with their tst modified to the current time. The value of ted 
of these entries in the original node is set to the deletion 
time as well (in practice this step can be avoided since the 
deletion time is implied by the entry in the parent node). 
The insertion of <28,4,*> into node A at timestamp 4 (in 
the tree of Figure 2.2) will cause node A to overflow. A 
new node D is created to store the live entries of A, and A 
“dies” meaning that it will not be modified any more in 

                                                 
1 Such temporal information is unnecessary in overlapping structures, as 
each node contains entries of a single timestamp. 

the future. A new entry <5,4,*,D> (pointing to the new 
node) is inserted into the root node. When the root 
generates a version split, the new node of the split 
becomes the root of another logical tree. 

In some cases, the new node may be almost full after 
a version split so that a small number of insertions would 
cause it to overflow again. On the other hand, if it 
contains too few entries, a small number of deletions will 
cause it to underflow. To avoid these problems, it is 
required that the number of entries in the new node must 
be in the range [b⋅Psvu, b⋅Psvo] after a version split (Psvu 
and Psvo are tree parameters). A strong version overflow 
(underflow) occurs when the number of entries exceeds 
b⋅Psvo (becomes lower than b⋅Psvu). A strong version 
overflow is handled by a key split, which is a version-
independent split according to the features of the entries 
in the block, and is processed in the same way as the 
ephemeral structure.  

Strong version underflow is similar to weak version 
underflow, the only difference being that the former 
happens after a version split, while the latter occurs when 
the weak version condition is violated after deletion. In 
both cases a merge is attempted with the copy of a sibling 
node using only its live entries. If the merged node strong 
version overflows, a key split is performed. In [VV97], 
the merging process was improved to reduce the tree size. 

Each root has a jurisdiction interval, which is the 
minimum bounding lifespan of all the entries in the root 
(these jurisdiction intervals are mutually disjoint). The 
processing of a query starts by retrieving the 
corresponding roots whose jurisdiction intervals intersect 
the queried interval. Then search is guided by K, tst, and 
ted till the leaves. As with OVB-trees, a node may be 
visited more than once since it can have multiple parents 
at different timestamps. Techniques for avoiding multiple 
visits during the processing of interval queries in MVB-
trees are discussed in [BS96].  

As shown in [BGO+96], for n versions produced by 
N objects, a multi-version structure consumes O(n) space 
and answers timestamp queries in O(logN + k/b), where b 
is the node capacity and k is the number of records 
retrieved. In spite of the asymptotic optimality, multi-
version structures do not answer timestamp queries as 
efficiently as overlapping structures, which, however, 
consume O(nlogN) space [ST97]. 

 
3. Performance Analysis of MLTS 
Objects in versioning databases can change with different 
frequencies. For example, in traffic control systems, the 
positions of a vehicle usually change much faster than the 
balances of accounts in banking systems. To capture this, 
we use the concept of agility for temporal datasets. 
Datasets with higher agilities incur more updates and 
involve more space requirements. 



 

 

Def 3.1: Let N be the number of objects, and k the number 
of objects that issue updates at timestamp i. Then we 
define the data agility ai at timestamp i as follows: 

N
kai =  

In order to facilitate analysis, it is common to make some 
assumptions, such as independence of predicates, 
uniformity etc. In case of R-trees, for instance, cost 
models usually assume that objects are uniformly 
distributed in the spatial universe [PSTW93, PS96]. The 
derived formulae can then be combined with statistical 
information, such as histograms, to deal with real data 
[TSS00]. Following the same approach, we will make 
similar assumptions for MLTS and will later discuss how 
they can be extended for general cases.  

Without loss of generality, we consider that features 
of objects distribute in a unit universe [0, 1]d, where d is 
the dimensionality of the feature universe (for B-trees, 
d=1). Formally, we define the problem of cost model 
analysis for MLTS as follows: at the first timestamp 
(timestamp 1), the features of N objects distribute in the 
unit range [0, 1) by a certain distribution DIST. At each of 
the subsequent timestamps i (i = 2, 3, ..., T), a% of the N 
objects issue feature changes, where T corresponds to the 
total number of timestamps recorded so far (i.e., the data 
agility remains constant). The changes of the objects are 
in such a way that (i) the distribution of objects’ features 
does not change (i.e., conforms to DIST) at each 
timestamp; (ii) each object has the same probability to 
produce changes. We index the dataset with an 
overlapping or multi-version structure, and the goal is to 
predict the expected number of node accesses in 
answering a query. Note that we fix the cardinality of the 
dataset simply to prevent excessively complex results. 
Our approach can be extended easily to support arbitrary 
changes of the cardinality (i.e., the number of insertions is 
different from that of deletions at one timestamp).  

 
3.1 A Unified Cost Model 
An interval query q can be represented as q(qk, qt) to 
indicate its feature range predicate qk and temporal 
interval predicate qt. Similar to the representation of 
queries, we define a pair of ranges s(sk, st) for each node s 
in OVB- or MVB-trees. The feature range sk corresponds 
to the minimum bounding range of all the features of 
entries in node s, while the interval projection st 
corresponds to the period when s is valid in history. For a 
node in MVB-trees, st encloses the lifespans of all the 
entries in s. For OVB-trees, since the lifespans of the 
entries are not explicitly stored, st is defined as the period 
between the time that s is created and the time that it is 
duplicated. Recall that objects change in such a way that 
their feature distribution remains the same at any 
timestamp. Therefore, the structures of each logical tree 

in OVB- or MVB-trees remain approximately the same as 
the suitable clustering of the objects differs very little for 
each timestamp. 

Nodes in MLTS are created in an “evolving” manner. 
That is, after the logical tree for the first timestamp is 
built, trees for subsequent timestamps are created by 
generating necessary nodes from the previous trees. The 
fact that an update involves a deletion followed by an 
insertion, and that every object has the same probability 
to issue changes leads to two important observations: (i) 
live nodes at the same tree level receive approximately 
the same number of insertions (deletions) at each 
timestamp; (ii) the number of live entries in a node 
remains constant throughout its lifespan. As a result, after 
the first logical tree is constructed, node duplication and 
version split become the major types of structural changes 
for OVB-trees and MVB-trees respectively. This is 
supported by our experiments: starting from the second 
timestamp, the number of key splits (weak version 
underflows and strong version overflows/underflows) is 
significantly smaller than the number of node duplications 
(version splits) for OVB- (MVB-) trees. Therefore, in the 
cost model analysis, we may assume node duplication 
(version splits) to be the only type of structural changes 
for OVB- (MVB-) trees, without introducing significant 
error. This allows us to focus on the factors that have the 
greatest impact on query performance.  

If a node s2 is created from a previous node s1 
through duplication (version split), then we say that s1 
evolves into s2. To represent how fast the evolution 
proceeds, we define evolution rate as in Def 3.2. As 
shown shortly, the evolution rate of nodes at a particular 
level of an OVB- or MVB-tree does not change 
significantly through history; hence, we will use the 
notation Ei to denote the evolution rate for level i. Higher 
values for Ei indicate that new nodes are created with 
shorter cycles (smaller lifespans), resulting in larger trees.  
Def 3.2: Let Mi be the average number of live nodes of a 
particular tree level i at a timestamp. If on average, ni new 
nodes of the same level are created at the next timestamp, 
then the evolution rate Ei for level i is: 

i

i
i M

n
E =  

Notice that, in answering a query q, node s(sk, st) will be 
visited if and only if it intersects q(qk, qt), i.e., sk intersects 
qk and st intersects qt. In other words, the probability that 
node s will be visited in answering query q is identical to 
the probability that s(sk, st) intersects q(qk, qt). We refer to 
this probability as prob(s, q). Let probfeature and probtm 
denote the probability that their feature and temporal 
ranges intersect respectively. Since the feature universe 
and the time dimension are independent, we have: 

prob(s, q) = probfeature· probtm     (3.1-1) 



 

 

The estimation for probfeature has been studied in multi-
dimensional access methods. If d is the dimensionality of 
the feature universe, then:  

∏
=

+=
d

i

i
k

i
kfeature qsprob

1
)(      (3.1-2) 

where i
ks  and i

kq  are the extents along the ith dimension 
for sk and qk respectively [TSS00]. 

For the special case, when the dimensionality is 1, 
the estimation for probfeature becomes: 

probfeature = sk + qk     (3.1-3) 
On the other hand, probtm is closely related to the 
evolution rate of nodes. Let Pi be the total number of level 
i nodes whose lifespans intersect qt, and Ki be the total 
number of level i nodes ever created. We have: 

i

i
tm K

Pprob =      (3.1-4) 

Assuming that the number of level i nodes alive at each 
timestamp is Mi, Ki can be estimated as:  

Ki = Mi + Ei Mi (T – 1)     (3.1-5) 
where T denotes the total number of timestamps in history. 
The reasoning behind equation (3.1-5) is that initially 
there exist Mi level i nodes, all of which are alive. Then, at 
each subsequent timestamp Ei·Mi nodes are created. When 
a new node is created, the previous one dies, so the 
lifespans of these two nodes are disjoint and continuous. 
Figure 3.1 shows a query whose temporal interval 
intersects the lifespans of 4 nodes, where a2 and a3 were 
created when a1 and a2 died respectively.  

 

tim e  

a 1 a 2 a 3 

b  

q t 

 
Figure 3.1: Time evolution of nodes 

The number of nodes whose lifespans intersect qt is 
computed as follows: First, two nodes (a1 and b) are alive 
at the first timestamp of qt; then, during qt, another two 
nodes, i.e., a2 and a3, are created; hence Pi equals 4. In 
general, there are Mi=2 nodes alive at the first timestamp 
(let time i) of qt. Then, at each of the subsequent 
timestamp i + j (1 ≤ j ≤ |qt| − 1), Ei·Mi nodes are created. 
Hence, we have the following estimation for Pi: 

Pi = Mi + Ei Mi (qt – 1)     (3.1-6) 
Combining equations (3.1-4), (3.1-5), (3.1-6), we have: 
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Extending equations (3.1-1) and (3.1-3), we derive: 
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Recall that prob(s, q) states the probability for a node to 
be accessed in answering query q; thus, the expected 
number of node accesses NA(q) in answering query q is 
given by the following equation:  

∑=
snodeevery

qsprobqNA ),()(  

If si(sik, sit) are the average range and temporal extents of 
nodes at level i, the above equation can be written as 
equation (3.1-9), where h denotes the height of a logical 
tree and Ki denotes the total number nodes at level i. 
Again, we emphasize that this equation applies to general 
MLTS as well, except that equation (3.1-2) should be 
used for probfeature. 
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where prob(si, q) is given by equation (3.1-8). 
In this work, we assume each node in the trees 

occupies a single disk page; hence equation (3.1-9) also 
gives the expected number of disk accesses. Obviously, 
the equation can be easily adapted to general cases where 
a node can occupy multiple pages. This cost model, 
however, is “qualitative”, in the sense that it must refer to 
the corresponding tree to obtain values for the relevant 
variables. In the sequel, we aim at representing sik, Ei, Ki 
and h using the properties of the dataset indexed and the 
underlying file system.  

 
3.2 A Cost Model for OVB-trees 
In this section, we present the derivation of the cost 
model for OVB-trees through several steps. In each step, 
we focus on rewriting a particular component in equation 
(3.1-9) as the function of variables whose values are 
obtainable without referring to the actual tree. 
•  Estimating h 
The height of a B-tree that indexes N keys is estimated as 
in equation (3.2-1), where f is the fanout of the tree. The 
commonly adopted value for f is ln2·b≈0.69b [Yao77], 
where b is the node capacity. Note that since the node 
capacity is decided by the page size of the underlying file 
system, the value of f is independent of the dataset 
indexed. Further, since each logical tree indexes the same 
number of objects, the height of each tree is expected to 
be the same.  

h =1+  log f (N/b)      (3.2-1) 
•  Estimating Ei 
We start with the estimation for E0, the evolution rate at 
the leaf level. Let us consider a leaf node s of a logical 
tree at an arbitrary timestamp i. Recall that s will be 
copied to a new node at timestamp (i + 1) if and only if 
any change (i.e., insertion or deletion) occurs in the node. 
For a dataset with agility a, the total number of changes 
per dataset equals 2aN because each object update 
involves one deletion and one insertion. E0 corresponds to 



 

 

the probability that a leaf node is affected by any of these 
2aN changes. A leaf node contains on average fN /  
entries. Given an update, every node has the same 
probability Nf /  to be affected; thus the probability for a 
node NOT to be affected by a single change is Nf /1− . 
Since all the changes are independent, the probability for 
a node not to be updated by any of these changes is 

aNNf 2)/1( − . Thus, we have: 

aN

N
fE 2

0 )1(1 −−=      (3.2-2) 

In general, the number of nodes at level i is 1/ +ifN ; 
hence the likelihood for a level i node to be affected by a 
change is Nf i /1+ . Following the derivation of (3.2-2), 
we obtain:  

aN
i

i N
fE 2

1

)1(1
+

−−=      (0 ≤ i ≤ h – 1)      (3.2-3) 

As a side product of the estimation for Ei, we have the 
following lemma for the expected number of timestamps 
sit that a node at level i remains alive in history.  
Lemma 1: iit Es /1=  
Proof: Consider a node s of level i that is created at 
timestamp k. Since the probability that s is copied at one 
timestamp is Ei, it follows that the probability that node s 
is valid for j timestamps (i.e., it is copied at timestamp k + 
j) is (1 – Ei)j-1· Ei. Therefore, the expected number of 
timestamps that node s is valid in history is given by: 

[ ]{ }∑
∞

=

− ⋅−
1

1)1(
j

j
ii jEE  

The above series converges to 1/Ei.     ■ 
•  Estimating Ki 
Since, at level i, the number of live nodes at one 
timestamp is 1/ +ifN , the number of new nodes created at 
each timestamp is 1/ +⋅ i

i fNE . Hence, the total number 
of level i nodes is: 
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Note that a corollary of equation (3.2-4) is that we can 
estimate the size of an OVB-tree as follows: 
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•  Estimating sik 
Now it remains to estimate sik, the average key range of 
nodes at level i. Notice that, since each logical tree is 
simply an ordinary B-tree, this estimation is directly 
obtainable from the analysis of B-trees. In fact, when 
DIST is uniform (existing analysis usually focuses on 
uniform distribution), the key ranges of nodes at the same 
level are roughly the same. Given that there 

are 1/ +ifN nodes at level i in a B+-tree, we have:  

N
fs

i

ik

1+

=      (0 ≤ i ≤ h – 1)     (3.2-6) 

So far we have rewritten all the components of equation 
(3.1-9) as functions of f, N, a, D, and T. The final number 
of node accesses during query processing, is presented in 
Equation (3.2-7), where Ei is given by equation (3.2-3). 
Note that when Ei is 0, the above equation degenerates 
into a cost model for conventional B+-trees.  
NA(q)=      (3.2-7) 
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3.3 A Cost Model for MVB-trees 
In the sequel, we carry out a similar analysis for MVB-
trees based on equation (3.1-9).  
•  Estimating h 
Let fl be the average number of live entries at a single 
timestamp in node s. Note that fl is different from f, which 
equals the total number of entries in s. Thus, the height of 
a logical tree is given by equation (3.3-1): 

h =1+  log fl (N/b)     (3.3-1) 
Meanwhile, let Mi denote the average number of level i 
nodes that are alive at a single timestamp in a logical tree: 

1+= i
l

i f
NM      (0 ≤ i ≤ h – 1) 

The estimation for fl deserves further elaboration. Recall 
that, in MVB-trees, if a node consists of only entries at 
the same timestamp, then the number of the entries cannot 
exceed b⋅Psvo; otherwise a strong version overflow occurs 
and the node will be key split. Thus, fl should 
approximate the fanout of a B-tree whose node capacity is 
b⋅Psvo. Hence, we estimate fl as ln2⋅ b⋅Psvo, which is shown 
to be accurate through experiments. 
•  Estimating Ei 
We first present the estimation for E0. A node s contains fl 
entries when it is created from a version split; thus, s will 
receive (b – fl) insertions before it generates a version 
split, which in turn leads to the creation of a new node. At 
each timestamp, as there are a·N insertions, each leaf 
node can receive on average 0/ MaN insertions. As a 
result, s will generate a version split after 

)/()( 0 aNMfb l−  timestamps. Since lfNM /0 = , the 
number of timestamps s0t that a leaf level node remains 
alive before it is version split, can be estimated as follows: 
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Let Vi be the total number of version splits at level i, and 
vi the average number of version splits per timestamp at 
level i. For the leaf level, V0 and v0 are estimated as: 
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Recall that the evolution rate is defined as the number of 
new nodes, over the total number of live nodes at a 
timestamp. Since version splits are the only type of 
structural changes considered, we have: 
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Whenever a leaf node generates a version split, an entry 
will be inserted into its parent node at level 1. Hence, the 
average number of insertions at level 1 is v0, and every 
level 1 node receives on average 10 / Mv   entries. Similar 
to our analysis above, a node at level 1 will generate a 
version split 01 /)( vMfb l−  timestamps after its 
creation. Therefore, the lifespan of the node, s1t is:     
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The estimation for V1 is as follows: 
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In the same way, we obtain the equations for nodes at 
higher levels: 
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Hence, we have: 

1)()1( +−
=

−
= i

l

i
i fb

aN
T
Vv  

1

1

)( +

+

−
== i

l

i
l

i

i
i fb

af
M
vE      (3.3-3) 

•  Estimating Ki 
Given that the total number of version splits at level i is 
provided by equation (3.3-2), the total number Ki of nodes 
created through history is: 
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As a corollary of equation (3.3-4), the size of an MVB-
tree can be estimated as: 
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•  Estimating sik 
As mentioned above, a node contains fl live entries at the 
same timestamp. Therefore, replacing f in equation (3.2-6) 
for OVB-trees with fl, we obtain the following equation 

for the average key range of nodes at level i: 
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=      (0 ≤ i ≤ h – 1)     (3.3-6) 

Equation (3.3-7) presents the final model, which predicts 
the node disk accesses for range-interval queries based on 
the properties of the dataset indexed and the underlying 
file system (Ei is estimated by equation (3.3-3)). 
NA(q)=      (3.3-7) 
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3.4 Estimation for Query Selectivity  
A record i with feature ik and lifespan it, will be retrieved 
by a query q, if and only if q(qk, qt) intersects i(ik, it). The 
probability prob(i, q) for i(ik, it) and q(qk, qt) to intersect is 
calculated according to equation (3.1-8), except that (i) 
the evolution rate of the objects now corresponds to the 
agility a of the dataset; (ii) ik is set to 0 because the 
feature of each entry indexed in an OVB- or MVB-tree 
contains only a single value. Hence, we have: 
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As a result, the number NUM(q) of intervals retrieved by 
query q is estimated as follows: 
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3.5 Predicting the Behaviour of MLTS 
The proposed models can answer two important questions: 
(i) when it is worth using a MLTS instead of ephemeral 
structures (e.g., an independent B-tree for each 
timestamp); (ii) which MLTS is preferable in terms of 
structure size and query performance considerations. 
Regarding the first question, notice that when the agility 
exceeds a certain threshold (which we call degradation 
agility), all the live nodes will be duplicated (version split) 
in an overlapping (multi-version) structure, at each 
timestamp; i.e., both structures will degenerate into 
independent trees. To calculate the degradation agility, 
notice that a MLTS degrades completely when the 
evolution rate Ei approaches 1 for all levels, where Ei is 
defined in (3.2-3) and (3.3-3) for OVB- and MVB-trees 
respectively. Solving these equations, we obtain the 
degradation agilities for OVB- and MVB-trees as follows: 
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For OVB-trees the estimated degradation agility is very 
low (around 5% for our experimental settings), which 
severely limits their applicability. In order to intuitively 



 

 

explain this phenomenon, consider a typical situation 
where the average fanout of OVB-trees is f = 83.82 (this 
number is used in our experiments). Even if one (out of f) 
object in a node issues a change, the node must be copied 
(which leads to replication of all f entries). Furthermore, 
the update may lead to an insertion in another node, 
which will lead to duplication of that node as well. 
Therefore, in the worst case, even if less than 1/f objects 
issue updates at a timestamp, an OVB-tree may 
degenerate to independent B-trees. 

On the other hand, although the estimated 
degradation agility of MVB-trees is more than an order of 
magnitude higher (81% for our settings) this does not 
mean that MVB-trees are better than ephemeral B-trees 
up to this value of agility. Recall, that each entry in a 
multi-version structure contains additional information 
about its lifespan, which lowers the node fanout. As a 
result, although an MVB-tree may have not degraded, 
above an agility threshold, which we call multi-tree point 
(MTP, for short), it consumes more space than the 
equivalent ephemeral B-trees. The MTP can be predicted 
by equation (3.5-3), which compares the size of an MVB-
tree to that of independent B-trees. 
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where Size(MVB) is given in equation (3.3-5), and f is 
equal to the fanout of a B- (or OVB-) tree. For our 
settings the estimated MTP is 33%, meaning that above 
this agility it is preferable to build ephemeral B-trees.  

As mentioned, the OVB-tree is applicable only for 
very low agilities. Even below the degradation agility, its 
size is expected to be much larger than that of the 
corresponding MVB-trees due to extensive replication. 
The only reason for using OVB-trees (or overlapping data 
structures, in general) is when the workload consists 
mainly of timestamp queries. OVB-trees are more 
efficient than MVB-trees for timestamp queries because 
of their higher fanout. On the other hand, MVB-trees are 
more efficient for interval queries, and the performance 
gain increases with the query length (for the same qk). 
This can be explained by observing equations (3.2-7) and 
(3.3-7). Let NAi(OVB) and NAi(MVB) denote the number 
of node accesses at level i in answering query q with an 
OVB- and MVB-tree respectively. Then, by (3.2-7) and 
(3.3-7), we have: 
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where C is a constant, and Eoi and EMi correspond to the 
evolution rates at level i for the OVB- and MVB-tree 
respectively. Given that typically Eoi is an order of 
magnitude larger than EMi, the ratio in the above equation 
increases with qt. These observations are experimentally 
evaluated in the next section.  

4. Experimental Evaluation 
In this section, we demonstrate the efficiency of the 
proposed models through experimental results. Datasets 
were created as follows. At the first timestamp, the 1D 
features (each feature is a single value) of 20,000 objects 
are uniformly generated in the universe [0,1). Then, at 
each of the following 200 timestamps, a% of the objects 
are selected to produce feature changes so that the 
distribution of the keys is still uniform at each timestamp. 
The agility varies for different datasets; we refer to a 
dataset with agility a as DSa%.  

Query performance is measured by the average node 
accesses in answering workloads, each consisting of 500 
queries. All the queries in a workload involve a feature 
range of the same length qk and an interval range with the 
same number of timestamps qt. The left end points of the 
feature and time ranges of query q are uniformly 
distributed in ranges [0, 1–qk) and [1, 201–qt] respectively. 
In the sequel, we denote a workload as WRKLDqk,qt to 
indicate its parameters.  

We experimented with a wide range of parameters. 
To demonstrate the effects of several factors on 
performance, the settings for the following experiments 
are chosen as follows: (i) The values for a are 0.5%, 1%, 
2%, ..., 5%, 10%, 15%, and 20%, resulting in datasets 
with 40,000 to 800,000 records; (ii) values for qk range 
from 0.1 to 0.5 (i.e., 10% to 50% of the feature space); (iii) 
values for qt range from 1 to 20 timestamps (0.5% to 10% 
of the entire history). 

OVB-trees and MVB-trees were implemented as 
described in [ST97] and [BGO+96] respectively. The 
parameters for MVB-trees are as follows: Pversion = 0.2, 
Psvo = 0.8, and Psvu = 0.4. The page size is set to 1,024 
bytes in all cases. With this size, the node capacities of 
OVB- and MVB-trees are 122 and 62 entries. Hence, for 
OVB-trees, f = 83.82, while, for MVB-trees, fl = 34.3. 
These values are used for the corresponding cost models. 

We first evaluate equations (3.2-5) and (3.3-5) on the 
sizes of the MLTS. Figures 4.1 (a) and (b) show the sizes 
of OVB- and MVB-trees as a function of agility. OVB-
trees initially grow very fast, and their size stabilizes after 
the degradation agility (5%) where they degenerate into 
independent trees. On the other hand, MVB-trees are 
much more space-efficient for normal agilities (up to 
20%). In both cases the estimation is accurate. 

In order to verify the estimated degradation agility 
for MVB-trees (81%), we increased the agility 5% at a 
time while checking if there is noticeable increase in the 
tree sizes. We found that the sizes of MVB-trees stabilize 
at around 130 megabytes when the agility becomes 80%. 
Above 35% agility, MVB-trees consume more space than 
independent B-trees (i.e., around 50 megabytes in Figure 
5.1), which is consistent with the estimated value of MTP 
(33%) obtained by equation (3.5-3).  
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(a) Sizes of OVB-trees (b) Sizes of MVB-trees 
Figure 4.1: Sizes of MLTS as a function of agility 

To evaluate the estimation of node accesses (NA), 
provided by equations (3.2-7) and (3.3-7), with respect to 
different query parameters, we fix the agility of the 
datasets indexed by OVB- and MVB-trees to 2% and 
10% respectively. Note that the selected agility for the 
dataset indexed by the OVB-tree is relatively lower to 
prevent its degradation (in which case the cost estimation 
is trivial). Then, we performed the following two sets of 
queries: (i) for workloads in the first set we fix qk to 0.3 
(30% of the feature space), and vary qt from 1 to 20 
timestamps; (ii) for workloads in the second set we fix qt 
to 10, and vary qk from 0.1 to 0.5. Figures 4.2 (a) and (b) 
demonstrate the results for OVB-trees with respect to the 
two sets of workloads respectively. The node accesses 
measured are averaged over the total number of queries 
for each workload. Figures 4.3 (a) and (b) show the 
corresponding results for MVB-trees.  
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a) NA for WRKLD0.1~0.5, 10 (b) NA for WRKLD0.3, 1~20 
Figure 4.2: Query cost for OVB-trees (agility = 2%) 
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(a) NA for WRKLD0.1~0.5, 10 (b) NA for WRKLD0.3, 1~20 
Figure 4.3: Query cost for MVB-trees (agility = 10%) 

Notice that the query cost increases linearly with both the 
number of timestamps involved and the lengths of the 
feature ranges, as predicted by equations (3.2-7) and (3.3-
7). As expected, OVB-trees are more efficient than MVB-
trees only for timestamp queries. The superiority of 
MVB-trees increases with the query length. 

The next set of experiments evaluates the cost models 
when the dataset agility varies. Specifically, we measured 
the query performance of WRKLD0.3,10 for the 
corresponding OVB- and MVB-trees using datasets with 
agilities from 1% to 20%. According to Figures 4.4 (a) 
and (b) the query costs follow similar trends with the tree 
sizes and MVB-trees perform better than OVB-trees for 
the agilities demonstrated. Notice, however, that the cost 
of MVB-trees increases linearly with the agility, while 
that of OVB-trees is stable after their degradation, since 
each query accesses the same number of independent B-
tress (i.e., 10), independently of the agility. Above the 
MTP, the query cost of MVB-trees exceeds that of 
degraded OVB-trees. 
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Figure 4.4: Query vs. agilities (for WRKLD0.3, 10) 
For most of the cases above, the cost models slightly 
underestimate the actual results. This is expected because 
the analysis focuses on the major structural changes. 
Consider the size of MVB-trees as an example. If a node 
incurs a strong version overflow after a version split, two 
new nodes are generated, instead of one as assumed by 
the cost models. Similarly, when an OVB-node that has 
already been duplicated at the current timestamp incurs an 
overflow, it will be key split rather than duplicated. 
However, as shown, structural changes other than those 
considered in the analysis are very infrequent; ignoring 
them does not introduce significant error.  

Finally, we evaluate the efficiency of equation (3.4-2) 
towards the selectivity estimation. In Figures 4.5 (a) and 
(b), the dataset agility is fixed to 10% and we vary qk and 
qt. The y-axis of all the figures corresponds to the number 
of interval records retrieved in the query. The 
experimental and estimated results are almost identical.  
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Figure 4.5: Selectivity estimation 



 

 

5. Conclusion 
Our approach reduces the cost analysis of MLTS to that 
of the corresponding ephemeral structures, which means 
that our framework is applicable to a variety of different 
access methods. Extensive experimentation proves the 
accuracy of the models for a wide range of conditions. To 
the best of our knowledge, this is the first work that 
attempts to provide systematic analysis for these types of 
structures. Given, the ever increasing availability and 
importance of historical data in numerous applications, 
accurate analysis of related structures is crucial for the 
development of efficient systems.  

In addition to their usefulness for query optimization, 
the proposed models provide significant insights into the 
behavior of overlapping and multi-version structures. Our 
analysis predicts, and the experimentation verifies that: (i) 
OVB-trees are meaningful only very small agilities (about 
5% for our settings), since they quickly degenerate into 
multiple trees. Even below their degradation agility, they 
perform better than MVB-trees only for timestamp (or 
very short interval) queries. (ii) MVB-trees are best for 
agilities up to about 30%, since they consume less space 
than OVB-trees (or ephemeral B-trees) and perform better 
for mixed workloads. (iii) For agilities above the MTP, 
the best choice is to build an independent structure for 
each timestamp. The proposed models can accurately 
estimate the above agility thresholds depending on the 
system characteristics 

Future work can deal with skewed data, possibly with 
the aid of statistics. As an example, histograms have been 
widely employed for traditional and spatial data. In our 
case, the application of histograms is not straightforward, 
since in addition to the total number of records and the 
distribution of the key values per timestamp, we may need 
to keep additional information regarding how the values 
change. For example, 1000 insertions plus 500 deletions 
at one timestamp have very different impact from 500 
insertions without deletion on the tree structures, though 
both cases lead to an increment of 500 in object 
cardinality. Furthermore, although we only focused on 
range queries, this work can serve as the basis for 
performance analysis of other more complex queries, 
such as temporal joins.  
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