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Abstract

We study the problem of query optimization in feder-
atedrelational databasesystems.Thenature of federated
databasesexplicitly decouplesmany aspectsof the opti-
mizationprocess,often makingit imperative for the opti-
mizerto consultunderlyingdatasourceswhile doingcost-
basedoptimization.Thisnot only increasesthecostof op-
timization,but also changesthe trade-offs involvedin the
optimizationprocesssignificantly. Thedominantcostin the
decoupledoptimizationprocessis the“cost of costing” that
traditionally has beenconsidered insignificant. The opti-
mizercanonlyafforda few roundsofmessagesto theunder-
lying datasourcesandhencetheoptimizationtechniquesin
this environmentmustbe geared toward gatheringall the
requiredcostinformationwith minimalcommunication.

In this paper, we explore the designspacefor a query
optimizer in this environmentand demonstrate the need
for decouplingvariousaspectsof theoptimizationprocess.
We presentminimum-communicationdecoupledvariantsof
variousqueryoptimizationtechniques,and discusstrade-
offs in their performancein this scenario.We haveimple-
mentedthesetechniquesin the Cohera federateddatabase
systemand our experimentalresults, somewhat surpris-
ingly, indicatethata simpletwo-phaseoptimizationscheme
performsfairly well as long as the physicaldatabasede-
sign is knownto the optimizer, thoughmore aggressiveal-
gorithmsare requiredotherwise.

1. Intr oduction
The needfor federateddatabaseserviceshasincreased

dramaticallyin recentyears.Within enterprises,IT infras-
tructuresareoftendecentralizedasa resultof mergers,ac-
quisitions,andspecializedcorporateapplications,resulting
in deploymentof large federateddatabases.Perhapsmore
dramatically, the Internethasenablednew inter-enterprise
venturesincluding Business-to-BusinessNet Markets (or
Hubs) [1, 32], whosebusinesshingeson federatingthou-
sandsof decentralizedcatalogsandotherdatabases.

Broadly considered,federateddatabasetechnology[44]

hasbeenthe subjectof multiple researchthrusts,includ-
ing schemaintegration [6, 35], data transformation[2],
as well as federatedquery processingand optimization.
The queryoptimizationwork goesbackasfar asthe early
distributed databasesystems(R*, SDD-1, Distributed In-
gres [22, 14, 7]), andmost recentlyhasbeenfocusedon
linking datasourcesof variouscapabilitiesandcostmod-
els [23, 30, 46]. However, queryoptimizationin thebroad
federatedenvironmentpresentspeculiaritiesthatchangethe
trade-offs in the optimization processquite significantly.
By nature,federatedsystemsdecouplemany aspectsof the
query optimizationprocessthat were tightly integratedin
both centralizedand distributed databasesystems. These
decouplingsareoften forcedby administrative constraints,
sincefederationstypically spanorganizationalboundaries;
decouplingis also motivatedby the needto scalethe ad-
ministrationandperformanceof a systemacrossthousands
of sites1. Federatedqueryprocessorsneedto considerthree
basicdecouplings:� Decoupling of Query Processing: In a large-scale

federatedsystem,both dataaccessand computation
can be carriedout at varioussites. For global effi-
ciency, it is beneficialto considerassigningportionsof
a queryplanin arbitrarydistributedways. In fact,this
hasbeenoneof themajormotivationsfor development
of bothdistributedandfederateddatabasesystems.� Decouplingof Cost Factors: In a centralizedDBMS,
queryexecution“cost” is a unidimensionalconstruct
measuredin abstractunits. In a federation,costsmust
bedecoupledinto multiple dimensionsunderthecon-
trol of variousadministrators.Oneproposalfor a uni-
versalcostmetric is hardcurrency [45], but typically
thereare other coststhat are valuableto exposeor-
thogonally, including responsetime [17], datafresh-
ness[36], andaccuracy of computations[5].� Decoupling of Cost Estimation: This work is moti-
vatedby the necessityof decouplingthe costestima-
tion aspectof the queryoptimizerfrom the optimiza-

1We will usethe termssite and data source interchangeablyin this
paper.



tion process.Regardlessof thenumberof costdimen-
sions,a centralizedoptimizer cannotaccuratelyesti-
matethecostsof operationsatmany autonomoussites.
Garlic [23, 40] andothermiddlewaresystems[24, 46]
addressthis problemby involving site-specificwrap-
persin theoptimizationprocess,but they do not con-
siderthe costof communicatingwith thesewrappers.
Thiscostis notsignificantin thesesystemsbecausethe
wrapperstypically residein thesameaddressspaceas
theoptimizer. But in general,theexecutioncostsmay
alsodependon transientsystemissuesincluding cur-
rent loadsand temporaladministrative policies [45],
andhencethe costestimationprocessmustbe feder-
ated in a mannerreflective of the query processing,
with cost estimatesbeing provided by the sites that
would bedoingthework.

Many of thesedecouplingshavebeenstudiedbeforeindi-
vidually in thecontext of distributed,heterogeneousor fed-
erateddatabaseresearch[41, 15, 38]. However, to thebest
of our knowledge,completedecouplingof costestimation,
which requirestheoptimizerto communicatewith thesites
merelyto find thecostof anoperation,hasnotbeenstudied
before.In suchascenario,communicationmaybecomethe
dominantcostin thequeryoptimizationprocess.Thehigh
costof costingraisesa numberof new designchallenges,
andaddsadditionalfactorsto the complexity of federated
queryoptimization.

1.1. Contrib utions of the Paper
In this paper, we considera large spaceof federated

query optimizer design alternatives and argue the need
for taking into considerationthe high “cost of costing”
in this environment. Accordingly, we presentminimum-
communicationdecoupledvariantsof variouswell-known
optimizationtechniques.We have implementedtheseal-
gorithmsin theCoherafederateddatabasesystem[25] and
wepresentexperimentalresultsonasetof modifiedTPC-H
benchmarkqueries.

Ourexperimentalresults,somewhatsurprisingly, suggest
that thesimpletechniqueof breakingtheoptimizationpro-
cessinto two phases[26] — first findingthebestqueryplan
for a singlemachineandthenschedulingit acrossthe fed-
erationbasedon run time conditions— works very well
in the presenceof fluctuationsin the loadson theunderly-
ing datasourcesand the communicationcosts,as long as
thephysicaldatabasedesignis known to theoptimizer. On
the other hand, if the optimizer is unaware of the physi-
cal databasedesign(suchasindexesor materializedviews
presentat the underlyingdatasources),thenmoreaggres-
sive optimizationtechniquesarerequiredandwe propose
usinga hybrid techniquefor tuning a previously proposed
heuristicin thosecircumstances.

We also presenta preliminary analysisexplaining this
surprisingsuccessof the two-phaseoptimizerfor our cost
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model and experimentalsettingslater in the paper(Sec-
tion 4.3). Our analysissuggeststhat this behavior maynot
merely be a peculiarity of our experimentalsettings,but
mayhold truein general.

2. Ar chitecture and ProblemDefinition
We baseour systemarchitectureon the Mariposare-

searchsystem[45], which provides the decouplingsdis-
cussedin theearliersectionthroughtheuseof aneconomic
paradigm. The main ideabehindthe economicparadigm
is to integratethe underlyingdatasourcesinto a compu-
tational economythat capturesthe autonomousnatureof
varioussites in the federation. A significantand contro-
versialgoalof Mariposawasto demonstratetheglobalef-
ficiency of this economicparadigm,e.g., in termsof dis-
tributedload balancing.For our purposeshere,controver-
siesover economicpolicy are not relevant; the long-term
adaptivity problemthat Mariposatried to solve is beyond
the scopeof this paper. The main benefitof the economic
model for us is that it providesa fully decoupledcosting
API amongsources.As a result,eachsitehaslocal auton-
omy to determinethe cost to be reportedfor an operation,
andcantakeinto accountfactorssuchasresourceconsump-
tion, responsetime, accuracy andstalenessof data,admin-
istrativeissues,andevensupplyanddemandfor specialized
dataprocessing.

For queryoptimizationpurposes,themostrelevantparts
of the systemare the query optimizer in the middleware,
andthe bidders at the underlyingsites(Figure1). As in a
centralizeddatabasesystem,thequeryoptimizercoulduse
a variety of differentoptimizationalgorithms,but the fed-
eratednatureof thesystemrequiresthat thecostestimates
be madeby the underlyingdatasourcesor in our case,by
the bidders. The optimizer and the bidder communicate
throughuseof two constructs: (1) Requestfor Bid (RFB)
that theoptimizerusesto requestcostof anoperation,and



(2) Bid throughwhicha biddermakescostestimates.

2.1. The FederatedQuery Optimization Problem

The federatedqueryoptimizationproblemis to find an
executionplan for a user-specifiedquery that satisfiesan
optimizationgoal provided by the user; this goal may be
a function of many variables,including responsetime, to-
tal executioncost,accuracy andstalenessof the data. For
simplicity, weconcentrateontwo of thesefactors,response
time and total execution cost (measuredin abstractcost
units), though it is fairly easyto extend theseto include
otherfactors,assumingthey canbeeasilyestimated.Since
weassumethattheonly informationwehaveaboutthecosts
of operationsis throughtheinterfaceto thebidders,theop-
timizationproblemhasto berestatedasoptimizingoverthe
costinformationexportedby thebidders.Beforedescribing
theadaptationsof theknown queryoptimizationalgorithms
to takeinto accountthehighcostof costing,wewill discuss
two importantissuesthataffect theoptimizationcostin this
framework significantly.
2.1.1. ResponseTime Optimization vs. Total Cost Op-
timization : Traditionally the optimizationgoal hasbeen
minimization of the total cost of execution,but in many
applications,otherfactorssuchasresponsetime, staleness
of the datausedin answeringthe query [36], or accuracy
of the data [5] may alsobe critical. As hasbeenpointed
outpreviously[17, 48], optimizingfor suchanoptimization
goalrequirestheuseof partial orderdynamicprogramming
technique.This techniqueis a generalizationof theclassi-
caldynamicprogrammingalgorithmwherethecostof each
plan is computedasa vectorandtwo costsareconsidered
incomparableif neitheris lessthanor equalto theotherin
all the dimensions2. It canbe shown that if the cost is an�
-dimensionalvector, then the time andspacecomplexity

of theoptimizationprocessincreasesby a factorof ��� [17]
over classicaldynamicprogramming.Recently, a polyno-
mial time approximationalgorithmhasalsobeenproposed
for this problem[39]. As [33] point out, even total cost
optimizationin a distributedsettingrequirespartial order
dynamicprogrammingsincetwo plansproducingthesame
resulton differentsitesarenot comparabledueto thesub-
sequentcommunicationcostswhich might differ.
2.1.2. Bidding Granularity and Intra-site Pipelining :
The bidding granularityrefersto the choiceof the opera-
tionsfor which theoptimizerrequestscosts.For maximum
flexibility in schedulingthequeryplan,we would like this
to be asfine-grainedaspossible. The naturalchoicesfor
bidding granulesto estimatethe cost of a query plan are
scanson the underlyingbasetablesand joins in the query

2Partial orderdynamicprogrammingcanalsobe thoughtof asa gen-
eralizationof the interestingorders of SystemR [42], wheretwo subplans
areconsideredincomparableif they producethe sameresult in different
sortedorder, andthe decisionaboutthe optimal subplanis only madeat
theendof theoptimizationprocess.

plan. This createsa problemif we want to useintra-site
pipeliningsincetheoptimizerdoesnotknow whetherapar-
ticular site will pipeline two consecutive joins. In the ab-
senceof any informationfrom thesites,theoptimizercould
either assumethat every pair of joins that appearone af-
ter anotherin the queryplan will be pipelinedat a site, or
it could assumethat thereis no intra-sitepipelining. Ei-
ther assumptioncould result in incorrectestimationof the
queryexecutioncost.Thisproblemcanbesolvedby allow-
ing multi-join bid requests, wherethe optimizersendsbid
requestsconsistingof multiple relationsand the bidder is
asked to make a bid on the join involving all of theserela-
tions.Thebiddercanthenusepipeliningif thereareenough
resources.

2.2. Simplifying Assumptions

To simplify thediscussionin therestof thepaper, wewill
make thefollowing assumptions:� Accurate Statistics : We assumethat statisticsre-

gardingthecardinalitiesandtheselectivities areavail-
able. This informationcanbe collectedthroughstan-
dardprotocolssuchasODBC/JDBCthatallow query-
ing the host databaseaboutstatistics,or by caching
statisticsfrom earlierqueryexecutions[3].

� Communication Costs : We assumethat communi-
cationcostsremainroughly constantfor the duration
of optimizationand executionof the query, and that
theoptimizercanestimatethecommunicationcostsin-
curredin datatransferbetweenany two sitesinvolved
in thequery.

� No Pipelining AcrossSites : We assumethat there
is no pipeliningof dataamongqueryoperatorsacross
sites. The main issuewith pipelining acrosssitesis
thatthepipelinedoperatorstendto wasteresources,es-
peciallyspaceshared resourcessuchasmemory[19].
Even if the produceris not slow, the communication
link betweenthe two sitescould be slow, especially
for WANs, andtheconsumerwill beholdingresources
while waiting for thenetwork.

3. Adapting the Optimization Techniques

In this section, we discussour adaptationsof various
well-known optimization techniquesto take into account
the high “cost of costing”. Aside from minimizing the to-
tal communicationcost,we alsowantto make surethat the
planspaceexploredby theoptimizationalgorithmremains
thesameasin thecentralizedversionof thealgorithm.

In general,wewill breakall optimizationalgorithmsinto
threesteps:� Step 1 : Choosesubplansthat requirecostestimates

andpreparetherequestsfor bids.
� Step2 : Sendmessagesto thebiddersrequestingcosts.



� Step3 : Calculatethecostsfor plans/subplans.If pos-
sible,decideon anexecutionplanfor thequery, other-
wise,repeatsteps2 and3.

Clearly we should try to minimize the numberof rep-
etitions of steps2 and 3, sincestep2 involvesexpensive
communication.

3.1. ClassicalDynamic Programming (Exhaustive)

This exhaustive algorithmsearchesthroughall possible
plansfor the query, usingdynamicprogramming3 andthe
principleof optimality to pruneaway badsubplansasearly
as possible[42]. Thoughthe algorithm is exponentialin
nature,it finishesin reasonabletime for joins involving a
small numberof relations,andit is guaranteedto find the
optimalplanfor executingthequery.

Althoughtraditionally this algorithmrequirescostingof
sub-plansthroughoutthe optimization process,we show
herehow the costingcanbe postponeduntil the end,thus
requiringonly oneroundof messages,without any signifi-
cantimpacton theoptimizationtime :

1. Enumerateall feasiblejoins[37], andmulti-joins(Sec-
tion 2.1) if desired. A feasiblerelation is definedas
eithera baserelationor an intermediaterelation that
canbe generatedwithout a cartesianproduct;a feasi-
ble join is definedto bea join of two or morefeasible
relationsthatdoesnot involvea cartesianproduct.

2. Createbid requestsfor thejoins(andmulti-joins)com-
putedaboveandalsofor scanson thebasetables.

3. Requestcostsfrom thebiddersfor thesejoin andscan
operations.Notethatfor eachjoin, weonly requestthe
costof performingthat individual join, assumingthat
theinputrelationshavealreadybeencomputed(in case
theinput relationsareintermediatetables).

4. Calculatethe costsfor plans/subplansrecursively us-
ing classicaldynamicprogramming(partial orderdy-
namicprogrammingif multidimensionalcostsarede-
sired)andfind theoptimalplanfor thequery.

MessageSizes: The sizeof the messagesentwhile re-
questingthe bids is directly proportionalto the numberof
requestsmade. The first two columnsof Table 1 show
the numberof bid requestsrequiredfor differentkinds of
queries. The vertical axis lists different possiblequery
graphshapes[37], with thecliqueshapedenotingtheworst
possiblecasefor any optimizationalgorithm. As we can
see,thenumberof bid requestsgoesupexponentiallywhen
multi-join bidsarealsoadded.
Plan Space: The plan spaceexploredby this algorithm
is exactly the sameas the plan spaceof a SystemR-style
algorithm(modifiedto searchthroughbushyplansaswell).
A SystemR-styleoptimizeralsorequiresenumerationand

3Thoughthe original SystemR algorithmonly searchedthroughleft-
deepplans,in our implementation,wesearchthroughbushyplansaswell.

costingof all thefeasiblejoins thoughit doesit ondemand,
andoncethe costingis done,the two algorithmsperform
exactly thesamestepsto find theoptimalplan.

3.2. Exhaustivewith Exact Pruning

An optimizermaybeableto save a considerableamount
of computationby pruningawaysubplansthatit knowswill
not be part of any optimal plan. A top-down approach
[21, 20] is moresuitablefor this kind of pruningthanthe
bottom-updynamicprogrammingapproachwe described
above,thoughit is possibleto incorporatepruningin thatal-
gorithmaswell. Typically, thesealgorithmsfirst find some
planfor thequeryandthenusethecostof thisplanto prune
away thosesubplanswhosecost exceedsthe cost of this
plan.

Themainproblemwith usingthis kind of pruningto re-
ducethetotalnumberof bid requestsmadeby theoptimizer
is that it requiresmultiple roundsof messagesbetweenthe
optimizerandthedatasources.Theeffectivenessof pruning
will dependheavily on the numberof roundsof messages
andassuch,webelievethatexactpruningis notveryuseful
in our framework.

But a pruning-freetop-down optimizer, that enumerates
all thequeryplansbeforecostingthem,will besimilarto the
SystemR-stylealgorithmdescribedaboveandcaneasilybe
usedinsteadof thebottom-upoptimizer.

3.3. DynamicProgrammingwith Heuristic Pruning

With dynamicprogramming,thenumberof bid requests
requiredis exponentialin mostcases.As we will seelater,
the messagetime requiredto get thesebids makesthe op-
timization time prohibitive for all but smallestof queries.
Sincedynamicprogrammingrequires the costsfor all the
feasiblejoins,wecannotreducethenumberof bid requests
without compromisingtheoptimality of thetechnique.

HeuristicpruningtechniquessuchasIterative Dynamic
Programming(IDP) [33] canbeusedinsteadto prunesub-
plansearlierso that the total numberof costestimatesre-
quired is much less. The main ideabehindthis algorithm
is to heuristicallychooseandfix a subplanfor a portionof
the querybeforetheoptimizationprocessis fully finished.
We experimentwith two variantsof the iterative dynamic
programmingtechniquethataresimilar to the variantsde-
scribedin [33], exceptthat thebid requestsarebatchedto-
getherto minimizethenumberof roundsof messages:� IDP(k) : We adaptthisalgorithmasfollows :

1. Enumerateall feasible� -way joins, i.e., all feasi-
ble joins thatcontainlessthanor equalto � base
tables.�	��

��� is aparameterto thealgorithm.

2. Find costs for these by contacting the data
sourcesusinga singleroundof communication.

3. Chooseone subplan(and the corresponding� -
way join) out of all the subplansfor these � -



Shapeof DP w/o DP with IDP(k)5 IDP-M(k,m) 5

the query multi-joins multi-joins (for k � n) (for k � n)
Chain ��������� ����������� ����������� ���� !�"�#���
Star ������� � � ���%$ �'&)( � ������*'� ���� !�"*+�
Clique ���%$��,� ���%�-�/.0� 5 ���1���#�"� * � ���� 2�%�#��� * �

Table 1. Number of Bid Requests

wayjoinsusinganevaluationfunctionandthrow
awayall theothersubplans.

4. If notfinishedyet,repeattheoptimizationproce-
dureusingthis intermediaterelationandtherest
of therelationsthatarenot partof it.

In our experimentalstudy, we usea simpleevaluation
functionthatchoosesthesubplanwith lowestcost4.

� IDP-M(k,m) : This is a naturalgeneralizationof the
earliervariant[33]. It differsfrom IDP in that instead
of choosingone � -way join out of all possible� -way
joins, we keep 3 suchjoins andthrow the restaway,
where 3 is anotherparameterto the algorithm. The
motivationbehindthisalgorithmis thatthefirst variant
is tooaggressiveaboutpruningtheplanspaceandmay
not find averygoodplanin theend.

Asidefrom thepossibility that thesealgorithmsmaynot
find a very goodplan,they seemto requiremultiple rounds
of messageswhile optimizing. But in fact,thefirst variant,
IDP, canbedesignedsothat thequeryexecutionstartsim-
mediatelyafter the first subplanis chosenand the rest of
theoptimizationcanproceedin parallelwith theexecution
of thesubplan.IDP-M(k,m), unfortunately, doesnot admit
any suchparallelization.
MessageSize: Table1 shows thenumberof bid requests
requiredfor different query graphshapes.The total cost
of costingherealso dependson the numberof roundsof
communicationrequired( 45�768��9 ). Decreasing� decreases
the total numberof bid requestsmade;however sincethe
startupcostsareusuallya significantfactorin themessage
cost,thetotal communicationcostmaynot necessarilyde-
crease.
Plan Space: [33] discussestheplanspaceexploredby this
algorithm. It will bea subspaceof theplanspaceexplored
by theexhaustivealgorithm.

3.4. Two-phaseOptimization

Two-phaseoptimization[26] hasbeenusedextensively
[9, 19] in distributedandparallelqueryoptimizationmainly
becauseof its simplicity and the easeof implementation.
Thisalgorithmworksin two phases:

4Thetechniquesdescribedin [33] basedon minimumselectivity, etc.,
canbeappliedorthogonally. However, sincethey donothingto reflectdy-
namicloadandothercostconsiderations,we focuson cost-basedpruning
here.

5Thesedenoteupperboundsonthenumberof bid requestsmadeby the
optimizer.

� Phase1 : Find the optimal plan using a SystemR-
style algorithmextendedto searchthroughthe space
of bushyplansaswell. Thisphaseassumesthatall the
relationsarestoredlocally andusesa traditionalcost
model for estimatingcosts. If the physicaldatabase
designis known (e.g., existenceof indexesor materi-
alizedviewson theunderlyingdatasources),thenthis
informationis usedduringtheoptimizationprocess.

� Phase2 : Scheduletheoptimalplanfoundin thefirst
phase.This is doneby first requestingthecostsof ex-
ecutingtheoperatorsat theinvolveddatasourcesfrom
thebiddersandthenfindingtheoptimalscheduleusing
anexhaustivealgorithm.

Note that thesecondphaseusuallyrequirestheuseof par-
tial order dynamicprogramming(Section2.1), even if the
optimizationgoalis minimizing thetotal cost[33].
MessageSize: Sinceonly thejoinsin onequeryplanneed
to becosted,thesizeof themessageis linearin thenumber
of relationsinvolvedin thequery, unlessmulti-join bid re-
questsarealsomade,in which case,thesizeis exponential
in thenumberof relations.
Plan Space: Thoughthe plan spaceexploredin the first
phaseis thesameasa SystemR-stylealgorithm,only one
planis exploredin thesecondphase(which is of moreim-
portancesinceit involvescommunication).

Consideringthat only oneplan is fully exploredby this
algorithm, we expectedthis algorithm to producemuch
worseplansthantheearlieralgorithmsthatexplorea much
biggerplan space.We werequite surprisedto find that it
actuallyproducedreasonablygoodplans. We will revisit
this algorithmfurtherin Section4.3.

3.5. Randomized/GeneticAlgorithms

Traditionally, randomizedor genetic algorithms have
beenproposedto replacedynamicprogrammingwhendy-
namicprogrammingis infeasible. The mostsuccessfulof
thesealgorithms,called2PO,combinesiterative improve-
ment(a variantof hill climbing) with simulatedannealing
[27]. Theproblemwith any of theserandomizedalgorithms
is that they mustcomputethecostsof theplansundercon-
sideration(typically thecurrentplanandits “neighbors”in
someplan space)after eachstep, which meansthe opti-
mizerwill requiremultiple roundsof messagesfor costing.
A naturalwayof extendingthesealgorithmssoasto require
fewer roundsof messages,is to find all possibleplansthat
the optimizermay considerin someamountof time, find
costsfor all of theseand then run the optimizer on these
costs.But unfortunately, thenumberof possibleplansthat
the optimizermay considerin next

�
stepsincreasesexpo-

nentially with
�
. Sincetypically the numberof stepsre-

quiredis quitelarge,webelievethisapproachis not feasible
in a federatedenvironment.



4. Experimental Study

In thissection,wepresentour initial experimentalresults
comparingthe performanceof variousoptimizationalgo-
rithms that we discussedabove. The main goalsof this
experimentalstudy are to motivate the needfor dynamic
costingaswell asto understandthe trade-offs involved in
the optimizationprocess.As we have alreadymentioned,
theactualcostof executionis not relevantfor evaluatingan
optimizationalgorithm,sincetheonly informationtheopti-
mizerhasabouttheexecutioncostsis throughcostmodels
exportedby the bidders.As such,we usea simplistic cost
modelfor thebiddersaswell asfor thecommunicationcost.
The resultswe presenthereshouldnot be significantlyaf-
fectedby thechoiceof thesecostmodels.

4.1. Experimental Setup

Wehave implementedthealgorithmsdescribedearlierin
a modified versionof the Coherafederateddatabasesys-
tem[25], acommercializationof theMariposaresearchsys-
tem[45]. Theexperimentswerecarriedoutonastand-alone
WindowsNT machinerunningon a 233MHzPentiumwith
96 MB of Memory. Both the optimizer and the underly-
ing datasourcesconnectto aMicrosoftSQLServerrunning
locally on the samemachine.A setof bidderswasstarted
locally asrequiredfor theexperiments.We simulatea net-
work by usingthe following messagecostmodel: A mes-
sageof size N bytestakes :
;=<?>A@ time to reachthe
otherend,where : is thestartupcostand < is thecostper
byte. We experimentedwith two differentcommunication
settingscorrespondingto a local areanetwork (LAN) with
: B C+DE3GF,HI< B D0J D,DKCL3GF and a wide areanetwork
(WAN) with :MBNC'�ED83OF,HP<QBRD0J D,D,S�3GF .6

For the query workload, we usefour queriesfrom the
TPC-Hbenchmark.Threeof thesequeriesinvolvea join of
6 relationseach,whereasone(Query8) requiresjoining 8
relations.We chosethis datasetsincewewantedarealistic
datasetfor performingour experiments.Sincewe want to
concentrateonly on the join orderoptimization,we mod-
ify the queries(e.g., by removing aggregateson top of the
query)asshown in Figure2.
4.1.1. Data Distrib ution and Indexes For the TPC-H
benchmark,we useda scalingfactor of C which leadsto
the tablesizesasshown in Table2. Theexperimentswere
doneusingfour datasources.Thedistribution of thetables
andtheindexesis asshown in Table3.
4.1.2. Cost Model We usea simplecostmodelbasedon
I/O thatinvolvesonly Gracehashjoin andindex nestedloop
join. We do not needto includenestedloop joins sincewe
assumethat thereis alwayssufficient memoryto perform

6The startuptimeswereobtainedby finding the time taken by a ping
requestto http://www.mit.edu(for WAN) andto alocalmachine(for LAN)
andthetimeperbytewasobtainedbyfindingthetimetakento transferdata
to andfrom thesesites.

Table Number Tuple Table Number Tuple
Name of Tuples Size Name of Tuples Size
lineitem 6000000 120 orders 1500000 100

partsupp 800000 140 part 200000 160

customer 150000 180 supplier 10000 160

nation 25 120 region 5 120

Table 2. TPC-H Tables (Scaling Factor = 1)

hashjoin in at mosttwo passes.Thecostformulasusedfor
thesetwo wereasfollows :� Index Join (Index on T ) : U-VEF+WXBZYP[\;^] YI]_�1`badc

Ce;f4�] Tg]�hGFi6Ejka79��
� Grace Hash Join : U-VEF+W B Tl[k;fYP[nmporq s
3tm/�u�vTl[-HwYP[���HxTy[z;{Y�[7;
�K�vTl|[ ;
Yw|[ ��ViW�`b}'~i�ImpF+}

where q denotesthe memoryavailable for the join, j a
denotesthe numberof tuplesof T in a block, ] T�] denotes
thenumberof tuplesin therelation T , Tl[ denotesthenum-
ber of blocks occupiedby the relation T and Tl|[ denotes
thenumberof blocksthatwill beoccupiedby T afterper-
forming any select/projectoperationsthat apply to it. `0a
denotestheheightof aB-Treeindex on T and F denotesthe
selectivity of thejoin.

Site Tables(indexesshown in parantheses)

1 supplier(suppkey), part(partkey), lineitem(partkey), nation,region

2 orders(orderkey), lineitem(orderkey), nation,region

3 supplier(suppkey), part(partkey), partsupp,nation,region

4 orders(orderkey), customer(custkey), nation,region

Table 3. Data Distrib ution

4.2. Optimization Quality

In thissection,wewill seehow thedifferentoptimization
algorithmsperform undervariouscircumstancesand fur-
thermotivatetheneedfor bettercostingin theoptimization
process. The algorithmsthat we compareare Exhaustive
(E)(Section3.1), Two-Phase(2PO)(Section3.4) and four
variantsof Iterative Dynamic Programming(Section3.3),
IDP(4), IDP(3), IDP-M(4,5)andIDP-M(3,5).
4.2.1. Uncertain load conditions : Total cost optimiza-
tion
For the first experiment,we artificially variedthe load on
the variousdatasourcesinvolved and also the amountof
memoryallocatedfor the joins. Thevariationsin the loads
were suchthat the cost of an operationvariedby up to a
factorof 20, whereasthe memoryat eachsite waschosen
to bebetweenCiq=j to C+D�q=j . For eachof thequeries,the
six algorithmswererun for 40 randomlychosensettingsof
theseparameters.Thecostsof thebestplansfoundby each
of thealgorithmswerescaledwith theoptimalplanfor the
query, foundby theexhaustivealgorithm.Figure3(i) shows
the meanfor thesescaledcostsaswell asthe standardde-
viation for these40randomrunsfor eachof thealgorithms.
We show only theresultsfor a wide-areanetwork sincethe
trendsobserved aresimilar in the local areanetwork. As



Query 5 (Q5) Query 7 (Q7)

Query 8 (Q8) Query 9 (Q9)

select *
from customer c, orders o, lineitem l, supplier
s, nation n, region r
where c.custkey = o.custkey and o.orderkey
= l.orderkey and l.suppkey = s.suppkey and
c.nationkey = s.nationkey and s.nationkey =
n.nationkey and n.regionkey = r.regionkey and
r.name = ’[REGION]’ and o.orderdate >= date
’[DATE]’ and o.orderdate < date ’[DATE]’ + in-
terval ’1’ year

select *
from customer c, orders o, lineitem l, supplier
s, nation n1, nation n2
where c.custkey = o.custkey and o.orderkey
= l.orderkey and l.suppkey = s.suppkey and
c.nationkey = n1.nationkey and s.nationkey =
n2.nationkey and ((n1.name = ’[NATION1]’ and
n2.name = ’[NATION2]’) or (n1.name = ’[NATION2]’
and n2.name = ’[NATION1])) and l.shipdate between
date ’1995-01-01’ and date ’1996-12-31’"

select *
from customer c, orders o, lineitem l, supplier
s, part p, nation n1, nation n2, region r
where c.custkey = o.custkey and o.orderkey =
l.orderkey and l.suppkey = s.suppkey and p.partkey
= l.partkey and c.nationkey = n1.nationkey and
n1.regionkey = r.regionkey and s.nationkey =
n2.nationkey and r.name = ’[REGION]’ and p.type =
’[TYPE]’ and o.orderdate between date ’1995-01-01’
and date ’1996-12-31’"

select *
from orders o, lineitem l, supplier s, part p,
partsupp ps, nation n
where o.orderkey = l.orderkey and l.suppkey
= s.suppkey and p.partkey = l.partkey and
s.nationkey = n.nationkey and ps.suppkey =
l.suppkey and ps.partkey = l.partkey and p.name
like ’%[COLOR]%’"

Figure 2. Modified TPC-H Queries

wecansee,thoughthetwo-phasealgorithmperformssome-
whatworsethantheexhaustivealgorithm,in many casesit
doesfind the optimalplan. This counter-intuitive observa-
tion canbepartiallyexplainedby notingthatthetwo-phase
optimizer only fixes the join orderandnot the placement
of operatorson the datasourcesinvolved. Observingthe
queryplansthatwerechosenby theExhaustiveAlgorithm,
we foundthatundermany circumstancestheoptimalquery
planwasthesameas(or very similar to) theplanfoundby
thestaticoptimizer. This wasobservedfor all four queries
that we tried (thoughto a lesserextent for Query9). We
will discussthisphenomenonfurtherin Section4.3.

Theperformanceof IDP variantsascomparedto IDP-M
variantsis asexpected, with IDP-M neverdoingany worse
than IDP, though in somecasesboth algorithmsperform
similarly. The performanceof IDP(3) and IDP(4) shows
anotherinterestingphenomenon,i.e., in somecasesIDP(3)
performedbetterthatIDP(4) (e.g., Query7). This is mainly
becauseof the artificial constraintimposedby the IDP al-
gorithm of choosinga 3 (or 4) relationsubplanin the first
stage.This canbe demonstratedby the queryplanchosen
by thetwo algorithmsfor Query7. Figure4 showstheplans
chosenby theExhaustive algorithmandthesetwo variants
for a settingof parameters.As we cansee,becauseof the
requirementof choosingthelowestcostsubplanof size4 in
thebeginning,IDP(4) doesnot producetheplanchosenby
theotheralgorithms.

4.2.2. Uncertain load conditions : Responsetime opti-
mization
This experimentis similar to the experimentabove except
thatwechangedtheoptimizationgoalto beminimizing the
responsetime. Figure3(ii) shows therelative performance
of theseoptimizationalgorithmsin this case.

As wecansee,for two of thequeries,Query5 andQuery
9, 2POfindsa muchworseplanthantheoptimalplan. For
queries7 and8, on the otherhand,it performsalmostas
well as the optimal plan. The main reasonfor this is that
sincewehaveextendedthefirst phaseof thetwo-phaseop-
timizer to searchthroughbushyplansaswell, it findsbushy
plansfor thesequeriesandassuch,they canbeeffectively
parallelized.TheIDP variantsperformalmostthesameas
in the earlierexperiment,thoughwith higherdeviationsin
somecases.

4.2.3. Effect of Presenceof Materialized Views As we
mentionedearlier, the datasourcesmay have materialized
views thatarenot exposedto theoptimizer, eitherbecause
the datasourceis not exporting this informationor it may
begeneratingsuchviewsdynamically. For thisexperiment,
we introduceoneview in thesystem,join of thecustomer,
orders and lineitem relations,at Site 2. Sinceboth joins
involved in this view areforeign-key joins, the numberof
tuplesin the view is sameas the numberof tuplesin the
relationlineitem. Thestaticoptimizeris not madeawareof
this view, whereastheSite2 hasaccessto this information
while generatingbids.Theselectionson therelationsin the
view, if any, arepulledabovetheview. Therestof thesetup,
includingtheindexes,is keptasin theearlierexperiment.

Figure3(iii) shows the resultsfrom this experimentfor
queriesQ5 and Q7. The results for Q8 were similar,
whereasQ9is notaffectedby thisview. As wecansee,2PO
consistentlyproducesa plan muchworsethanthe optimal
plan. IDP variantsonceagainshow unpredictableresults
with IDP-4 performingvery well, sinceit is able to take
advantageof the view, whereasIDP-3 performsalmostas
badastwo-phaseoptimizer, sincethe restrictionof choos-
ing the lowestcost subplanof size3 makes it choosethe
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Figure 3. (i) Total cost optimization and (ii) Response time optimization under uncer tain load conditions; (iii)
Total cost optimization in presence of materializ ed views

wrongplan.

4.3. Discussion
4.3.1. Iterati ve Dynamic Programming As we cansee,
theIDP variantsarequitesensitive to their parameters,but
in almostall cases,at leastoneof IDP(3) andIDP(4) per-
formedbetterthanthe two-phaseoptimizer. This suggests
thatahybridof two suchalgorithmsmightbethealgorithm
of choicein thefederatedenvironment,especiallywhenthe
physicaldesignsof theunderlyingdatasourcesmaybehid-
den from the optimizer. Sucha hybrid algorithm will in-
volve running IDP(��� ) andIDP(�8� ), for differentparame-
ters ��� and �8� and thenchoosingbetterof the two plans.
If �8� is divisible by ��� , thentheplanchosenby IDP(��� ) is
clearlygoingto beworsethantheplanchosenby IDP(�,� ).
Usually, since the numberof joins in a query is reason-
ably small, choosingsmall valuesfor ��� and �,� suchthat
�,��B^���e;�C shouldbeideal. We planto addressthis issue
in futurework.
4.3.2. Two-PhaseOptimization The mostsurprisingfact
thatarisesfrom our experimentsis that thetwo-phaseopti-
mizationalgorithmdoesnot performmuchworsethanthe
exhaustivealgorithmfor totalcostoptimizationif thephys-
ical databasedesignis known to theoptimizer. In this sec-
tion, we will try to analyzethis phenomenonfor our cost
modelsandexperimentalsettings. We will argue that the
runtimecostof theplanchosenby thetwo-phaseoptimizer
cannotbemorethanasmallmultipleof theruntimecostof

customernation

nation supplier

lineitem

orders

nation supplier customernation

lineitem

(i) (ii)

orders

Figure 4. (i) Plan chosen by Exhaustive and IDP(3)
for Query 7, (ii) Plan chosen by IDP(4)

Query Ave % Comm Cost (Std. Dev.)
Query5 2%( � 1.7%)
Query7 4.6%( � 3.6%)
Query8 1.5%( � 1.15%)
Query9 5.7%( � 4.8%)

Table 4. Average % Comm unication Cost (WAN)

theoptimalplan.
Somekey observationsaboutourexperimentalsetuphelp

usanalyzethis :
1. Therewasno intra-siteor inter-site pipelining. As a

resultof this,thetotalexecutioncostof theplancanbe
separatedout into thecostsof executionof eachjoin in
theplan.

2. (a) The first phaseof the two-phaseoptimizer was
awareof theindexespresentat thedatasources.
(b) Therewasalwayssufficient memoryto executea
hashjoin in atmosttwo passesover thedata[43].
Theseobservationsleadusto thefollowing assertion:
Assertion 1 7 : For a queryplan � , if �lVEF+W��/�-����� de-
notesthecostof theplanascomputedby thefirst phase
and �lVEF+W ��#�-� ����� denotesthecostof theplanunderrun-
time conditionswith theloadson thesitesbeingequal
(i.e., the costmark-upson all the sitesareequalto 1
andcommunicationcostsbeingzero,then

C�6E�AhG�lVEFLW ��#�L� ������
r�lVEF+W��/�-������
r��hG�lVEF+W ��#�-� �����
Intuitively, thefactor2 arisesbecause,basedon mem-
ory allocatedat runtime,ahashjoin mighthaveto per-
form two passesinsteadof onepassover thedata.

3. Thecommunicationcostduringqueryexecutionis not
a significantfraction of the total executioncost. Ta-
ble4 showstheaveragefractionof thetotalcostthatis
spentcommunicatingfor theplanfoundby theexhaus-
tive optimizer. As we can see,communicationcost
formsa small fractionof thetotal costfor mostof the
queries.This holdstrueevenfor a wide-areanetwork
sincethe selectionsandprojectionsin the queryplan

7Pleasereferto thefull paper[12] for theproofs



make the total datacommunicatedmuchsmallerthan
thetotal datareadfrom thedisk. Also, all the joins in
the TPC-Hqueriesarekey foreign-key joins andasa
result,theintermediatetablesarenever largerthanthe
basetablesandareusuallymuchsmaller.

Given theseobservations,we can speculateas to why
two-phasemay be performingaswell asour experimental
studyshows. We will considervariousfactorsthat might
have an impact on the runtime executiontime of a query
planin turn andreasonthatthedifferencebetweentherun-
time executioncostof theplanfoundby thetwo-phaseop-
timizer andtheoptimalruntimeplancannot belarge.

Let theoptimalplan foundby thefirst phaseof thetwo-
phasealgorithm be � �1� ���/� and let the optimal plan un-
der runtime conditionsas found by the exhaustive algo-
rithm be � �v� � �#�-� . Since the two-phasealgorithm finds
the best static plan, we have that �lVEF+W��/�-�1� �v� ���/�p�R

�lVEF+W��/�-�v� �1� � �#�-� � .� If the loadson all thesitesareequalandcommunica-

tion costsarezero,thenusingAssertion1 andassum-
ing worst casememoryconditions( � �1� � �#�L� requires
only onepassfor every hashjoin, whereas� �v� � �/� re-
quirestwo passesfor everyhashjoin),

�lVEF+W ��#�-� �1� �v� � �/� ��

�ghG�lVEF+W ��#�-� �v� �1� � �#�-� �� If we let o be the fraction of total run-time cost of
� �1� � ��� that is communicationcost, then under the
worst caseassumptionthat � �v� � �#�-� doesnot incur
any communicationcost,we getthat

�lVEF+W ��#�-� �1� �v� � �/� ��

�"6"��Cec�o)�\hO�lVEF+W ��#�-� �v� �1� � �#�L� �
where �lVEF+W ��#�-� ��� is thecostof theplanat runtimein-
cluding the communicationcosts. If o�� Ci6E� , then
�"6"�pCAc¡o)�¢�¤£ and usually, o is going to be much
smaller(cf. Table4).� Finally, theimpactof dynamicallychangingloadcon-
ditions is mitigatedbecauseour two-phaseoptimizer
schedulesthejoins at run-timetakinginto accountthe
loadconditions.All thejoins in thequerywill (proba-
bly) bescheduledon lightly loadedsites.It is possible
that � �v� � �/� mayincur morecommunicationcostasa
resultof this,but aswe have alreadyargued,thecom-
municationcost doesnot form a major factor of the
totalqueryexecutioncost.

Inspiteof worstcaseassumptions,runtimeexecutioncost
of the statically optimal plan is going to be less than a
small multiple of the dynamicallyoptimal plan in our ex-
periments.We observe muchsmallerratiosthanthis, and
the main reasonbehindthat might be that thesetwo plans
� �v� ���/� and � �1� � �#�L� do not differ muchin the joins they
contain. We believe that this is an artifact of the shapeof
thequeryplantopology[28]. If everyotherlocalminimum
in the queryplan spacehasmuchhighercost that the ab-
soluteminimum ( � �v� � �/� ) (i.e., the plan spacehasa deep

well in it [28]), thenthe optimal plan underdifferentrun-
time conditionsmay all turn out to be very similar to the
staticallyoptimalplan.

Our experimentalobservationsand the analysisabove
suggestthatthisphenomenonmaynot belimited to ourex-
perimentalsetupandthe costmodel. We believe that this
appliesto a much more generalscenario,and we plan to
addressthis issuein amoregeneralscenarioin future.
4.4. Optimization Overheads

In this subsection,we look at someof the trade-offs in
optimizationoverheadsof thesealgorithms.

Theoptimizationoverheadsfor IDP variantsdependsig-
nificantly on theparameter� of the algorithm. Figure5(i)
shows theoptimizationtime for a starqueryof size10 for
variousvaluesof parameter� for WAN (similar trendsare
observedfor LAN). Weintentionallychosealargequeryfor
IDP, sincefor smallerqueries,it is often moreefficient to
useexhaustive optimization. As we cansee,thealgorithm
is significantly fasterfor smallervaluesof � , approaching
the cost of the Exhaustive algorithm as � approachesthe
numberof relations. Note that, even thoughincreasing�
decreasesthe numberof roundsof messages(e.g., �
B¦¥
requires4 rounds,whereas�rB¦� requires3 rounds),the
total communicationcostmaynotnecessarilydecrease,be-
causetheincreasein thetotalnumberof RFBsmadeby the
optimizermayoffset thesavingsdueto smallernumberof
roundsof messages.

Finally, we look at the optimizationtimes of the algo-
rithms that we comparedin the earlier sectionsfor the 4
TPC-H queries.We compareonly the total costoptimiza-
tion times, though we still needto use partial order dy-
namicprogramming.As we cansee(Figure5), 2POtakes
muchlesstimethanmostof theotheralgorithms,with IDP-
M(3,5) takingthemosttimefor bothconfigurations.Wecan
seetheeffectof highmessagecostsundertheWAN config-
urationwith thecostof exhaustivealgorithm(onemessage)
droppingbelow thecostof otheralgorithmswith moremes-
sages.Also, IDP(3,5)incursmuchhighercostfor Query8
asit requires3 roundsof messages.
4.5. Summary of the Experimental Results

Our experimentson the modified TPC-H benchmark
demonstratethe need for aggressive optimization algo-
rithms that take into accountdynamicruntime conditions
while optimizing, andof algorithmsthat requirevery few
messagesto accumulatetherequiredcostinformationfrom
the underlying data sources. The Exhaustive Dynamic
Programmingalgorithm, modified to use a single mes-
sage,worksreasonablywell for smallqueries,but for large
queries,a heuristicalgorithmsuchasIDP may have to be
used. We found IDP to be very sensitive to its parameters
(particularly, theparameter� ), andrunningIDP in parallel
for two differentvaluesof theparametermaywork bestin
practice.
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Another surprising observation from our experiments
was that the two-phaseoptimizationalgorithm performed
reasonablywell in many cases,especiallywhen the opti-
mizerknew aboutthematerializedviewsandtheindexesat
thedatasourcesandtheoptimizationgoalwasminimizing
total cost.We have tried to analyzethis observationfor our
experimentalsettings;this is clearlyaninterestingdirection
for futurework.

5. RelatedWork

In this section,we will try to put the work presentedin
this paperin perspective. To explore the designspacefor
a query optimizer for the federatedenvironment,we will
concentrateon thetwo factorsthatmostsignificantlyaffect
thecomplexity of theoptimizationprocess: dynamicload
conditions, andunknowncostmodels. Usingthesetwo fac-
tors, the designspacefor a federatedqueryoptimizercan
bedividedinto four categories,asshown in Table5.

In thispaper, wehavefocusedontheuppermostcategory,
wherethe costmodelsfor the underlyingdatasourcesare
not known to the optimizerand the optimizerhasto con-
sider load conditionswhile optimizing. Note that the top
row makes the least assumptionsabout the environment,
andhenceany algorithmsdevelopedfor this scenariocan
beappliedto any of theotherscenarios.

Fromthequeryoptimizationperspective, thesimplestof
thesescenariosis the lowest row, wherethe cost models
for theunderlyingdatasourcesareknown to theoptimizer
and the optimizationgoal is to minimize the total execu-
tion cost. EarliestdistributeddatabasesystemssuchasR*
[22] were built with suchassumptionsaboutthe environ-
ment. The R* optimizer was an extendedversionof the
SystemR optimizer with an extra term addedin the exe-
cutioncostformula for communicationcost. The Iterative
DynamicProgramming[33] (Section3.3)canbeusedif the
exhaustivealgorithmturnsout to betoo complex in time or
space;thisis notunlikely in adistributedscenarioevenwith
smallqueries.Randomizedalgorithmshave alsobeenpro-
posedfor complex join queries[27, 34].

The secondrow from the bottom is relevant even in
centralizeddatabasesystems,where run-time conditions
cansignificantlyaffect the executioncostof a queryplan.
[11, 29, 16, 10] discusshow parametricoptimizationcan
beusedto computea setof plansoptimal for differentval-
uesof the run-time parameters,insteadof just one plan,
and then to choosea plan at run-timewhen the valuesof
parametersareknown. [18] discusshow thesetechniques
may be extendedto distributeddatabases,wherethe loads
on theunderlyingdatabasesmaynotbeknown atoptimiza-
tion time. The two-phaseoptimizationapproach(Section
3.4) wasalsofirst proposedfor this scenario[26] andwas
lateralsousedin theMariposasystem[45].

The secondrow from the top focuseson the heteroge-
neousnatureof federateddatabases,without considering
any dynamicruntimeissues.Heterogeneousdatabasesys-
temspresentthe challengeof incorporatingthe costmod-
els of the underlyingdatasourcesinto the optimizer. One
solution to this problemis to try to learn the costmodels
of the datasourcesusing“calibration” or “learning” tech-
niques[49, 13, 8]. MiddlewaresystemssuchasGarlic [23]
havechosento solve this problemthroughtheuseof wrap-
pers, which areprogrammedto encapsulatethecostmodel
and capabilitiesof a site. The cost of costingis not sig-
nificant in Garlic, sincethe wrappersexecutein the same
addressspaceasthe optimizer. Garlic usesexhaustive dy-
namicprogrammingto find theoptimalplan,andthoughwe
arenot awareof any explicit work in this areathatusesthe
otheroptimizationtechniques,it shouldnot be difficult to
extendthosefor thisscenario.

[15, 38, 41] discussqueryoptimizationissuesin aloosely
coupledfederatedsystemsuchasmodelledby thetop row.
From the query optimizationperspective, the main focus
of [15, 38] is on incorporatingthe knowledgeof statistics
and systemparametersgainedwhile executing the query
at run-time,into the queryplan. They usea statisticalde-
cision mechanismthat schedulesthe query plan a join at
a time. [41] proposea mechanismfor a loosely coupled
multi-databasesystemwhereall the underlyingdatabases



Exhaustive Heuristic Pruning Two-Phase Randomized

Dynamic, Unknown CostModels Y Y Y Y

Static, Unknown CostModels e.g. Garlic[23] Y Y Y

Dynamic, Known CostModels ParametricOptimi- Y Mariposa[45] [34]

zation[11, 29]

Static, Known CostModels R*[22] IDP[33] N/A SimulatedAnne-

aling,2PO[27]

Table 5. Design Space for a Federated Optimiz er (“Y” denotes scenarios considered in this paper)

cooperateto find the optimal plan. This algorithm is not
very suitablefor a federateddatabasesystemas the envi-
ronmentmay not be completelycooperative andalso, the
numberof messagesthatareexchangedbetweentheunder-
lying datasourcesincreasesexponentiallywith the sizeof
thequery.

Mid-execution re-optimization[31, 30], Query scram-
bling [47] and Eddies [4] have also been proposedfor
usein dynamicenvironmentswhen the requiredstatistics
maynot beaccuratelyestimatedat theoptimizationtimeor
whenthecharacteristicsof theunderylingdatasourcesmay
changedramaticallyduring the queryexecution. The kind
of databaseswe consideredin this paperaremorestaticin
that respect,aswe assumethe existenceof relevant meta-
data,includingstatisticsaboutthe datasources;we do not
targetquickly fluctuatingperformancesassuggestedin Ed-
dies. Also, all of thesetechniqueswork in a centralized
fashionaccessingdatafrom variousdatasources,but exe-
cuting the querieson a singlemachine,whereasin a fed-
erateddatabase,we are more interestedin distribution of
work amongtheparticipatingdatasources.

6. Conclusionand Future Work

Uncertain load conditions and unknown cost models
make decoupledqueryoptimizationa necessityfor feder-
ateddatabasesystems.To decouplecostcomputationsfrom
the optimization process,the optimizer must consult the
datasourcesinvolvedin anoperationto find thecostof that
operation.This changesthe trade-offs involved in the op-
timizationprocesssignificantly, sincethedominantcostin
optimizationbecomesthecostof contactingtheunderlying
datasources.Becauseof thesenew trade-offs, optimization
techniquessuchasrandomized/geneticalgorithms,thatby
naturerequiremultiple roundsof messages,are rendered
impracticalin thisscenario.

In this paper, we presentedminimum-communication
adaptationsof variouswell-known query optimizational-
gorithm anddiscussedthe trade-offs in their performance.
OurexperimentalresultsontheTPC-Hbenchmarkindicate
that, in many cases,especiallywhenthephysicaldatabase
designis known to the optimizer, two-phaseoptimization
worksvery well. In absenceof suchinformation,moreag-

gressive optimization techniquesmust be used. We also
found that the Iterative Dynamic Programmingtechnique
is verysensitive to its parameters,thoughrunningIDP with
multiple parameterchoicesmaywork bestin practice.We
plan to addressboth theseissues,the surprisingeffective-
nessof two-phaseoptimizationalgorithmsandthebestway
to combineIDP variants,in future.
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tivenessof optimizationsearchstrategiesfor parallelexecu-
tion spaces.In VLDB, 1993.

[35] R. J. Miller, L. M. Haas,and M. A. Herńandez. Schema
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