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Abstract

We study the problem of query optimizationin feder
atedrelational databasesystems.The nature of fedeated
databasesxplicitly decouplesmany aspectsof the opti-
mization process,often makingit impemative for the opti-
mizerto consultunderlyingdata souiceswhile doing cost-
basedoptimization. This not only increaseghe costof op-
timization, but also changesthe trade-ofs involvedin the
optimizationprocesssignificantly Thedominantcostin the
decoupledptimizationprocesds the“cost of costing” that
traditionally has beenconsideed insignificant. The opti-
mizercanonly afford a few roundsof messgesto theunder
lying datasourcesandhencetheoptimizationtechniquesn
this ervironmentmustbe geared toward gatheringall the
required costinformationwith minimalcommunication.

In this paper we explore the designspacefor a query
optimizer in this ervironmentand demonstate the need
for decouplingvariousaspectf the optimizationprocess.
We presentminimum-communicatiotecoupledrariantsof
various query optimizationtechniques,and discusstrade-
offs in their performancen this scenario. We haveimple-
mentedthesetechniquesin the Cohem fedeated database
systemand our experimentalresults, somevhat surpris-
ingly, indicatethata simpletwo-phaseptimizationscheme
performsfairly well as long as the physicaldatabasede-
signis knownto the optimizer thoughmore aggressiveal-
gorithmsare required otherwise

1. Intr oduction

The needfor federateddatabaseserviceshasincreased
dramaticallyin recentyears. Within enterpriseslT infras-
tructuresare often decentralizedisa resultof memgers,ac-
quisitions,andspecializeccorporateapplicationsyesulting
in deploymentof large federateddatabasesPerhapsnore
dramatically the Internethasenablednew inter-enterprise
venturesincluding Business-to-Businedset Markets (or
Hubg [1, 32], whosebusinesshingeson federatingthou-
sandof decentralizedatalogsandotherdatabases.

Broadly consideredfederateddatabase¢echnology[44]

has beenthe subjectof multiple researchthrusts,includ-
ing schemaintegration [6, 35], datatransformation[2],
as well as federatedquery processingand optimization.
The queryoptimizationwork goesbackasfar asthe early
distributed databasesystems(R*, SDD-1, Distributed In-
gres [22, 14, 7]), andmostrecentlyhasbeenfocusedon
linking datasourcesof variouscapabilitiesand costmod-
els[23, 30, 46]. However, queryoptimizationin the broad
federatecervironmentpresentgpeculiaritieghatchangahe
trade-ofs in the optimization processquite significantly
By nature federatedsystemslecouplemary aspectof the
guery optimizationprocessthat were tightly integratedin
both centralizedand distributed databasesystems. These
decouplingsare often forcedby administratve constraints,
sincefederationgypically spanorganizationaboundaries;
decouplingis also motivated by the needto scalethe ad-
ministrationandperformancef a systemacrosshousands
of sites. Federatedjueryprocessorseedto consideithree
basicdecouplings:

e Decoupling of Query Processing In a large-scale
federatedsystem,both data accessand computation
can be carried out at various sites. For global effi-
ciengy, it is beneficialto considemssigningportionsof
aqueryplanin arbitrarydistributedways. In fact, this
hasbeenoneof themajormotivationsfor development
of bothdistributedandfederatediatabassystems.

e Decouplingof CostFactors: In acentralizeddBMS,
guery execution“cost” is a unidimensionalkonstruct
measuredn abstracunits. In a federation costsmust
be decouplednto multiple dimensionsunderthe con-
trol of variousadministratorsOneproposalfor a uni-
versalcostmetric is hardcurreng [45], but typically
there are other coststhat are valuableto exposeor-
thogonally including responsdime [17], datafresh-
nesg36], andaccuray of computationg5].

e Decoupling of Cost Estimation: This work is moti-
vatedby the necessityof decouplingthe costestima-
tion aspectof the queryoptimizerfrom the optimiza-

1We will usethe termssite and data source interchangeablyn this
paper



tion processRegardlessof the numberof costdimen-
sions, a centralizedoptimizer cannotaccuratelyesti-
matethecostsof operationst mary autonomousites.
Garlic[23, 40] andothermiddlenvaresystemg24, 46]
addresghis problemby involving site-specificwrap-
persin the optimizationprocessput they do not con-
siderthe costof communicatingwith thesewrappers.
Thiscostis notsignificantin thesesystemdecaus¢he
wrappergypically residein the sameaddresspaceas
the optimizer But in general the executioncostsmay
alsodependon transientsystemissuesincluding cur-
rent loads and temporaladministratve policies [45],
and hencethe costestimationprocessmustbe feder
atedin a mannerreflective of the query processing,
with cost estimatesbeing provided by the sitesthat
would bedoingthework.

Many of thesedecouplinghave beenstudiedbeforeindi-
vidually in the context of distributed,heterogeneousr fed-
erateddatabaseesearch41, 15, 38]. However, to the best
of our knowledge,completedecouplingof costestimation,
which requiresthe optimizerto communicatevith the sites
merelyto find the costof anoperationhasnot beenstudied
before.In suchascenariocommunicatiormaybecomehe
dominantcostin the queryoptimizationprocess.The high
costof costingraisesa numberof nev designchallenges,
and addsadditionalfactorsto the compleity of federated
gueryoptimization.

1.1 Contrib utions of the Paper

In this paper we considera large spaceof federated
query optimizer design alternatves and argue the need
for taking into considerationthe high “cost of costing”
in this environment. Accordingly, we presentminimum-
communicationdecoupledvariantsof variouswell-known
optimizationtechniques. We have implementedtheseal-
gorithmsin the Coherafederatediatabaseystem[25] and
we presenexperimentalesultsonasetof modifiedTPC-H
benchmarlqueries.

Ourexperimentatesults somevhatsurprisingly suggest
thatthe simpletechniqueof breakingthe optimizationpro-
cesdnto two phase$26] — first finding the bestqueryplan
for a singlemachineandthenschedulingt acrosshe fed-
erationbasedon run time conditions— works very well
in the presencef fluctuationsin theloadson the underly-
ing datasourcesand the communicationcosts,aslong as
the physicaldatabaselesignis knawn to the optimizer On
the other hand, if the optimizeris unavare of the physi-
cal databaselesign(suchasindexesor materializedviews
presentat the underlyingdatasources)thenmoreaggres-
sive optimizationtechniquesare requiredand we propose
usinga hybrid techniquefor tuning a previously proposed
heuristicin thosecircumstances.

We also presenta preliminary analysisexplaining this
surprisingsucces®f the two-phaseoptimizerfor our cost
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Figure 1. System Architecture

model and experimentalsettingslater in the paper(Sec-
tion 4.3). Our analysissuggestshatthis behaior may not
merely be a peculiarity of our experimentalsettings,but
may hold truein general.

2. Architecture and Problem Definition

We baseour systemarchitectureon the Mariposare-
searchsystem[45], which provides the decouplingsdis-
cussedn theearliersectionthroughthe useof aneconomic
paradigm The mainideabehindthe economicparadigm
is to integrate the underlying data sourcesinto a compu-
tational economythat capturesthe autonomousature of
varioussitesin the federation. A significantand contro-
versialgoal of Mariposawasto demonstrat¢he global ef-
ficiengy of this economicparadigm,e.g.,in termsof dis-
tributedload balancing. For our purposedere,controver
siesover economicpolicy are not relevant; the long-term
adaptvity problemthat Mariposatried to solve is beyond
the scopeof this paper The main benefitof the economic
modelfor usis thatit providesa fully decoupledcosting
APl amongsources As aresult,eachsite haslocal auton-
omyto determinethe costto be reportedfor an operation,
andcantakeinto accounfactorssuchasresource&eonsump-
tion, responsdime, accurag andstalenessf data,admin-
istrative issuesandevensupplyanddemandor specialized
dataprocessing.

For queryoptimizationpurposesthe mostrelevantparts
of the systemare the query optimizerin the middleware,
andthe bidders at the underlyingsites(Figure1). Asin a
centralizeddatabaseystem the queryoptimizercoulduse
a variety of differentoptimizationalgorithms,but the fed-
eratednatureof the systemrequiresthatthe costestimates
be madeby the underlyingdatasourcesor in our case,by
the bidders. The optimizer and the bidder communicate
throughuseof two constructs (1) Requesfor Bid (RFB)
thatthe optimizerusesto requestostof an operation,and



(2) Bid throughwhich a biddermakescostestimates.
2.1 The FederatedQuery Optimization Problem

The federatedquery optimizationproblemis to find an
executionplan for a userspecifiedquery that satisfiesan
optimizationgoal provided by the user; this goal may be
a function of mary variables,including responsdime, to-
tal executioncost,accurag andstalenes®f the data. For
simplicity, we concentrat®ntwo of thesefactors response
time and total execution cost (measuredn abstractcost
units), thoughit is fairly easyto extend theseto include
otherfactors,assuminghey canbeeasilyestimated Since
weassumehattheonly informationwe have aboutthecosts
of operationss throughtheinterfaceto the bidders the op-
timizationproblemhasto berestatecasoptimizingoverthe
costinformationexportedby thebidders.Beforedescribing
theadaptationsf theknown queryoptimizationalgorithms
to take into accounthehigh costof costing,we will discuss
two importantissueghataffectthe optimizationcostin this
framework significantly
2.1.1. ResponseTlime Optimization vs. Total Cost Op-
timization : Traditionally the optimizationgoal hasbeen
minimization of the total cost of execution, but in mary
applications ptherfactorssuchasresponsdime, staleness
of the datausedin answeringthe query [36], or accurag
of the data [5] may alsobe critical. As hasbeenpointed
outpreviously[17, 48], optimizingfor suchanoptimization
goalrequiregheuseof partial orderdynamicprogramming
technique.This techniques a generalizatiorof the classi-
cal dynamicprogrammingalgorithmwherethe costof each
planis computedasa vectorandtwo costsare considered
incomparablef neitheris lessthanor equalto the otherin
all the dimension$. It canbe shown thatif the costis an
I-dimensionalvector, thenthe time and spacecomplexity
of the optimizationprocessncreasesy a factorof 2! [17]
over classicaldynamicprogramming.Recently a polyno-
mial time approximatioralgorithmhasalsobeenproposed
for this problem[39]. As [33] point out, even total cost
optimizationin a distributed settingrequirespartial order
dynamicprogrammingsincetwo plansproducingthe same
resulton differentsitesare not comparabledueto the sub-
sequentommunicatiorcostswhich might differ.

2.1.2. Bidding Granularity and Intra-site Pipelining :

The bidding granularityrefersto the choiceof the opera-
tionsfor which the optimizerrequestgosts.For maximum
flexibility in schedulinghe queryplan,we would like this
to be asfine-grainedas possible. The naturalchoicesfor

bidding granulesto estimatethe costof a query plan are
scanson the underlyingbasetablesandjoins in the query

2partial orderdynamicprogrammingcanalsobe thoughtof asa gen-
eralizationof theinterestingorders of SystemR [42], wheretwo subplans
are consideredncomparablédf they producethe sameresultin different
sortedorder andthe decisionaboutthe optimal subplanis only madeat
theendof the optimizationprocess.

plan. This createsa problemif we wantto useintra-site
pipeliningsincetheoptimizerdoesnotknow whetherapar

ticular site will pipelinetwo consecutie joins. In the ab-
senceof ary informationfrom thesites,the optimizercould
either assumethat every pair of joins that appearone af-

ter anotherin the queryplanwill be pipelinedat a site, or

it could assumethat thereis no intra-site pipelining. Ei-

ther assumptiorcould resultin incorrectestimationof the
gueryexecutioncost. This problemcanbesolvedby allow-

ing multi-join bid requestswherethe optimizer sendsbhid

requestsconsistingof multiple relationsand the bidderis

asledto make a bid on the join involving all of theserela-
tions. Thebiddercanthenusepipeliningif thereareenough
resources.

2.2 Simplifying Assumptions

To simplify thediscussionn therestof the paperwe will
male thefollowing assumptions

e Accurate Statistics: We assumehat statisticsre-
gardingthe cardinalitiesandthe selectvities areavail-
able. This informationcanbe collectedthroughstan-
dardprotocolssuchasODBC/JDBCthatallow query-
ing the host databaseaboutstatistics,or by caching
statisticsfrom earlierqueryexecutiong3].

¢ Communication Costs: We assumehat communi-
cation costsremainroughly constantfor the duration
of optimizationand executionof the query and that
theoptimizercanestimatehecommunicatiorcostsin-
curredin datatransferbetweenary two sitesinvolved
in thequery

e No Pipelining AcrossSites: We assumethat there
is no pipelining of dataamongqueryoperatorsacross
sites. The main issuewith pipelining acrosssitesis
thatthepipelinedoperatorgéendto wasteresourcesgs-
pecially spaceshaedresourcesuchasmemory[19].
Evenif the produceris not slow, the communication
link betweenthe two sitescould be slow, especially
for WANs, andtheconsumewill beholdingresources
while waiting for the network.

3. Adapting the Optimization Techniques

In this section, we discussour adaptationsof various
well-known optimizationtechniquesto take into account
the high “cost of costing”. Aside from minimizing the to-
tal communicatiorcost,we alsowantto make surethatthe
plan spaceexploredby the optimizationalgorithmremains
the sameasin the centralizedversionof the algorithm.

In generalwe will breakall optimizationalgorithmsinto
threesteps:

e Step1: Choosesubplanghatrequirecostestimates

andpreparetherequestdor bids.

e Step2: Sendmessagew thebiddersrequestingosts.



e Step3: Calculatethecostsfor plans/subplandf pos-
sible,decideon anexecutionplanfor the query, other
wise, repeaisteps2 and3.

Clearly we shouldtry to minimize the numberof rep-

etitions of steps2 and 3, sincestep?2 involves expensve
communication.

3.1 ClassicalDynamic Programming (Exhaustive)

This exhaustve algorithm searcheshroughall possible
plansfor the query usingdynamicprogramming andthe
principle of optimality to pruneaway badsubplansasearly
aspossible[42]. Thoughthe algorithmis exponentialin
nature,it finishesin reasonabldime for joins involving a
small numberof relations,andit is guaranteedo find the
optimalplanfor executingthequery

Althoughtraditionally this algorithmrequirescostingof
sub-plansthroughoutthe optimization process,we showv
herehow the costingcanbe postponeduntil the end, thus
requiringonly oneroundof messagesyithout ary signifi-
cantimpacton the optimizationtime::

1. Enumeratall feasiblejoins[37], andmulti-joins (Sec-
tion 2.1) if desired. A feasiblerelationis definedas
eithera baserelation or an intermediaterelation that
canbe generatedvithout a cartesiarproduct;a feasi-
ble join is definedto bea join of two or morefeasible
relationsthatdoesnotinvolve a cartesiarproduct.

2. Createbid requestdor thejoins (andmulti-joins) com-
putedabove andalsofor scansonthebasetables.

3. Requestostsfrom the biddersfor thesgoin andscan
operationsNotethatfor eachjoin, we only requesthe
costof performingthatindividual join, assuminghat
theinputrelationshave alreadybeencomputedin case
theinputrelationsareintermediatdables).

4. Calculatethe costsfor plans/subplangsecursvely us-
ing classicaldynamicprogramming(partial orderdy-
namicprogrammingf multidimensionakostsarede-
sired)andfind the optimalplanfor the query

MessageSizes: The size of the messagesentwhile re-
guestingthe bids is directly proportionalto the numberof
requestsmade. The first two columnsof Table 1 shav
the numberof bid requestsequiredfor differentkinds of
queries. The vertical axis lists different possible query
graphshape$37], with the clique shapedenotingtheworst
possiblecasefor any optimizationalgorithm. As we can
see thenumberof bid requestgoesup exponentiallywhen
multi-join bidsarealsoadded.

Plan Space: The plan spaceexploredby this algorithm
is exactly the sameasthe plan spaceof a SystemR-style
algorithm(modifiedto searchithroughbushyplansaswell).
A SystemR-styleoptimizeralsorequiresenumeratiorand

3Thoughthe original SystemR algorithmonly searchedhroughleft-
deepplans,in ourimplementationyve searchthroughbushyplansaswell.

costingof all thefeasiblejoins thoughit doesit ondemand,
and oncethe costingis done,the two algorithmsperform
exactly the samestepsto find the optimalplan.

3.2 Exhaustive with Exact Pruning

An optimizermaybeableto save a considerableamount
of computatiorby pruningaway subplanghatit knowswill
not be part of any optimal plan. A top-dovn approach
[21, 2Q] is more suitablefor this kind of pruningthanthe
bottom-updynamic programmingapproachwe described
above,thoughit is possibleto incorporateruningin thatal-
gorithmaswell. Typically, thesealgorithmsfirst find some
planfor thequeryandthenusethe costof this planto prune
away thosesubplanswhosecost exceedsthe cost of this
plan.

The main problemwith usingthis kind of pruningto re-
ducethetotalnumberof bid requestsnadeby the optimizer
is thatit requiresmultiple roundsof messagebetweerthe
optimizerandthedatasourcesTheeffectivenes®f pruning
will dependheaily on the numberof roundsof messages
andassuch,we believe thatexactpruningis notvery useful
in our framework.

But a pruning-freetop-donn optimizer, thatenumerates
all thequeryplansbeforecostingthem,will besimilarto the
SystenR-stylealgorithmdescribediboreandcaneasilybe
usedinsteadof the bottom-upoptimizet

3.3 Dynamic Programming with Heuristic Pruning

With dynamicprogrammingthe numberof bid requests
requiredis exponentialin mostcases As we will seelater,
the messagéime requiredto getthesebids makesthe op-
timization time prohibitive for all but smallestof queries.
Sincedynamicprogrammingrequires the costsfor all the
feasiblejoins, we cannotreducethenumberof bid requests
without compromisinghe optimality of the technique.

Heuristic pruningtechniquessuchas Iterative Dynamic
ProgrammingIDP) [33] canbe usedinsteadto prunesub-
plansearlier so that the total numberof costestimatege-
quiredis muchless. The mainideabehindthis algorithm
is to heuristicallychooseandfix a subplanfor a portion of
the querybeforethe optimizationprocesss fully finished.
We experimentwith two variantsof the iterative dynamic
programmingtechniguethat are similar to the variantsde-
scribedin [33], exceptthatthe bid requestsarebatchedo-
getherto minimizethe numberof roundsof messages

¢ IDP(K) : We adaptthisalgorithmasfollows:

1. Enumeratell feasiblek-wayjoins, i.e., all feasi-
ble joins thatcontainlessthanor equalto & base
tables.k (< n) is aparameteto thealgorithm.

2. Find costs for these by contacting the data
sourcesisinga singleroundof communication.

3. Chooseone subplan(and the correspondingk-
way join) out of all the subplansfor thesek-



Shapeof | DPw/o DP with IDP(k)®° IDP-M(k,m) >
the query | multi-joins | multi-joins | (fork < n) | (for k < n)
Chain O(n?) O(n2m) O(n%k) O(mn2k)
Star 0O(n2"™) o(3n+1) O(n*) O(mnk)
Clique o(3™) 022" )5 o((2n)*) | o(m(2n)¥)

Table 1. Number of Bid Requests

way joins usinganevaluationfunctionandthrow
away all the othersubplans.

4. If notfinishedyet, repeathe optimizationproce-
dureusingthis intermediaterelationandthe rest
of therelationsthatarenot partof it.

In our experimentalstudy we usea simpleevaluation
functionthatchooseshe subplanwith lowestcost.

e IDP-M(k,m) : Thisis a naturalgeneralizatiorof the
earliervariant[33]. It differsfrom IDP in thatinstead
of choosingone k-way join out of all possiblek-way
joins, we keepm suchjoins andthrow the restaway,
wherem is anotherparameteto the algorithm. The
motivationbehindthis algorithmis thatthefirst variant
is too aggressie aboutpruningtheplanspaceandmay
notfind avery goodplanin theend.

Aside from the possibility thatthesealgorithmsmay not
find avery goodplan,they seento requiremultiple rounds
of messagewhile optimizing. But in fact, thefirst variant,
IDP, canbe designedsothatthe queryexecutionstartsim-
mediatelyafter the first subplanis chosenand the rest of
the optimizationcanproceedn parallelwith the execution
of the subplan.IDP-M(k,m), unfortunately doesnot admit
ary suchparallelization.

MessageSize: Tablel shows the numberof bid requests
requiredfor differentquery graphshapes. The total cost
of costingherealso dependon the numberof roundsof
communicatiorrequired([n/k]). Decreasing: decreases
the total numberof bid requestanade;however sincethe
startupcostsare usuallya significantfactorin the message
cost,the total communicatiorcostmay not necessarilyde-
crease.

Plan Space: [33] discussetheplanspacexploredby this
algorithm. It will be a subspacef the planspaceexplored
by the exhaustve algorithm.

3.4. Two-phaseOptimization

Two-phaseoptimization[26] hasbeenusedextensiely
[9, 19 in distributedandparallelqueryoptimizationmainly
becauseof its simplicity and the easeof implementation.
This algorithmworksin two phases

4Thetechniqueslescribedn [33] basedon minimumselectvity, etc.,
canbeappliedorthogonally However, sincethey do nothingto reflectdy-
namicload andothercostconsiderationsye focuson cost-basegruning
here.

5Thesedenoteupperboundson thenumberof bid requestsnadeby the
optimizer

e Phasel : Find the optimal plan using a SystemR-
style algorithm extendedto searchthroughthe space
of bushyplansaswell. This phaseassumeshatall the
relationsare storedlocally and usesa traditional cost
modelfor estimatingcosts. If the physicaldatabase
designis known (e.g., existenceof indexesor materi-
alizedviews on the underlyingdatasources)thenthis
informationis usedduringthe optimizationprocess.

e Phase2: Schedulghe optimalplanfoundin thefirst
phase.Thisis doneby first requestinghe costsof ex-
ecutingthe operatorattheinvolveddatasourcegrom
thebiddersandthenfindingtheoptimalschedulausing
anexhaustve algorithm.

Notethatthe secondohaseusuallyrequiresthe useof par-
tial order dynamicprogramming(Section2.1), evenif the
optimizationgoalis minimizing thetotal cost[33].
MessageSize: Sinceonly thejoinsin onequeryplanneed
to be costedthe sizeof the messagés linearin thenumber
of relationsinvolvedin the query unlessmulti-join bid re-
guestsarealsomade,in which case the sizeis exponential
in thenumberof relations.

Plan Space: Thoughthe plan spaceexploredin the first
phaseis the sameasa SystemR-stylealgorithm,only one
planis exploredin the secondpohasgwhich is of moreim-
portancesinceit involvescommunication).

Consideringthatonly oneplanis fully exploredby this
algorithm, we expectedthis algorithm to producemuch
worseplansthanthe earlieralgorithmsthatexplorea much
bigger plan space. We were quite surprisedto find that it
actually producedreasonablygood plans. We will revisit
this algorithmfurtherin Sectior4.3.

3.5 Randomized/GeneticAlgorithms

Traditionally, randomizedor genetic algorithms have
beenproposedo replacedynamicprogrammingwvhendy-
namic programmingis infeasible. The mostsuccessfubf
thesealgorithms,called 2PO, combinesiterative improve-
ment(a variantof hill climbing) with simulatedannealing
[27]. Theproblemwith ary of theserandomizedalgorithms
is thatthey mustcomputethe costsof the plansundercon-
sideration(typically the currentplanandits “neighbors”in
someplan space)after eachstep, which meansthe opti-
mizerwill requiremultiple roundsof messagefor costing.
A naturalway of extendingthesealgorithmssoasto require
fewer roundsof messagess to find all possibleplansthat
the optimizer may considerin someamountof time, find
costsfor all of theseandthenrun the optimizeron these
costs. But unfortunatelythe numberof possibleplansthat
the optimizermay considerin next [ stepsincreasesxpo-
nentially with /. Sincetypically the numberof stepsre-
quiredis quitelarge,we believethisapproachs notfeasible
in afederatedervironment.



4. Experimental Study

In this sectionwe presenburinitial experimentakesults
comparingthe performanceof various optimizationalgo-
rithms that we discussedabove. The main goalsof this
experimentalstudy are to motivate the needfor dynamic
costingaswell asto understandhe trade-ofs involved in
the optimizationprocess.As we have alreadymentioned,
theactualcostof executionis notrelevantfor evaluatingan
optimizationalgorithm,sincethe only informationthe opti-
mizer hasaboutthe executioncostsis throughcostmodels
exportedby the bidders. As such,we usea simplistic cost
modelfor thebiddersaswell asfor thecommunicatiorcost.
The resultswe presenthereshouldnot be significantly af-
fectedby the choiceof thesecostmodels.

4.1 Experimental Setup

We have implementedhealgorithmsdescribedearlierin
a modified versionof the Coherafederateddatabasesys-
tem[25], acommercializatiorof theMariposaresearclsys-
tem[45]. Theexperimentsverecarriedoutonastand-alone
Windows NT machinerunningon a 233MHz Pentiumwith
96 MB of Memory. Both the optimizer and the underly-
ing datasourcesonnecto a Microsoft SQLSener running
locally on the samemachine. A setof bidderswasstarted
locally asrequiredfor the experiments.We simulatea net-
work by usingthe following messageostmodel: A mes-
sageof size N bytestakesa + 3 * N time to reachthe
otherend,whereq is the startupcostand g is the costper
byte. We experimentedwith two differentcommunication
settingscorrespondindo a local areanetwork (LAN) with
a = 10ms, B8 = 0.001ms anda wide areanetwork
(WAN) with o = 120ms, 8 = 0.005ms.%

For the query workload, we use four queriesfrom the
TPC-HbenchmarkThreeof thesequeriesnvolve ajoin of
6 relationseach ,whereasone (Query8) requiresjoining 8
relations.We chosethis datasetsincewe wanteda realistic
datasetfor performingour experiments.Sincewe wantto
concentrateonly on the join orderoptimization,we mod-
ify the queries(e.g., by removing aggrejateson top of the
query)asshownn in Figure2.

4.1.1. Data Distribution and Indexes For the TPC-H
benchmarkwe useda scalingfactor of 1 which leadsto
thetablesizesasshowvn in Table2. The experimentsvere
doneusingfour datasources.Thedistribution of the tables
andtheindexesis asshovn in Table3.

4.1.2. Cost Model We usea simple costmodel basedon
I/O thatinvolvesonly Gracehashjoin andindex nestedoop
join. We do not needto includenestedoop joins sincewe
assumehatthereis always sufficient memoryto perform

6The startuptimeswere obtainedby finding the time taken by a ping
requesto http:/mwwmit.edu(for WAN) andto alocal machingfor LAN)
andthetime perbytewasobtainedoy findingthetime takento transferdata
to andfrom thesesites.

Table Number | Tuple || Table Number | Tuple
Name of Tuples | Size Name of Tuples | Size
lineitem | 6000000 | 120 orders 1500000 | 100
partsupp | 800000 140 part 200000 160
customer| 150000 180 supplier | 10000 160
nation 25 120 region 5 120

Table 2. TPC-H Tables (Scaling Factor = 1)

hashjoin in at mosttwo passesThe costformulasusedfor
thesetwo wereasfollows :
e Index Join (Index on R) : cost =
1+ [|R| x s/Br])

e Grace Hash Join : cost = Ry + Sy if M >
min(Ry, Sp), Ry + Sy + 2(R}, + S}) otherwise
where M denotesthe memoryavailable for the join, Br
denoteghe numberof tuplesof R in ablock, | R| denotes
thenumberof tuplesin therelationR, R, denoteshenum-
ber of blocks occupiedby the relation R and R; denotes
the numberof blocksthatwill be occupiedby R after per
forming ary select/projecoperationghatapplyto it. hg
denotegheheightof aB-Treeindex on R ands denoteghe

selectvity of thejoin.

Sy + |S|(hr —

Site | Tables(indexesshown in parantheses)

1 supplier(suppdy), part(partley), lineitem(partky), nation,region

orders(orderdy), lineitem(orderky), nation,region

2
3 supplier(suppdy), part(partley), partsuppnation,region
4 orders(ordeny), customer(custy), nation,region

Table 3. Data Distrib ution
4.2 Optimization Quality

In this sectionwe will seehow thedifferentoptimization
algorithmsperform under various circumstancesnd fur-
thermotivatethe needfor bettercostingin theoptimization
process. The algorithmsthat we compareare Exhaustve
(E)(Section3.1), Two-Phase(2PO)(Sectiorn3.4) and four
variantsof Iterative Dynamic Programming(Sectior3.3),
IDP(4),IDP(3),IDP-M(4,5)andIDP-M(3,5).

4.2.1. Uncertain load conditions : Total cost optimiza-

tion

For the first experiment,we artificially variedthe load on

the variousdatasourcesinvolved and also the amountof

memoryallocatedfor the joins. Thevariationsin theloads
were suchthat the cost of an operationvaried by up to a
factorof 20, whereaghe memoryat eachsite waschosen
to bebetweenl M B to 10 M B. For eachof thequeriesthe
six algorithmswererun for 40 randomlychosersettingsof

theseparametersThe costsof thebestplansfoundby each
of the algorithmswerescaledwith the optimal planfor the
query foundby theexhaustie algorithm. Figure3(i) shows

the meanfor thesescaledcostsaswell asthe standardie-
viation for these40 randomrunsfor eachof thealgorithms.
We shaw only theresultsfor awide-areanetwork sincethe
trendsobsened are similar in the local areanetwork. As



sel ect *

fromcustoner c, orders o,
S, hation n, regionr
where c.custkey = o.custkey and o. orderkey

= |.orderkey and |.suppkey = s.suppkey and
c.nationkey = s.nationkey and s.nati onkey =
n. nati onkey and n. regi onkey = r.regi onkey and

lineiteml|, supplier

r.nane = '[REG ON]' and o.orderdate >= date
' [ DATE]’ and o.orderdate < date '[DATE]’ + in-
terval '1' year

Query 5 (Q5)
sel ect *
fromcustoner ¢, orders o, lineiteml, supplier
s, part p, nation nl, nation n2, region r

where c.custkey = o.custkey and o.orderkey =

| .orderkey and | .suppkey = s.suppkey and p. partkey
= | .partkey and c. nati onkey = nl.nationkey and

nl. regi onkey = r.regi onkey and s. nati onkey =
n2.nationkey andr.name = '[REG O\N]' and p.type =
"[TYPE]' and o.orderdate between date ' 1995-01-01’
and date '1996-12-31""

Query 8(Q8)

sel ect *

fromcustoner c, orders o,
s, nation nl, nation n2
where c.custkey = o.custkey and o. orderkey

= |.orderkey and |.suppkey = s.suppkey and
c.nationkey = nl.nationkey and s. nati onkey =

n2. nationkey and ((nl.nanme = '[ NATION1]’ and
n2.nane = '[NATION2]') or (nl.name = '[NATION2]’
and n2.nanme = '[NATION1])) and | . shi pdate between
date ' 1995-01-01' and date ' 1996-12-31""

lineitem|, supplier

Query 7(Q7)
sel ect *
fromorders o, lineiteml, supplier s, part p,
partsupp ps, nation n
where o.orderkey = |.orderkey and | . suppkey
= s.suppkey and p. partkey = |.partkey and
s. nati onkey = n.nationkey and ps. suppkey =
| . suppkey and ps. partkey = |.partkey and p. nane

like ' 9% COLOR] % "

Query 9(Q9)

Figure 2. Modified TPC-H Queries

we cansee thoughthetwo-phaselgorithmperformssome-
whatworsethanthe exhaustve algorithm,in mary casest
doesfind the optimal plan. This counterintuitive obsena-
tion canbe partially explainedby notingthatthetwo-phase
optimizer only fixesthe join orderand not the placement
of operatorson the datasourcesinvolved. Observingthe
gueryplansthatwerechoserby the Exhaustve Algorithm,
we foundthatundermary circumstancethe optimalquery
planwasthe sameas(or very similar to) the planfound by
the staticoptimizer This wasobsenedfor all four queries
that we tried (thoughto a lesserextent for Query9). We
will discusghis phenomenoffurtherin Section4.3.

The performancef IDP variantsascomparedo IDP-M
variantsis asexpected, with IDP-M neverdoingary worse
than IDP, thoughin somecasesboth algorithmsperform
similarly. The performanceof IDP(3) and IDP(4) shavs
anothelinterestingphenomenoni,e., in somecasedDP(3)
performedbetterthatIDP(4) (e.g., Query7). Thisis mainly
becausef the artificial constraintimposedby the IDP al-
gorithm of choosinga 3 (or 4) relationsubplanin the first
stage.This canbe demonstratethy the queryplan chosen
by thetwo algorithmsfor Query7. Figure4 shavstheplans
chosenby the Exhaustve algorithmandthesetwo variants
for a settingof parametersAs we cansee,becaus®f the
requiremenbf choosinghelowestcostsubplanof size4 in
the beginning, IDP(4) doesnot producethe planchosenby
the otheralgorithms.

4.2.2. Uncertain load conditions : Responsedime opti-
mization

This experimentis similar to the experimentabove except
thatwe changedheoptimizationgoalto be minimizing the
responséaime. Figure3(ii) shows the relative performance
of theseoptimizationalgorithmsin this case.

As we cansee for two of thequeriesQuery5 andQuery
9, 2P0Ofinds a muchworseplanthanthe optimal plan. For
gueries7 and 8, on the otherhand, it performsalmostas
well asthe optimal plan. The main reasonfor this is that
sincewe have extendedhefirst phaseof the two-phaseop-
timizerto searchthroughbushyplansaswell, it findsbushy
plansfor thesequeriesandassuch,they canbe effectively
parallelized.The IDP variantsperformalmostthe sameas
in the earlierexperiment,thoughwith higherdeviationsin
somecases.

4.2.3. Effect of Presenceof Materialized Views As we
mentionedearlier the datasourcesmay have materialized
views that are not exposedto the optimizer, eitherbecause
the datasourceis not exporting this informationor it may
be generatinguchviews dynamically For this experiment,
we introduceoneview in the systemjoin of the customey
orders and lineitem relations,at Site 2. Since both joins
involvedin this view areforeign-key joins, the numberof
tuplesin the view is sameasthe numberof tuplesin the
relationlineitem The staticoptimizeris not madeaware of
this view, whereaghe Site 2 hasaccesgo this information
while generatingids. Theselection®ntherelationsin the
view, if ary, arepulledaboretheview. Therestof thesetup,
includingtheindexes,is keptasin theearlierexperiment.

Figure 3(iii) shows the resultsfrom this experimentfor
queriesQ5 and Q7. The results for Q8 were similar,
whereaf)9is notaffectedby thisview. Aswe cansee2PO
consistentlyproducesa plan muchworsethanthe optimal
plan. IDP variantsonceagainshav unpredictableresults
with IDP-4 performingvery well, sinceit is ableto take
adwantageof the view, whereadDP-3 performsalmostas
badastwo-phaseoptimizer, sincethe restrictionof choos-
ing the lowest cost subplanof size 3 makesit choosethe
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wrongplan.
4.3 Discussion

4.3.1. lterati ve Dynamic Programming As we cansee,
the IDP variantsare quite sensitve to their parametershut
in almostall casesat leastoneof IDP(3) andIDP(4) per
formedbetterthanthe two-phaseoptimizer This suggests
thata hybrid of two suchalgorithmsmightbethealgorithm
of choicein thefederatedervironment,especiallywhenthe
physicaldesignof the underlyingdatasourcesnaybehid-
denfrom the optimizer Sucha hybrid algorithmwill in-
volve running IDP(k;) andIDP(kz), for differentparame-
tersk; andk, andthenchoosingbetterof the two plans.
If ks is divisible by &k, thenthe plan choserby IDP(k;) is
clearlygoingto beworsethanthe planchoserby IDP(k5).
Usually, sincethe numberof joins in a query is reason-
ably small, choosingsmall valuesfor k; andk, suchthat
ks = k1 + 1 shouldbeideal. We planto addresghis issue
in futurework.

4.3.2. Two-PhaseOptimization The mostsurprisingfact
thatarisesfrom our experimentss thatthe two-phaseopti-
mizationalgorithmdoesnot performmuchworsethanthe
exhaustye algorithmfor total costoptimizationif the phys-
ical databaselesignis known to the optimizer In this sec-
tion, we will try to analyzethis phenomenorior our cost
modelsand experimentalsettings. We will arguethatthe
runtimecostof the planchoserby thetwo-phaseoptimizer
cannotbemorethanasmallmultiple of theruntimecostof

> >
7\ /N
> > > >
N/\/\

lineitem  orders orders nation customer

nation supplier nation customer lineitem

nation supplier

M (i)

Figure 4. (i) Plan chosen by Exhaustive and IDP(3)
for Query 7, (ii) Plan chosen by IDP(4)

under uncer tain load conditions; (iii)

Query Ave % Comm Cost(Std. Dev.)
Query5 | 2% (£ 1.7%)

Query7 | 4.6%(+ 3.6%)

Query8 | 1.5%(+ 1.15%)

Query9 | 5.7%(+ 4.8%)

Table 4. Average % Communication Cost (WAN)

theoptimalplan.
Somekey obsenationsaboutour experimentaketuphelp
usanalyzethis:

1. Therewasno intra-siteor inter-site pipelining. As a
resultof this, thetotal executioncostof theplancanbe
separatedutinto thecostsof executionof eachjoin in
theplan.

2. (a) The first phaseof the two-phaseoptimizer was
awareof theindexespresenttthe datasources.
(b) Therewasalways sufficient memoryto executea
hashjoin in at mosttwo passe®verthedata[43].
Theseobsenationsleadusto thefollowing assertion
Assertion 1 7 : For aqueryplanp, if Costy(p) de-
notesthecostof theplanascomputedy thefirst phase
andCost}iyn(p) denoteghecostof theplanunderrun-
time conditionswith theloadson the sitesbeingequal
(i.e., the costmark-upson all the sitesareequalto 1
andcommunicatiorcostsbeingzero,then

1/2 x Costéyn(p) < Costgi(p) <2 x COSttliyn(p)

Intuitively, thefactor?2 arisesbecausebasedon mem-
ory allocatedat runtime,a hashjoin mighthaveto per
form two passeénsteadof onepassoverthedata.

3. Thecommunicatiorcostduringqueryexecutionis not
a significantfraction of the total executioncost. Ta-
ble 4 shavstheaveragefractionof thetotal costthatis
spenttommunicatindgor theplanfoundby theexhaus-
tive optimizer As we can see,communicationcost
formsa smallfraction of the total costfor mostof the
gueries.This holdstrue evenfor a wide-areanetwork
sincethe selectionsand projectionsin the queryplan

"Pleaseaeferto thefull paper{12] for the proofs



malke the total datacommunicatednuchsmallerthan
thetotal datareadfrom the disk. Also, all the joinsin
the TPC-H queriesarekey foreign-key joins andasa
result,theintermediatdablesareneverlargerthanthe
basetablesandareusuallymuchsmaller

Given theseobsenations, we can speculateas to why
two-phasemay be performingaswell asour experimental
study shavs. We will considervariousfactorsthat might
have an impacton the runtime executiontime of a query
planin turn andreasorthatthe differencebetweertherun-
time executioncostof the planfound by the two-phaseop-
timizer andthe optimalruntimeplancannotbelarge.

Let the optimal plan found by the first phaseof the two-
phasealgorithm be Plan, and let the optimal plan un-
der runtime conditionsas found by the exhaustve algo-
rithm be Plangy,. Since the two-phasealgorithm finds
the best static plan, we have that Costgs(Plang) <
Costst(Plangyn).

¢ If theloadson all the sitesareequalandcommunica-

tion costsarezero,thenusingAssertionl andassum-
ing worstcasememoryconditions(Plan gy, requires
only onepassfor every hashjoin, whereasPlans, re-

quirestwo passesor every hashjoin),

Costy,, (Plang) < 4 x Costy, . (Plandyn,)

o If we let f be the fraction of total run-time cost of
Plang; that is communicationcost, then under the
worst caseassumptiorthat Plang,, doesnot incur
ary communicatiorcost,we getthat

Costﬁyn(Planst) <4/1-f)x Cost?iyn(Plandyn)

WhereCostﬁyn() is the costof the planat runtimein-
cluding the communicationcosts. If f < 1/2, then
4/(1 — f) < 8 andusually f is going to be much
smaller(cf. Table4).

e Finally, theimpactof dynamicallychangingoadcon-
ditions is mitigatedbecauseur two-phaseoptimizer
scheduleghejoins at run-timetakinginto accounthe
load conditions.All thejoinsin thequerywill (proba-
bly) beschedulen lightly loadedsites.lIt is possible
that Plan g mayincur morecommunicatiorcostasa
resultof this, but aswe have alreadyargued,the com-
municationcost doesnot form a major factor of the
total queryexecutioncost.

Inspiteof worstcaseassumptionguntimeexecutioncost
of the statically optimal plan is going to be lessthan a
small multiple of the dynamicallyoptimal planin our ex-
periments. We obsene much smallerratiosthanthis, and
the main reasonbehindthat might be that thesetwo plans
Plang and Plang,, do not differ muchin the joins they
contain. We believe thatthis is an artifact of the shapeof
thequeryplantopology[28]. If every otherlocal minimum
in the query plan spacehasmuch higher costthat the ab-
soluteminimum (Plans,) (i.e., the plan spacehasa deep

well in it [28]), thenthe optimal plan underdifferentrun-
time conditionsmay all turn out to be very similar to the
staticallyoptimalplan.

Our experimentalobsenations and the analysisabove
suggesthatthis phenomenomaynot belimited to our ex-
perimentalsetupandthe costmodel. We believe that this
appliesto a much more generalscenario,and we plan to
addresshisissuein amoregenerakcenaridn future.

4.4. Optimization Overheads

In this subsectionwe look at someof the trade-ofs in
optimizationoverhead®f thesealgorithms.

Theoptimizationoverheadd$or IDP variantsdependsig-
nificantly on the parametei of the algorithm. Figure5(i)
shaws the optimizationtime for a starqueryof size 10 for
variousvaluesof parametek for WAN (similar trendsare
obsenedfor LAN). We intentionallychosealargequeryfor
IDP, sincefor smallerqueries,it is often more efficient to
useexhaustve optimization. As we cansee,the algorithm
is significantly fasterfor smallervaluesof k, approaching
the cost of the Exhaustve algorithm as k approacheshe
numberof relations. Note that, even thoughincreasingk
decreasethe numberof roundsof messageg¢e.g., k = 3
requires4 rounds,whereask = 4 requires3 rounds),the
total communicatiorcostmaynot necessarilglecreasehe-
causeheincreasén thetotal numberof RFBsmadeby the
optimizermay offsetthe savings dueto smallernumberof
roundsof messages.

Finally, we look at the optimizationtimes of the algo-
rithms that we comparedin the earlier sectionsfor the 4
TPC-H queries. We compareonly the total costoptimiza-
tion times, though we still needto use partial order dy-
namicprogramming.As we cansee(Figure5), 2POtakes
muchlesstime thanmostof theotheralgorithmswith IDP-
M(3,5) takingthemosttime for bothconfigurationsWe can
seetheeffectof high messageostsunderthe WAN config-
urationwith thecostof exhaustive algorithm(onemessage)
droppingbelaw thecostof otheralgorithmswith moremes-
sagesAlso, IDP(3,5)incursmuchhighercostfor Query8
asit requires3 roundsof messages.

4.5 Summary of the Experimental Results

Our experimentson the modified TPC-H benchmark
demonstratethe need for aggressie optimization algo-
rithms that take into accountdynamicruntime conditions
while optimizing, and of algorithmsthat requirevery few
messaget accumulateéhe requiredcostinformationfrom
the underlying data sources. The Exhaustve Dynamic
Programmingalgorithm, modified to use a single mes-
sageworksreasonablyvell for smallqueries put for large
gueries,a heuristicalgorithmsuchasIDP may have to be
used. We found IDP to be very sensitve to its parameters
(particularly the parametek), andrunningIDP in parallel
for two differentvaluesof the parametemay work bestin
practice.
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Figure 5. (i)IDP optimization time for a 10 relation star query (WAN); (ii) Optimization time for TPC-H Queries for

LAN; (iii) for WAN

Another surprising obsenation from our experiments
was that the two-phaseoptimizationalgorithm performed
reasonablywell in mary casesespeciallywhen the opti-
mizerknew aboutthe materializedviews andtheindexesat
the datasourcesandthe optimizationgoal wasminimizing
total cost. We have tried to analyzethis obsenationfor our
experimentakettingsthisis clearlyaninterestingdirection
for futurework.

5. RelatedWork

In this section,we will try to put the work presentedn
this paperin perspeciie. To explore the designspacefor
a query optimizer for the federatedervironment, we will
concentraten thetwo factorsthatmostsignificantlyaffect
the compleity of the optimizationprocess dynamicload
conditions andunknowncostmodels Usingthesetwo fac-
tors, the designspacefor a federatedquery optimizercan
bedividedinto four cateyories,asshovn in Table5.

In this paperwe havefocusedntheuppermostategory,
wherethe costmodelsfor the underlyingdatasourcesare
not known to the optimizer andthe optimizer hasto con-
siderload conditionswhile optimizing. Note that the top
row malkes the leastassumptionsaboutthe environment,
and henceary algorithmsdevelopedfor this scenariocan
beappliedto ary of theotherscenarios.

Fromthe queryoptimizationperspectie, the simplestof
thesescenarioss the lowest row, wherethe cost models
for the underlyingdatasourcesareknown to the optimizer
and the optimizationgoal is to minimize the total execu-
tion cost. Earliestdistributed databaseystemssuchasR*
[22] were built with suchassumptionsaboutthe erviron-
ment. The R* optimizer was an extendedversionof the
SystemR optimizerwith an extra term addedin the exe-
cution costformulafor communicatiorcost. The Iterative
DynamicProgramming33] (Section3.3)canbeusedif the
exhaustve algorithmturnsoutto betoo complec in time or
spacethisis notunlikely in adistributedscenaricavenwith
small queries.Randomizedlgorithmshave alsobeenpro-
posedfor comple join querieqg27, 34].

The secondrow from the bottom is relevant even in
centralizeddatabasesystems,where run-time conditions
cansignificantly affect the executioncostof a queryplan.
[11, 29, 16, 1Q] discusshow parametric optimizationcan
be usedto computea setof plansoptimalfor differentval-
ues of the run-time parametersinsteadof just one plan,
andthento choosea plan at run-time whenthe valuesof
parametersre known. [18] discusshow thesetechniques
may be extendedto distributed databasesyherethe loads
ontheunderlyingdatabasemaynotbeknown atoptimiza-
tion time. The two-phaseoptimizationapproach(Section
3.4) wasalsofirst proposedor this scenarig26] andwas
lateralsousedin the Mariposasystem45].

The secondrow from the top focuseson the heteroge-
neousnatureof federateddatabaseswithout considering
ary dynamicruntimeissues.Heterogeneoudatabaseys-
temspresentthe challengeof incorporatingthe costmod-
els of the underlyingdatasourcednto the optimizer One
solutionto this problemis to try to learnthe costmodels
of the datasourcesusing“calibration” or “learning” tech-
niques[49, 13, 8]. MiddlewaresystemssuchasGarlic [23]
have choserto solve this problemthroughthe useof wrap-
pers, which are programmedo encapsulat¢éhe costmodel
and capabilitiesof a site. The costof costingis not sig-
nificantin Garlic, sincethe wrappersexecutein the same
addressspaceasthe optimizer Garlic usesexhaustve dy-
namicprogrammingo find theoptimalplan,andthoughwe
arenot awareof ary explicit work in this areathatusesthe
other optimizationtechniquesijt shouldnot be difficult to
extendthosefor this scenario.

[15, 38, 41] discusgjueryoptimizationissuesn aloosely
coupledfederatedsystemsuchasmodelledby the top row.
From the query optimization perspectie, the main focus
of [15, 38] is on incorporatingthe knowledgeof statistics
and systemparameterggainedwhile executingthe query
at run-time, into the queryplan. They usea statisticalde-
cision mechanisnthat scheduleghe query plan a join at
atime. [41] proposea mechanisntfor a loosely coupled
multi-databasesystemwhereall the underlyingdatabases



Exhaustive Heuristic Pruning | Two-Phase Randomized
Dynamic, Unknown CostModels | Y Y Y Y
Static, Unknown Cost Models e.g. Garlic[23 Y Y Y
Dynamic, Known CostModels ParametridOptimi- | Y Mariposa/45] | [34]
zation[11 29|
Static, Known CostModels R*[22] IDP[33] N/A SimulatedAnne-
aling, 2POJ[21

Table 5. Design Space for a Federated Optimiz er (“Y” denotes scenarios considered in this paper)

cooperateo find the optimal plan. This algorithmis not
very suitablefor a federateddatabasesystemasthe envi-
ronmentmay not be completelycooperatie and also, the
numberof messagethatareexchangedetweertheunder
lying datasourcesncreasesxponentiallywith the size of
thequery

Mid-execution re-optimization[31, 30], Query scram-
bling [47] and Eddies[4] have also been proposedfor
usein dynamicenvironmentswhenthe requiredstatistics
may not be accuratelyestimatecht the optimizationtime or
whenthe characteristicef theunderylingdatasourcesnay
changedramaticallyduring the queryexecution. The kind
of databasewse consideredn this paperaremorestaticin
that respectaswe assumehe existenceof relevant meta-
data,including statisticsaboutthe datasourceswe do not
targetquickly fluctuatingperformanceassuggesteéh Ed-
dies. Also, all of thesetechniqueswork in a centralized
fashionaccessinglatafrom variousdatasourcesput exe-
cuting the querieson a single machine,whereasn a fed-
erateddatabasewe are more interestedn distribution of
work amongthe participatingdatasources.

6. Conclusionand Futur e Work

Uncertain load conditions and unknowvn cost models
make decoupledquery optimizationa necessityfor feder
ateddatabassystemsTo decouplecostcomputationgrom
the optimization process,the optimizer must consultthe
datasourcesnvolvedin anoperatiorto find the costof that
operation. This changeshe trade-ofs involvedin the op-
timization processsignificantly sincethe dominantcostin
optimizationbecomeshe costof contactingthe underlying
datasourcesBecausef thesenew trade-ofs, optimization
techniquessuchasrandomized/genetialgorithms,that by
naturerequire multiple roundsof messagesare rendered
impracticalin this scenario.

In this paper we presentedminimum-communication
adaptationof variouswell-known query optimizational-
gorithm anddiscussedhe trade-ofs in their performance.
Ourexperimentaresultsonthe TPC-Hbenchmarkndicate
that, in mary casesgspeciallywhenthe physicaldatabase
designis known to the optimizer, two-phaseoptimization
worksverywell. In absencef suchinformation,moreag-

gressve optimizationtechniquesnust be used. We also
found that the Iteratve Dynamic Programmingtechnique
is very sensitve to its parametershoughrunningIDP with
multiple parameterchoicesmay work bestin practice. We
plan to addresdoth theseissuesthe surprisingeffective-
nessof two-phaseoptimizationalgorithmsandthe bestway
to combinelDP variants,n future.
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