
XPath Query Evaluation: Improving Time and Space Efficiency∗

Georg Gottlob
Inst. für Informationssysteme
Technische Universität Wien

A-1040 Vienna, Austria
gottlob@dbai.tuwien.ac.at

Christoph Koch
Inst. für Informationssysteme
Technische Universität Wien

A-1040 Vienna, Austria
koch@dbai.tuwien.ac.at

Reinhard Pichler
Inst. für Computersprachen

Technische Universität Wien
A-1040 Vienna, Austria
reini@logic.tuwien.ac.at

Abstract

Contemporary XPath query engines evaluate queries in
time exponential in the sizes of input queries, a fact that has
gone unnoticed for a long time. Recently, the first main-
memory evaluation algorithm for XPath 1.0 with polyno-
mial time combined complexity, i.e., which runs in polyno-
mial time both with respect to the size of the data and the
queries, has been published (cf. [11]).

In this paper, we present several important improvements
and extensions of that work, including new XPath process-
ing algorithms with improved time and space efficiency.
Moreover, we define a very large and practically relevant
fragment of XPath for which a further optimized form of
query evaluation is possible. Apart from its immediate rele-
vance for XPath query processing, our work also sheds new
light at those features of XPath 1.0 which are most costly
relative to their practical usefulness.

1. Introduction

XPath is a distinguished member of a whole family of
XML-related technologies proposed by the W3C (such as
XSLT, XPointer, and XQuery, cf. [1]), since most of these
other technologies use XPath as their core mechanism for
addressing nodes in XML documents. In order to use XPath
successfully in practice, XPath processors must run effi-
ciently both w.r.t. the size of the XML data and the growing
size and intricacy of the queries (usually referred to as com-
bined complexity).

In the past few years, there has been some work on
related problems such as query containment for XPath
[8, 13, 17], XPath query transformation and optimization
[5, 12], and contributions towards a formal semantics def-
inition of XPath [9, 16, 10]. Moreover, the expressiveness

∗ This work was supported by the Austrian Science Fund (FWF) under
project No. Z29-INF. All methods and algorithms presented in this paper
are covered by a pending patent.

and complexity of various fragments of XSLT [3, 14, 2] and
XML query pattern matching [15, 4, 6] have been investi-
gated. However, only very recently, the first polynomial-
time algorithm for evaluating arbitrary XPath 1.0 queries
has been published (cf. [11]). In contrast, experiments with
three existing XPath processors (namely XALAN [19], XT
[7], and Microsoft Internet Explorer 6) revealed that they all
consume time exponential in the size of the queries in the
worst case (cf. [11]).

The main contributions of this paper are the following:

• In [11], two approaches for evaluating XPath 1.0 ex-
pressions were presented. The more efficient one
(referred to as “top-down” evaluation) works in time
O(|D|5 ∗ |Q|2) and space O(|D|4 ∗ |Q|2), where |D|
denotes the size of the data and |Q| is the size of the
query. Even though this is clearly better than previ-
ous exponential time algorithms, it is still not fully sat-
isfactory. In this paper, we present a new algorithm
MINCONTEXT which allows us to push down the time
complexity to O(|D|4 ∗ |Q|2) and the space complex-
ity even to O(|D|2 ∗ |Q|2). As the size of data usually
dominates the size of queries, reducing the degree of
|D| in these bounds clearly substantially improves the
practical scalability of XPath evaluation algorithms.

• We define the Extended Wadler Fragment, a very large
fragment of XPath 1.0 for which we provide an evalu-
ation algorithm that works in time O(|D|2 ∗ |Q|2) and
space O(|D| ∗ |Q|2). This fragment is of great practi-
cal value, since the vast majority of useful queries fall
into it. Moreover, it pinpoints those features of XPath
1.0 that are the most “expensive”, even though their
practical value is questionable.

• We present the algorithm OPTMINCONTEXT, which
combines our previous results into one query proces-
sor with the following properties. (a) It supports all of
XPath 1.0, with the improved runtime bounds obtained
in this paper. Moreover, (b) for (subexpressions of)

1

queries that fall either into the quadratic-time, linear-
space Extended Wadler Fragment or the linear-time
Core XPath Fragment introduced in [11], the OPT-
MINCONTEXT algorithm adheres to these best known
bounds.

2. Preliminaries

2.1. Data Model

An XML document can be thought of as an unranked,
ordered, and labeled tree. By dom we denote the set of
all nodes in this tree. Let Σ be a labeling alphabet (i.e.,
of “tags”). We define a function T : (Σ ∪ {∗}) → 2dom

(“node test”) which assigns to each label (XML tag) the set
of nodes labeled with it; moreover, T (∗) := dom.

The document tree is represented by a number of bi-
nary axis relations χ ⊆ dom × dom. We consider the
axes self , child, parent, descendant, ancestor, descendant-
or-self , ancestor-or-self , following, preceding, following-
sibling, and preceding-sibling (which carry the intuitive se-
mantics defined in [18, 11]). For the actual computation of
node sets resulting from a location step via an axis relation
χ, we define the corresponding axis-function and also an
inverse axis-function.

Definition 1 For an XPath axis relation χ, we define the
function χ : 2dom → 2dom (and thus overload the rela-
tion name χ) as χ(X) = {y ∈ dom | ∃x ∈ X : x χ y}.

Moreover, the inverse axis function χ−1 : 2dom → 2dom

is defined as χ−1(Y) := {x ∈ dom |χ({x}) ∩ Y 6= ∅}.

In [11], it is shown that for any axis χ and any node set
X ⊆ dom, the sets χ(X) and χ−1(X) can be computed in
time linear w.r.t. the size |D| of the data, viz O(|D|).

In order to keep the notation simple, all nodes are as-
sumed to be of the same type; thus, we do not distin-
guish between element, attribute, and processing instruc-
tion nodes, among others. Moreover, for lack of space, we
do not discuss the “namespace” and “attribute” axes as well
as the “local-name”, “namespace-uri”, and “name” core li-
brary functions [18].

Let <doc be the document order, where x <doc y (for
two nodes x, y ∈ dom) holds iff the opening tag of x pre-
cedes the opening tag of y in the XML document. The
function first<doc

returns the first node in a set w.r.t. doc-
ument order. The relation <doc,χ is defined relative to the
axis χ. For χ ∈ {self, child, descendant, descendant-or-
self, following-sibling, following}, <doc,χ is the standard
document order <doc. For the remaining axes, it is the re-
verse document order. Moreover, given a node x and a set
of nodes S with x ∈ S, we write idxχ(x, S) to denote the
index of x in S w.r.t. <doc,χ (where 1 is the smallest index).

Each node in an XML document may be identified by a
unique id. The function deref ids : string → 2dom inter-
prets its input string as a whitespace-separated list of keys
and returns the set of nodes whose id’s are contained in that
list. The function strval : dom → string returns the
string value of a node, which is the concatenation of non-tag
strings and non-comment strings between the node’s start
and end tags in the document. The functions to string and
to number convert a number to a string or a string to a num-
ber, respectively, according to the rules specified in [18].

2.2. Syntax and Semantics of XPath 1.0

Concerning the syntax of XPath 1.0 we stick to its unab-
breviated form (see [18]). W.l.o.g., we assume that all type
conversions are made explicit (using the conversion func-
tions string, number, and boolean). Moreover, each vari-
able is replaced by the (constant) value of the input variable
binding.

The main structural feature of XPath are expressions,
which are of one of four types, namely node set, number,
string, or boolean. Every expression evaluates relative to
a context consisting of a context-node, a context-position,
and a context-size [18]. We represent these four types (de-
noted nset, num, str, and bool) using relations as shown in
the table below, where C = {〈cn, cp, cs〉 | cn ∈ dom and
1 ≤ cp ≤ cs ≤ |dom|} is the domain of contexts.

Expression Type Associated Relation R

num R ⊆ C ×
�

bool R ⊆ C × {true, false}

nset R ⊆ C × 2dom

str R ⊆ C × char∗

For the semantics function E↓ in Definition 2 below, we
introduce the following notation: Given an m-ary operation
Op : Dm → D, its vectorized version Op〈〉 : (Dk)m →
Dk is defined as

Op〈〉(〈x1,1, . . . , x1,k〉, . . . , 〈xm,1, . . . , xm,k〉) :=
〈Op(x1,1, . . . , xm,1), . . . , Op(x1,k , . . . , xm,k)〉

For instance, 〈X1, . . . , Xk〉 ∪〈〉 〈Y1, . . . , Yk〉 :=
〈X1 ∪ Y1, . . . , Xk ∪ Yk〉 with Xi, Yj ⊆ dom.

Definition 2 Given an XPath expression e and a list
(~c1, . . . , ~cl) of contexts, the semantics function

E↓ : XPathExpression → List(C) → List(XPathType)

determines a list 〈r1, . . . , rl〉 of results of one of the XPath
types number, string, boolean, or node set with

E↓[[π]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉):=
S↓[[π]]({x1}, . . . , {xl})

E↓[[position()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉):=

2

F [[constant number v : → num]]() := v
F [[ArithOp : num × num → num]](v1, v2) :=

v1 ArithOp v2

F [[count : nset → num]](S) := |S|
F [[sum : nset → num]](S) := Σn∈S to number(strval(n))
F [[id : nset → nset]](S) := �

n∈S
deref ids(strval(n))

F [[id : str → nset]](s) := deref ids(s)
F [[constant string s : → str]]() := s
F [[and : bool × bool → bool]](b1, b2) := b1 ∧ b2

F [[or : bool × bool → bool]](b1, b2) := b1 ∨ b2

F [[not : bool → bool]](b) := ¬b
F [[true() : → bool]]() := true
F [[false() : → bool]]() := false
F [[RelOp : nset × nset → bool]](S1, S2) :=

∃n1 ∈ S1, n2 ∈ S2 : strval(n1) RelOp strval(n2)
F [[RelOp : nset × num → bool]](S, v) :=

∃n ∈ S : to number(strval(n)) RelOp v
F [[RelOp : nset × str → bool]](S, s) :=

∃n ∈ S : strval(n) RelOp s
F [[RelOp : nset × bool → bool]](S, b) :=

F [[boolean]](S) RelOp b
F [[EqOp : bool × (str ∪ num ∪ bool) → bool]](b, x) :=

b EqOp F [[boolean]](x)
F [[EqOp : num × (str ∪ num) → bool]](v, x) :=

v EqOp F [[number]](x)
F [[EqOp : str × str → bool]](s1, s2) := s1 EqOp s2

F [[GtOp : (str ∪ num ∪ bool) × (str ∪ num ∪ bool) →
bool]](x1, x2) := F [[number]](x1) GtOp F [[number]](x2)

F [[string : num → str]](v) := to string(v)
F [[string : nset → str]](S) :=

if S = ∅ then “” else strval(first<doc
(S))

F [[string : bool → str]](b) :=
if b=true then “true” else “false”

F [[boolean : str → bool]](s) := if s 6= “” then true else false
F [[boolean : num → bool]](v) :=

if v 6= ±0 and v 6= NaN then true else false
F [[boolean : nset → bool]](S) :=

if S 6= ∅ then true else false
F [[number : str → num]](s) := to number(s)
F [[number : bool → num]](b) := if b=true then 1 else 0
F [[number : nset → num]](S) := F [[number]](F [[string]](S))

Figure 1. Effective semantics function F .

〈k1, . . . , kl〉
E↓[[last()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉):=〈n1, . . . , nl〉
E↓[[Op(e1, . . . , em)]](~c1, . . . ,~cl) :=

F [[Op]]〈〉(E↓[[e1]](~c1, . . . ,~cl), . . . , E↓[[em]](~c1, . . . ,~cl))

The effective semantics function F for other XPath 1.0 op-
erations Op is defined in Figure 1 (for lack of space, several
string and number operations were omitted, cf. [11]).

For location paths π, the auxiliary semantics function

S↓ : LocationPath → List(2dom) → List(2dom)

is defined as follows:

S↓[[χ::t[e1] · · · [em]]](X1, . . . , Xk) :=
begin

S := {〈x, y〉 |x ∈ � k

i=1
Xi, xχ y, and y ∈ T (t)};

for each 1 ≤ i ≤ m (in ascending order) do
begin

fix some order ~S = 〈〈x1, y1〉, . . . , 〈xl, yl〉〉 for S;
〈r1, . . . , rl〉 := E↓[[ei]](t1, . . . , tl) where

tj = 〈yj , idxχ(yj , Sj), |Sj |〉 and Sj := {z | 〈xj , z〉 ∈ S};
S := {〈xi, yi〉 | ri is true};

end;
for each 1 ≤ i ≤ k do Ri := {y | 〈x, y〉 ∈ S, x ∈ Xi};
return 〈R1, . . . , Rk〉;

end;

S↓[[/π]](X1 , . . . , Xk) := S↓[[π]](

k times� ��� �
{root}, . . . , {root})

S↓[[π1/π2]](X1, . . . , Xk) := S↓[[π2]](S↓[[π1]](X1, . . . , Xk))

S↓[[π1 | π2]](X1, . . . , Xk) :=
S↓[[π1]](X1, . . . , Xk) ∪〈〉 S↓[[π2]](X1, . . . , Xk)

2.3. The Context-Value Table Principle

The main principle proposed in [11] to obtain an XPath
1.0 evaluation algorithm with polynomial-time complexity
is the notion of a context-value table (i.e., a relation for each
expression, as described in Section 2.2). It works as fol-
lows: Given an expression e that occurs in the input query,
the context-value table of e specifies all valid combinations
of contexts ~c and values v, such that e evaluates to v in
context ~c. Such a table for expression e is obtained by
first computing the context-value tables of the direct subex-
pressions of e and subsequently combining them into the
context-value table for e. Given that the size of each of the
context-value tables has a polynomial bound and each of
the combination steps can be carried out in polynomial time
(which was in fact shown in [11]), query evaluation in total
under this principle has a polynomial time bound. The re-
sulting semantics function was called E↑ in [11], indicating
that this is a strict bottom-up evaluation.

The second method of [11] for evaluating XPath – which
corresponds to the semantics function E↓ recalled in Defini-
tion 2 – follows a top-down intuition. Even if not immedi-
ately obvious, it is closely based on the former bottom-up
method, however avoiding the computation of parts of in-
termediate context-value tables of subexpressions that are
never used in subsequent computations.

2.4. The Running Example

Sample XML document. Our algorithms will be illus-
trated by applying various sample XPath queries to the
XML document in Figure 2. Every element of this docu-
ment is uniquely determined by the attribute “id”. Hence,
in the context of this example, we use the notation xi to refer

3

<?xml version=”1.0”?>

<b id = ”11”>
<c id = ”12”>21 22</c>
<c id = ”13”>23 24</c>
<d id = ”14”>100</d>

<b id = ”21”>

<c id = ”22”>11 12</c>
<d id = ”23”>13 14</d>
<d id = ”24”>100</d>

Figure 2. Sample XML document.

to the element whose attribute “id” has the value i. We thus
have dom = {x10, x11, x12, x13, x14, x21, x22, x23, x24}.

Sample XPath query. Let e ≡ /descendant::*/descen-
dant::*[position() > last()*0.5 or self::* = 100] be an XPath
query that has to be evaluated for the context 〈x10, 1, 1〉.
The parse tree T of e is depicted in Figure 3. The correspon-
dence between the nodes in T and the subexpressions of e
is given in the table below. Actually, we have slightly sim-
plified T in that we have omitted two separate child nodes
of N7 corresponding to the subexpressions last() and 0.5 of
last() * 0.5.

Node in T Subexpression of e

N1 /descendant::*/descendant::*[position()
> last()*0.5 or self::* = 100]

N2 descendant::*[position() > last()*0.5 or
self::* = 100]

N3 position() > last()*0.5 or self::* = 100
N4 position() > last()*0.5
N5 self::* = 100
N6 position()
N7 last()*0.5
N8 self::*
N9 100

The context-value table of each node in T is depicted in
Figure 4. By “cn”, “cp”, and “cs”, we denote context-node,
context-position, and context-size. In the last column of
each table, we have the result “res”. Note that the context-
value tables of the nodes N1 and N2 have been simplified in
several ways: In both tables, we have omitted the columns
for the context-position and the context-size. This is justi-
fied since “cp” and “cs” are irrelevant for the path expres-
sions corresponding to the nodes N1 and N2. We shall come
back to this point in Section 3.1. In the table corresponding
to N1, the result (of the absolute location path e) is the same
for all possible contexts. We have only filled in the first row
of this table in Figure 4. Moreover, in the table correspond-

ing to N2, the resulting node set is empty for all values of cn
except for {x10, x11, x21}. We have omitted the remaining
rows of the table corresponding to N2 in Figure 4 since they
have no effect on the overall result of evaluating e anyway.

In the tables corresponding to the nodes N3, . . . , N9, the
improvement due to the top-down evaluation according to
the semantics function E↓ from Definition 2 becomes ap-
parent: Rather than considering all |dom|3 possible triples
〈cn, cp, cs〉, it suffices to evaluate “position() > last()*0.5
or self::* = 100” and its subexpressions for those values of
〈cn, cp, cs〉 which can be reached by the preceding location
steps “/descendant::*/descendant::*”. More generally, the
top-down evaluation guarantees that no context-value table
contains more than |dom|2 entries, corresponding to all pos-
sible pairs of a previous and a current context node w.r.t. to
the axis in the last location step.

The final result of evaluating e is {x13, x14, x21, x22,
x23, x24}. It can be read out from the context-value table of
the root node N1 of T .

�	�

	�

�	�

	�

�	�

	�

�	�

	�

�	�

��

�	�

	�

�	�

	�

�
�

�

�
�

�

N1

N2

N3

N4 N5

N6 N7 N8 N9

��� � � �
�� � � �� � �

Figure 3. Parse tree T of e.

In the sequel, it is convenient to use the following nota-
tion for nodes N in the parse tree: By expr(N) we denote
the XPath expression corresponding to the node N . Con-
versely, for an expression e, we write node(e) to denote the
node in the parse tree corresponding to e. By table(N), we
denote the context-value table at the node N . Finally, it is
convenient to write “≡” for syntactic equality.

3. The Algorithm MINCONTEXT

3.1. The Main Ideas

The primary goal of our new algorithm MINCONTEXT

is to keep the context information that has to be considered
at each stage as small as possible. This is achieved by com-
bining several ideas:

4

N1

cn res
x10 {x13, x14, x21,

x22, x23, x24}

N2

cn res
x10 {x14, x21, x22,

x23, x24}
x11 {x13, x14}
x21 {x23, x24}

N3

cn cp cs res
x11 1 8 “false”
x12 2 8 “false”
x13 3 8 “false”
x14 4 8 “true”
x21 5 8 “true”
x22 6 8 “true”
x23 7 8 “true”
x24 8 8 “true”
x12 1 3 “false”
x13 2 3 “true”
x14 3 3 “true”
x22 1 3 “false”
x23 2 3 “true”
x24 3 3 “true”

N4

cn cp cs res
x11 1 8 “false”
x12 2 8 “false”
x13 3 8 “false”
x14 4 8 “false”
x21 5 8 “true”
x22 6 8 “true”
x23 7 8 “true”
x24 8 8 “true”
x12 1 3 “false”
x13 2 3 “true”
x14 3 3 “true”
x22 1 3 “false”
x23 2 3 “true”
x24 3 3 “true”

N5

cn cp cs res
x11 1 8 “false”
x12 2 8 “false”
x13 3 8 “false”
x14 4 8 “true”
x21 5 8 “false”
x22 6 8 “false”
x23 7 8 “false”
x24 8 8 “true”
x12 1 3 “false”
x13 2 3 “false”
x14 3 3 “true”
x22 1 3 “false”
x23 2 3 “false”
x24 3 3 “true”

N6

cn cp cs res
x11 1 8 1
x12 2 8 2
x13 3 8 3

...
...

...
...

x22 1 3 1
x23 2 3 2
x24 3 3 3

N7

cn cp cs res
x11 1 8 4
x12 2 8 4

...
...

...
...

x12 1 3 1.5
...

...
...

...
x24 3 3 1.5

N8

cn cp cs res
x11 1 8 {x11}
x12 2 8 {x12}
x13 3 8 {x13}

...
...

...
...

x24 3 3 {x24}

N9

cn cp cs res
x11 1 8 100
x12 2 8 100
x13 3 8 100

...
...

...
...

x24 3 3 100

Figure 4. Context-value tables of e.

Restriction to the relevant context. Suppose that we want
to evaluate an XPath expression Q via the context-value ta-
ble principle. Then we have to compute a table of up to
|dom|2 entries for each node in the parse tree of Q. (Ac-
tually, this is already an improved bound due to the top-
down evaluation via the semantics function E↓. With a strict
bottom-up evaluation via the function E↑ mentioned in Sec-
tion 2.3, this bound even deteriorates to |dom|3). However,
in many cases, the result of a subexpression depends solely
on parts of the context information. Hence, we can restrict
the context-value table at every node Ni in the parse tree
to the “relevant context” Relev(Ni) ⊆ {‘cn’, ‘cp’, ‘cs’},
which can be computed by a single bottom-up traversal of
the parse tree as follows:

• Base cases. If N is a leaf node of the parse tree, then
we have to distinguish all possible cases concerning
the form of the subexpression expr(N) correspond-
ing to N , namely: If expr(N) is a constant or an ex-
pression of the form “true()” or “false()”, then we set
Relev(N) := ∅. In case of expr(N) ≡ position()
or expr(N) ≡ last(), we set Relev(N) := {‘cp’} or
Relev(N) := {‘cs’}, respectively. Finally, if expr(N)
is a location step or a parameterless XPath core library
function that refers to the context-node (like string(),
number(), etc.), then we set Relev(N) := {‘cn’}.

• Compound expressions. If an inner node N of the
parse tree corresponds to a location step within a loca-
tion path, then we set Relev(N) := {‘cn’}. In all other
cases, let {N1, . . . , Nk} denote the set of child nodes
of N . Then we set Relev(N) :=

⋃k

i=1
Relev(Ni).

Relev(N) depends on the input XPath query Q only (but
not on the XML-document). Obviously, the computation of
all these sets Relev(N) can be done in time O(|Q|).

Example 3 For the leaf nodes of T in Figure 3, we have
Relev(N6) = {‘cp’}, Relev(N7) = {‘cs’}, Relev (N8) =
{‘cn’}, and Relev(N9) = ∅. The nodes N1 and N2 in
T correspond to location paths. Hence, Relev(N1) =
Relev(N2) = {‘cn’} holds. Finally, for the remaining
inner nodes of T , we get Relev(N3) = Relev(N4) =
{‘cn’, ‘cp’, ‘cs’}, and Relev(N5) = {‘cn’}.

Note that the tables corresponding to N1 and N2 have
already been reduced to the relevant context in Figure 4.
For the nodes Relev(N3) and Relev(N4) no simplification
is possible. Finally, in Figure 5, the reduced tables for the
nodes N5, . . . , N9 are shown. �

Special treatment of location paths on the outermost
level. (i.e., location paths that do not occur inside another
XPath expression). Note that the context-value table algo-
rithm computes a table of size O(|dom|2) for all location

5

N5: self::* = 100

cn res
x11 “false”
x12 “false”
x13 “false”
x14 “true”
x21 “false”
x22 “false”
x23 “false”
x24 “false”

N6: position()

cp res
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

N8: self::*

cn res
x11 {x11}

x12 {x12}

x13 {x13}

x14 {x14}

x21 {x21}

x22 {x22}

x23 {x23}

x24 {x24}

N7: last()*0.5

cs res
8 4
3 1.5

N9: 100

res
100

Figure 5. Restriction to the relevant context.

steps of an input location path (according to the semantics
function S↓ recalled in Definition 2). This is due to the fact
that we compute for every possible context-node cn the re-
sulting node set. However, at no stage in the computation,
we are really interested in the whole information as to which
next node xj ∈ dom can be reached from which previous
node xi ∈ dom. Instead, it suffices to know the set of all
nodes xj ∈ dom that can be reached from any of the pre-
vious nodes xi ∈ dom. Hence, the results of location steps
on the outermost level should be treated as a subset ⊆ dom
rather than as a relation ⊆ dom×2dom. Of course, the final
result now has to be read out from the context-value table
corresponding to the last location step (rather than from the
context-value table of the root node of the parse tree).

Example 4 The XPath query e from Section 2.4 has in
fact a location path on the outermost level. Hence, the
2-dimensional context-value tables of the location paths
“/descendant::*/descendant::*[. . .]” (at the node N1) and
“descendant::*[. . .] (at N2) can be replaced by the node
sets (or, equivalently, the 1-dimensional tables) X = {x10,
x11, x12, x13, x14, x21, x22, x23, x24} (at N1) and Y =
{x13, x14, x21, x22, x23, x24} (at N2), respectively. Then
the final result of e is the node set Y corresponding to the
node N2 in the parse tree. �
Treating position and size in a loop. The central idea of
the context-value table principle is the simultaneous evalua-
tion of each subexpression for all possible contexts in a sin-
gle table. However, a close inspection of the various kinds
of expressions that have to be evaluated (cf. Section 2) re-
veals that such a simultaneous evaluation for all possible
contexts is only necessary (in order to avoid exponential

time complexity) for the context-node cn. In contrast, for
the context-position and/or context-size, a loop over all pos-
sible values 〈cp, cs〉 leads to a significant improvement of
the space complexity without any deterioration of the time
complexity. Hence, the evaluation of any predicate p should
be done as follows: First the subtree in the parse tree cor-
responding to the predicate p is traversed so as to evaluate
all subexpressions of p that do not depend on the (current)
context-position and/or context-size. Then the evaluation
of the predicate p for the complete context (possibly involv-
ing position and/or size) is done in a loop over all possible
values 〈cn, cp, cs〉.

Example 5 Recall the query e from Section 2.4. After the
location steps “/descendant::*/descendant::*”, we are left
with the set X = {x11, x12, x13, x14, x21, x22, x23, x24}
of candidates that may possibly be selected by e ≡ /de-
scendant::*/descendant::* [expr(N3)]. Now X has to be
restricted in the following way to the set X ′ of those nodes
for which expr(N3) evaluates to “true”.

1. First, we traverse the subtree of the parse tree rooted
at N3 top-down and evaluate those parts, which are
independent of the value of cp and cs at N3. We thus
set up the context-value tables of N5, N8, and N9 as in
Figure 5.

2. Then, in a loop over all O(|dom|2) pairs of pre-
vious/current context-nodes (w.r.t. the “descendant”-
axis), we compute the set of those nodes X ′ ⊆
X , for which the predicate expr(N3) is true, i.e.:
X ′ := {cn ∈ X | (∃cp)(∃cs) s.t. expr(N3) eval-
uates to “true” for the context 〈cn, cp, cs〉}. Of
course, this comes down to checking all the rows of
the context-table at N3 (and thus also of N4, N6,
and N7). However, in contrast to Figure 4, we do
not set up the entire tables at once. Instead, we
treat these contexts 〈cn, cp, cs〉 in a loop, e.g.: for
〈cn, cp, cs〉 = 〈x23, 7, 8〉 we compute the rows of
table(N4), table(N6), and table(N7) for cp = 7 and
cs = 8 only. Moreover, we look up the row of N5

for the value cn = x23. We thus get the overall value
“true” of the predicate expr(N3) for this single context
〈x23, 7, 8〉. Hence, x23 is added to X ′. �

3.2. Procedures of the Algorithm MINCONTEXT

The MINCONTEXT algorithm consists of three main
procedures eval outermost locpath , eval by cnode only ,
and eval single context . They are briefly explained below.
In Section 6, a pseudo-code presentation of these proce-
dures will be provided.

• The procedure eval outermost locpath evaluates an in-
put expression e in case that e is a location path.

6

It takes a node N in the parse tree and a node set
X ⊆ dom as input and returns the set Y of nodes that
can be reached via the path e from any context-node
x ∈ X .

• The procedure eval by cnode only takes a node N in
the parse tree and a set X of possible context-nodes as
input. It does not return a result value as such. How-
ever, for every node M in the subtree rooted at N , it
computes table(M), provided that expr(M) does not
depend on the (current) context-position/size.

• The procedure eval single context evaluates arbitrary
XPath expressions for a single context 〈cn, cp, cs〉.
It takes a node N in the parse tree and a context
〈cn, cp, cs〉 as input and returns the result value of
expr(N) for this context. eval single context may
only be called after the procedure eval by cnode only

has been called for the node N .

In Section 6, we shall also give the pseudo-code of the aux-
iliary procedure eval inner locpath , which is called inside
eval by cnode only in case of a location path inside a pred-
icate. Note that in all of these procedures, the parse tree of
an input query and the context value tables (i.e., table(N)
for nodes N in the parse tree) are treated as global variables
in order to increase the readability.

Now let e be an input XPath expression and 〈cn, cp, cs〉
the input context. Moreover, let R denote the root node in
the parse tree of e. Then we have:

Algorithm 6 (MINCONTEXT)

if e is a location path then
return eval outermost locpath(R, {cn});

else
eval by cnode only(R, {cn});
return eval single context(R, 〈cn, cp, cs〉);

fi;

The MINCONTEXT algorithm will be put to work in a de-
tailed example at the end of Section 4. Below, we state the
main result of this section:

Theorem 7 XPath can be evaluated in time O(|D|4 ∗ |Q|2)
and space O(|D|2 ∗ |Q|2).

Proof Sketch. As far as the space complexity is concerned,
note that we only set up context-value tables where the num-
ber of possible contexts is bounded by |dom| < |D| (namely
for nodes N in the parse tree with Relev(N) ⊆ {‘cp’}). Of
course, there are at most |Q| context-value tables required.
It remains to show that the result value of any subexpres-
sion e of Q for any context-node cn ∈ dom is restricted
by O(|D| ∗ |Q|). In case of the result types bool and nset,
this is clearly the case. As for the result types str and num,

we observe that values selected from the XML document D
are bounded by |D|. Moreover, of all the XPath core library
functions, only concat may possibly produce a string that is
longer than its arguments. But then the resulting string is
clearly bounded by |D| ∗ |Q|.

As for the time complexity, we evaluate each subexpres-
sion e of the input query Q for at most |dom|2 different
contexts (be it in a single context-value table or in a loop
over all possible values 〈cn, cp, cs〉 corresponding to previ-
ous/current context-node). It can be shown by induction on
the structure of e that the time required for computing each
result value is bounded by O(|D|2 ∗ |Q|). �

4. The Extended Wadler Fragment

In [16], Wadler considers a useful fragment of XPath
with predicates made up of location paths on the one hand
and arithmetic expressions with the functions position() and
last() on the other hand. This fragment is the key to a big
fragment of XPath, which can be processed in linear space
and quadratic time w.r.t. to the size of the XML data. We
shall identify some restrictions on XPath that guarantee the
linear space complexity. It will turn out that these restric-
tions also suffice to guarantee the quadratic time complex-
ity. In fact, it is easy to check that the fragment in [16] ful-
fills these restrictions. Hence, we shall refer to our XPath
fragment as the “Extended Wadler Fragment”.

Suppose that we want to evaluate an XPath expression e.
Actually, if the result type of e is scalar (i.e., num, bool or
str), then we can simply evaluate e as in Section 3. We just
have to make sure that the size of scalar values is indepen-
dent of the XML data. Hence, we require

Restriction 1. The XPath functions which select data
from an XML document, are not allowed, i.e., local-name,
namespace-uri, name, string, number, string-length, and
normalize-space. �

On the other hand, if the result of e is a (linearly big)
node set, then e cannot simply be evaluated simultaneously
for all (linearly many) possible context-nodes, since this
would require quadratic space. Of course, we must not treat
the context-nodes in a loop since this has been identified in
[11] as the very reason why previous XPath evaluation algo-
rithms require exponential time. Instead, we need a differ-
ent strategy. Recall that we assume that all type conversions
in an XPath expression are made explicit. Hence, (by Re-
striction 1) expressions that evaluate to a node set can only
occur in one of the following five forms:

(1) boolean(nset)
(2) nset RelOp scalar
(3) nset RelOp nset
(4) count(nset)
(5) sum(nset)

7

where RelOp ∈ {=, 6=,≤, <,≥, >}, nset denotes an ex-
pression whose result is a node set, and scalar denotes any
other expression. Below, we shall present an optimization
for the first two cases. Unfortunately, this method does not
work in case of the latter three ones. We thus require

Restriction 2. Expressions of the form nset RelOp nset as
well as calls of the functions count and sum are not allowed.
Moreover, for expressions of the form nset RelOp scalar we
require that scalar does not depend on any context. �

As for the form that an nset-expression can have, we dis-
tinguish two principal cases, namely location paths or ex-
pressions of the form id(e). Of course, the calls of id can
be arbitrarily nested. However, ultimately, we either have
e ≡ id(id(. . . (s). . .)) or e ≡ id(id(. . . (π). . .)), where s is
a string-expression and π is a location path. For the latter
case, we rewrite id(id(. . . (π). . .)) to the form π/id/id/. . . /id.
In other words, we consider “id” as a new axis. Hence,
in this case, expressions of the form id(id(. . . (π). . .)) are
treated as location paths. For the former case, we impose

Restriction 3. In expressions of the form id(id(. . . (s). . .)),
where s is a string-expression, we require that s must not
depend on any context. �

Actually, nset-expressions of the form id(id(. . . (s). . .)),
where s does not depend on any context, can be simply
evaluated by the algorithm from Section 3 in linear space.
For any other nset-expressions (i.e. location paths, possi-
bly involving the id-“axis”), we observe that (because of
Restriction 2) nset-expressions are only allowed to occur
as operands of expressions that yield a boolean result value.
In particular, the context-value table for the whole expres-
sion (of the form “nset RelOp scalar” or “boolean (nset)”),
clearly requires linear space only. We just have to avoid the
explicit computation of the context-value table for the loca-
tion path nset. This can be achieved as follows.

Bottom-up evaluation of certain location paths. A lo-
cation path π inside an expression of the form boolean(π)
or π RelOp s has an ∃-semantics, e.g., boolean(π) evalu-
ates to “true” for a context-node cn, iff there exists at least
one node in the node set resulting from the evaluation of
π. Thus, the set of nodes cn, for which boolean(π) or
π RelOp s evaluates to “true” can be computed as follows:

• First compute the “initial node set” Y . For an ex-
pression boolean(π), we set Y := dom. An expres-
sion π RelOp s with s of type bool is treated like
boolean(π) RelOp s. For any other type of s, we set
Y := {cn | self::* RelOp s evaluates to “true” for the
context-node cn}.

• Compute X by propagating Y backwards via the in-
verse location steps of π.

As for the backward propagation of a node set via the in-
verse location steps, we proceed as follows: If we have
π = χ1 :: ∗/χ2 :: ∗/ . . . /χn :: ∗, then we set Xn := Y
and Xi−1 := χ−1

i (Xi) (where χ−1

i denotes the inverse
axis from Definition 1) for every i ∈ {1, . . . , n}. Hence,
X := X0 is the desired node set. Note that if χ is the id-
“axis”, then we have χ−1

i (Xi) = F [[Op]]−1(Xi). Actually,
in [11], it was shown that also F [[Op]]−1(Xi) can be com-
puted in time O(|D|) for any node set Xi ⊆ dom.

Now let π ≡ χ1 :: t1[e11] . . . [e1k1
]/ . . . /χn :: tn[en1]

. . . [enkn
]. Then we have to restrict each node set Xi to the

set X ′
i of those nodes for which the node test ti holds and

apply the inverse axis function χ−1

i to X ′
i . For the predi-

cates we proceed analogously to the MINCONTEXT algo-
rithm, by calling the procedures eval by cnode only and
eval single context . In Section 6, we give the pseudo-
code of a procedure eval bottomup path (plus the auxil-
iary procedure propagate path backwards) for expressions
π RelOp s and boolean(π), respectively. Note that in the
procedure propagate path backwards we assume (w.l.o.g.)
that all occurrences of “|” have been removed. This can
be easily achieved by replacing “boolean(π1|π2| . . . |πk)”
and “π1|π2| . . . |πk RelOp s” by “boolean(π1) or . . . or
boolean(πk)” and “(π1 RelOp s) or . . . or (πk RelOp s)”.

5. The Algorithm OPTMINCONTEXT

In order to incorporate the above ideas of a bottom-up
evaluation of certain location paths, our MINCONTEXT al-
gorithm has to be modified to a new algorithm OPTMIN-
CONTEXT as follows:

Algorithm 8 (OPTMINCONTEXT)

evaluate all “bottom-up location paths”
(starting with the innermost ones in case of nesting);

call MINCONTEXT;
(Of course, subexpressions that have already been
evaluated bottom-up are not evaluated again);

We illustrate the algorithms OPTMINCONTEXT and MIN-
CONTEXT by the following example:

Example 9 Let Q denote an XPath query that is applied
to the XML-document from Figure 2, where Q is de-
fined as Q ≡ /child::a/descendant::*[boolean(following::d[
(position() != last()) and (preceding-sibling::*/preceding::*
= 100)]/following::d)]. In order to facilitate the discus-
sion, we assign names to some subexpressions of Q,
namely: Q ≡ /child::a/descendant::* [boolean(π)] with
π ≡ following::d[e1 and e2]/following::d, e1 ≡ posi-
tion() != last(), e2 ≡ ρ = 100, and ρ ≡ preceding-
sibling::*/preceding::*. The parse tree T of Q is depicted
in Figure 6. The correspondence between subexpressions
of Q and nodes in T is shown in the following table:

8

node subexpression of Q

N1 /child::a/descendant::*[boolean(π)]
N2 descendant::*[boolean(π)]
N3 boolean(π)
N4 following::d[e1 and e2]/following::d (≡ π)
N5 e1 and e2

N6 following::d
N7 position() != last() (≡ e1)
N8 ρ = 100 (≡ e2)
N9 position()
N10 last()
N11 preceding-sibling::*/preceding::* (≡ ρ)
N12 100
N13 preceding::*

�	�

	�

�	�

	�

�	�

	�

�	�

	�

�	�

	�

�
�

�

�	�

��

�	�

	�

�	�

��

�	�

	�

�
�

�

�	�

��

�
�

�

N1

N2

N3

N4

N5 N6

N7 N8

N9 N10 N11 N12

N13

�� � �
��� � � �

�� � � �� � �

Figure 6. Parse tree of Q.

Q has two inner location paths π and ρ, which both have
to be evaluated bottom-up. We start with the innermost
one, namely ρ: The initial node set is Y := {x14, x24},
which corresponds to all context-nodes for which “self::*
= 100” evaluates to “true”. To this node set, we first
apply following (= preceding−1), which yields the node
set {x21, x22, x23, x24}. By applying following-sibling (=
preceding-sibling−1) to this, we get {x23, x24}. Hence, the
context-value table of the node N8 is the 2-dimensional
table ⊆ dom × {true, false}, s.t. exactly the nodes in
{x23, x24} have the value “true” in the second column.

For the bottom-up evaluation of the path π, we have to

take the node tests and the predicate “e1 and e2” into ac-
count. We start the evaluation with Y := dom. Now we
have to apply the inverse step of following::d. Hence, we
first restrict Y to the set Y ′ of those nodes for which the
node test “d” yields “true”, i.e. Y ′ = {x14, x23, x24}. By
applying preceding (= following−1) to Y ′, we get Y ′′ =
{x11, x12, x13, x14, x22, x23}. Now we have to apply the
location step following::d[e1 and e2] backwards. To this
end, we first restrict Y ′′ to the elements with name d. We
thus get Y ′′′ = {x14, x23}. Now we have to check for
which nodes in Y ′′′ (together with appropriate values for
cp and cs) the predicate “e1 and e2” evaluates to “true”. To
this end, we first call the procedure eval by cnode only to
evaluate those nodes in the parse tree rooted at N5 which
do not depend on (the current values of) cp and cs. Ac-
tually, in this case, only the subtree rooted at N8 has this
property. However, table(N8) has already been determined
by a bottom-up evaluation. Hence, the call of procedure
eval by cnode only has no effect here. Note that X =
following−1(Y ′′′) = {x11, x12, x13, x14, x22}. In order to
evaluate the predicate “e1 and e2” also for cp and cs via
the procedure eval single context , we have to consider all
combinations of previous/current context-node (in X×Y ′′′)
w.r.t. the “following”-axis. Actually, both nodes in Y ′′′ can
be extended by appropriate values of cp and cs to a context
triple, s.t. “e1 and e2” evaluates to “true” for this context,
e.g.: 〈x14, 2, 6〉 and 〈x23, 5, 6〉 (which are both obtained via
the previous context-node x12). Hence, the predicate “e1

and e2” does not lead to a restriction of Y ′′′. Therefore, the
desired context-value table ⊆ dom × {true, false} of the
node N3 has the value “true” in the second column exactly
for the nodes in X .

Finally, we call the procedure eval outermost locpath

to evaluate the location path at the outermost level of Q.
The location step child::a yields the set {x10} independent
of any input context. Moreover, by the step descendant::*,
we get dom − {x10}. However, these nodes have to be in-
tersected with the set X computed above. Hence, the final
result of the query Q is {x11, x12, x13, x14, x22}. �

Below, we claim that Restrictions 1 through 3 indeed
lead to the desired improvement of the efficiency.

Theorem 10 The Extended Wadler Fragment (i.e., the set
of all XPath expressions fulfilling the Restrictions 1 through
3 from Section 4) can be evaluated in space O(|D| ∗ |Q|2)
and time O(|D|2 ∗ |Q|2).

It is easy to check, that even a slightly stronger property
holds for our algorithm, namely:

Corollary 11 Let Q be an arbitrary XPath query to which
our OPTMINCONTEXT algorithm is applied. Moreover,
let e be a subexpression in Q, s.t. e is in the Extended

9

Wadler Fragment. If e is a location path, then we also re-
quire that either Q = e or e occurs in the form boolean(e)
or e RelOp s (where s is independent of any context) in
Q. Then e is evaluated in space O(|D| ∗ |e|2) and time
O(|D|2 ∗ |e|2). �

In [11], the so-called “Core XPath” was defined, which
we recall below. It was shown in [11] that any XPath expres-
sion that is fully contained in this fragment, can be evalu-
ated in linear time. An analogous result to Corollary 11 can
also be shown for the Core XPath fragment.

Definition 12 Let the Core XPath language be defined by
its abstract EBNF syntax as follows:

cxp: locationpath | ‘/’ locationpath
locationpath: locationstep (’/’ locationstep)*
locationstep: χ ‘::’ t | χ ‘::’ t ‘[’ pred ‘]’
pred: pred ‘and’ pred | pred ‘or’ pred |

‘not’ ‘(’ pred ‘)’ | cxp | ‘(’ pred ‘)’

where “cxp” is the start production, χ stands for an axis,
and t for a “node test”.

Theorem 13 Let Q be an arbitrary XPath query to which
our OPTMINCONTEXT algorithm is applied. Moreover,
suppose that π is a location path from Core XPath that
occurs as a subexpression in Q either on the outermost
level or in the form boolean(π) or π RelOp s (where s is
independent of any context). Then π is evaluated in time
O(|D| ∗ |π|).

Proof Sketch. Core XPath expressions of the form χ ::
t[π′] are a short-hand for χ :: t[boolean(π′)]. Hence, Core
XPath is clearly contained in our linear space fragment. Ac-
tually, the only reason why we have quadratic time com-
plexity in Theorem 10 is that we possibly have to evaluate
predicates in a loop over all (quadratically many) pairs of
previous/current context-node in order to take the context-
position and context-size into account. However, in Core
XPath, position() and last() are not allowed and, therefore,
no such loop is required. We thus get a linear time upper
bound for these subexpressions. �

6. Pseudo-Code Presentations

procedure eval outermost locpath:
input: node N in the parse tree

set X of possible context-nodes

output: set Y of nodes that can be reached from X via expr (N).

begin
if expr (N) = /π then

return eval outermost locpath(node(π), {root});

elseif expr (N) = π1|π2 then
Y1 := eval outermost locpath(node(π1), X);
Y2 := eval outermost locpath(node(π2), X);
return Y1 ∪ Y2;

elseif expr (N) = π1/π2 then
Y := eval outermost locpath(node(π1), X);
return eval outermost locpath(node(π2), Y);

elseif expr (N) = χ :: t[e1] . . . [eq] then
Y := nodes reachable from X via χ :: t;
for i := 1 to q do eval by cnode only(node(ei), Y); od;
R := ∅;
if (∀i ∈ {1, . . . , q})
({‘cp’, ‘cs’} ∩ Relev(node(ei))) = ∅ holds then

for each y ∈ Y do
if ∀i ∈ {1, . . . , q} eval single context (node(ei),
〈y, ∗, ∗〉) = true then R := R ∪ {y}; fi;

od;
else /* i.e., at least one ei depends on cp or cs */

for each x ∈ X do
Z := {z ∈ Y |xχz};
for i := 1 to q do

let Z = {z1, . . . , zm} ordered according to axis χ;
/* i.e., in document order or in reverse order */
Z′ := ∅;
for j := 1 to m do

if eval single context (node(ei), 〈zj , j, m〉) =
true then Z′ := Z′ ∪ {zj}; fi;

od;
Z := Z’;
/* Z = {z ∈ dom |xχz and e1, . . . , ei hold} */

od;
R := R ∪ Z;

od;
fi; /* are all predicates ei independent of the context? */
return R;

fi; /* case distinction over all possible forms of expr (N) */
end;

procedure eval by cnode only:
input: node N in the parse tree

set X of context-nodes (If ‘cn’ 6∈ Relev (N),
then X may consist of the wild card “∗” only.)

output: modifies the global data table(M) of nodes M below N

begin
if {‘cp’, ‘cs’} ∩ Relev (N) 6= ∅ then

let N1, . . . , Nk be the child nodes of N in the parse tree;
for i := 1 to k do eval by cnode only(Ni, X);

elseif expr (N) = π then
table(N) := eval inner locpath(π, X);

else
let expr (N) = Op(e1, . . . , ek);
for i := 1 to k do eval by cnode only(node(ei), X); od;
table(N) := {(c,F [[Op]](r1 , . . . , rk) | ∃c ∈ X s.t.

(∀i ∈ {1, . . . , k}) (ci, ri) ∈ table(node(ei)) holds,
where ci is the projection of c to the relevant context
of node(ei)};

fi;

10

end;

procedure eval single context:
input: node N in the parse tree

single context triple 〈cn, cp, cs〉, s.t. the wild card “∗”
may be used for each irrelevant part of the context.

output: result value of expr (N) for the context 〈cn, cp, cs〉.

begin
if {‘cp’, ‘cs’} ∩ Relev (N) = ∅ then

let (c, r) ∈ table(N) with c = proj N (〈cn, cp, cs〉);
return r; /* i.e., result value according to table(N) */

else
let expr (N) = Op(e1, . . . , ek);
for i := 1 to k do

eval single context (node(ei), 〈cn, cp, cs〉); od;
return F [[Op]](r1, . . . , rk);

fi;
end;

procedure eval inner locpath:
input: node N in the parse tree

set X of possible context-nodes

output: table(N) ⊆ dom × 2dom

begin
if expr (N) = /π then

R′ := eval inner locpath(node(π), {root});
return {(x0, x) | x0 ∈ X ∧ (root, x) ∈ R′};

elseif expr (N) = π1|π2 then
R1 := eval inner locpath(node(π1), X);
R2 := eval inner locpath(node(π2), X);
return R1 ∪ R2;

elseif expr (N) = π1/π2 then
R1 := eval inner locpath(node(π1), X);
let Y := {x | ∃x0: (x0, x) ∈ R1};
R2 := eval inner locpath(node(π2), Y);
return {(x0, x) | ∃x1: (x0, x1) ∈ R1 ∧ (x1, x) ∈ R2};

elseif expr (N) = χ :: t[e1] . . . [eq] then
Y := nodes reachable from X via χ :: t;
for i := 1 to q do eval by cnode only(node(ei), Y); od;
if (∀i ∈ {1, . . . , q})
({‘cp’, ‘cs’} ∩ Relev (node(ei))) = ∅ holds then

Y ′ := ∅;
for each y ∈ Y do

if ∀i ∈ {1, . . . , q} eval single context (node(ei),
〈y, ∗, ∗〉) = true then Y ′ := Y ′ ∪ {y}; fi;

od;
R := {(x, y) |x ∈ X ∧ y ∈ Y ′ ∧ xχy};

else /* i.e., at least one ei depends on context-position/size */
R := ∅;
for each x ∈ X do

Z := {z ∈ Y | xχz};
for i := 1 to q do

let Z = {z1, . . . , zm} ordered according to axis χ;
/* i.e., in document order or in reverse order */

Z′ := ∅;
for j := 1 to m do

if eval single context (node(ei), 〈zj , j, m〉) =
true then Z′ := Z′ ∪ {zj}; fi;

od;
Z := Z’;
/* Z = {z ∈ dom |xχz and e1, . . . , ei hold} */

od;
R := R ∪ ({x} × Z);

od;
fi; /* are all predicates ei independent of the context? */
return R;

fi; /* case distinction over all possible forms of expr (N) */
end;

eval bottomup path:
input: node N in the parse tree

expr (N) ≡ boolean(π) or expr (N) ≡ π RelOp s, s.t.
π is a “bottom-up location path”, s is independent of
the context, and s is of type nset, str, or num.

output: The global data structure table(N) is filled in.

begin
/* Step 1: determine the initial node set Y */

if expr (N) = boolean(π) then
Y := dom;

elseif expr (N) = π RelOp s then
eval by cnode only(node(s), {∗});
/* by assumption, s is independent of the context */
if s is of type nset then

Y := {y | ∃z ∈ table(node(s)) |
strval(y) RelOp strval(z)};

elseif s is of type str then
let val denote the only element in table(node(s));
Y := {y | strval(y) RelOp val};

elseif s is of type num then
let val denote the only element in table(node(s));
Y := {y | to number(strval(y)) RelOp val};

fi;
fi;

/* Step 2: propagate Y backwards via π and fill in table(N) */
let M1 := node(π);

/* i.e., M1 corresponds to the first location step of π */
let M2 denote the node in the parse tree corresponding to the

last location step of π;
X := propagate path backwards(Y, M1, M2);
table(N) := {(x, true) | x ∈ X}∪
{(x, false) |x ∈ (dom − X)};

end;

propagate path backwards:
input: node set Y ⊆ dom

nodes M1 and M2 in the parse tree
(corresponding to first/last step of a “bottom-up path” π)

output: node set X ⊆ dom, where X := {x ∈ dom | ∃y ∈ Y , s.t.
y is reachable from x via π}

11

begin
if Y = ∅ then return ∅; fi;
if location step at M2 is ‘/’ then
/* i.e., this is the top of an absolute location path */

R := dom; /* the case Y = ∅ has already been treated */
elseif location step at M2 is id then

R := F [[Op]]−1(Y);
elseif location step at M2 is χ :: t[e1] . . . [eq] then

Y ′ := {y ∈ Y | node test t is true for y};
for i := 1 to q do eval by cnode only(node(ei), Y

′); od;
if (∀i ∈ {1, . . . , q})
({‘cp’, ‘cs’} ∩ Relev (node(ei))) = ∅ holds then

Y ′′ := ∅;
for each y ∈ Y ′ do

if ∀i ∈ {1, . . . , q} eval single context (node(ei),
〈y, ∗, ∗〉) = true then Y ′′ := Y ′′ ∪ {y}; fi;

od;
R := χ−1(Y ′′);

else /* i.e., at least one ei depends on context-position/size */
X ′ := χ−1(Y ′);
R := ∅;
for each x ∈ X ′ do

Z := {z ∈ Y ′ |xχz};
for i := 1 to q do

let Z = {z1, . . . , zm} ordered according to axis χ;
Z′ := ∅;
for j := 1 to m do

if eval single context (node(ei), 〈zj , j, m〉) =
true then Z′ := Z′ ∪ {zj}; fi;

od;
Z := Z’;
/* Z = {z ∈ dom |xχz and e1, . . . , ei hold} */

od;
if Z 6= ∅ then R := R ∪ {x};

od;
fi; /* are all predicates ei independent of the context? */

fi; /* case distinction over all possible location steps at M2*/
if M1 = M2 then return R;

/* i.e., we have reached the top of the location path */
else

let M ′
2 be the father node of M2

/* i.e., M ′
2 corresponds to the location step above M2 in π */

then return propagate path backwards(R, M1, M
′
2);

fi;
end;

7. Conclusion and Future Work

We have presented a new XPath 1.0 evaluation algo-
rithm MINCONTEXT which leads to a significantly im-
proved time and space complexity behavior w.r.t. a previ-
ous approach. Moreover, we have identified a very large
fragment of XPath 1.0 that can be evaluated even more ef-
ficiently by another new algorithm which we called OPT-
MINCONTEXT.

The algorithms presented here aim at efficient main
memory XPath processor implementations in the first place.

However, improving the complexity bounds (w.r.t. the size
of the XML data) is clearly of great relevance also to us-
ing our techniques for XPath processors that query XML
documents stored in a database.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:
From Relations to Semistructured Data and XML. Morgan
Kaufmann, 1999.

[2] M. Benedikt, W. Fan, and G. M. Kuper. Structural Properties
of XPath Fragments. In Proc. ICDT’03, 2003. To appear.

[3] G. J. Bex, S. Maneth, and F. Neven. A Formal Model for
an Expressive Fragment of XSLT. In Proc. CL 2000, LNCS
1861, pages 1137–1151. Springer, 2000.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holisitic Twig
Joins: Optimal XML Pattern Matching. In SIGMOD’02,
Madison, Wisconsin, 2002. ACM Press.

[5] F. Bry, D. Olteanu, H. Meuss, and T. Furche. Symme-
try in XPath. Technical Report PMS-FB-2001-16, LMU
München, 2001. Short version.

[6] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Tree Pattern Aggregation for Scalable XML
Data Dissemination. In Proc. VLDB’02, 2002.

[7] J. Clark. XT. A Java Implementation of XSLT, available at
http://www.jclark.com/xml/xt.html/.

[8] A. Deutsch and V. Tannen. Containment and Integrity Con-
straints for XPath. In Proc. KRDB’01, 2001.

[9] P. Fankhauser. A Mapping of XPath 1.0 to the XML Query
Algebra (with J. Clark, M. Fernandez, and J. Siméon), Nov.
2001. Personal Communication.

[10] G. Gottlob and C. Koch. Monadic Queries over Tree-
Structured Data. In Proc. LICS’02, 2002.

[11] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms
for Processing XPath Queries. In Proc. VLDB’02, 2002.

[12] J. McHugh and J. Widom. Query Optimization for XML. In
VLDB’99, pages 315–326, 1999.

[13] G. Miklau and D. Suciu. Containment and Equivalence of
XPath Expressions. In Proc. PODS’02, pages 65–76, 2002.

[14] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML
transformers. In Proc. PODS 2000, pages 11–22, 2000.

[15] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas,
J. M. Patel, and Y. Wu. Structural Joins: A Primitive for
Efficient XML Query Pattern Matching. In Proc. ICDE’02,
San Jose, California, 2002.

[16] P. Wadler. Two Semantics for XPath, 2000. availabe at
http://www.research.avayalabs.com/user/wadler/.

[17] P. T. Wood. On the Equivalence of XML Patterns. In CL
2000, LNCS 1861, pages 1152–1166, 2000.

[18] World Wide Web Consortium. XPath Recommendation
http://www.w3c.org/TR/xpath/.

[19] Xalan-Java version 2.2.D11. http://xml.apache.org/xalan-j/.

12

