Fast alignment of large genome databases: A Demonstration *

Tamer Kahveci

Ambyj K. Singh

Department of Computer Science University of California
Santa Barbara, CA 93106
{tamer,ambuj } @cs.ucsb.edu

1 Motivation

The growth in the amount of genomic information has
spurred increased interest in large scale comparison of
genetic strings. ldentification of the genetic code of the
deadly E.coli bacteria, or genetic clues for fibrodysplasia
ossificans progressiva (FOP), a disease that affects mus-
cle and skeleton growth, and the vital proteins for the
bone growth, or identification of the genes that hasten
the healing of some venous ulcers are only a few of the
achievements obtained recently. Conditions such as skin
and colon cancer can already be classified into much finer
categories than before and soon the same approach may be
possible for heart disease, schizophrenia and many other
conditions. Using this kind of genetic information helps
to target the treatments at the precise form of the illness
that has been diagnosed, thus helping patients and doctors
weigh the risk and benefits of different treatments.

One important emerging application, called Compara-
tive Genomics, analyzes and compares the genetic mate-
rial of different species. It is the most reliable way to iden-
tify genes and predict their functions. The functions of the
higher level organisms, like humans, can be revealed by
comparing to their counterparts in similar or lower level
organisms. Such genome analysis involve comparison of
huge strings, as large as the whole genome of a species.

Phylogenetics and evolutionary studies are other im-
portant applications that use complete genetic information
of different species. Phylogenetics is used to infer the an-
cestral relationships among different species. This sort of
relations can be captured by comparing the genetic code
of the whole genomes.
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The amount of biological data has been growing ex-
ponentially. This growth is on a collision course with
current homology search and database query techniques
and presents new challenges to biological database design.
Queries (as mentioned above) will be large and complex,
databases will be huge, some data will be on disk, and
significant portions of datasets will be local because of
networking bottleneck and proprietary data. For exam-
ple, human chromosome 21, one of the shortest human
chromosomes, contains more than 33 M base pairs. Fast
and sensitive homology search algorithms are needed to
1) answer large queries, 2) handle huge databases stored
on disk, and 3) interact with multiple datasets seamlessly.

We demonstrate an efficient algorithm for alignment of
large genome strings. Our algorithm constructs a boolean
Match Table for a given query string and database string
with the help of the MRS index structure [2]. The size of
the MRS index structure is approximately 1-2% of that of
database. Each entry of the Match Table corresponds to a
query/database substring pair. An entry in the Match Table
is marked as True if the corresponding query substring and
database substring potentially contain similar patterns. It
is marked as False otherwise. The size of the Match Table
is negligible compared to that of database (typically 0.1%
of the database.).

Once the Match Table is computed, we build hash ta-
bles on these strings as follows. First, we find the number
of marked rows and columns by projecting all the True
entries of the Match Table to its rows and columns. If
the number of marked columns is more than the num-
ber of marked rows, we choose a vertical slice of the
Match Table, and construct the hash table on the string
that corresponds to rows of the Match Table. Otherwise,
we choose a horizontal slice, and construct the hash ta-
ble on the string that corresponds to columns of the Match
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Figure 1. Control flow within MAP. g; and s; correspond to
query and database substrings respectively.

Table. The width of these slices is restricted by available
memory: the size of the hash table for a slice is no more
than the available memory.

Once the hash table of a string for a slice is constructed,
the marked substrings of the other string are read sequen-
tially and exactly matching substrings (i.e. seeds) of the
prespecified size (i.e. 11) are found using this hash table.
The seeds are then extended in both directions to find bet-
ter matches. Later, the results are reported in a descending
score order. We call this techniqgue MAP (MAtch table
based Pruning).

The experimental results show that, MAP runs up to 97
times faster than BLAST [1] without decreasing the output
quality. Furthermore, MAP can work well even for small
memory sizes. This drastic reduction in CPU and 1/O cost
has the potential of making homology searches viable on
desktop PCs. The filtering and scheduling techniques of
MAP can easily be used to speedup and reduce the mem-
ory requirements of any of the current genome alignment
tools. MAP also provides the user a coarse grain visual-
ization of the similarity pattern between the strings prior
to actual search. Currently, we are building a web server
which provides genome alignment using MAP.

2 System Overview

Figure 1 illustrates the different steps of this technique.
The user submits a query along with two search param-

eters: quality cutoff and shift amount. These parame-
ters affect the sensitivity and the performance of search.
A boolean Match Table is then constructed by using the
MRS index structure on the datasets. Later, pairs of
blocks of the datasets are read using this Match Table and
searched using BLAST.

As shown in Figure 2(a), the Match Table A for a
query string ¢ and a database string s, is a boolean ma-
trix. It is constructed by performing a search on the MRS
index structure. Each column of the match table corre-
sponds to the substrings contained in an MBR of the MRS
index structure. For simplicity, we set the box capacity
to the page size. A number of subqueries are constructed
by sliding a window of length w on query ¢ with a shift
amount of A. Each row of M corresponds to a set of
consecutive subqueries of total size equal to a page size.
A score value is computed for each database/query block
pair using the MBR approximation of the sequences in the
MRS index structure. If the score value for a pair is larger
than the given threshold, then the corresponding entry in
the Match Table is set to True. It is set to False otherwise.

Once the match table is constructed, only the
query/database page pairs that are marked as True need to
be searched. Figure 2 illustrates the slices obtained from
a sample Match Table by MAP. In this figure, we assume
that the available memory can store the hash table for 3
pages at most.

The decision for split direction is made as follows. Let
r and ¢ be the number of marked rows and columns of the
match table. If » < ¢ then the Match Table is split verti-
cally. Otherwise, the Match Table is split horizontally. A
hash table is then constructed on the marked rows if it is
a vertical split. Otherwise, the hash table is built on the
marked columns of the split region. The other dataset is
sequentially scanned and the same procedure is run for the
rest of the Match Table. For example, for the Match table
in Figure 2(a), » = 5 and ¢ = 9. Therefore, it is split ver-
tically and the hash table is built on the rows of this cut.
The size of a slice is determined based on memory size:
The size of the hash table for the marked substrings of
slice can not be more than the available memory. This is
determined by iteratively incrementing the split location.

In our experiments, we used the BLAST [1] for com-
parison. According to our experimental results, MAP runs
20 to 97 times faster than BLAST. Furthermore, MAP can
work well even for small memory sizes. Unlike the mas-
sive data structures used by current techniques, the size
of the MRS index structure is only 1-2% of the database.



MAP achieves these performance improvements while

keeping quality of the resulting answer set very close to

that of BLAST. Detailed experimental evaluation of MAP

is available in [3].
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MAP is a very general technique, in the sense that its
Match Table based pruning and dynamic splitting scheme
tools. Hence, one can view MAP as a technique that im-
proves the available techniques instead of as a competitor

can be used to improve any of the current string search
to these techniques.
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Figure 2. (a) An illustration of Match Table on query ¢ and

database s. The black dots correspond to True entries. (b-e) The
slices determined by the MAP algorithm. we assume that the

available memory can store the hash table for 3 pages at most.



