DBProxy: A dynamic data cache for Web applications

Khalil Amiri
IBM T.J. Watson Research Center
Hawthorne, NY
amirik@us.ibm.com

Renu Tewari
IBM Almaden Research Center
San Jose, CA
tewarir@us.ibm.com

Abstract

The majority of web pages served today are generated
dynamically, usually by an application server querying a
back-end database. To enhance the scalability of dynamic
content serving in large sites, application servers are of-
floaded to front-end nodes, called edge servers. The im-
provement from such application offloading is marginal,
however, if data is still fetched from the origin database
system. To further improve scalability and cut response
times, data must be effectively cached on such edge servers.
The scale of deployment of edge servers and the rising
costs of their administration demand that such caches be
self-managing and adaptive. In this paper, we describe
DBProxy, an edge-of-network semantic data cache for web
applications. DBProxy is designed to adapt to changes
in the workload in a transparent and graceful fashion by
caching a large number of overlapping and dynamically
changing “‘materialized views”. New “views” are added
automatically while others may be discarded to save space.
In this paper, we discuss the challenges of designing and im-
plementing such a dynamic edge data cache, and describe
our proposed solutions.

1 Introduction

Data accessed via the Web is increasingly dynamic,
generated on-the-fly in response to a user request or cus-
tomer profile. Examples of such dynamic data include per-
sonalized web pages, targeted advertisements or online e-
commerce interactions. Dynamic data is served using a 3-

*The author performed this work while at the IBM T. J. Watson Re-
search Center

Sanghyun Park*

Pohang University of Science and Technology

Pohang, Korea
sanghyun@postech.ac.kr

Sriram Padmanabhan
IBM T.J. Watson Research Center
Hawthorne, NY
srp@us.ibm.com

tiered architecture consisting of a web server, an applica-
tion server and a database; data is stored in the database
and is accessed on-demand by the application server com-
ponents and formatted and delivered to the client by the web
server. To improve scalability and performance, caching
at edge servers has been widely deployed on the web for
static HTML pages. For dynamic content, which requires
database accesses, caches are typically by-passed by mark-
ing the content uncacheable. Recent work has targeted ex-
tending the static caching concept by storing the result of a
dynamic web request as HTML fragments or other formats
indexed by the exact URL string or HTTP request header.
Consistency, limited reuse of cached data, and cache space
management, however, can easily gate the scalability of
these schemes.

In more recent architectures, the edge server (which col-
lectively refers to client-side proxies, server-side reverse
proxies at the edge of the enterprise, or caches within a
content distribution network (CDN) [2]) acts as an appli-
cation server proxy by offloading application components
(e.g., servlets, Java Server Pages, Enterprise Beans) to the
edge [14]. Edge execution not only increases the scalability
of the back-end, it reduces the client response latency and
avoids over-provisioning of back-end resources as the edge
resources can be shared across sites. In such an architec-
ture, the edge server becomes an application-server proxy
by handling some dynamic requests locally and forward-
ing others that cannot be serviced to the back-end. Appli-
cation components executing at the edge access the back-
end database through a standardized interface (e.g., JDBC).
The combination of dynamic data and edge-of-network ap-
plication execution introduces a new challenge. If data is
still fetched from the remote back-end, then the increase in
scalability due to distributed execution is marginal. Conse-
quently, caching—the proven technique for improving scal-

ability and performance in large-scale distributed systems—
needs to evolve to support structured data caching at the
edge.

In this paper, we describe a practical architecture for a
self-managing data cache at the edge server to further ac-
celerate Web applications. Our prototype, called DBProxy,
intercepts JDBC SQL requests to check if they can be sat-
isfied locally. DBProxy’s local data cache is a stand-alone
database engine that maintains partial but semantically con-
sistent materialized views of previous query results. To
avoid the significant overlap among cached query results
and storage redundancy, DBProxy employs a common-
schema table storage policy that stores results in a common
local table as far as possible. The common table adds new
challenges to cache replacement as the underlying data is
shared across results. The cache replacement mechanisms
address these challenges and adjust to operate under var-
ious space constraints using a cost-benefit based replace-
ment policy.

DBProxy decides dynamically what views are worth
caching for a given workload; new views are added on
the fly and others removed to save space and improve ex-
ecution time. Such dynamic changes add new challenges
to the consistency maintenance. Furthermore, such a dy-
namic semantic cache can contain hundreds to thousands
of queries. To decide if a new query is a cache hit, it
has to be tested for containment against all plausible pre-
viously cached queries. Sophisticated query containment
algorithms are required that can scale to such large cache
sizes. In this paper, we discuss the various challenges to
dynamic edge data caching, describe how we address them,
and report on a summary evaluation of our proposed ap-
proach.

Our discussion of DBProxy in this paper is organized as
follows. Section 2 discusses the challenges of adaptive and
dynamic data caching. Section 3 describes the design and
implementation details of DBProxy. Section 4 reports on a
summary evaluation of its performance. Section 5 reviews
related work and Section 6 summarizes our conclusions.

2 Challenges of dynamic data caching

While offloading application server components to the
edge server can improve scalability, the real performance
benefit remains limited by the back-end database access.
For further improvement in access latency and scalability
data needs to be cached at the edge servers. There are sev-
eral approaches to data caching on the edge, mainly includ-
ing full replication and materialized views.

Replication relies on an administrator to define what
must be cached. The local tables simply mirror the cor-
responding back-end base tables. Full database replication
is often undesirable because it incurs a large space over-

CUSTOVER ORDERS ORDER_LI NE | TEM
CID olID a_ID I_ID
> UNANE —L. ocCID —l—. o oID ITITLE
C_PASSVD O DATE a_I_ID I_AID
C_FNAME O_SUB_TOTAL a._qry | _PUB_DATE
C_LNAME O_TAX OL_DI SCOUNT | _PUBLI SHER
C_ADDR_I D O_TOT, OL_COMVENT | _SUBJECT
C_PHONE O_SHI P_TYPE | _DESC
C_EMAI L O_SHI P_DATE | _RELATED 1- 5]
C_SINCE O BI LL_ADDR | D | “THUMBNAI L
C_LAST VISIT O_SHI P_ADDR_| D 1 _I MAGE
CLOGN O_STATUS IOR 1 _SRP
C_EXPI RATI ON — AUT | —cosT
C_DI SCOUNT ATD 1 ZAVAI L
C_BALANCE A FNAMVE | _STOCK
C_YTD_PMr A _LNANVE | _I SBN
C_BI RTHDATE A MNANVE | “PAGE
C_DATA A DOB | “BACKI NG
A BIO | _DI MENSI ON

Figure 1. Simplified database schema of an on-line book-
store used by the TPC-W benchmark.

head, and edge server resources are usually limited. Query
response caches, on the other hand, eliminate the need for
administrator control by dynamically caching data, but store
data in separate tables for exact matching, thereby, resulting
in excess storage redundancy.

The materialized view approach for data caching [6, 13],
uses a separate table for each view, and relies on an ad-
ministrator for view definition [30]. Their effectiveness in
caching data on the edge hinges, however, on the “proper
view” being defined at each edge cache. In some envi-
ronments, where each edge server is dedicated to a dif-
ferent community or geographic region, determining the
proper view to cache can require careful monitoring of the
workload, involve complex trade-offs, and presume knowl-
edge of the current resource availability at each edge server.
When resources and workloads exhibit changes over time,
for example, in response to advertisement campaigns or re-
cent news, the views cached may have to be adapted by the
administrator.

2.1 Edge data caching requirements

The scale of deployment of edge servers and the rising
costs of their administration demand that such caches be
self-managing and adaptive. More specifically, we distin-
guish the following key design requirements for a dynamic
data cache:

¢ Database independence: Edge applications can access
multiple back-end databases, which can have different
schemas and possibly reside in DBMSs from different
vendors. As aresult, the edge data cache should ideally
not assume any particular DBMS or database schema.
Furthermore, it should allow data cached from multi-
ple back-ends to share the space resources available at
the edge.

e Self-management: The cache should adapt dynam-
ically to the workload and the available resources.

We would like the cache to contain a large number
of materialized views, matching the application ac-
cess patterns. Views are added on-the-fly in response
to queries from the edge application that miss in the
cache, although the actual added view may be a gen-
eralization of an application’s query. This eliminates
the need for an administrator to decide or optimize the
particular materialized view for each edge cache.

e Fast query matching: A dynamic cache can contain a
large number of cached queries, potentially hundreds
or thousands. At the same time, it must be able to
quickly detect if a new query is a cache hit. Therefore,
it should be able to perform efficient query matching,
i.e., determine if a new query is answerable by the
union of cached views quickly even as the cache size
grows.

o Efficient space management: Given that a dynamic
data cache will contain a large number of cached
queries or views, the cache needs to reduce the over-
head of redundant storage by storing the large num-
ber of overlapping views in common-tables rather than
each one separately. Moreover, space has to be op-
timized by evicting views that add low benefit while
ensuring that any shared data is not removed.

e Consistency: Consistency has to be maintained effi-
ciently in the presence of a large and varying number
of views. The amount of work done to maintain the
consistency of edge caches should scale well with the
number of caches and their size.

2.2 E-commerce example

Consider for example an e-commerce site such as an on-
line bookstore. Figure 1 shows a typical simplified schema
for such a database. The example is derived from the
schema used by the TPC-W benchmark which is used in
our evaluation experiments. This on-line site allows key-
word searches based on author names, titles, bestseller lists,
related books purchased etc. The benchmark, like many
real-world e-commerce applications, contains a variety of
query types. Consider the searching the item table based on
cost or suggested retail price:

Qa: SELECT i_avail, i_cot FROM item WHERE i_cost < 5
Qg: SELECT i.avail, i_cost FROM item WHERE i_cost > 25
Qn: SELECT i_srp, i-cost FROM item WHERE i_srp

BETWEEN 30 AND 65
Such queries should be cached and used to answer new
queries whose constraints are contained in the above ranges.
To avoid redundancy, the cache needs to share storage
across the overlapping vertical and horizontal sections of
the item table retrieved by these queries. Moreover, upon
receiving a new query, the cache needs to verify if this new

Edge application

T

; SQL (JDBC)

JDBC mterface ﬁ

Query Parser i
\—‘\ Query Evaluator L\Cache !

Index
‘ Resource‘ ‘Catalog‘ Consstency

DBProxy JDBC driver

Module

I
I
I
I
I
:
I
'| Query Matching
I
I
I
I
I
I
I

@
Manager Manager Repos tony,

to back—end

Figure 2. DBProxy key components.

query is contained in the union of data sets retrieved by
tens to hundreds of queries like the one above. This query
matching operation must be efficient and scale well with
the number of cached queries. Furthermore, in the event
of a change to the base item table at the origin, the amount
of work required to update the cached “views” should scale
well with the number of queries cached.

3 DBProxy Architecture

The architecture of DBProxy assumes that the applica-
tion components are running on the edge server (e.g., using
the IBM Websphere Edge Server [14]). The edge server
receives HTTP client requests and processes them locally;
passing requests for dynamic content to application com-
ponents which in turn access the database through a JDBC
driver. The JDBC driver manages remote connections from
the edge server to the back-end database server, and sim-
plifies application data access by buffering result sets, and
allowing scrolling and updates to be performed on them.
DBProxy is implemented as a JDBC driver which is loaded
by edge applications. It therefore transparently intercepts
application SQL calls and determines if they can be satis-
fied from the local cache.

3.1 Design Overview

As shown in Figure 2, the cache functionality is con-
tained in several components. The query evaluator is the
core module in DBProxy and contains the caching logic. It
determines whether an access is a hit or a miss by invoking
a query matching module which takes the query constraint
and its other clauses as arguments. The query evaluator also
decides whether the results returned by the back-end on a
miss should be inserted in the cache. It rewrites the queries
that miss in the cache before passing them to the back-end to
prefetch data and improve cache performance. The resource

result

query result
4
remote Rewrite | no yes Execute query
execute [query [T\ M7 oo » onlocal cache and
return result
H 7
| query : : result
No_~insert™\ yes insert result Coche
ocally? and return it Repositor

.

Figure 3. Cache hit and miss processing. The dashed
arrows represent the hit path and the solid arrows represent
the miss path. Query misses do not always insert data in the
local cache.

manager maintains statistics about hit rates and response
times, and adapts cache contents and configuration param-
eters accordingly. The consistency manager is responsible
for maintaining cache consistency. The processing paths of
a hit and a miss are shown in Figure 3.

DBProxy employs novel techniques for data storage,
query matching, consistency maintenance, and cache re-
placement to achieve the desired efficiency. We overview
these various aspects in the remainder of this section.

3.2 Cache Repository

Data in a DBProxy edge cache is stored persistently in
a local stand-alone database. The contents of the edge
cache are described by a cache index containing the list
of queries. To achieve space efficiency, data is stored in
common-schema tables whenever possible such that multi-
ple query results share the same physical storage. Queries
over the same base table are stored in a single, usually par-
tially populated, cached copy of the base table. Join queries
with the same “join condition” and over the same base table
list are also stored in the same local table. This scheme not
only achieves space efficiency but also simplifies the task
of consistency maintenance. A local result table is created
with as many columns as selected by the query. The col-
umn type and metadata information are retrieved from the
back-end server and cached in a local catalog cache.

As an example, consider the ‘item’ table shown in Fig-
ure 1. It has 22 columns with the column i_id as a primary
key. Figure 4 shows the shared local table after inserting
the results of two queries Q1 and Q> in the locally cached
copy of the item table. This local table can be considered
as a vertical and horizontal subset of the back end ‘item’ ta-
ble. Both queries are rewritten if necessary to expand their
select list to include the primary key, i_id, of the table so
that locally cached rows can be uniquely identified. This
avoids storing duplicate rows in the local tables when the

Cached itemtable:

(i [o [reo]
|

340%| 16%| 13 5| 2

Retrieved by Q
SELECT cost, msrp FROM item
WHERE cost BETWEEN 14 AND 16
Retrieved by Q,
SELECT msrp FROM item
WHERE msrp BETWEEN 13 AND 20

450 _INULL| 18
620 _|NULL| 20

m Inserted by consistency protocol

Figure 4. Local storage. The local item table entries af-
ter the queries Q1 and Q, are inserted in the cache. The
first three rows are fetched by Q and the middle three are
fetched by Q. Since Q2 did not fetch the i_cost column,
NULL values are inserted.

result sets of queries overlap. The local ‘item’ table is cre-
ated just before inserting the three rows retrieved by Q1 with
the primary key column and the two columns requested by
the query (i_cost and i_srp). Since the table is assumed ini-
tially empty, all insertions complete successfully. To insert
the three rows retrieved by Q», we first check if the table has
to be altered to add any new columns (not true in this case).
Next, an attempt is made to insert the three rows fetched
by Q2. Observe from Figure 4 that the row with i_id = 340
has already been inserted by Q1, and so the insert attempt
would raise an exception. In this case, the insert is changed
to an update statement. Also, since Q2 did not select the
i_cost column, a NULL value is inserted for that column.
Sometimes, a query will not fetch columns that are defined
in the locally cached table where its results will be inserted.
In such a case, the values of the columns that are not fetched
are set to NULL. The presence of “fake” NULL values in
local tables raises the concern that such values may be ex-
posed to application queries. However, DBProxy’s contain-
ment checker ensures that the cache does not return incor-
rect (e.g., false NULLSs) or incomplete results.

Table creation. To reduce the number of times the
schema of a locally cached table is altered, our approach
consists of observing the application’s query stream initially
until some history is available to guide the initial definition
of the local tables. The local table’s schema definition is
a tradeoff between the space overhead of using the entire
back-end schema (where space for the columns is allocated
but not used) and the overhead of schema alterations. If it
is observed that a large fraction of the columns need to be
cached then the schema used is the same as that of the back-
end table. For example, after observing the list of queries
Qa through Qn (of Section 2.2) to the item table, the fol-

lowing local table is created:
CREATE TABLE
(i-id INTEGER NOT NULL,
i_srp DOUBLE,

local .item
i_avail DATE, i.cost DOUBLE,
PRIMARY KEY (i_id))

Join queries. The results of a join query are stored in
a single table, that is described by the table list in the join
query as well as the join constraint. When the join queries
operate on the same table list and have the same join condi-
tion, the results of joins are inserted in the same table. The
name of the local table for the query is stored in the cache
index entry.

3.3 Query matching

To handle a large and varying set of cached views, the
query matching engine of DBProxy must be highly op-
timized to ensure a fast response time for hits. Cached
queries in DBProxy are organized according to a multi-level
index. The first level of the index is the database schema.
The second level is the table or list of tables accessed by
the query. Finally, the third level of the index contains the
columns named in any of the query’s clauses. Hash tables
are used to allow quick search of each level.

A new query received by DBProxy is parsed into its con-
stituent clauses. In particular, the query’s WHERE clause is
stored as a boolean expression that represents the constraint
predicate. The leaf elements of the expression are simple
predicates of the form “col op value” or “col op col”. These
predicates can be connected by AND, OR, or NOT nodes
to make arbitrarily complex expressions. Once the query
is parsed, the cache index is accessed to retrieve the set
of queries that operated on the same tables and retrieved
a super-set of the columns required by the new query. A
query matcher is invoked to verify whether the result set of
this new query is contained in the union of the results of the
previously cached candidate queries.

Baseline matching algorithm. The result of query Qg
is contained in that of query Qa if for all possible val-
ues of the items in the database, the WHERE predicate
of the former logically implies that of the latter. That is:
Qg.wherep = Qa.wherep. This is equivalent to the state-
ment that Qg.wherep AND (NOT (Qa.wherep)) is unsatis-
fiable. Taking the particular queries Qa and Qg mentioned
in Section 2.2 as an example, the query matching mod-
ule will test the following expression for unsatisfiability:
i_cost <5AND NOT (i_cost > 25). Since this expression is
satisfiable, “i_cost = 4” being one particular solution, then
Qg is not contained in Qa. Checking for the containment
of one query in the union of multiple queries simply re-
quires considering the logical OR of the WHERE predicates
of cached queries for unsatisfiability verification.

The baseline algorithm is based on the algorithm de-
scribed in [24, 17] which decides satisfiability for expres-
sions with integer-based attributes. We extend that algo-
rithm to handle floating point and string types. Floating
point types introduce complexities because the plausible in-
tervals for an attribute can be open. Our algorithm is ca-

pable of checking containment for clauses that include dis-
junctive and conjunctive predicates including a combination
of numeric range, string range and set membership predi-
cates.

Template-based query matching. While the above
baseline algorithm can handle complex and general pred-
icates, it can induce significant overhead when the cache
contains a large number of queries [4]. We observe, how-
ever, that most applications issue template-based queries
whose selection predicates share the same structure and
vary only in a few numeric or string constants. DBProxy
exploits the template-based nature of application query
streams to reduce containment checking overhead by an
order of magnitude. Speficically, similar queries (that are
instantiations of the same template) are aggregated in the
cache, and their predicates merged together, using special-
ized data structures, which we call merged aggregate pred-
icates, or MAPs. When a new query is received, it is
first checked for containment in the MAP corresponding to
the aggregation of previously cached and similar queries.
MAPs are augmented with indexes to allow for fast search.
Containment checking is thus converted into an index-based
data search, achieving significant speedups [4].

3.4 Consistency

DBProxy ensures data consistency by subscribing to a
stream of updates propagated by the origin server. Tradi-
tional materialized view approaches update cached views
by re-executing the view definition against the change
(“delta”) in the base data. DBProxy requires a more effi-
cient mechanism, however, because of the potentially large
number of queries that it caches.

Since cached data is maintained as partially populated
copies of back-end tables, changes committed to the base
tables at the origin can be simply propagated “as is” to the
cached versions, without the need to re-execute the queries.
Updates, deletes and inserts (UDIs) to base tables are prop-
agated and applied to the partially populated counterparts
on the edge. Future queries that will execute over the
cache will retrieve from these newly propagated changes
any matching tuples. This solution presumes slowly chang-
ing data, typical of most web environments, and trades off
potentially unnecessary data propagation for lowering the
processing overhead of determining how the cached views
should be updated. However, when a table is undergoing
a heavy update workload, DBProxy can disable the local
copy for a specified period.

Read-only queries issued by edge applications are satis-
fied from the cache whenever possible. Update transactions
are always forwarded to the back-end database for execu-
tion, without first applying them to the local cache. Because
DBProxy is designed for large scale deployment, its consis-

tency protocol must be as loosely coupled from the origin as
possible. Consequently, the onus of ensuring cache consis-
tency should fall as much as possible on the edge caches—
where resources scale more naturally. The back-end server
should only be responsible for periodic update propagation,
atask that can be offloaded to a separate process or machine.

3.4.1 Consistency guarantees

While many web applications can tolerate slightly stale data
in the edge cache, they are nevertheless interested in rea-
sonable consistency guarantees. For example, applications
usually require that they observe the effects of their own
updates on an immediate subsequent query. Since a query
following an update can hit locally in a stale cache, updates
not yet reflected in the cache would seem to have been lost,
resulting in strange application behavior. In this section,
we describe three specific consistency properties which are
individually or collectively desirable for distributed web ap-
plications.

Let D; be the set of committed tuples at the origin
database at time t. Dy is therefore the state of the database
at time t and reflects the set of transactions that committed
at the origin server before and up to time t. At any point in
time, the DBProxy edge data cache contains a subset of the
tuples in the origin database. Let C; denote the set of tuples
present in the DBProxy edge data cache at time t. We de-
fine the following three properties, which are guaranteed by
DBProxy at increasingly higher performance costs:

P1: Lag () consistency with respect to the origin. The
state of the cache C; at time t is considered lag-consistent
with the origin database, if there exists a time lag such that
the state of the cache corresponds to the state of the database
0 time units ago: C; = D;_s. We interpret this equality to
mean that the values of the tuples in the local cache equal
those at the back-end at an earlier time, although the cache
may have less tuples.

P,: Monotonic state transitions. This implies that the
state of the database exported by DBProxy moves only for-
ward in time. That is, if an edge application observes a
database state Dy, and later observes a state Dy, , thenty > t1.

P3: Immediate visibility of updates. This requires that
if an application commits an update and later issues a query,
the query should observe the effects of the update (and all
previous updates).

DBProxy relies on a data propagator, which captures all
UDIs to the tables at the origin and forwards them to the
edge caches. Data changes are propagated to the edges
tagged by their transaction identifiers and applied to the
edge cache in transaction commit order. The stream of in-
coming UDIs, reflecting the effects of transactions commit-
ted at the origin site, is applied to the locally cached tables.
The challenge, in ensuring lag consistency in DBProxy

arises because local tables can be updated by propagation
messages as well as by query result inserts on a miss.
DBProxy incorporates algorithms that ensure that lag con-
sistency is maintained upon result inserts. Separate proto-
cols are used to provide the additional consistency proper-
ties if specified by the application. The details of the algo-
rithms are fully described in a technical report [3].

3.5 Cache replacement

The consistency protocol requires that all inserts, up-
dates and deletes performed at the origin site to any cached
table be propagated to the edge cache. Consequently, the
cache can contain data that does not belong to any cached
query. Furthermore, data that is not effectively used must
be evicted to limit space overhead and optimize the usage
of usually limited edge resources. To manage limited space
resources on the edge, DBProxy relies on a background
garbage-collection process which evicts unused data from
the cache safely, while preserving data consistency. Specifi-
cally, the goal of cache replacement is to maximize the ben-
efit of the cache for a limited amount of available space.
In contrast to traditional replacement of files and memory
pages, the underlying rows can be shared across multiple
queries, complicating the task of query eviction. Cache re-
placement in DBProxy ensures that the following two prop-
erties are maintained.

Property 1 When evicting a victim query from the cache,
the underlying tuples that belong to the query can be deleted
only if no other query that remains in the cache accesses the
same tuples.

Property 2 The tuples inserted by the consistency manager
that do not belong to any of the results of the cached queries
are eventually garbage collected.

The cache replacement component of DBProxy consists
of a replacement policy, that determines what to replace,
and a replacement mechanism, that determines how to re-
move the data such that the above properties are maintained.
The function of the cache replacement policy, is to deter-
mine the set of queries to replace from the cache. Given
a space constraint, it tries to maximize the benefit of stor-
ing the query results locally for the space used, similar to
the traditional knapsack problem. Determining the benefit
of a query depends on multiple factors, namely: recency of
access, frequency of access, miss cost versus hit cost, and
the frequency of updates. This benefit is offset by the space
usage of the query.

Cache replacement is triggered when the space usage of
the local database reaches a high watermark (HWM) value.
The replacement then begins until space is sufficiently freed

and reaches below a low watermark (LWM) value. The re-
placement is not triggered on demand on a query miss when
there is no space to insert more rows in the local tables or
to create a new table. Replacement is a background process
and can be expected to proceed concurrently with query ser-
vicing and update operations.

A deeper discussion of alternative mechanisms for re-
placement, their properties and analysis can be found in [5].
We biefly describe here one of the mechanisms, group re-
placement, which is simple to implement and adds no over-
head on hit, miss, or update propagation. Based on the re-
placement policy, a set of “victim” queries are marked for
deletion. To ensure that the non-overlapping rows, which
belong to only “victim” queries are properly marked, we
carry out the following steps. First, an “accessed” flag *
associated with all cached rows is set to false. Then, non-
victim queries are executed in the background. This back-
ground execution can occur over an extended period to not
affect the performance of foreground queries. Whenever a
query is executed, the “accessed” flag of any selected row
is set to true. At the end of this execution cycle, any row
whose flag remains false can be safely deleted. To prevent
rows that have been inserted or updated by a cache miss or
by the consistency manager during the garbage collection
cycle, from getting deleted, we set their “accessed” flag to
true. The following two claims hold for the group replace-
ment algorithm:

Claim 1 Group replacement guarantees that: (i) no tuple is
deleted, if it belongs to the results of a query which remains
in the cache index, and (ii) if a tuple is never accessed it will
be eventually removed from the cache.

Claim 2 DBProxy, with consistency and group replace-
ment enabled, guarantees that local executions will return
correct and entire results.

4 Experimental Evaluation

In this section, we present an experimental study of the
performance impact of data caching on edge servers. We
implemented the caching functionality transparently by em-
bedding it within a modified JDBC driver. Exceptions that
occur during the local processing of a SQL statement are
caught by the driver and the statement is forwarded to the
back-end. The results returned from the local cache and
from the remote server appear indistinguishable to the ap-
plication.

Evaluation methodology and environment. Figure 5
represents a sketch of the evaluation environment. Three
machines are used to emulate client browsers, an edge

1This flg is implemented as a column defi ned during the creation of
locd tables.

Origin Server
- Pentium-111 1G Mhz
- 256 MB memory _

Edge Server
- Pentium-11 400 Mhz
- 128 MB memory

100 Mbp

Client Machine

i
- Pentium-11 200 Mhz - %
-64MB memoryjAMbps

Figure 5. Evaluation environment. Three machines were
used in the evaluation testbed based on the TPC-W bench-
mark. The client machine was used to run the workload
generator, which applied a load equivalent to 8 emulated
browsers. All machines ran Linux RedHat 7.1. Apache-
Tomcat 3.2 was used as the app server.

server and an origin server respectively. A machine more
powerful than the edge server is used for the origin server
(details in Figure 5). A fast Ethernet network (100 Mbps)
was used to connect the three machines. To emulate wide-
area network conditions between the edge and the back-end
server, we artificially introduce a delay of 225 milliseconds
for remote queries. This represents the application end-to-
end latency to communicate over the wide area network,
assuming typical wide area bandwidths and latencies. DB2
V7.1 was used in the back-end database server and as the
local cache in the edge server.

We used the TPC-W e-commerce benchmark in our eval-
uation. In particular, we used a Java implementation of the
benchmark from the University of Wisconsin [20]. The
TPC-W benchmark emulates an online bookstore appli-
cation, such as amazon.com. The browsing mix of the
benchmark includes search queries about best-selling books
within an author or subject category, queries about related
items to a particular book, as well as queries about cus-
tomer information and order status. However, the bench-
mark has no numeric or alphabetical range queries. The
WHERE clause of most queries is based on atomic predi-
cates employing the equality operator and connected with
a conjunctive or a disjunctive boolean operator. We used
this standard benchmark to evaluate our cache first. Then,
we modified the benchmark slightly to reflect the type of
range queries that are common in other applications, such
as auction warehouses, real-estate or travel fare searches,
and geographic area based queries. To minimize the change
to the logic of the benchmark, we modified a single query
category, the get-related-items query. In the standard im-
plementation, items related to a particular book are stored
in the table explicitly in a priori defined columns. Inquiring

Summary Performance

w

=]

=]

=]
T

[*)

G

=]

S
T

2000
1500 -

1000 —

v

=]

=]
T

Average Response Time (msec)

P
%,
a,

’
%

Configuration

Figure 6. Summary of cache performance using the TPC-
W benchmark. The four cases are: (i) Base TPC-W with
a 10K item database, (ii) Base TPC-W with a 100K item
database, (iii) Modified TPC-W with a 100K item database,
(iv) Modified TPC-W with a 100K item database and a
loaded back-end.

about related items to a particular book therefore simply re-
quires inspecting these items, using a self-join of the item
table. To model range queries, we change the get-related-
items query to search for items that are within 5-20% of the
cost of the main item. The query returns only the top ten
such items (ordered by cost). The actual percentage varies
within the 5-20% range and is selected using a uniform ran-

dom distribution to model varying user input:
SELECT i_id, i_thumbnail FROM item
WHERE i_cost BETWEEN 284 AND 340
ORDER BY i_cost FETCH FIRST 10 ROWS ONLY

The range in the query is calculated from the cost of the
main item which is obtained by issuing a (simple) query.
Throughout the graphs reported in this section, we refer
to the browsing mix of the standard TPC-W benchmark as
TPC-W and the modified benchmark as Modified-TPC-W,
or Mod for short. We report baseline performance num-
bers for a 10,000 (10K) and 100,000 (100K) item database.
Then, we investigate the effect of higher load on the origin
server, skew in the access pattern, and dynamic changes in
the workload on cache performance.

We focus on hit rate and response time as the key mea-
sures of performance. We measure query response time as
observed by the application (servlets) executing at the edge.
Throughout the experiments reported in this section, the
cache replacement policy was not triggered. The TPC-W
benchmark was executed for an hour (3600 seconds) with
measurements reported for the last 1000 seconds or so. The
reported measurements were collected after the system was
warmed up with 4000 queries.

Baseline performance impact. Figure 6 graphs aver-
age response time across all queries for four configurations:

(i) TPC-W with a 10K item database, (ii) TPC-W with
a 100K item database, (iii) Modified-TPC-W with 100K
item database, and (iv) Modified-TPC-W with 100K item
database and a loaded origin server. There are three mea-
surements for each configuration: (i) no cache (all queries
to back-end), (ii) cache all, and (iii) cache no Top-N queries.
Consider first the baseline TPC-W benchmark, or the two-
leftmost configurations in the figure. The figure shows
that response time improvement is significant, ranging from
13.5% for the 10K case to 31.7% for the 100K case. Note
that the improvement is better for the larger database, which
may seem at first counter-intuitive since the hit rate should
be higher for smaller databases. We observed, however, that
the local insertion time for the 10K database is higher than
that for the 100K case due to the higher contention on the
local database.

The performance impact when the caching of Top-N
queries is disabled is given by the rightmost bar graph in
each of the configurations of Figure 6 (CacheNoTopN).
Note that depending on the load and database size, caching
these queries which happen also to be predominantly
multi-table joins, may increase or decrease performance.
DBProxy’s resource manager collects response time statis-
tics and can turn on and off the caching of different queries
based on observed performance. The effect of server load
(the rightmost configuration in Figure 6) is discussed below.

Hit rate versus response time. The remaining experi-
mental results focus on the 100K database size. Table 1 pro-
vides a breakdown of response times and hit rates for each
query category for the base TPC-W and Modified-TPC-W
benchmarks running against a 100K item database. Hit rates
vary by category, with the overall hit rate averaging 73% for
the baseline benchmark and 50% for the modified bench-
mark. Observe that although the hit rates are significantly
higher in the baseline TPC-W the response time improve-
ment was higher under the Modified-TPC-W benchmark.
This is because Modified-TPC-W introduces queries that
have a low hit cost but a high miss cost. The query matching
time for the modified TPC-W was also measured to be lower
than that of the original TPC-W because the inclusion of the
cost-based range query (with the query constraint involves
a single column) reduced the average number of columns
in a WHERE clause. The table also provides a compari-
son between the caching configuration and the non-caching
configuration in terms of average response times across all
query categories (the two bottom rows of the table).

Effect of server load. One advantage of caching is that
it increases the scalability of the back-end database by serv-
ing a large part of the queries at the edge server. This re-
duces average response time when the back-end server is
experiencing high load. Under high-load conditions, perfor-
mance becomes even more critical because frustrated users
are more likely to migrate to other sites. In order to quantify

Baseline TPC-W Modified TPC-W
Query Response | Hit Query Response | Hit Query
Category time rate | frequency time rate | frequency
Simple 51 91 % 23 % 317 37% 47 %
Top-N 935 68 % 12 % 852 66 % 37 %
Exact-match 211 76 % 65 % 458 54 % 15 %
| Total | 263 [73% | 100% || 540 [50% | 100% |
| NoCache || 385 [- | 100% || 1024 | - | 100% |

Table 1. Cache performance under the baseline and modified TPC-W benchmarks. Database size was 100K items and 80K
customers. The workload included 8 emulated browsers executing the browsing mix of TPC-W.

Breakdown of Miss and Hit Cost
(100K, Modified TPC-W, Loaded Server)

Local Insertion
Network Delay
Query Execution
770 Query Matching

.

.

-

Average Response Time (msec)
8

=)

Query Category

Figure 7. Breakdown of miss and hit cost under modified
TPC-W with a loaded origin server.

this benefit, we repeated the experiments using a Modified-
TPC-W benchmark while placing an additional load on the
origin server. The load was created by invoking another
additional and equal number of emulated browsers directly
against the back-end. This doubled the load on the origin
for the non-caching configuration.

The two right-most configurations (100K Mod and 100K
Mod,Load) in Figure 6 correspond to the Modified TPC-W
benchmark running against a 100K item database with and
without additional server load. The graph shows that in-
creased server load resulted in more than doubling the aver-
age response time, increasing by a factor of 2.3 for the non-
caching configuration. When caching at the edge server was
enabled, the average response time increased by only 14%.
Overall, the performance was improved by a factor of 4.
Figure 7 shows the break-down of the miss and hit cost re-
spectively for the loaded server case. Although not shown in
the figure, we measured the remote execution time to double
under load. Thus, and despite the cost of query matching in
our unoptimized implementation, local execution was still

very effective.

Effect of access skew. To investigate the effect of access
skew on cache performance, which is more pronounced at
the edge servers targeting a homogeneous user population,
we modified the benchmark to exhibit a limited degree of
skew in the search query distribution. Hot-sets are com-
mon in queries from real workloads, e.g., a skew based on
the customers that are active or topics in the news recently.
The standard benchmark selects the subject of a book that is
queried by clients from a uniform distribution. We change
this distribution to a Zipf distribution with parameter 0.9.
Results showed that cache performance improves by 15%
under skewed access while the no-cache performance im-
proves by only 2%. Hit rates for the exact-match and Top-N
query categories improve by about 3% each. This is ex-
pected since higher locality is likely to improve the per-
formance of the caching configuration more than the non-
caching configuration.

Template-based query containment checking. In the
experiments reported in this section, the baseline query con-
tainment checking algorithm was used. To estimate the ben-
efit of template-based containment checking, we performed
the following two experiments. In the first, we execued the
TPC-W benchmark against a cache employing a traditional
containment checker, and in the second against a cache us-
ing template-based containment checking. The benchmark
was executed for ten minutes to warm up the cache, then
end-user response time was measured. We recorded an av-
erage response time improvement of 61% when template-
based containment checking was used.

Overhead of replacement algorithm. To estimate the
cost of our group replacementalgorithm on the performance
of the cache, we measured the average query response time
for TPC-W — executing against the small database with
8 emulated browsers — with replacement and without re-
placement. In both cases, the same number of queries were
actually used by the cache. In the without replacement case,
victim queries were hidden from the cache index, but their
data was not deleted from cached tables. For replacement,

the background execution of the group replacement algo-
rithm deleted the excess rows of victim queries. We found
that the overhead of cleaning, in terms of slow-down of
foreground queries, was low, around 10%, when 50% of
the queries in the cache were evicted (i.e., half had to be
executed by the group-replacement algorithm). Note that,
in general, the execution overhead of group replacement
grows with the number of queries that are to be maintained
in the cache, and not with the number of queries that are
to be evicted. Consequently, it is advantageous to start the
group replacement algorithm, on reaching the LWM, when
a large number of queries can be evicted such that a signifi-
cant amount of space can be recovered.

5 Redated work

DBProxy leverages a wealth of previous work in the ar-
eas of web caching, content distribution networks, database
caching, materialized views and query processing. Caching
of static Web data has been extensively studied [29, 12, 28,
26] and deployed commercially [2]. More recent work has
focused on caching dynamic data [10, 19, 9] represented
in the cache as HTML or XML. While these approaches
store data separately in unstructured forms, increase re-
dundant storage and rely on invalidation-based consistency,
DBProxy minimizes redundant storage and provides lag-
consistency with update propagation. Semantic caches have
been proposed in client-server database systems [8]. The
semantic cache proposal, however, only handles read-only
databases. DBProxy is similar, in concept, to the work
on semantic caching but it supports consistency and dif-
fers in the implementation approach. A simplified form
of semantic caching targeting web workloads and using
queries expressed through HTML forms has been recently
proposed [19]. The caching of query results has also been
proposed for specific applications, such as high-volume ma-
jor event websites [10, 16]. The set of queries in such sites
is known a priori and the results of such queries are up-
dated and pushed by the origin server whenever the base
data changes.

The importance of database scalability over the web has
prompted much industry interest in data caching and dis-
tribution. Database caching schemes, using full or partial
table replication, have been being proposed [22, 27, 21].
These are powerful schemes but require administration and
maintenance costs and incur a large space overhead. Fur-
thermore, most of them require application server modifi-
cations and explicitly bundle the data caching and applica-
tion distribution logic. DBProxy, on the other hand, is self-
managing and does not require any application or database
modification as it is bundled as a JDBC driver.

Much previous work also exists in the area of query con-
tainment and equivalence. The algorithms used for con-

10

tainment checking within DBProxy are based on exten-
sions of previous work in this area [24, 17]. Earlier work
on database caching investigated predicate-based schemes
and views to answer queries [11, 15, 18, 25]. Previous
work in the area of materialized view routing (i.e., answer-
ing queries by rewriting using materialized views) also de-
scribes techniques for matching and containment [7, 18, 6,
30, 23, 13, 1]. DBProxy differs from the materialized view
approach in relying only on the query stream to decide on
cache population and replacement. DBProxy stores views
in common tables and dynamically decides the views that
are to be cached or replaced. Consistency management
in most materialized view approaches does not scale to a
large number of views, while the update propagations on
the common-table used by DBProxy simplifies scalability.

6 Conclusions

Caching content and offloading application logic to the
edge of the network are two promising techniques to im-
prove performance and scalability. While static caching is
well understood, much work is needed to enable the caching
of dynamic content for Web applications. In this paper,
we study the issues associated with a flexible dynamic data
caching solution. We describe DBProxy, a stand-alone
database engine that maintains partial but semantically con-
sistent materialized views of previous query results. Our
cache can be thought of as containing a large number of
materialized views which are added on-the-fly in response
to queries from the edge application that miss in the cache.
It uses an efficient common-schema table storage policy
which eliminates redundant data storage whenever possi-
ble. The cache replacement mechanisms address the chal-
lenges of shared data across views and adjust to operate
under various space constraints using a cost-benefit based
replacement policy. DBProxy includes a scalable template-
based query containment checker, and maintains data con-
sistency efficiently while guaranteeing several useful con-
sistency properties. We evaluated the DBProxy cache using
the TPC-W benchmark, and found that it results in query
response time speedups ranging from a factor of 1.15 to 4,
depending on server load and workload characteristics.

References

[1] F. N. Afrati, C. Li, and J. D. Ullman. Generating efficient
plans for queries using views. In SGMOD Conference,
pages 319-330, 2001.

[2] Akamai Technologies Inc. Akamai EdgeSuite.
http://www.akamai.com/html/en/tc/core_tech.html.

[3] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
DBProxy: A self-managing edge-of-network data cache.
Technical Report RC22419, IBM Research, 2002.

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

(23]

K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. Scalable
template-based query containment checking for web seman-
tic caches. In ICDE Conference, 2003.

K. Amiri, R. Tewari, S. Park, and S. Padmanabhan. On space
management in a dynamic edge data cache. In WebDB Con-
ference (Informal Proceedings), 2002.

R. G. Bello, K. Dias, J. Feenan, J. Finnerty, W. D. Norcott,
H. Sun, A. Witkowski, and M. Ziauddin. Materialized views
in Oracle. In VLDB Conference, pages 659—664, 1998.

S. Chaudhuri, S. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries using materialized views. In
ICDE Conference, pages 190—200, 1995.

S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and
M. Tan. Semantic data caching and replacement. In VLDB
Conference, pages 330—341, 1996.

A. Datta, K. Dutta, H. M. Thomas, D. E. VanderMeer,
K. Ramamritham, and D. Fishman. A comparative study of
alternative middle tier caching solutions to support dynamic
web content acceleration. In VLDB Conference, 2001.

L. Degenaro, A. lyengar, I. Lipkind, and I. Rouvellou. A
middleware system which intelligently caches query results.
In Middleware Conference, pages 24—44, 2000.

P. Deshpande, K. Pamasamy, A. Shukla, and J. F. Naughton.
Caching multi-dimensional queries using chunks. In SG-
MOD Conference, pages 259-270, 1998.

L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache:
A scalable wide-area web cache sharing protocol. In SG-
COMM Conference, 1998.

J. Goldstein and P.-A. Larson. Optimizing queries using ma-
terialized views: A practical, scalable solution. In SGMOD
Conference, pages 331342, 2001.

IBM Corporation. Websphere Edge Server. http://www-
4.ibm.com/software/webservers/edgeserver/.

A. M. Keller and J. Basu. A predicate-based caching scheme
for client-server database architectures. VLDB Journal,
5(1):35-47, 1996.

A. Labrinidis and N. Roussopoulos. Update propagation
strategies for improving the quality of data on the web. In
VLDB Conference, pages 391400, 2001.

P.-A. Larson and H. Z. Yang. Computing queries from de-
rived relations: Theoretical foundations. Technical Report
CS-87-35, Department of Computer Science, University of
Waterloo, 1987.

A. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. An-
swering queries using views. In PODS Conference, pages
95-104, 1995.

Q. Luo and J. F. Naughton. Form-based proxy caching for
database-backed web sites. In VLDB Conference, pages
191-200, 2001.

M. H. Lipasti (University of Wisconsin). Java TPCW Im-
plementation. http://www.ece.wisc.edu/ pharm/tpcw.shtml.
C. Mohan. DBCache (in VLDB 2001 Tutorial).
http://www.almaden.ibm.com/u/mohan/Caching_VVLDB2001.pdf.
Oracle Corporation. Oracle 9iAS Database Cache.
http://lwww.oracle.com/ip/deploy/ias/docs/cachebwp.pdf.

R. Pottinger and A. Levy. A scalable algorithm for answer-
ing queries using views. In VLDB Conference, pages 484—
495, 2000.

11

[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. J. Rosenkrantz and H. B. Hunt. Processing conjunctive
predicates and queries. In VLDB Conference, pages 64—72,
1980.

T. K. Sellis. Intelligent caching and indexing techniques
for relational database systems. Information Systems,
13(2):175-185, 1988.

R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond hierar-
chies: Design considerations for distributed caching on the
internet. In ICDCS Conference, 1999.

Timesten. Front-Tier Data Cache.
http://www.timesten.com/products/fronttier/ftwhitepaper.html.
D. Wessels and K. Claffy. ICP and the Squid Web
Cache. |EEE Journal on Selected Areas in Communication,
16(3):345-357, 1998.

S. Williams, M. Abrams, C. Standridge, G. Abdulla, and
E. Fox. Removal policies in network caches for world-wide
web documents. In SGCOMM, 1996.

M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata. Answering complex SQL queries using automatic
summary tables. In SGMOD Conference, pages 105-116,
2000.

