A Peer-to-peer Framework for Caching Range Queries*

O.D. Sahin A.Gupta D.Agrawal A. El Abbadi
Department of Computer Science
University of California
Santa Barbara, CA 93106, USA
{odsahin, abhishek, agrawal, ar@cs.ucsb.edu

Abstract IP addresses of the peers storing this object. The request-
ing peer then uses IP routing to pass the request to one of
Peer-to-peer systems are mainly used for object shar-the returned peers and downloads the object directly from
ing although they can provide the infrastructure for many that peer. There are several shortcomings of the centdalize
other applications. In this paper, we extend the idea of ob- design of Napster. First of all, it is not scalable since the
ject sharing to data sharing on a peer-to-peer system. Wecentral server needs to store information about all thepeer
propose a method, which is based on the multidimensionaland objects in the system. Second, it is not fault tolerant
CAN system, for efficiently evaluating range queries. Thebecause the central server is a single point of failure.
answers of the range queries are cached at the peers and A different approach is followed by Gnutella [4] to get
are used to answer future range queries. The scalability around the problem of centralized design. There is no cen-
and efficiency of our design is shown through simulation. tralized server in the system. Each peer in the Gnutella net-
work knows only about its neighbors. A flooding model
is used for both locating an object and routing the request
1. Introduction through the peer network. Peers flood their requests to their
neighbors and these requests are recursively flooded until a
certain threshold is reached. The problems associated with

Peer-to-peer systems have been increasing in popularit his design are the high overhead on the network as a re-

'nr;;igs/r: ;;aorjriz t:feé’;;egvs;dtﬁg mltlg(r)r?est.otruhseesres ts‘;g,?e"’:; ult of flooding and the ppssibility _of missing some requests
. . ven if the requested objects are in the system.
are generally used for file sharing, such as Napster [15], Th desi including Naoster. Gnutell d
Gnutella [4] and KaZaA [10], which allow users to share ese designs, Including Napster, Lnutetia, and some
their files with other users. There are two challenges to beOther variants are referred to aastructuredpeer-to-peer
resolved for sharing objects on a peer-to-peer system: systems [9’ 14], bec_ause th? da.ta placement and network
construction are decided arbitrarily in these systems. An-
e Data Location: Given the name of an object, find the Other group of peer-to-peer designs are referred giras-
corresponding object’s location. tured peer-to-peer systems and include systems such as
CAN [16], and Chord [19]. These systems are based on
e Routing: Once the possible location of the object is implementing a distributed data structure calBstributed
found, how to route the query to that location. Hash TablgDHT) [16, 17, 19, 21] which supports a hash-
table like interface for storing and retrieving objects.

Napster [15] uses a centralized design to resolve these CAN [16] uses a d-dimensional virtual address space for
issues. A central server maintains the index for all objects data location and routing. Each peer in the system owns

in the system. New peers joining the system register them-
selves with the server. Every peer in the system knows the

iQentity of the central server Whilg the server keeps infarm aboutO(d) other peers, which is independent of the number
tion about all the nodes and objech in Fhe system. When- peers N, in the system. Each object is mapped to a point
ever a peer wants to locate an object, it sends the requesf, yhe 4_dimensional space and then the request is routed
(name of the object) to the central server which returns thetoward the mapped point in the virtual space. Each peer on
*This research was funded in parts by NSF grants EIA 00-80134, the path passes the r_equ_eSt to one of its neighbors which is
1S 02-09112, and I1S 02-23022. closer to the destination in the virtual space. The average

a zone of the virtual space and stores the objects that are
mapped into its zone. Each peer stores routing information

routing path ha®)(dN'/4) hops which is the lookup time a particular keyword. Our contention is that in order to
for exact match queries. Chord [19] assigns unique identi- achieve the larger goal of data-sharing in the context of a
fiers to both objects and peers in the system. Given the keyDBMS over peer-to-peer systems, we need to extend the
of an object, it uses these identifiers to determine the peercurrent peer-to-peer designs that only support exact name
responsible for storing that object. Each peer keeps rout-lookups to range searches. Range searches or range selec-
ing information abou(logN) other peers, and resolves tion is one of the fundamental functionalities needed te sup
all lookups viaO(logN') messages, where N is the number port general purpose database query processing. The main
of peers in the system. motivation for this is thattheel ect i on operation is typ-
Since peer-to-peer systems have emerged as a poweically involved at the leaves of a database query plan and
ful paradigm for data sharing over the Internet, a natural hence is a fundamental operation to retrieve data from the
question arises if the power of peer-to_peer systems can b@atabase. ASSUming that data partitions of a relation cor-
harnessed to support database functionality over peer-toresponding to prior queries are extensively replicatetiet t
peer systems. Indeed, several research initiatives are unpeers, we would like to retrieve the data for new queries
derway to answer this question. For example, Gribble et from the peer-to-peer system instead of fetching it from the
al. [5] in their position paper titled “What can peer-to-pee base relation at the data source. In [6], we presented a so-
do for databases, and vice versa?” outline some of the comlution for quickly locating approximate answers for range
plexities that need to be addressed before peer-to-peer sysiueries. Our general long term goal is to support the vari-
tems can be exploited for database query processing. Simious types of complex queries used by DBMSs so that gen-
larly, in a recent paper Harren et al. [9] explore the issue of eral peer-to-peer data support can be a reality.
Supporting Comp]ex queries in DHT-based peer-to-peer sys- The rest of the paper is Organized as follows: Section 2
tems. Harren et al. report the implementation of databasePresents the formulation of the problem. Section 3 intro-
operations over CAN by performing a hash join of two re- duces the basic concepts of our design, which is explained
lations using DHT. The underlying technique basically ex- in detail in Section 4. The experimental results are pre-
p|oits the exact-name |Ookup functiona"ty of peer-to.{pee sented in Section 5. The last section concludes the paper
systems. [2, 7, 8, 11] discuss the issues of data integratiorRnd discusses future work.
between heterogeneous data sources in a peer-to-peer data

management system. 2. Problem Formulation
There are potential applications that demand more com-
plex query functionality than the basic “lookup by name” Current peer-to-peer systems focus on object sharing and

operation that the current P2P systems deliver. For exampleuse object names for lookup. Our goal, on the other hand,
the state governments may maintain demographic informa-is to design a general purpose peer-to-peer data sharing sys
tion for the population of the states. The servers maintaintem. We consider a database with multiple relations whose
information like population distribution in the state byeag schema is globally known to all peers in the systerithe
education, average family income, and health plan cover-peers cooperate with each other to facilitate the retriavell
age. This information can be used by local county govern- storage of datasets. A straightforward extension and -appli
ments in the state for the purpose of planning development,cation of object naming is to use the relation name to locate
educational and health projects. The planners at the locakhe data in the system. However, such an approach will re-
counties can ask queries like what is the percentage of peosult in large amounts of data being stored redundantly and
ple in the county that fall in the annual income range of often unnecessarily throughout the network. A more desir-
$15,000 — $20,000. A key point to note is that unlike able approach is to use peers to store the answers of prior
queries in traditional DBMS where the exact answers are re-queries. Whenever a new query is issued, the peers are
quired, the exactness of answer is not critical in thesel-appl searched to determine if the query can be answered from
cations. A best-effort, statistically significant approste the prior cached answers. This is similar to the known
answer will suffice. This example illustrates that a peer- database problem often referred to/Asswering Queries
to-peer data management system does not need to replicatgsing Viewg12]. Since the problem of answering queries
every functionality of commercial DBMSs. The goal is to using views is computationally hard even in centralized sys
facilitate database-like query functionality over distried tems, we will instead focus on a restricted version by ex-
data instead of just providing the exact-match lookup. tending the exact lookup functionality of peer-to-peer-sys

The work reported in this paper has similar goals as thattems to the range lookup of a given dataset. Hence, our goal
of Harren et al. [9], in that we are interested in supporting is to develop techniques that will enable efficient evatrati

database query processing over peer-to-peer systems. Most o~~~ (7. 8] and Hyperion [2, s

data-sharing appr_oaches designed for peer-to-pe_er $’St_emjressing the orthogonal problem of schema mediation in-ppepeer data
are concerned with exact lookup of data associated withsharing systems.

of range queries over range partitions that are distributed the peers. When a query is issued at a peer which

(and perhaps replicated) over the peers in a peer-to-pger sy requires the retrieval of tuples from in the range
tem. R.A(low, high), we want to locate a peer in the sys-
The problem of performing range queries in a peer-to- tem which already stores tuples that can be accessed to

peer system has also been investigated by Andrzejak and compute the answer.
Xu [1]. Their solution uses hilbert curve mapping to parti-
tion data among peers in a way that contiguously distributes

the data at the peers. Due to partitioning there is no repli- n distributed hashing. A nice property of the DHT-based

cation of data and hence failure of a peer can cause loss o pproach is that the only knowledge that peers need is the
data. Also, as the number of peers grows, the ranges Storeﬂ.mction that is used fohashing Once this function is

at peers become smaller and smaller, and therefore, mutiplg(nown to a peer, given a lookup request the peer needs to
pe\e,\r/s need to behcon_ta_gtelfl tohanzwerba query lrange.d compute the hash value locally and uses it to route the re-
e assume that initially the database Is located at aquesttoapeerthat is likely to contain the answer. Given thi

known site. All queries can be dlrectgd to this database.design goal, a naive approach would be to use a linear hash
However, such a centralized approach is prone to OVerloadTunction over the range query schema, i.e., a linear hash

ing. Furthermore, the location of the data source may beg - ion overlow, high, or bothlow andhigh. A simple

quite ren_wote in thbe pleer-t(gpeer nle_tw]?rk, hand hence re'analysis reveals that such a hash function will only enable
sponse tI?’]G may be Slow. ur go;a hls dor tbe peer?ﬁg)hco'exact matches of given range requests. However we are also
operatively store range partitions of the database, w 2 interested in the results of the range queries that may con-

Iate_r used to respond to user queries. This will help inre- inthe given range, i.e., the ranges that are a superse of
ducing the Ioac_i on the data_source and hence also 'mpm\{%iven guery range lookup. In the following sections we de-
the response times to queries. Of course the challenge i elop a DHT approach that enables range lookups that are
not exact matches. In [6], we use locality preserving hash

In order to adhere to the peer-to-peer design methodology,
the proposed solution for range lookup should also be based

how to track where the various data range partitions are lo-
cated. A straightforward approach would be to maintain a functions for range lookups that are based on similarity and

ck:antrlalé)zel?(|ndelx§tructt:1re SECT as an mte%rval tree et ha oo provide approximate answers to range queries. In this
;_e gbo ad now eh gea outkt eHocatlons 0 r;mge pamt'onhpaper, however, our technique ensures that if a range lookup
Istributed over the network. However, such an approac yields an answer, it is a superset of the query range.

would violate the key requirement of peer-to-peer systems,
which is to ensure that the implementation is scalable, de-
centralized, and fault-tolerant.

Typically when an SQL query is formulated, a query plan

is designed in the form of a query tree. A common opti- q) dividual d b) q
mization technique is to push theel ect i on operations ~ (© Storeé and retrieve individual data objects and supporte

down to the leaves of the tree to minimize the data that hasexaCt mgtch queries. In contrast,.we need to support storage
to be retrieved from the DBMS. A similar approach is used and retrieval C,’f ranges ‘?f data objects, and ther(.afor.e, e us
here to minimize the amount of data retrieved from other & hash mapping specific to data ranges. The distribution of
peers for range queries. Rather than retrieving all passibl 1€ Stored ranges over the peers in the system may not be

tuples from the actual database for each range query, the anL_mlform, as itis query driven. Therefore, we have used a

swers stored at the peers are searched to find a smaller sé?Odiﬁed zone splitting strategy to obtain a better load dis-
of tuples that is a superset of the query tribution. Since we are not just looking for exact-matches

For example, if the answer of a range qué2y, 35) for E“t Welmgy W"’:jm Sudper—ranfges fo(rj_a given query rlange,fwe
a given attribute is stored at a peer, then future querids suc | ave aiso m(;ro u_(;)e quer:y (r)]rwar N9 stra(tjeglﬁs. nthe fo
as (25, 30) can be answered using the result(af, 35). owing, we describe our hash mapping and other strategies

Since the rangé20, 35) subsumes the rande5, 30), it is in detail . . -
enough to examine the tuples in the resul{2f, 35), with- Our system uses a 2d wrtual space in a manner simi-
out any data retrieval from the database. Thus less tupleéar to CAN. Given the do.malr[.u, b| of a one d|mgn5|onal .
are checked to compute the answer and all the tuples to b@ttante, the corresponding virtual hash_space is a two di-
examined are retrieved directly from a single peer. This als mensional square bounded _by the cogrdm(ades), (b, @'

decreases the load on the database since it is not accessé ,b), and(a, b) in the Cartesian coordinate space. Figure 1

for every query. The problem can now be stated as follows: shows the corresponding virtual hash space for a range at-
tribute whose domain is [20,80]. The corners of the virtual

Problem. Given a relationR, and a range attributet, space ar¢20, 20), (80, 20), (80, 80), and(20, 80).
we assume that the results of prior range-selection The virtual hash space is further partitioned into rect-
queries of the fornR.A(LOW, HIGH) are stored at angular areas, each of which is called@ne The whole

3. System Mode

Our system is based on CAN [16], which was designed

80

20

Y

X

Figure 1. Virtual Range Lookup Space for a
range attribute with domain [20, 80]

virtual space is entirely covered by these zones and no

two zones overlap. A zone can be identified by a pair
((z1,11), (x2,y2)) where(zy,y1) is the bottom left corner
coordinates whereag:z, y2) is the top right corner coor-
dinates. Figure 2 shows a possible partitioning of the vir-
tual space shown in Figure 1. The virtual space is par-
titioned into 7 zones :zone-1((20,61), (30,80)), zone-

2 ((20,35),(80,50)), zone-3((42,69), (80,80)), zone-

4 ((20,50), (42,61)), zone-5((20,20), (80, 35)), zone-6
((42,50), (80,69)), andzone-7((30, 61), (42, 80)).

(20,80) 30 42 (80,80)
3
1| 7 69
61 5
4
50
2
35
5
(20,20) (80,20

Figure 2. Partitioning of the virtual space
shown in Figure 1

of the peer nodes, which do not participate in the partition-
ing, are called th@assivenodes. Each passive node regis-

ters with one of the active nodes. All active nodes keep a
list of passive nodes registered with them.

For the purpose of routing requests in the system, each
activenode keeps souting tablewith the IP addresses and
zone coordinates of its neighbors, which are the owners of
adjacent zones in the virtual hash space. For example in
Figure 2, the routing table of the owner zdne-4contains
information about its four neighborgone-1, zone-7, zone-

6 andzone-2

Given a range query with rande, q.), it is hashed to
point(qs, q.) in the virtual hash space. This pointis referred
to as thetarget pointof the query range. The target point is
used to determine where to store the information about the
answer of a range query as well as where to initiate range
lookups when searching for the result of a range query. The
zone in which the target point lies and the node that owns
this zone are called tharget zoneand thetarget nodere-
spectively. Therefore, the information about the answer of
each range query is stored at the target node of this range.

Once a peer node gets the answer for its range query,
if the peer is willing to share its computed answer and has
available storage space, it caches the answer and infoems th
target node about it. The target node stores a pointer to this
guerying node. If the target node has available storage, it
caches the result itself. In either case, we say that thettarg
node stores the result of this query. For example, according
to Figure 2, the range quef$0, 60) is hashed intaone-6
so the set of tuples that form the answer to this query may be
stored at the node that owmene-6or the node will store a
pointer to the peer that caches the tuples in that rangesPeer
can choose one of the several well know caching policies,
for example LRU, to manage their local cache space. The
discussion of caching policies to manage the local storage
at the peers is out of the scope of this paper.

4. Distributed Range Hashing

In this section we describe the basic components that
support the distributed implementation of range hashing.
We assume that there is a set of computing nodes which
participate in the distributed implementation of the range
hash table (RHT). For simplicity, we are assuming that the
range hash table is based on a relaffbfor a specific range
attribute A. In Section 4.4 we explain how the system can
be generalized to handle multiple attribute range queries.

Each zone is assigned to a peer in the system. Unlikelf queries on various relations need to be supported, we

the original CAN, not all the peer nodes in the system par-
ticipate in the partitioning. The nodes that participate ar
called theactivenodes. Eaclactivenodeownsa zone.The

assume a separate instance of an appropriate RHT will be
maintained for each relation.
The nodes participating in the system are in one of the

data source is responsible for the top-left zone, as the toptwo modes:active/passive Initially, only one active node
left corner corresponds to the complete database. The resfthe data source) manages the entire virtual hash space.

Other nodes become active as the work load on the activeAlgorithm 1 Split a zone

nodes increases. Next, we describe how zones in the virtual if the zone needs to be divided because of answering load
hash space are maintained on peers. Finally, we present the then

details of range query lookup processing in the system. Find x-medianandy-medianof the stored results.
_ Determine if a split ak-median(parallel toy-axig or
4.1. Zone Maintenance a split aty-median(parallel tox-axig results in even

o))) distribution of stored answers and the space.
The partitioning of the virtual hash space into zonesis gg

at the core of both the data location and routing algorithms. The split line is the midpoint of the longer side.

Initially the entire hash space is a single zone and is as- gnd if

signed to the data source which is the only active node. The compute new coordinates of this zone and the new zone
partitioning of the hash space is dynamic and changes over according to the split line.

time as the existing zones split and new zones are assigned Assign the new zone to a passive node.

to passive nodes that become active and take responsibility for g1l result points stored at this zode

for the new zones. if the result point is mapped to the new zahen

The decision to split is made by the owner of the zone. Remove from this node and send to the new node.
Whenever a zone needs to split, the owner node discoversa gnd if

passive node either through its own passive node list or by end for

forwarding the request for a passive node to its neighbors. Transfer data tuples falling into the new zone to the new
The owner node then contacts one of the passive nodes and pgde.

assigns it a portion of its zone by transferring the corre- for al| neighbors of this zondo

sponding results and neighbor lists. A zone may split be- if it is a neighbor of the new zortaen

cause of the following two reasons. First, it may have to Add it to the neighbor list of new node.
answer too many queries. In this case, it splits along a line Inform the neighbor of new zone.

which results in an even distribution of stored answers as end if

well as an even spatial distribution of the zone. Second, if it is no longer a neighbor of this nodieen

it may be overloaded because of routing queries, as larger Inform the neighbor to update its list.
zones are more likely to fall in the path of a query route. Remove from the neighbor list of this node.
Therefore, the zone splits into equal halves along the longe end if

side to reduce the routing load. The outline of the split op- end for

eration is shown in Algorithm 1. The new peer is assigned Add new node to the neighbor list of this node.

the right partition if the zone splits parallel yeaxis or the Add this node to the neighbor list of new node.
bottom partition if it splits parallel ta-axis Figure 3 shows

the partitioned zones aftepne-4in Figure 2 splits parallel
to they-axisand the new peer is assignaohe-8

4.2. Query Routing
(20,80) (80,80)

When searching for the answer of a range query, the
1 , 3 first place to look for cached results is the target zone of
this range. Therefore whenever a range query is issued, it
is routed toward its target zone through the virtual space.
4 8 Starting from the requesting zone, each zone passes the
guery to an adjacent zone until it reaches its target zone.
Using its neighbor lists and the target point of the query,

2 each node on the route passes the query to one of its neigh-
bors whose coordinates are the closest to the target point
5 in the virtual space. Algorithm 2 presents an outline of the
routing procedure.
(20,20) (80,20 Figure 4 shows how a query is routed in the system. The

range query is initiated atone-7and then routed through
zone-6o its target zonezone-10 The range queries in the
system can be initiated from any zone. Since passive nodes
do not participate in the partitioning, they send their ¢eeer
to any of the active nodes from where the queries are routed

Figure 3. Partitioning of the virtual hash
space after zone-4of Figure 2 splits

some other zones in the system do have such a result; so the
5 7 search should be forwarded to other zones. Fortunately the
/ search space can be pruned at this point.
Since the start point and end point of a range is hashed to

/ x andy coordinates respectively, tiyecoordinate of the tar-

get pointis always greater than or equal tottmoordinate.
Hence , the target point never lies below the= z line.
Given two ranges; : (a1,b1), andry : (az, bo) that are
hashed to target points andt, in the virtual hash space,
3 9 the following observations can be made:

1. If a1 < a9, then ther coordinate of; is smaller than
thex coordinate of, and hence; lies to the left oft,
in the virtual space.

Figure 4. Routing and forwarding in virtual . .

space. The shaded region shows the Accept- 2 tl;: bi < bgaf[hetn thfy co;)Ldma;e ?ftl E‘va\?t"?r ttfrl1an

able Regiorfor the query 1ey coordinate of, and hence, lies belowt, in the
virtual space.

3. t; lies to the upper-left of, if and only if ranger;

toward the target zone. .
contains range,.

An estimation of the average routing distance for pro-
cessing range queries in the proposed model is presentedhe third result can be concluded from the fact that mov-
in [18]. The analysis shows that the average routing pathing along the negative direction in the virtual hash space
length in an equally partitioned hash spac@is/n), where decreases the start point of the corresponding range while
n is the number of zones in the system. A similar result was moving along the positive/ direction increases the end
reported in [16]. point.

Algorithm 2 Routing
if the query range maps to this zatien
Return this zone. B
else
for all neighbors of this zondo D
Compute the closest Euclidean distance from the
target point of the query to the zone of this neigh-
bor in the virtual space.
if this is the minimum distance so feren
Keep a reference to this neighbor. Xy)
end if C A
end for
Send the query to the neighbor with minimum distance
from the target point in virtual space.

end if Figure 5. Range Hashing

Figure 5 shows a range quefy, y) that is hashed into
zone A. Using the above observations, we can assert that
if there is any prior range query result that contajasy),
then it must have been hashed to a point in the shaded re-

Once a query reaches the target zone, the stored resultgion. Any zone that intersects the shaded region is thexefor
at this zone are checked to see if there are any results whosa candidate for potentially containing a result for thisgyue
range contains the query range. If such a result is foundin the figure, the zoned, B, C, and D intersect with the
locally then it is directly sent to the querying peer. If ther shaded region and may have a result that contains the given
is a pointer to a peer node that stores a superset range therange(z, y).
the address of that peer is forwarded as the answer and the The zone D in Figure 5 lies completely in the upper-left
querying peer can contact this peer to obtain the answerregion of the target pointz, y). We call such zonediago-
Even if there is no such local result, it is still possiblettha nal zonesdefined as follows:

4.3. Forwarding

Diagonal Zone. Consider a zone bounded by coordi- of fset = AcceptableFit x |domain|, where|domain|

nates((x1,y1), (x2,y2)). We say that another zoné is the length of the domain of the range attribute. The ac-
bounded by((a1,b1), (az,b2)) is a diagonal zone of ceptable cached results for the range qu@ow, high),
if as < xy andby > yo. are then those that both contain the query range and are

subsumed by the rangéow — of fset, high + of fset).

It is obvious that a zone cannot have a diagonal zone if The square defined by these offsets and the target point is
it lies on the left or top boundary of the virtual space. Itis referred to asAcceptable Regioas shown by the shaded
also possible that a zone may have no diagonal zone even ifrea in Figure 4. Each node that receives a forwarded query
there are many zones to its upper left. Figure 6 shows suchchecks its local results to find a result whose range is within
a case where theone-7at the bottom right corner has no the allowed offset of the query range. If it finds such a
diagonal zones. result, it notifies the querying peer and stops forwarding.

Otherwise it forwards the query to its neighbors which may
2 have a result within the given offset of the query range. If
acceptable fiis set to 0, then only the target zone of the
range query is checked and the query is not forwarded to
6 any neighbor. Note that settirarceptable fito 0 means
1 that only exact answers can be matched for a given query.
3 If, on the other hand, it is set to 1, then the query can be po-
5 7 tentially forwarded to all zones that are likely to have a re-
sult for the query; i.e., all the zones which have some point
that lies on the upper left of the target point of the query.

4.3.2. Directed Forwarding. Flood forwarding may re-
Figure 6. No Diagonal Zones sult in too much communication overhead on the network.
Therefore, instead of flooding the query to all the neighbors
Diagonal zones are of particular interest since any resultin upper and left directionglirected forwardingpicks up a
stored in a diagonal zone is a superset of the desired answetieighbor in the upper left region of the target point in the
set. This is the case because every range that maps to a poifisllowing manner. Out of all the neighbors that fall in the
in the diagonal zone contains the query range, and so if theleft and upper region for the target point, the neighbor that
diagonal zone has a cached result, then it is a superset ohas the highest overlap area with the acceptable region is
the desired answer. As the number of zones in the systenforwarded the query request. A query can specify a liit
increases, the possibility of finding a diagonal zone for a on the directed forwarding. Whenever a query is forwarded,
zone also increases. the limitd is decremented. Whehbecomes 0, the querying
During the search process, if the result is not found lo- peer is notified to directly contact the data source. Digkcte
cally at the target node, the query is forwarded to the left forwarding is used in conjunction with tleeceptable fipa-
and top neighbors that may contain a potential result. Thoserameter, as described in Algorithm 3. Directed forwarding
nodes also check their local results and can forward theis useful because a querying peer can potentially bound the
query to some of their top-left neighbors in a recursive man- response time by specifying a limit on the number of hops
ner. Figure 4 shows how a query can be forwarded in theduring forwarding. Similar approaches have been explored
system. If the range query cannot be answered at its targeby Lv et al. [13] and Yang et al. [20]. Freenet [3] imple-
zone,zone-10then it is forwarded t@one-4andzone-11 ments a directed depth first search in an unstructered P2P
which may have a result for the query. Note that forwarding system.
is only used if the query cannot be answered at the target
zone. We describe two strategies for forwarding queries. 4.4. Discussion

4.3.1. Flood Forwarding. A naive approach to forwarding An important routing improvement in the system is
queries is flood forwarding. Flood forwarding is similar Lookup During RoutingSince the requesting zone and the
to flooding the query to the neighbors that lie in the up- target zone can be at any position with respect to each other
per and left side of the virtual space. We use a parameter(they can actually be the same zone), it is possible that a
calledacceptable fito control forwarding, which is a real zone on the path from the requesting zone to the target zone
value between 0 and 1. It is used to determine how big may already have a result containing the query. The system
an answer range is acceptable for a given query and thereean be improved so that every zone on the route checks its
fore also determines how far the forwarding will continue. local results if it may have a possible result. If the resalt i
It defines an allowed offset for the query range such thatfound, then the query is not routed any further and the result

Algorithm 3 Directed Forwarding¥, f, d) Updates of tuples can be incorporated into the system in

acceptableFit — f the following manner. When a tuptewith range attribute

directedLimit <+ d A = k is updated, an update message is sent to the target

Computeacceptable Region usingacceptable F'it. zone of the rangék, k). Since tuple is included in all the

if there is an answer which is ircceptable Region then ranges(a, b) such thata < k andb > k, the update mes-
Return this answer. sage is forwarded to all zones that lie on the upper left of

end if the target zone. Each zone receiving an update message,

if directedLimit > 0 then updates the corresponding tuple in the local results aecord

Pick a neighborn that has the highest area overlap with ingly. Note that the receiving zones may be storing pointers
the acceptableRegioaf target point and has not been to peer nodes with actual data instead of caching it. In that

visited earlier. case, the zone forwards the update message to the actual
Add neighbom to the set of visited zones. node(s) storing the data tuple. All nodes that cache the tu-
directedLimit < directedLimit — 1 plet will receive the update message and hence will update
Forward the query to neighbar the tuple value in the stored data partition. The problem
dse with this scheme is that the zones on the upper left part of
Return answer not found to query source. the virtual space get more update messages than the others.
end if We plan to explore methods that will mitigate this problem.
For example, batching of multiple updates is one possible
solution.

is returned to the requesting node. This way, some routing Our solution elegantly generalizes to multiple attribute
and forwarding can be avoided. The routing path decisionsfange selection queries. Consider a relation witfat-
can be changed so that the routed queries follow a path thatributes. The range selection queries over this relatien ar
may have zones with possible results. The effettafkup ~ Mapped into &n-dimensional virtual space. Let us say
During Routingon the system is shown in Section 5.3. that L; and H; represent the limits of the domain for at-

Another possible modification to the system is to allow Uibutei. Arange selection query over theattributes can
the nodes to ask warm up queries when they participate inP® Written as{li, h1)., (I2, h2) .. ., {ln, hn). If N0 range
the partitioning. When a passive node is assigned a zone, itS SPecified for an attribute;, then we use the domain
may compute and cache the result of the query whose rangéLi’ H;) asthe seleqtlon range for that attrlbuFe. The query
is mapped to the upper left corner of its zone in order to IS mapF?ed to the poinits, h_l’ l2, ha, . c ln, h") In theQ”f
warm up its cache. This way, further queries mapped to thisdimensional space. The first two dimensions of the virtual
zone will always be answered without forwarding because

space correspond to the first attribute and are bounded by
the range of the warm up query contains all ranges mappeo(L

1, Hy). Similarly the third and fourth dimensions of the
to this zone. Although this improvement s not always pos- Virtua! space are bounded by., H>) corresponding to the

sible, for example when the node is busy or the result of second attribute, and so on. The routing algorithm for the

such a query is very large, it greatly improves the perfor- 2n-dimensional virtual space remains the same. If the result

mance. ’ is not found, the query can be forwarded by moving towards
Some of the improvements for CAN[16] are also appli-

the upper left of then-dimensional hypercube, which cor-
cable for our approach. Multiple realities, better routing

responds to increasing coordinates for even dimensions and

metrics, overloaded zone, and topology-sensitive paintiti decreasing coordinates for odd dimensions.

ing can be incorporated into the system. Node departures

can also be handled in the same way. For soft departurep. Experimental Results

the active node hands over its zone and other necessary data

to a passive node. If, however, an active node fails, one of We implemented a simulator in Java and then tested var-

its neighbors takes over its zone and assigns it to a passivéous aspects of our design. In this section, we present the

node. To be able to detect failed nodes, active nodes sendest results. All experiments were performed on a machine

periodic“are you alive” messages to their neighbors. with dual Intel Xeon 2GHz processors and 1GB of main
Although our system is designed for answering range memory, running Linux RedHat 8.0.

gueries, it can also answer exact queries. Exact match We have experimented with range queries over a single

gueries can be answered by setting the start and end pointattribute. In the experiments, a zone splits when the number

of the range to the exact value and then querying the sys-of stored results exceeds a threshold value, which is called

tem with this range. For example, in order to search for the thesplit point or the routing load on a node is higher than a

tuples with range attributd=20, the system is queried for specificrouting threshold The reported values are averaged

the rang€20, 20). over 5 runs. Unless mentioned otherwise, the following de-

100 — 100 —T T T T

80 i - 80 Bl
60

awof i aof i)

Percentage of the queries answered
Percentage of the queries answered

20 7“‘;"’ 7 20 73:"" h

100 queries —+— “1” 100 queries —+—
1000 queries ---x--- i 1000 queries ---x---
100q0 queries ---%--- 100q0 queries ---%---

1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Acceptable Fit Acceptable Fit (with Directed Limit = 2)

(a) System performance with flood forwarding (b) System performance with directed forwarding

Figure 7. System Performance

fault values are used in all of the experiments: if it is set to a small value such as 0.1), there is a great im-
provement in performance. With 100 queries, changing the
e The system is initially empty. (There is only one zone acceptable fit from 0 to 0.1 improves the performance to
in the system.) 35%, whereas the performance goes up to 97.75% under
e The domain of the attribute i), 500). the same conditions with 10,000 queries. If the acceptable
fitis setto 1, then every zone that may have a possible result
for the query is searched and a stored result that contans th
guery range is found if there exists any. When forwarding
limit is set to 1 for 10,000 queries, 99.36% of the queries
are answered using cached results. Note that the success
rate does not improve much after the acceptable fit is 0.5.

e Range queries are distributed uniformly at random in
the attribute’s domain and the query origin peer is cho-
sen randomly.

e Split pointis 5, i.e., at most 4 query results are main-
tained per peer.

e Routing threshold is 3 queries in a second. In the next experiment, we introduced directed forward-
ing with a directed limit of 2 hops. We measured the suc-
5.1. System Per formance cess rate of the system for various acceptable fit values for

directed forwarding. The results have been summarized in

The performance of the system can be determined inFigure 7(b). Even with a small limit of 2 for directed for-
terms of the ratio of the range queries that are answeredwarding the success rates are very similar to flood forward-
using prior answers stored in the system. In these expering. We can make two important observations from Fig-
iments, we have measured the system performance usingires 7(a) and 7(b):
query sets of sizes 100, 1000 and 10,000. For each size we
have used 5 different query sets generated randomly. The
final number of active peers in these experiments is limited
to 10% of the total number of queries. Once the maximum
number of active peers is reached in the system, all active
peers stop caching after th.ey cache 4 range queries and the § Tne probability of finding answers to range queries
cached results are not expired. improves as the number of queries increasas.the

Figure 7(a) shows the percentage of the answered range nymber of queries is increased, more results are stored

gueries as a function of the acceptable fit when flood for- in the system and the possibility of finding a result for
warding is used in the system. When the acceptable fit is 0, a query gets higher.

no forwarding is used and only the target zone is checked

for each query. With O acceptable fit, only exact answers We also measured the effect of changing the directed
can be matched for a given range query, and therefore, thdimit on performance when the acceptable fitis 0.5. Figure 8
success ratio is almost 0. When forwarding is enabled (evenpresents the results of the experiment. It can be seen that a

e The probability of finding answers to range queries im-
proves as the acceptable fit is increasdthis is quite
clear since increasing the acceptable fit allows a larger
set of cached ranges to match a given query range.

30

directed limit of 4 is sufficient for most general purposes. 100 zon0s ——
Directed forwarding finds the answer within few hops of Hossenes
the target zone, which shows that the directed forwarding e
strategy is effective.

20 - R

100 e

EY B

80 w0 B

X
Average number of zones visited per query

60

L L L L
0 0.2 0.4 0.6 0.8 1

Wr i Acceptable Fit

Percentage of the queries answered

ol (a) Flood forwarding

100 queries —+—
1000 queries ---x---
10000 queries %~ 30

T
0 ‘ ‘ . 100 zones —+—
° 2 4 6 8 10 500 zones --x---
Directed limit (with Acceptable Fit = 0.5) 1000 zones ------

25 4
Figure 8. Effect of directed limit on system
performance

20 - —

5.2. Routing Performance

w0E 4

Average number of zones visited per query

The routing performance is measured in terms of the av-
erage number of zones visited for answering a query. We
have measured the effects of flood forwarding and directed
forwarding on the average number of zones visited to an- 0 0z 0 06 08 1

. . . Acceptable Fit (with Directed Limit = 4)
swer queries. We simulated the system with the number of
peers in the system set to 100, 500 and 1000. We started
measuring the path lengths after the number of active peers
in the system has reached the desired value. We ran 5 sets Figure 9. Routing Performance
of 10,000 uniformly randomly distributed range queries and . .
averaged the route lengths over those runs. When the ac?-3- L 00kup During Routing
ceptable fit is 0, the result is the average number of zones
visited during routing. If forwarding is enabled, it alse in One of the optimizations to the system is to implement
cludes the zones visited during forwarding. Lookup During Routingso that the results for the queries

Figures 9(a) and 9(b) show the average number of zoneanay be found while they are being routed to their target
visited to answer queries when flood forwarding and di- zone. If a result for the query is found on its way to its target
rected forwarding are used respectively. Directed forward zone, it is immediately returned to the querying peer result
ing contacts less number of zones and it also scales welling in less number of visited zones. In the experiments, we
with increasing number of peers in the system. The aver-have used 5 sets of 10,000 queries and the limit for directed
age path length increases about 2.5 folds with an increasdorwarding is 2 hops. The final number of active peers in
of 10 folds in the number of zones for directed forwarding. the system is limited to 1000.

Even with flood forwarding it is less than the square rootof Figure 10 shows the number of visited zones per query
the number of peers in the system, which conforms with the when lookup during routing(LDR) is used. Lookup dur-
theoretical bound shown in [18]. ing routing substantially reduces the number of zones vis-

From the performance and path length experiments, weited. In our experiments we observed that around 40% of
conclude that directed forwarding is a significant improve- the queries are answered during routing when acceptable
ment over flood forwarding. It provides similar success in fit is non-zero. Notice that the number of zones visited in
locating answers by contacting less number of zones. the case of flood forwarding with lookup during routing os-

(b) Directed forwarding

30

T T
Flood forwarding with LDR —+—
Flood forwarding without LDR ---%---
Directed forwarding with LDR ---3---
Directed forwarding without LDR &

25 -

20 | L 4

15 |

e e
0L * R

Average number of zones visited per query
Percentage of the queries answered

20 q

DL=4 and AF=0.5 —+—
DL=2 an‘d AF=0.5 ---%---

0 I I I I 0 I I I
0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25

Acceptable Fit

Figure 10. Effect of Lookup During Routingon

Figure 11.

Selectivity (%)

Effect of selectivityon system per-

the number of visited zones

formance

cillates with increase in acceptable fit. The reason for this 55, | oad Distribution
behavior is that as the acceptable fit is increased, the proba

bility of finding an answer during routing increases. But if In the following experiments we measured the load on
the answer is not_found on the route, then flood forwarding e peers in the system. The load on the peers can be clas-
results in contacting more zones. sified in two categoriesAnswering Loadneasures the total
number of queries that a peer has to ansWksssage Load
measures the total number of messages that a peer needs to
process due to routing or forwarding.

We ran a set of 10,000 queries in a system of 1000 ac-

Figure 11 shows the performance of the system whentje peers. The number of zones remains constant during
query ranges are restricted to certain maximum 1engths.he run. Figure 12 shows the total load which is the summa-
The domain of the range attribute is changed to 0-10,000tjpn of answering and message load on each peer. We have
in order to avoid the repetitions of queries when the se- gorted the load values on all the peers after the completion
lectivity is small. In the figureSelectivity k%means that f the run in increasing order. The marked points on the
the length of any queried range is less than or equal tocyryes represent the average total load over all the peers fo
(k x |domain|/100) where|domain]| is the length of the the corresponding run. The maximum load for each run is
domain and equals 10,000 in this case. For example, withgimost 3.5 times the average load. But the maximum load
0.1% selectivity, all query ranges have length less than orgn any peer for all the runs is around 0.35% of the total load

equal to 10 sinc@.1 x 10000/100 = 10. 100% selectiv- on the system. The load curve for the case with acceptable
ity is the same as no selectivity since the query ranges can

have any possible length. When creating the range queries,
the start points of the ranges are selected uniformly from
the domain of the range attribute and then the length of the
range is determined randomly according to the selectivity.
For each selectivity value, we used 3 sets of 10,000 queries.

In the graphs, AF stands for acceptable fit and DL stands
for directed limit. As seen from Figure 11, the percentage of
gueries answered decreases as the selectivity gets smalle
That is because restricting the query ranges to a smaller
length makes it harder to find prior results that contain a i *X
given range. When the selectivity is small, a query is look-
ing for a very specific range. All the prior queries have also
been quite specific. Hence the probability that the current oo"”"“ -
query is contained in one of the prior queries is low, which
explains the observed behavior. Low selectivity negativel
impacts the query answering capability of the system.

5.4. Selectivity

600 T T T T T T

T T T
No forwarding (AF=0)
DL=4 and AF=1 ------
DL=4 and AF=0.05 --------

500

400 ~

300 [

“Yotal Load

200

100

' ' ' ' '
500 600 700 800 900
Peer Id

' 1 '
200 300 400 1000

Figure 12. Load Distribution

fit 0.5 and directed limit 4 is almost the same as the one [7] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan,
with acceptable fit 1 and directed limit 4. Therefore, we
have omitted the curve for 0.5 from the graph.

An initial impression is that the zone on the top-left
would be overloaded because the zones in the upper left
region of the virtual space are responsible for long ranges.
However, our experiments have shown that this is not the

case. We noted during these experiments that the load on

the top-left zone, which is maintained by the data source, is

very close to the average load. We conclude that the system
does not incur much overhead over the source and reduces
its burden in answering queries which is evident from the [10]

performance experiments.

6. Conclusions and Future Work

S 1
Peer-to-peer systems are gaining in importance as they

distribute information and connect users that are disteidbu
across the globe. The true distributed systems of today
need to facilitate this world wide retrieval and distrilmurti

of data. So far most peer-to-peer attempts have been re-

stricted to exact match lookups and therefore are only suit-

able for file-based or object-based applications. This pape [14]
represents a first step toward the support of a more diverse

and richer set of queries. Databases are a natural repositor

of data, and our enhanced CAN-based system supports th 15]
basic range (or selection-based) operation. Our approach[ls]

is simple and very promising. We have shown how to ex-
ploit the CAN approach to support range queries and have

demonstrated that it successfully scales using a variety of[17]
performance studies. Our system greatly reduces the bur-
den of answering queries from the data source with only a [

little overhead.
Our future efforts are directed towards a design of a com-

plete peer-to-peer database system. In the short term, we
plan to explore multi-attribute range queries as well as non [19]

integer based domains in detail.

References

[1] A.Andrzejak and Z. Xu. Scalable, efficient range queftes

(2]

(3]
(4]
(5]

[6] A. Gupta, D. Agrawal, and A. El Abbadi.

grid information services. liProceedings of the 2nd IEEE
P2P, pages 33-40, 2002.

P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. My
lopoulos, L. Serafini, and I. Zaihrayeu. Data management
for peer-to-peer computing: A vision. Proceedings of the
5th WebDB pages 89-94, 2002.

Freenet. http://freenet.sourceforge.net/.

Gnutella. http://gnutella.wego.com/.

S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu.
What can peer-to-peer do for databases, and vice versa? In
Proceedings of the 4th WebDBages 31-36, 2001.
Approximate
range selection queries in peer-to-peer systemBrdoeed-
ings of the 1st CIDRpages 141-151, 2003.

L. McDowell, and I. Tatarinov. Crossing the structure
chasm. InProceedings of the 1st CIDPages 117-128,
2003.

[8] A.Y.Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Scheem

mediation in peer data management systemBrdeeedings
of the 19th ICDE pages 505-516, 2003.

9] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,

S. Shenker, and I. Stoica. Complex queries in DHT-based
peer-to-peer networks. IRroceedings of the first Interna-
tional Workshop on Peer-to-Peer Systempages 242-250,
2002.

KaZaA. http://www.kazaa.com/.

A. Kementsietsidis, M. Arenas, and R. J. Miller. Mappin
data in peer-to-peer systems: Semantics and algorithmic is
sues. InProceedings of the 2003 ACM SIGMQPpages
325-336.

2] A. Y. Lewy, A. O. Mendelzon, Y. Sagiv, and D. Srivas-

tava. Answering queries using views (extended abstratt). |
Proceedings of the 14th ACM PODfages 95-104. ACM
Press, 1995.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks. In
Proceedings of the 16th ICBages 84-95, 2002.

Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity
make gnutella scalable? Froceedings of the first Inter-
national Workshop on Peer-to-Peer Systepages 94-103,
2002.

Napster. http://www.napster.com/.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable netwoiRtdn
ceedings of the 2001 ACM SIGCOMphges 161-172.

A. Rowstron and P. Druschel. Pastry: Scalable, distet
object location and routing for large-scale peer-to-pger s
tems. InIFIP/ACM Middleware 2001pages 329-350.

18] O.D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. Query

processing over peer-to-peer data sharing systems. TFechni
cal Report UCSB/TR-2002-28, University of California at
Santa Barbara, 2002.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and HI-Ba
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. IProceedings of the 2001 ACM
SIGCOMM pages 149-160.

B. Yang and H. Garcia-Molina. Improving search in peer-
to-peer networks. IRProceedings of the 22nd ICDCRages
5-14, 2002.

Y. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An i
frastructure for fault-tolerant wide-area location andtiog.
Technical Report UCB/CSD-01-1141, University of Califor-
nia at Berkeley, 2001.

