
Selectivity Estimation for String Predicates: 
Overcoming the Underestimation Problem 

 Surajit Chaudhuri       Venkatesh Ganti       Luis Gravano 
                      Microsoft Research                Columbia University 

           { surajitc, vganti} @microsoft.com  gravano@cs.columbia.edu 
 

Abstract 
Queries with (equality or LIKE) selection predicates 

over string attributes are widely used in relational 
databases. However, state-of-the-art techniques for 
estimating selectivities of string predicates are often biased 
towards severely underestimating selectivities. In this 
paper, we develop accurate selectivity estimators for string 
predicates that adapt to data and query characteristics, and 
which can exploit and build on a variety of existing 
estimators. A thorough experimental evaluation over real 
data sets demonstrates the resilience of our estimators to 
variations in both data and query characteristics. 

1. Introduction 
String-valued data has become commonplace in relational 
databases and so have complex queries with selection 
predicates over string attributes (e.g., Author.name like 
%ullman%). Since query optimizers rely heavily on 
selectivity estimates, accurate selectivity estimation of 
string predicates is critical to define efficient query 
execution plans.  
 
The most frequent class of string predicates—called   
wildcard predicates—are of the form R.A like %s%, where 
A is a string-valued (varchar) attribute of a relation R. 
Several techniques have been proposed for estimating the 
selectivity of wildcard predicates (e.g., [KVI96], 
[JKNS00]). These techniques build summary structures 
(e.g., pruned suffix trees or Markov tables) recording the 
“ frequency”  of carefully selected strings. The frequency of a 
string in a relation attribute is the number of attribute values 
that include the string. The set of string-frequency pairs 
retained varies with the summary structure. At run time, the 
estimation of the selectivity of a predicate R.A like %s% 
involves two parts: (i) parsing the query string s into 
possibly overlapping substrings s1, …, sk whose (exact) 
frequencies—and hence the associated selectivity of each 
substring predicate R.A like %si%—can be looked up in the 
summary structure, and (ii) combining the (exact) 
selectivities of the substring predicates to estimate the 
selectivity of the original query predicate. To combine the 
selectivity of the substring predicates, existing techniques 
mainly rely either on the independence assumption [KVI96] 
(the selectivity of the R.A like %si% predicate is 
independent of that associated with sj, for all j

�
i), or on the 

Markov assumption [JKNS00] (the selectivity of the R.A 

like %si% predicate is independent of all R.A like %sj% 
except when j= i-1).  
 
The independence and Markov assumptions may not hold in 
many real scenarios where the selectivity associated with a 
string is close to that of some of its substrings. In other 
words, these assumptions lead to poor selectivity estimates 
for a predicate R.A like %s% if the real selectivity is close 
to that of R.A like %s’%, for a strict substring s’  of s. For 
example, the selectivity of the string predicate R.A like 
%seattle% may be almost the same as that of the substring 
predicate R.A like %eatt%. In this case, estimators based on 
the independence or Markov assumptions tend to severely 
underestimate the true selectivity of the first predicate: these 
estimates over-compensate for the additional characters not 
in “eatt”  and thus return a small fraction of the selectivity of 
R.A like %seattle%. This observation is orthogonal to the 
underlying summary structure (e.g., pruned suffix trees or 
Markov tables) employed. In this paper, we formalize the 
intuition behind the above example into the short 
identifying substring hypothesis. Informally, the hypothesis 
states that a query string s usually has a “short”  substring s’  
such that if an attribute value contains s’ , then the attribute 
value almost always contains s as well.  
 
If we could guess a short identifying substring s’  of a query 
string s, we could then produce good quality selectivity 
estimates for the query predicate involving s. For example, 
we can use existing estimators (e.g., an estimator based on 
the Markov assumption) and return the selectivity estimate 
for R.A like %eatt% as the selectivity of the original 
predicate R.A like %seattle%. Intuitively, this strategy 
would help overcome the underestimation problem of 
standard estimators by focusing on a shorter substring with 
(close to) the same frequency as the original, longer query 
string. However, a key step in this strategy is to correctly 
guess the shortest identifying substring, which is of course 
not possible if only limited statistics are available. But 
suppose that we know the length L of the shortest 
identifying substring of a query string. In this case, we 
could estimate the selectivity of all substrings of length L 
and return the minimum estimate as the selectivity estimate 
for the original predicate, exploiting the fact that the 
selectivity of a string cannot be larger than that of any of its 
substrings. Unfortunately, even this length L is not generally 
known when only limited frequency statistics are available. 
Therefore, our general approach is to guess multiple 



candidate identifying substrings of a given string s, one of 
each possible length between 1 and |s|, and then combine 
their associated selectivity estimates. Our driving hypothesis 
here (which we confirm experimentally in Section 7) is that 
an appropriate combination of several reasonable estimates 
is more robust than any individual estimator. This 
hypothesis is similar in spirit to that behind the popular and 
successful ensemble of models approaches (bagging and 
boosting) in the machine learning literature (e.g., 
[Breiman96, FS96]).  
 
To robustly combine substring selectivity estimates, we 
have to adapt to characteristics of string values both in the 
relation and in a query because the length of shortest 
identifying substrings relative to the original query strings 
usually vary with query and data characteristics. For 
example, if substrings of an attribute value in a given 
relation vary drastically across tuples, then the selectivity of 
a string predicate over this attribute is likely to closely 
correlate with that of some of its very short substrings. To 
adapt to variability in correlations between selectivities of 
strings and their substrings, we exploit representative query 
workloads to learn an appropriate combination model for 
the selectivity estimates of candidate identifying substrings 
over a particular database. The learnt model is then applied 
at run time to efficiently and accurately estimate the string 
predicate selectivity.  

 
Figure 1 illustrates our general estimation framework. The 
choice of summary structure and learning model is largely 
orthogonal to that of the combination framework. In our 
evaluation prototype, we use Markov tables [AAN01] and 
regression tree models (e.g., [BFOS84, Loh02b]), 
respectively. Further details about these structures are 
discussed later.  
 

The rest of the paper is organized as follows. Section 2 
discusses related work. Then, Section 3 provides 
preliminary definitions and background necessary to 
describe our techniques. Section 4 introduces and validates 
the short identifying substring hypothesis. Section 5 
describes our techniques for estimating wildcard predicate 
selectivities, and extensions to estimate range query 
predicates (e.g., R.A between s1% and s2%). Section 6 
discusses how to build the summary structures and the 

learning model. Section 7 demonstrates the effectiveness of 
our techniques with a thorough experimental evaluation 
over real data sets. Finally, Section 8 concludes the paper. 

2. Related Work 
The problem of estimating selectivities for string predicates 
has started to receive attention recently. Existing 
approaches to address this problem differ in two aspects: (i) 
the structures and statistics used for summarizing string 
attribute values, and (ii) the techniques for deriving 
selectivity estimates from the attribute value summary. 
  
Krishnan et al. proposed the use of suffix trees for 
summarizing string values in a column [KVI96]. For a 
given relational attribute, they build a suffix tree—to 
maintain frequencies of all suffixes of attribute values— 
and prune it so that it fits in the allocated amount of space. 
The pruned suffix tree retains only the most frequent 
substrings of attribute values. For estimating the frequency 
of a query string s, they divide s into disjoint strings s1, …, 
sk such that each si occurs in the suffix tree. Assuming that 
an attribute value containing si as a substring is independent 
of it containing some other substring sj, the estimated 
selectivity of the initial string is the product of the 
selectivities of the s1, …, sk substrings. They build upon this 
estimator and also consider weighted combinations of 
estimates of suffixes, where the weight of an estimate is 
proportional to its length. This is in contrast to our approach 
of driving the choice of substrings by the short identifying 
substring hypothesis and the query workload.  
 
Jagadish et al. [JKNS00] improve the estimation step by 
relaxing the independence assumption, relying instead on 
the Markovian “short memory”  assumption. According to 
this assumption, the probability of an attribute value v 
containing a substring si+1 only depends on v containing 
substring si (and not on the earlier substrings). Furthermore, 
Jagadish et al. allow adjacent substrings to overlap, and also 
adapt the above ideas to multi-attribute string predicate 
estimation. Chen et al. in turn extend these techniques to 
estimate selectivities of queries involving string predicates 
connected in arbitrary Boolean expressions [CKKM00]. 
They also enhance the pruned suffix trees by maintaining 
summary vectors with each node. The summary vector of a 
node represents a “signature”  of all tuples with the node’s 
associated string as a substring.  These summary vectors can 
help combine selectivity estimates of individual terms in a 
Boolean query predicate. 
  
For the related problem of estimating the selectivity of 
simple XML path expressions consisting of XML tags, 
Aboulnaga et al. use Markov tables over XML tag 
sequences as the summary structure [AAN01]. In its basic 
setting, a Markov table of XML tags for an XML data set 

Choose 
candidate 
substrings 

Combine 
substring 
selectivities 

String 
predicate 

Figure 1: Estimation framework overview. 

Estimate 

Summary Structure Learning Model 



records the selectivity of all possible sequences of tags of 
length not exceeding a pre-specified constant q. The value 
of q determines the amount of space required to store the 
Markov table. Aboulnaga et al. also propose techniques to 
prune the Markov tables so that they do not require more 
than some given amount of space. Lim et al. [LWP+02] 
further improve the pruning of the Markov tables–in a 
workload-aware way—by retaining the selectivity of 
frequently-used query substrings. The general idea of 
exploiting query workloads for selectivity estimation has 
been shown to be effective (e.g., [AC99, LWP+02]). 

3. Preliminaries 
In this section, we introduce definitions, notation, and 
background necessary for describing our selectivity 
estimation techniques. 

3.1. Notation 
We use R.A to denote the attribute A in a relation R, and 
t[A]  to denote the value in attribute R.A of a tuple t. Let � 
be a finite alphabet of size |�| such that values in the 
attribute R.A are drawn from �*. Let a symbol ‘%’  not in � 
denote the wildcard character, which is used for specifying 
predicates. Let s in �* be a string of length |s|.  
 
Unit Predicates: A predicate of the form “ R.A like 
[%] s[%] ” , where s does not contain the wildcard character 
‘%’ , is called a unit predicate. The presence of wildcard 
characters at the beginning and at the end of the predicate is 
optional (signified by enclosure within square brackets). A 
unit predicate whose first (last) character is not the wildcard 
character is called a prefix (suffix) predicate. That is, the 
predicate requires the query string to be at the beginning (at 
the end, for suffix predicates) of an attribute value. Also, we 
refer to s as the query string.   
 
In Section 5.3 we discuss general wildcard predicates as 
well as range predicates. To unify the treatment of prefix 
and suffix predicates with that of unit predicates, we 
introduce the notion of extended strings and conceptually 
replace each attribute value v in R.A with “ #v$” . Then, we 
regard a prefix predicate “ R.A like s%”  as equivalent to 
predicate “ R.A like %#s%” , and a suffix predicate “ R.A like 
%s”  as equivalent to “ R.A like %s$%” . 
 
Extended String: Let ‘#’  and ‘$’  be two symbols not in �. 
Given a string s, the extended string ext(s) is obtained by 
prefixing s with ‘#’  and suffixing it with ‘$’ . For example, 
ext(“ seattle” )=“ #seattle$” . 
 
From now on, for simplicity we assume that all attribute 
values in R.A are replaced with their extensions, and that we 
transform prefix and suffix predicates as above. Also, we 
refer to a predicate “ R.A like %s%”  simply as “ %s%”  

whenever the attribute R.A is clear from the context or 
unimportant for the discussion. 
 
Predicate Matching: A tuple t is said to satisfy or match a 
unit predicate “ R.A like %s%”  if s is a substring of t[A] .  
 
Frequency: The frequency f(p) of a unit predicate p in 
relation R is the number of tuples in R that match p. The 
selectivity of predicate p is equal to f(p)/|R|. For brevity, we 
also define the frequency f(s) of a string s over an attribute 
R.A as equivalent to f(“ R.A like %s%” ).  Similarly, we 
define the selectivity of a string s to be the selectivity of 
“ R.A like %s%” .  
 
Q-gram Table: Let q be a positive integer. Any string of 
length q in *} )#{ $,( ∪Σ  is called a q-gram. A q-gram 

table QTq(R.A) for attribute R.A is a lookup table with the 
frequency f(sn) over R.A of each n-gram sn where 1 � n � q.  
That is, the q-gram table consists of the frequency of all n-
grams of length q or less.1 
 
Q-gram Sequence: The q-gram sequence Qq(s) of a string s 
with no wildcards is the ordered sequence of all 
(overlapping) q-grams that are substrings of s. For example, 
Q3( “seattle” ) is [sea, eat, att, ttl, tle].  

3.2. Markov Estimator 
In our context, a Markov estimator (ME) models the 
selectivity of a unit predicate R.A like %s% as the 
probability of observing the sequence of all q-grams in 
Qq(s) consecutively in R.A values. For q=3 the selectivity 
associated with %novel% is the probability of observing the 
sequence Q3(“ novel” )=[nov, ove, vel] . The computation of 
this probability is simplified by making the Markovian 
“short memory”  assumption, which states that the 
probability of observing a q-gram in the sequence depends 
only on the q-gram immediately preceding it, and is 
independent of all other preceding q-grams. More formally, 
let %s% be a query predicate. If the q-gram sequence of the 
string s is Qq(s)=[q1, …, qk] , the probability of observing 
qi+1 given q1, …, qi under the Markovian assumption is 
equal to the probability of observing qi+1 given qi. 
Consequently, if P(qi+1|q1, …, qi) denotes the probability of 
observing qi+1 immediately after q1, …, qi, then the 
selectivity of %s% is computed as: 

)1|(...)|1(...)
1

|
2

()1(

)1,...,1|(...),...,1|1(...)
1

|
2

()1(

−⋅⋅+⋅⋅⋅=

−⋅⋅+⋅⋅⋅

nqnqPiqiqPqqPqP

nqqnqPiqqiqPqqPqP

 

                                                 
1 Aboulnaga et al. use the term Markov table instead of q-gram 
table [AAN01]. To detach estimation techniques from summary 
structures, we call them q-gram tables instead. 



P(qi|qi-1) is the fraction of tuples containing the common 
substring cs(qi-1, qi) of qi-1 and qi as well as qi. This fraction 
is computed using f(qi)/f(cs(qi-1, qi)), where f(cs(qi-1, qi)) is 
the frequency of the common substring cs(qi-1, qi). For 
example, the selectivity of the predicate %novel% is 
computed as follows. The 3-gram sequence of “novel”  is 
[nov, ove, vel] . The selectivity of %novel% is then 
estimated as: P(nov)·P(ove | nov)·P(vel | ove) = f(nov)/N · 
f(ove)/f(ov) · f(vel)/f(ve), where N is the number of tuples. 
Observe the “multiplicative”  relationship between the 
selectivities of predicate %s’% and %s%, where s’  is a strict 
substring of s. In other words, the selectivity of %s% is 
obtained by multiplying the selectivity of %s’% with 
conditional probabilities of observing the additional q-
grams of s in sequence. Consequently, if the selectivities of 
%s’% and %s% are close, then the ME selectivity estimator 
of %s% is usually an underestimate. We refer to the 
selectivity estimated using the Markov estimator described 
above as the ME-Selectivity. 
 

R.A Extended q-gram sequences (q=3) 
novel [#no, nov, ove, vel, el$] 
article [#ar, art, rti, tic, icl, cle, le$] 
paper [#pa, pap, ape, per, er$] 
journal [#jo, jou, our, urn, rna, nal, al$] 
magazine [#ma, mag, aga, gaz, azi, zin, ine, ne$] 

Table 1: Attribute values and their q-gram sequences. 

3.3. QG Estimator 
We now describe the QG estimator, which relies on q-gram 
frequency tables to derive an upper bound on the selectivity 
of a unit predicate. The rationale behind this estimator is 
that the selectivity of a predicate %s% can never exceed 
that of %s’% for any substring s’  of s. In particular, the 
selectivity of each q-gram of s is an upper bound on the 
selectivity of %s%. Therefore, the QG estimator returns the 
minimum selectivity of a q-gram of string s as (an upper 
bound on) the selectivity of %s%. For the example relation 
in Table 1, the QG-Selectivity of %novel% is 
QG(%novel%)=min{f(nov), f(ove), f(vel)}/5 = min{1, 1, 
1}/5=0.2.2 

4. Short Identifying Substring Hypothesis 
We now discuss our hypothesis that query and attribute 
string values tend to have “short”  substrings whose 
frequency in the underlying relation is close to that of the 
enclosing string. We now formalize this hypothesis by 
defining the notion of an identifying substring.  
 
Definition [Identifying substring]: Consider a unit 
predicate R.A like %s%.  We say that a substring s’  of s is 

                                                 
2 Krishnan et al. consider a similar estimator (CE2) over pruned 
suffix trees [KVI96]. 

an (ε , β ) identifying substring, for 10 <≤ε  

and 10 <<β , if (i) the selectivity of R.A like %s’% is no 

larger than (1+ ε ) times that of R.A like %s% (i.e., the 
selectivity of s’  is close to the selectivity of s), and (ii) |s’ | 
≤ ||. sβ  (i.e., s is longer than s’  by at least a factor of 

1/ β ). 

 
For example, “ove”  is a (0, 0.6) identifying substring of 
“novel”  for the attribute values in Table 1: the selectivity of 
%novel% coincides with that of %ove% (henceε =0), and 
“ ove”  is a strict substring of “ novel”  of length 3≤ 0.6·5 
(hence β =0.6).   

 
Incidentally, related hypotheses have been proposed for a 
number of different scenarios. A first example application is 
the design of “ robust hyperlinks”  for web pages: [PW00] 
claims that most web pages can be uniquely identified via a 
small subset of about 5 of their keywords. Another example 
application is speech recognition, where a spoken word can 
be identified via a partial sequence of correctly recognized 
“substrings,”  even in the presence of noise [MSHS99]. As a 
final example, compact tries that collapse intermediate 
nodes with only one child have been shown to be 
substantially smaller than their standard-trie counterparts 
when storing large sets of strings [Sus63]. These 
observations bear further testimony to our hypothesis that 
many strings have short identifying substrings. 
 
We now experimentally illustrate the short identifying 
substring hypothesis using a variety of real data sets and 
queries. We use the following real data sets: (i) organization 
names column (ON) from a relation consisting of corporate 
customers, (ii) author names column (AN) of all papers in 
the DBLP database [Ley], (iii) paper titles column (PT) of 
all papers in the DBLP database. The sizes and the average 
numbers of tokens (words separated by white space 
characters) and characters per tuple in all three data sets are 
given in the table below. These statistics illustrate the 
variety in characteristics across data sets. The strings in PT 
are much longer than those in either ON or AN.  
 

Average per tuple Data set Size 
#Tokens #Chars 

Organization names (ON) 13,495 3.16 25.74 
Author names (AN) 680,465 2.36 15.84 
Paper titles (PT) 313,974 8.05 63.72 

 
For each of these data sets, we generate query predicates by 
randomly selecting a word that occurs in any of the tuples. 
For example, if w is a word in attribute A of a tuple, we 
generate a query predicate “A like %w%.”  Further, we 
restrict the choice of words to “popular”  words, with 
frequency of at least some threshold, say 100. We denote 



the set of query predicates obtained from the words in data 
set X with frequency Y or higher as X_fY. When the 
frequency threshold is 0 (i.e., when all words are eligible), 
we drop the suffix “ _f0.”  We use the following query data 
sets: ON (386 queries), AN_f100 (1863 queries), AN_f500 
(293 queries), PT_f100 (2658 queries), and PT_f500 (667 
queries). In addition, we also consider AN-First and AN-
Last, involving queries over the first and last names of 
authors, respectively. 
 
Validation Experiment: Table 2 shows the distribution of 
the shortest identifying substrings of query tokens when we 
set ε = 0.05, that is the selectivity of the identifying 
substring has to be within 5% of the selectivity of the query 
string. Given this value, we determine the smallest β value 

for which the query string has an identifying substring. 
 

β  Query 
Set 
 

Avg. 
length Mean S.D. 

3 4 5 6 7 

ON 7.82 0.59 0.17 21.9 64.0 91.9 98.5 99.4 
AN-First 5.84 0.74 0.10 23.7 63.5 93.0 98.4 99.5 
AN-Last 6.19 0.72 0.12 22.4 58.3 90.3 98.5 99.7 
AN_f100 6.11 0.72 0.11 22.3 60.1 91.2 98.4 99.5 
AN_f500 5.71 0.72 0.11 29.3 73.1 95.0 98.7 99.9 
PT_f100 8.23 0.63 0.15 17.7 48.5 73.3 86.6 92.6 
PT_f500 8.08 0.60 0.15 19.0 57.4 78.8 87.9 95.2 

Table 2: Values of β for ε = 0.05. 

 
The “average length”  column in Table 2 is the average 
number of characters in each query. The next two columns 
are the average and standard deviation of β values given 

the ε  value. Each of the subsequent columns is marked by 
a number (3, 4, etc.). A value v in the column marked by a 
number n indicates that v% of the query strings have a 
substring of length less than or equal to n whose selectivity 
is within 5% of the selectivity of the query string. 
 
The mean and standard deviation (S.D.) of β values in 

Table 2 show that β  values vary across data sets (the mean 

is around 0.6 for ON, around 0.7 for AN, and around 0.6 for 
PT). Around 50% to 70% of the queries we consider have 
identifying substrings (when ε = 0.05) of length less than 
or equal to 4, and around 70% to 90% of queries have 
unique substrings of length less than or equal to 5. 
Therefore, for high frequency query predicates, traditional 
estimators might return severe underestimates.  
 
As discussed earlier, whenever query predicates have short 
identifying substrings, then the Markov estimator tends to 
underestimate the true selectivities. If we believe that the 
Markov estimator is accurate for a short identifying 
substring s’ , then the ME-Selectivity ME(s’ ’ ) of any super-
string s’ ’  of s’  is less than ME(s’ ): ME(s’ ’ ) is obtained by 

multiplying ME(s’ ) with additional conditional probability 
factors. The margin of underestimation grows asβ , the 

ratio of the lengths of the substring and the query string, 
decreases.  

5. Estimation Algorithms 
We now describe our algorithms for estimating selectivities 
of string predicates. First, we briefly review the regression 
tree models (which are shown to be effective and powerful 
data fitting models [BFOS84, Loh02b]) upon which our 
combination estimator relies. The discussion assumes that 
supporting structures like the q-gram table QTq(R.A) for an 
attribute R.A are available. In Section 6 we describe the 
construction of such supporting structures. Also, our 
discussion focuses on estimation algorithms for unit 
predicates of the form R.A like %s%. Later in this section 
we extend the estimators to cover general wildcard 
predicates, as well as range predicates.  

5.1. Regression Tree Overview 
We now briefly review regression tree models, which we 
use for modeling dependencies between selectivities of a 
string and its substrings. Please refer to [BFOS84, Loh02b] 
for a more detailed discussion. Consider a relation R with 
numerical attributes X1,…,Xm, Y, of which attribute Y is 
designated as the dependent attribute,3 while attributes X1, 
…, Xm are the predictor attributes. A regression tree RT on 
relation R is a tree-structured model for describing the 
dependent attribute Y in terms of the predictor attributes X1, 
…, Xm.4 Each leaf node n in the tree is associated with a 
function fn(X1, …, Xm) that predicts the value of Y given 
those of X1, …, Xm. The nature of the function fn may vary in 
complexity (e.g., possibilities include a constant function 
[BFOS84], linear combinations of predictor attributes 
[Loh02b], or a quantile regression function over predictor 
attributes [CL02]). Each edge e originating from a non-leaf 
node n has a predicate p associated with it. For any relation 
tuple, exactly one of these predicates evaluates to true at 
each node. 
 
Given a tuple [ x1,…,xm, NULL]  whose Y value is unknown, 
we traverse the regression tree RT starting from its root 
until we reach a leaf node n by following edges whose 
associated predicates evaluate to true for the tuple. At n,  
fn(x1, …, xm) is the RT predictor of the Y value for the tuple. 
 
Figure 2 shows an example of a regression tree constructed 
from a relation with three attributes, Age, Salary, and 

                                                 
3 In general, the relation may also have categorical attributes. 
However, since we only use numerical attributes in our estimation 
framework, we ignore categorical attributes.  
4 Unlike in decision trees, the dependent attribute Y is numeric in 
regression tree models. 



Expenditure, where Age and Salary are the predictor 
attributes, and Expenditure is the dependent attribute. The 
input tuple [21, 29K, NULL] is “ routed”  to leaf node 4, so 
the predicted expenditure is 0.5·29K+100·21–10 = 16,590. 
 

 
For the selectivity estimation problem we consider in this 
paper, we attempt to minimize the amount of space required 
to store the q-gram tables and other auxiliary structures. 
Hence, smaller trees are preferred. Chaudhuri et al. showed 
that quantile regression trees (i.e., regression trees that 
employ quantile regression functions at leaf nodes) tend to 
be smaller in size and more accurate than other types of 
regression trees [CL02]. (Quantile regression models the 
quantile distribution of the dependent attribute with respect 
to the predictor attributes.) Because of this, we employ 
quantile regression trees for our estimates, but other models 
can be substituted with no change in our general strategy. 

5.2. Regression Tree Combination Estimator 
In this section we describe our selectivity estimation 
technique, whose rationale stems from the short identifying 
substring hypothesis. Ideally, we would like to correctly 
guess a “minimal”  identifying substring (e.g., “eatt” ) of a 
query string s (e.g., “seattle” ). An identifying substring of s 
is minimal if it does not strictly contain another identifying 
substring of s. Once such a minimal identifying substring is 
found, we can use existing estimators (e.g., the Markov 
estimator) to compute the selectivity associated with just 
this substring and return it as the selectivity of the original 
predicate, thus alleviating the selectivity underestimation 
problem. For example, the selectivity estimate of R.A like 
%eatt% can be returned as that of R.A like %seattle%. 
However, if we only have limited statistics on frequencies 
of substrings, correctly determining a minimal identifying 
substring for a given string predicate is not possible. 
 
Our approach (as mentioned in Section 1) therefore is to 
guess multiple candidate identifying substrings, one for 
each value of substring length between q and |s|, and 
combine their estimated selectivities. Since exact 
selectivities of all q-grams are readily available from table 
QTq(R.A), we can precisely determine the best candidate 
identifying q-gram, whose selectivity is guaranteed to be at 
least as high as that of the query string. Therefore, we do 

not consider identifying substrings shorter than q. For each 
length between q and |s|, we find the substring of that length 
most likely to be an identifying substring. Our combination 
function assigns weights to these selectivities. Intuitively, 
the weight of a substring of length L depends on the 
probability that the length of the shortest identifying 
substring is equal to L. For the example predicate %novel% 
in Figure 3, W0 depends on the probability that the length L 
of the shortest identifying substring of “novel”  is 3, W1 
depends on the probability that L=4, and so on. We learn 
the weights associated with the chosen candidate identifying 
substrings for each length using a regression tree model.5 
This general approach requires that we specify (i) how to 
identify candidate identifying substrings, and (ii) how to 
define the regression-tree combination function. We now 
discuss these two issues. 

Choice of Candidate Identifying Substrings 
To estimate the selectivity associated with a string s, we 
choose one potential candidate identifying substring for 
each length “ level”  between q and |s|. Level l consists of all 
substrings of s of length q+l. Figure 3 shows the substrings 
for predicate %novel% organized by level for q=3:  level 0 
includes all substrings of length 3 (e.g., nov), level 1 has all 
substrings of length 4 (e.g., nove), while finally level 2 
consists of the only substring of length 5 (i.e., novel). 
 
At each level, we focus on the substring that is most likely 
to be an identifying substring of the original query string. 
For this, we build on the observation that the selectivity of 
any substring cannot be smaller than that of the query string. 
Therefore, we choose the substring at each level with the 
smallest (estimated) selectivity. The selectivities of level 0 
substrings (i.e., of substrings of length q) can be derived 
precisely from the q-gram table QTq(R.A) for relation 
attribute R.A. Unfortunately, higher levels require that we 
resort to selectivity estimates, since we do not have exact 
frequency statistics for strings longer than q characters. 
Although traditional estimators are prone to underestimating 
true selectivities, as discussed in Section 4, this 
underestimation is substantially less severe for these short 
substrings than for the original (longer) string. To estimate 
substring selectivities, we can in principle exploit any 
selectivity estimation technique (e.g., Markov or QG 
estimators) that is consistent with our frequency statistics 
for this task. Our discussion below assumes the Markov 
estimator of Section 3, so we choose the substring with the 
smallest ME-Selectivity at each level. For the Table 1 
example, Figure 3 shows in bold the substring that is picked 
at each level according to the Markov selectivity estimates.  

                                                 
5 Besides regression trees, we also explored several other 
combination functions (Section 6). 

2 3 

4 5 

Age < 20 Age � 20 

Salary < 30K Salary � 30K 

0.5·Salary + 100·Age - 10 0.5·Salary - 20 

Figure 2: Regression tree for predicting expenditure. 

1 



 

Regression-Tree Combination Function 
As discussed above, if we knew the length L of a minimal 
identifying substring for a query predicate %s%, we could 
then just estimate the selectivity of the predicate as the 
estimate for the chosen substring of level L-q. Because this 
length L is not available, we derive the selectivity estimate 
for %s% as the weighted geometric mean of the selectivity 
estimate from each length level. Recall that the ME-
Selectivity (defined in Section 3.2) of a string s is obtained 
by multiplying the ME-Selectivity of a smaller substring s’  
with the conditional probability that a value contains s given 
that it contains s’ . Due to this non-linear dependence 
between substring estimates (say, x1,…,xn), it is more 
effective to fit a linear model over the logarithms of 
estimates (w1 � log(x1) +…+wn � log(xn)), which corresponds to 
the weighted geometric average (x1

w1
� …� xn

wn). Rather than 
assigning each level some constant (e.g., uniform) weight in 
this combination, we instead learn the level weights from 
the data sets and expected query workload, which is a set of 
string predicates and the true selectivities of all associated 
substrings. The rationale behind this decision is that 
different data set-query workload combinations might result 
in different average minimal identifying substring lengths.  
Therefore, our combination function adapts to the data 
characteristics and the correlations between the query string 
and substring selectivities.  
 
A good combination function for the level selectivity 
estimates can be learnt from a representative training query 
workload by using a variety of machine learning tools. For 
concreteness, our discussion focuses on regression trees 
(Section 5.1), and we consider alternative weighted 
combinations in our experimental evaluation. (Section 6 
discusses how to train a regression tree.) After training, a 
regression tree produces the selectivity estimate CRT(s) for 
a query string %s% from the ME-Selectivity values of the 
candidate substrings at each length level. The regression 
tree computes CRT(s) as a non-linear combination of the 
input ME-Selectivity values, weighting each level as 
determined during training.  
 
Recall from Section 5.1 that a regression tree takes as input 
a fixed number of predictor attribute values and returns an 
estimate value for the dependent attribute. In our context, 
the number of ME-Selectivity estimates that are passed as 
input to the regression tree depends on the length of the 
query string. To handle this variability in input size, we 
“wrap”  the regression-tree estimation module to accept a 

variable-sized estimate sequence. During training, we fix 
the number of predictor values that the tree will expect as 
the average length of the estimate sequences for the training 
queries. Then, our regression-tree wrapper pads shorter 
estimate sequences with 0’s, while it “shrinks”  longer 
estimate sequences by collapsing the selectivity estimates 
for the largest “ levels”  (e.g., by taking their maximum).  

 
As an example, consider the regression tree combination in 
Figure 4 and the query predicate %novel%. As discussed 
earlier, the three chosen candidate identifying substrings for 
this query are ove, nove, and novel. Because the length of 
the original query string (i.e., “ novel” ) is 5, the final 
selectivity estimate for this query is exp(0.4·log(ME-
Selectivity(%ove%)) + 0.3·log(ME-Selectivity(%nove%)) + 
0.05·log(ME-Selectivity(%novel%))-0.01) when all 
substring selectivities are positive. 
 
In general, as we demonstrate in Section 7, the estimates 
obtained using the regression tree combination function are 
very accurate. Further, like in all learning-based 
approaches, the improvements in accuracy can be validated 
by holding back a portion (say, 10%) of the workload as the 
test dataset over which to measure the accuracy of the built 
model. Only if the accuracy of the learnt function is better 
than that of traditional estimators (say, the Markov 
estimator) may we use it for estimation.  
 
The use of regression trees introduces some overhead in the 
selectivity estimation process. Most significantly, we need 
to learn the combination model from a training set of 
representative example queries. Section 6 discusses this 
learning step in detail. In Section 7, we demonstrate 
empirically that the cost of actually traversing the regression 
trees—which tend to be shallow for our problem—while 
estimating selectivities at run time is negligible. 

5.3. Handling Other Predicate Types 
So far, we focused our discussion on unit predicates. We 
now outline selectivity estimation for a more general class 
of wildcard predicates, as well as for range queries.  
 
Range Predicates: A predicate of the form “ R.A between 
s1[%]  and s2[%] ” , where s1 and s2 do not contain the 
wildcard character ‘%’ , is called a range predicate.  
 
A range predicate “ between s1% and s2%”  can be expressed 
as the sum of several prefix predicates, one for each string 

Length � 5 Length > 5 

0.4·e1 + 0.3·e2 + 0.05·e3 -0.01 … 
Figure 4: An example regression tree. 

          novel 

   nove         ovel 

nov      ove        vel 

Level 2 

Level 1 

Level 0 

Figure 3: Substring levels for “ %novel%” .  

W2 

W1 

W0 



between s1 and s2 in lexicographic order. Fortunately, these 
prefix predicates can be collapsed to a relatively small 
number of prefix predicates, the selectivity of many of 
which can be answered exactly from the q-gram table. 
Consider as an example the range predicate “ between 
abcz% and daab%” . We can estimate the selectivity of this 
predicate as the sum of the selectivities of the (disjoint) 
prefix predicates abcz%, abd%, …, abz%, ac%,…, az%, 
b%, c%, and daaa%. This way, we collapse, for example, 
all strings starting with “ ac”  into the predicate “ ac%” , 
whose selectivity can be derived precisely from the 
frequency of the “ #ac”  3-gram.  
 
As a variation, when we process a range predicate “ between 
s1% and s2%”  we can ignore all (longer) prefix predicates 
between s1% and s2% whose exact selectivity cannot be 
derived from the q-gram table.  By not considering 
predicates at the ends of the query range, we hope to 
introduce less noise in the estimation process, as we confirm 
experimentally in Section 7. We refer to the resulting 
estimator for range predicates as RG_APPX. For the 
example predicate “ between abcz% and daab%”  and for 
q=4, RG_APPX returns the sum of selectivities of prefix 
predicates abd%, …, abz%, ac%,…, az%, b%, and c%. 
 
Multi-unit Predicates: A predicate of the form “ R.A like 
[%] s1%...%sk[%] ” , where s1, …, sk do not contain the 
wildcard character ‘%’ , is called a multi-unit predicate.  
 
The idea behind the extension to multi-unit predicates is 
similar to that behind the QG estimator: the selectivity of 
each predicate %si% is an upper bound on that of the 
original query predicate. We exploit this observation and 
simply return the minimum of all the %si% selectivity 
estimates as the estimated selectivity for %s1%...%sk%. For 
the example predicate “ R.A like %microsoft%corp%,”  we 
return the minimum of the selectivity estimates of “ R.A like 
%microsoft%”  and “ R.A like %corp%.”  

6. Building Supporting Structures 
We now discuss how to build the q-gram tables (Section 
6.1) and regression trees (Section 6.2), as well as their 
associated space overhead.  

6.1. Building q-Gram Tables 
A q-gram table QTq(R.A) for a relation attribute R.A stores 
the frequency in R.A of each string of at most q characters 
from }#{ $,

�
Σ . We can easily construct QTq(R.A) from a 

single scan of relation R (e.g., by processing the output of 
SQL query “ select R.A from R” ). If C=| }#{ $,

�
Σ |, the 

q-gram table conceptually consists of QL = 
C+C2+...+Cq=(Cq+1-1)/(C-1) (not necessarily non-zero) 

entries.6 Therefore, QTq(R.A) stores at most QL frequencies. 
We can structure these entries using, say, hash tables to 
store only the non-zero frequencies. Alternatively, we can 
use a dense representation in an array and avoid storing the 
actual q-grams. In this case, the frequencies are ordered 
lexicographically according to their corresponding q-grams, 
so that the entry associated with a given q-gram can be 
readily identified with a simple calculation.  
 
To further reduce the size of the q-gram table, we can 
follow Aboulnaga et al. [AAN01] and Lim et al. [LWP+02], 
and maintain only the selectivity of “ important”  q-grams, 
while assuming a default (average) frequency for the 
remaining ones. The notion of “ importance”  of a q-gram 
may be tied to its selectivity:  the higher the selectivity, the 
more important the q-gram [AAN01]. This notion may be 
further adapted so that q-grams are weighted according to 
their usefulness for deriving accurate selectivity estimates 
for a given query workload [LWP+02]. We do not discuss 
these space-reduction strategies further in this paper. 

6.2. Building Regression Trees 
To build a regression tree for a relation attribute, we need a 
training set consisting of a representative query workload of 
string predicates. Such a training set is typically easy to 
obtain, e.g., from a trace collected by the profiler tool 
available with most commercial database systems. (If no 
such workload is available, a sample of words or substrings 
from attribute values might be used instead.) Given a 
training set, we can then use standard regression tree 
construction algorithms such as the GUIDE algorithm 
developed by Loh et al. [Loh02b, CL02], whose associated 
software [Loh02a] we use in our experiments. 
 
To prepare the training set, we compute the exact selectivity 
of all query predicates in the training workload by scanning 
the relation in question once. In fact, this selectivity 
computation can be piggybacked as part of the q-gram table 
computation. Then, for each query predicate we prepare an 
entry in the training set consisting of the following features: 
 
Query String Characteristics: Figure 4 shows a hypothetical 
scenario in which the dependence between the selectivity of 
substrings and the query predicate is different for query 
strings of length less than or equal to 5 than it is for query 
strings of length greater than 5. The regression tree in the 
figure is able to model this by associating different 
combination functions to different leaf nodes, and splitting 
on the length of the query string. One of the predictor 
values that we associate with query predicates is then the 
length of the associated query string.  

                                                 
6 QL is actually lower since the special characters # and $ only 
occur at the beginning and at the end of the q-grams. We ignore 
this detail to simplify our description. 



Figure 5: Average relative error. 

Query Substring Selectivity Estimates: As described above, 
we choose one substring per length “ level”  as the candidate 
substring. We include the logarithms of ME-Selectivity 
estimates of candidate substrings—one per level—as 
additional predictor values.  
 
The space overhead introduced by using regression trees is 
negligible. Each non-leaf node of the tree needs to encode 
the predicates associated with its outgoing edges. In 
particular, quantile regression trees (as well as other typical 
classes of regression trees) are binary (i.e., each internal 
node has only two outgoing edges). Therefore, just two 
numbers—an integer for the attribute identifier and a real   
number for the attribute split value—need to be maintained 
for our setting. Finally, each leaf node simply maintains a 
set of weights defining a linear combination of the predictor 
values into the query selectivity estimate. In Section 7.4, we 
show experimentally that regression trees on various 
combinations of data sets and query workloads tend to be 
very shallow, consisting of at most 2 levels and hence 
requiring very little space. Relative to the space required by 
the q-gram tables (in the order of thousands of bytes), the 
additional space needed for the regression trees (in the 
order of hundreds of bytes) is negligible. 

 

0

0.5

1

1.5

ON AN_f100 AN_f500 PT_f100 PT_f500

A
ve

ra
g
e 

R
el

at
iv

e 
E
rr

o
r

QG WCS ME_ST ME WCIS CRT

 
 

7. Exper imental Evaluation 
We now evaluate our estimation techniques using real data 
sets to show (i) that simple non-adaptive combination 
functions are not accurate thus motivating the use of 
adaptive learning-based combination functions, and (ii) that 

the combination estimators are better than previous 
estimators for estimating string predicate selectivity. We 
first describe our experimental setup.   

7.1. Setup 
We first review the data sets, the training and test query 
workloads, which agree with those used in Section 4. We 
consider three data sets: (i) Organization names (ON), (ii) 
Author names (AN), and (iii) Paper titles (PT). Recall that 
the query workloads are: ON (386 queries), AN_f100 (1863 
queries), AN_f500 (293 queries), PT_f100 (2658 queries), 
and PT_f500 (667 queries). 
  
While evaluating the CRT regression-tree estimator of 
Section 5.2, we split the workload into a training set 
(consisting of either 250 queries or 50% of the workload, 
whichever is smaller) over which the regression tree 
combination is learnt, and a test set consisting of the 
remaining queries. In all the experiments on regression 
trees, we fix the number of predictor variables to 9: as 
explained, one variable is for the string length, while the 
remaining 8 are for substring selectivity estimates.  

7.2. Evaluation Metr ics 
The first metric we consider is the average relative error, 
which measures the overall accuracy of an estimator as the 
ratio |estimate-actual|/actual, where estimate is the 
selectivity estimate and actual is the exact value of the 
selectivity. Unfortunately, the average relative error heavily 
penalizes errors with respect to small selectivities. We 
therefore adopt “corrections”  for this metric from the 
literature that are aimed at lessening the impact of this 
problem [CKKM00, LWP+02]. Specifically, if the actual 
selectivity of a predicate over a relation R is less than 
100/|R|, we divide the absolute selectivity error with 
100/|R|, rather than with actual. 
 
The second metric we consider is the quartile distribution 
of the relative error to illustrate the bias and the overall 
accuracy of an estimator. The quartile distribution 
bucketizes the relative error distribution into the following 
buckets: [-100%, -75%), [-75%, -50%), [-50%, -25%),  

ON

0

0.25

0.5

0.75

1

-100 -50 0 50 100
Relative Error Buckets

B
uc

ke
t F

re
qu

en
cy QG ME

WCIS CRT

AN_f100

0

0.25

0.5

0.75

-100 -50 0 50 100
Relative Error Buckets

B
uc

ke
t F

re
qu

en
cy QG ME

WCIS CRT

PT_f100

0

0.3

0.6

0.9

-100 -50 0 50 100
Relative Error Buckets

B
uc

ke
t F

re
qu

en
cy

QG ME

WCIS CRT

 
Figure 6: Quartile distribution of average relative error. 



Range Queries  on ON

0

0.1

0.2

0.3

ON

R
el

at
iv

e 
E

rr
o

r

QG ME CRT RG_APPX
Range Queries on AN_f100

0

0.1

0.2

0.3

AN_f100

R
el

at
iv

e 
E

rr
o

r

QG ME CRT RG_APPX
Range Queries on PT_f100

0

0.1

0.2

0.3

PT_f100

R
el

at
iv

e 
E

rr
o

r

QG ME CRT RG_APPX

Figure 7: Accuracy of estimators for range queries. 

[-25%, 0%), [0%, 25%), [25%, 50%), [50%, 75%), [75%, 
100%), [100%, infinity). Estimates that fall into negative 
buckets indicate underestimates, and those that fall into 
positive buckets are overestimates. 

7.3. Estimation Techniques Compared 
We compare our new regression tree combination estimator, 
CRT, with several estimators from the literature, which we 
discussed above: Markov estimators over both q-gram 
tables (ME) and suffix trees (ME_ST)—referred to as the 
maximal overlap method in [JKNS00], as well as the QG 
estimator. We also consider two other weighted 
combination estimators over suffix trees: WCS and WCIS. 
Krishnan et al. [KVI96] proposed WCS, a weighted 
combination of estimates of all suffixes [sq, …, s|s|]  of the 
query string s of lengths between q and |s|. This can be 
viewed as using—for each length “ level”—the suffix of that 
length of s. The weight of the estimate for suffix si is 
proportional to its length |si|, and the sum of all weights is 
constrained to be equal to 1. We extend WCS to WCIS by 
considering the candidate identifying substrings at each 
level instead of suffixes. WCIS still uses the same weighting 
policy as WCS. Thus, the difference in accuracy between 
WCS and WCIS reflects the importance of choosing good 
candidate substrings.  
 
Unless otherwise specified, we allocate 36.4 kilobytes of 
memory for all summary structures: q-gram tables and, 
optionally, regression trees and suffix trees. This space can 
accommodate 3-gram tables (i.e., q=3) and approximately 
3600 nodes in the suffix tree. We ran all experiments on a 
2.2-GHz desktop PC with 512 MB of main memory running 
Windows XP Professional. 

7.4. Exper imental Results 

We now present our experimental results on accuracy, and 
report on the time and space overheads of regression trees.  

Accuracy of Estimates for  Unit Predicates 

We demonstrate the accuracy and robustness of the CRT 
estimator by plotting the average relative error and its 
quartile distribution.   
 

Figure 5 plots the average relative error over several data 
sets and test queries. First, the CRT estimator is consistently 
the best for almost all data sets (except for the small ON 
dataset, whose unpruned suffix tree almost fits entirely 
within the allotted main memory), often by more than 30-
50%. Second, WCIS is consistently better than WCS. 
Together, these imply that exploiting the identifying 
substring hypothesis yields significant improvements and, 
furthermore, that learning the appropriate combination helps 
improve accuracy. That WCIS is better than WCS shows the 
importance of choosing candidate substrings appropriately. 
Further, the importance of learning a robust adaptive 
combination function is highlighted in those cases (query 
sets AN_f100, PT_f100, and PT_f500) where WCIS is 
substantially worse than CRT. To illustrate the importance 
of using robust adaptive combination functions, we also 
experimented with two other functions for combining the 
estimated selectivities of candidate substrings: (i) the 
geometric mean and (ii) the weighted geometric mean 
where the weight for each level L is the probability P(L) that 
the shortest identifying substring of  a query has length L. 
These probabilities are computed using the workload. P(L) 
is the proportion of queries in the workload whose shortest 
identifying substring is of length L. We are unable to 
present the plots due to space constraints. These 
combination functions yield substantially high errors (worse 
than WCIS) and vary widely across datasets, which 
highlights the importance of using sophisticated 
combination strategies. 
   
Figure 6 plots the distribution of QG, ME, WCIS, and CRT 
estimates around the actual values for query data sets ON, 
AN_f100, and PT_f100. Each [ x, y) “bucket”  is represented 
by its left endpoint x on the x-axis. High values at the 
negative (or at the positive) end of the x-axis indicate bias 
towards underestimation (or overestimation, respectively). 
ME severely underestimates selectivities for a large 
percentage (sometimes, around 90%) of queries, thus 
supporting the motivation behind our approach. Even 
though QG and WCIS have a significant percentage of 
estimates around 0, they overestimate (with large relative 
errors above 100%) for a significant percentage of queries. 
Hence, their overall accuracy (as shown by Figure 5) is low.  
 



The plots of quartile distribution and average relative error 
confirm the observation made by Krishnan et al. [KVI96] 
that WCS often results in drastic overestimates of the true 
selectivity. That the equivalent WCIS estimator fares much 
better underlines the validity and the usefulness of the short 
identifying substring hypothesis.  

Accuracy of Estimates for  Range Predicates 

We now evaluate estimators for answering range predicates. 
In this experiment, we adapt the standard approach 
employed for evaluating the accuracy of histograms in 
answering range predicates on numeric attributes [IP95]. 
We generate a predicate “ between t1% and t2%”  by 
randomly picking two tokens t1 and t2 from among the set of 
all tokens occurring in the attribute values of R.A. (We 
swap the values appropriately so that  t1 < t2 in 
lexicographical order.) 
 
Figure 7 shows the results. Once again, CRT is usually the 
most accurate technique, though not by a significant margin 
all the time. Interestingly, the accuracy of RG_APPX (the 
estimator that ignores all intermediate prefix predicates that 
cannot be answered exactly; see Section 5.3) is comparable 
to that of CRT. 
 

 ON AN PT 
CRT 77 (0.57%) 308 (0.05%) 312 (0.09%) 
ME 4.93(0.04%) 30 (0.005%) 115 (0.03%) 
WCIS 26 (0.19%) 658 (0.1%) 1787(0.057%) 
Table 3: Average absolute error (and as percentage of 

relation size) for negative queries. 

Accuracy of Estimates for  Negative Quer ies 

We now consider “negative”  queries that produce empty 
answers. For experiments over a particular data set, we use 
queries drawn from a different data set. For example, for a 
summary built upon the author name (AN) column, we 
generate queries from the paper title (PT) column. By 
construction, the actual selectivity of these queries tends to 
be very close to zero: 60-85% of queries have frequencies 
less than 5. Table 3 shows the average absolute error of the 
CRT, ME, and WCIS estimators along with the percentage 
of the relation size to which this error corresponds. (The 
results for other estimators are similar.) ME usually 

underestimates selectivities, so it performs particularly well 
for negative queries. The absolute errors for CRT are 
higher, but still small in absolute terms (on average less 
than 0.6% of the relation size for all data sets that we tried).   

Effect of q on Accuracy 

In this experiment, we vary the amount of available memory 
for the summary structures, so that the value of q varies 
between 2 and 4. Figure 8 shows the average relative error 
for the ME and CRT estimators on several data sets, as we 
vary the value of q. As expected, the average relative error 
decreases as we increase q for all estimators. Moreover, the 
CRT estimator is consistently better than ME across these 
values of q, and is accurate even for q=2.  
 

Data and Query Set Regression Tree Size (in bytes) 
ON 80   (0 NL + 1 L) 
AN_f100 172 (1 NL + 2 L) 
AN_f500 80   (0 NL + 1 L) 
PT_f100 80   (0 NL + 1 L) 
PT_f500 80   (0 NL + 1 L) 
Table 4: Size of the regression trees for our data sets. 

Regression Trees: Time and Space Overhead  

We now demonstrate that the size and time overheads due 
to the use of regression trees are negligible. In our 
implementation, each internal or non-leaf (NL) node in the 
regression tree requires 12 bytes (attribute id and split 
value) and each leaf (L) node requires 80 bytes for encoding 
the linear combination of attributes: 8 bytes each for the 
weight of 9 predictor attribute variables and 8 bytes for a 
constant. Table 4 shows the sizes of the regression trees for 
all data sets and query workloads. Observe that even very 
small regression trees provide significant improvements in 
accuracy because they encode weighted combinations of 
substring selectivities that are learned from the workload. 
For example, the weights for the linear combination 
function for ON in Table 4 are [-0.009, -0.1, 0.2, -0.4, 0.4,  
-0.003, -0.08, 0.001]. Note also that the size of a q-gram 
table (using the array representation discussed in Section 
6.1) is 35,600 bytes for q=3, and 3000 bytes for q=2. 
Therefore, the additional amount of space required for 
regression trees is negligible compared to that for q-gram 
tables.  

ON

0

0.1

0.2

0.3

0.4

0.5

0.6

q=2 q=3 q=4

A
ve

ra
g

e 
R

el
at

iv
e 

E
rr

o
r

ME CRT

AN_f100

0

0.2

0.4

0.6

0.8

1

1.2

q=2 q=3 q=4

A
ve

ra
g

e 
R

el
at

iv
e 

E
rr

o
r

ME CRT

PT_f100

0

0.5

1

1.5

2

q=2 q=3 q=4A
ve

ra
g

e 
R

el
at

iv
e 

E
rr

o
r

ME CRT

 
Figure 8: Average relative error versus q. 



Table 5 shows the time required for building q-gram tables 
and the additional time for learning the regression trees—
including both the preparation of the training data and the 
actual learning. As shown in the table, the overhead for 
learning regression trees is lower than that for building the 
q-gram tables.  Note that the time for preparing training data 
can be reduced by “piggybacking”  the table scan during the 
q-gram table construction, as suggested in Section 6.2. Our 
implementation, over which the numbers reported above 
were computed, does not use this optimization. 
 
We also measured the average time required for estimating 
the selectivity of a predicate: the time variations turned out 
to be very small, at around 4 microseconds for estimators 
QG, ME, and CRT. Thus, the overhead of using regression 
trees for combining estimates is negligible.  
 

Time (in seconds) 
CRT 

 
Data set Q-gram Tables 

Prepar ing Data Building  
ON 11 2.2 9 
AN_f100 437 234.9 16 
AN_f500 437 62.6 19 
PT_f100 621 140.1 15 
PT_f500 621 48.3 17 

Table 5: Time for building regression trees. 
 
In summary, our experiments over real data sets showed 
that our new estimator based on regression tree combination 
is more accurate and robust than traditional estimators, and 
that the associated time and space overheads are negligible. 

8. Conclusions 
In this paper, we developed accurate selectivity estimators 
for string predicates that adapt to data and query 
characteristics. Our estimators leverage and build on state-
of-the-art estimation techniques, and are based on the 
hypothesis that query strings usually have relatively short 
substrings that almost uniquely “ identify”  them. We 
empirically showed that selectivity estimators that do not 
exploit this observation often severely underestimate 
selectivities. In contrast, our new estimation techniques 
exploit this hypothesis and learn how to weight the 
selectivity estimates for query substrings during a training 
phase over a representative query workload. Our 
experimental evaluation over real data sets suggests that our 
workload-aware estimates are accurate and robust, while at 
the same time imposing only low space and time overheads. 
Furthermore, the selectivity weights can be learned 
efficiently, so the combination model can be recomputed 
periodically to reflect workload or data changes. 
 
Acknowledgements 
We thank Zhiyuan Chen for providing us with source code 
of the suffix tree implementation. 

References 
[AAN01] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. 
Estimating the selectivity of XML path expressions for Internet 
scale applications. In Proceedings of the 27th International 
Conference on Very Large Data Bases, pages 591—600, 2001. 

[AC99] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: 
Building histograms without looking at data. In Proceedings of 
the 1999 ACM International Conference on Management of Data 
(SIGMOD), 1999. 

[Breiman96] L. Breiman. Bagging predictors. Machine Learning 
24, 123-140, 1996. 

 [BFOS84] L. Breiman, J. Friedman, R. Olshen, and C. Stone. 
Classification and regression trees. Wadsworth, Belmont, CA, 
1984. 

[CKKM00] Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan. 
Selectivity estimation for Boolean queries. In Proceedings of the 
Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on 
Principles of Database Systems, pages 216—225, 2000. 

[CL02] P. Chaudhuri and W.Y. Loh. Nonparametric estimation of 
conditional quantiles using quantile regression trees. Bernoulli, 
8:561—576, 2002. 

[FS96] Y. Freund and R. E. Schapire. Experiments with a new 
boosting algorithm. Machine Learning: Proceedings of the 
Thirteenth International Conference, pages 148—156, 1996. 

[IP95] Y. E. Ioannidis and V. Poosala. Balancing histogram 
optimality and practicality for query result size estimation. In 
Proceedings of the 1995 ACM SIGMOD International Conference 
on Management of Data, pages 233—244, 1995. 

[JKNS00] H. V. Jagadish, O. Kapitskaia, R. T. Ng, and D. 
Srivastava. One dimensional and multi-dimensional substring 
selectivity estimation. The VLDB Journal (2000) 9, pages 214—
230, 2000. 

[KVI96] P. Krishnan, J. S. Vitter, and B. R. Iyer. Estimating 
alphanumeric selectivity in the presence of wildcards. In 
Proceedings of the 1996 ACM SIGMOD International Conference 
on Management of  Data, pages 282—293, 1996. 

[Ley] M. Ley. DBLP. Computer science bibliography. 
http://www.informatik.uni-trier.de/~ley/db. 

[Loh02a] W.-Y. Loh. The GUIDE system for building regression 
trees. http://www.stat.wisc.edu/~loh/guide.html. 

[Loh02b] W.-Y. Loh. Regression trees with unbiased variable 
selection and interaction detection. Statistica Sinica, 12:361—
386, 2002. 

[LWP+02] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. 
Parr. XPathLearner: An on-line self-tuning Markov histogram for 
XML path selectivity estimation. In Proceedings of the 28th 
International Conference on Very Large Databases, pages 442—
453, 2002. 
[PW00] T. Phelps and R. Wilensky. Robust hyperlinks and 
locations. D-Lib Magazine, 6(7), July 2000. 
[MSHS99] J. Ming, D. Stewart, P. Hanna, and F. J. Smith. A 
probabilistic union model for partial temporal corruption of 
speech. In Automatic speech recognition and understanding 
workshop, Keystone, Colorado, December 1999. 
[Sus63] E. Sussenguth. Use of trees for processing files. 
Communications of the ACM, 6(5):272--279, 1963. 


