
Substructure Clustering on Sequential 3d Object Datasets

Zhenqiang Tan
School of Computing

National University of Singapore
Singapore

tanzhenq@comp.nus.edu.sg

Anthony K. H. Tung
School of Computing

National University of Singapore
Singapore

atung@comp.nus.edu.sg

Abstract

In this paper, we will look at substructure clustering
of sequential 3d objects. A sequential 3d object is a
set of points located in a three dimensional space that
are linked up to form a sequence. Given a set of se-
quential 3d objects, our aim is to find significantly large
substructures which are present in many of the sequen-
tial 3d objects. Unlike traditional subspace clustering
methods in which objects are compared based on val-
ues in the same dimension, the matching dimensions be-
tween two 3d sequential objects are affected by both
the translation and rotation of the objects and are thus
not well defined. Instead, similarity between the objects
are judge by computing a structural distance measure-
ment call ��� ��� (�����
	���
 ��� ����� � �
���� � 	 ��� ��
�� which
require proper alignment (including translation and ro-
tation) of the objects. As the computation of ��� ��� is
expensive, we proposed a new measure call � � � �"! �$#
��%
 �$# 	'&(��� � 	 ��� ��
�� which is shown experiemntally to ap-
proximate ��� ��� . Based on � � � , we define a new clus-
tering model called �
) �*� � 	+
 � and devise an algorithm
for discovering all maximum �
) �*� � 	+
 � in a 3d sequen-
tial dataset. Experiments are conducted to illustrate the
efficiency and effectiveness of our algorithm.

1 Introduction

In this paper, we will look at substructure clustering
of sequential 3d objects. A sequential 3d object is a set
of points located in a three dimensional space that are
linked up to form a sequence. Given a set of sequential 3d
objects, our aim is to find significantly large substructures
which are present in many of the sequential 3d objects.

The problem of finding structural patterns in large data
sets has received much attention in data mining commu-
nity recently. Algorithms had been developed for dis-

covering frequent structure patterns from various datasets
including sequences, trees and graphs. There also work
on similar structural queries which search for similar
or inexact structures in the structural sequences of pro-
teins and other biomolecules with the form of 3d (x,y,z)
coordinates[7] . A method called geometric hashing
for comparison of 3d geometric structures was proposed
in[3] which argue that finding clusters of molecules satis-
fying a required property is more important than finding
precise structural difference between pair of molecules.

The objective of our work is different from these ex-
isting methods in that we focus on finding all clusters of
the substructures based on similarity in the sequential 3d
object data set. Sequential 3d objects appear in many real
applications and finding out all frequent substructures in
the 3d object dataset is a common and meaningful prob-
lem. The following are two of such examples.

1. Identifying common substructures and drug de-
sign: Structure patterns can be used for characteriz-
ing families of proteins which are defined to be set
of functional or structurally related proteins. The
discovery of such patterns can help to understand
the working of living organisms [1]. Some protein
structure motifs cannot be detected by conducting
amino acid sequence alignment, where the identity
among their respective amino acid sequence are less
than 25% but their 3d structures are quite similar [6].
Clustering substructures on the sequential linked)-,
atoms help to explore motifs on remote homolo-
gous proteins. Figure 1 plots two protein structures
which have similar fragments marked as Local Sim-
ilar Substructure.

2. Find coherent movement of moving objects: In
these kind of applications, those objects which
have coherent movement during a given time period
would be found. This is useful for detecting militar-
ily gathering, terriorist group movement etc..

Protein 1
Protein 2

Local Similar Substructure

Figure 1. Similar Protein Substructures

In this paper, our purpose is to find all the groups
or clusters which contain similar substructure occur-
rences in sequential 3d object data sets. There are two
major challenges in finding these clusters in sequen-
tial 3d object datasets. First, unlike subspace cluster-
ing methods[8, 11, 4, 10] in which objects are compared
based on values in the same dimension, the matching
dimensions 1 between two 3d sequential objects are af-
fected by both the translation and rotation of the objects
and are thus not well defined. For example, in Figure
2, ��� � � � � , ��� � � 	 � and �
� ����
�� are similar substruc-
tures which are on different dimension groups. Existing
subspace clustering techniques are unable to detect such
matching dimensions automatically through the proper
rotations and translations. Second, traditional similarity
measurement for 3d object sequences like ��� � � (�����
	
��
 � � � ��� � �
 ��� � 	 ��� ��
�� is computationally intensive
which will reduce the scalabitity of our algorithm.

Our contributions:

1. We first present a 3d objects distance measurement
called ! �$# �"
 %
 �$# 	'& ��� � 	 ��� ��
 � � � � � , for two 3d
objects instead of using the traditional structural dis-
tance measurement, ��� ��� . Experiments shows that
� � � is effective and the computational cost is much
lower than �����
	 ��
 ��� � ��� � �
 ��� � 	 ��� ��
 � ��� ��� � .

2. Based on this new distance measurement, a general
model �
) �*� �
 � is designed for defining substruc-
ture clusters.

3. Furthermore, we develop a modified apriori algo-
rithm for mining all maximal �
) �*� � 	+
 � s in a given

1Note that we are actually matching two sets of points in a three di-
mensional space. However, since we are still computing the difference
between matching points just like we compute the difference for match-
ing dimensions, the term ”dimension/s” is used here to draw an analogy
to subspace clustering

q8

q7

q6

q1 q5q4

q3

q2

r1

r2 r7

r6r5

r4r3

p2
p1

p7

p6
p5

p4

p3

Figure 2. Example of similar sequential sub-
structures

sequential 3d object dataset without false positive
and negative. The �
) �*� � 	+
 � can be incrementally
enlarged when new structures are added into the
dataset.

The rest of this paper is organized as follows. In sec-
tion 2, we briefly review the related work. In section 3, a
new distance measure called � � � (Angle Length Distance)
is defined, and the analogy between � � � and ��� ��� is ex-
perimentally studied. Section 4 describes the �
) � � � 	+
 �
model. Section 5 proposes the modified-apriori algorithm
for finding all �
) �*� � 	+
 � in sequential 3d object datasets.
Performance studies is done in section 6. Section 7 con-
cludes this paper and outlines some issues for future re-
search.

2 Related Work

A platform [7] called AnMol is proposed for sup-
porting similarity search over structural data of large
biomolecules. It represents the structural information us-
ing one or more vectors. A new distance measurement
based on the vectors, AnMol distance is given out to
avoid complex ��� � � computation. Experiments show
that AnMol distance is very different from ��� ��� . How-
ever, it reveals the similarity from the graph prospective.

J. Yang et al. [11] define � -cluster as a cluster of
points/objects that have coherent behaviors rather than
points/objects that are physically close to each other. The
main objective is to capture a set of objects exhibit strong
coherence on the set of dimensions/attributes despite the
fact that each object may bear a nonzero bias/offset.

The �) � � � 	+
 � model [8] is proposed as a generaliza-
tion of subspace clustering to capture not only the close-
ness of objects but also the similarity of patterns exhib-
ited by the objects. They focused on the pattern similar-

2

ity during clustering where most of the traditional value-
similarity-based subspace clustering approaches are a
special case in the proposed �) � � � 	+
 � model. They de-
signed a depth-first search algorithm to deterministically
find all similar patterns. In this model, the value could
be shifted on the same dimension groups. However the
model and the algorithm will not discover patterns that
appear in different dimensions.

Work in [12] aim to find sequential frequent patterns
with noisy data. A compatibility matrix is introduced as a
means to provide the connection from the observation to
the underlying true value. The author uses a novel statis-
tical sampling method and a border collapsing algorithm
to discover long patterns in minimum number of scans
of sequence databases with sufficiently high confidence.
It mainly focus on finding the frequently occurring se-
quences but not sequential substructure patterns.

An algorithm [9], CloseGraph, is developed for min-
ing closed frequent graph patterns in large graph datasets.
A frequent pattern is closed if there exists no proper
super-pattern with the same support in the dataset. By
this means, it significantly reduces the search space. In
addition, some new methods are invented to prune search
space with small additional cost. Overall, CloseGraph is
mean for finding frequent graph patterns, not 3d struc-
tures.

3 Accumulated Distance Measurement

Traditionally ��� ��� is used to evaluate the similarity
between two 3d structures. To find the optimal matching
from one structure to the other, optimal vertexes align-
ments, rotations and translations should be identified be-
fore calculating the distance.

Definition 3.1 ��� ��� � � � � � � ��� ��� � � � � �

� � � � ��� � 	
���
�� � � � � � �*� � ��� � ��� ���
where � and � are two � -vertex 3d objects, and the mini-
mum is taken from all isometric transformation (rotations
and translation) � in 3d.

In our case, the two 3d structures are sequential so that
the alignment is determined by the order of the vertexes.
The complexity for computing ��� ��� on two sequential
structures is � � � � . We use the algorithm in [2] for im-
plementing the ��� � � calculation.

Problem 3.1 Sequential 3d Object Alignment
Given two sequential 3d objects � � � � � � and ��� � � � �
and a distance threshold � , the problem is to find all
longest similar substructure pairs which have distance

less than � . (Here if � � � ��� ��
�� ��� ��� ��� ��
 � � � is longest
similar substructure pair, then there does not exist �!�#" ,
where �%$&" ' (, to have the distance between � � �)� � ���

��*$+" � and ��� ��� � ����
 �,$+" � be less than �)

To extend the substructure alignment, we have to
re-calculate the optimal rotation and transformation for
computing the new ��� ��� . This measurement could
not be incrementally calculated. As such the computa-
tional complexity of solving the above problem based
on ��� � � 3.1 is � � � -
� . In real life datasets like protein
3d-structure, the typical number of vertexes in each se-
quential structure can range from hundreds to thousands.
Computing ��� ��� will lead to inefficient performance.

To go around this problem, we de-
fined a class of distance measurement called! ��� � � �$� � 	+
 � ��� � 	 ��� ��
-�
 � � � �
 �
 � 	 as below:

Definition 3.2 ! ��� � � �$� � 	+
 � ��� � 	 ��� ��
 �
 � � � �
 � � � � �
For any two sequential 3d objects, � � � � � � and ��� � � � � ,
if distance measurement � satisfy the property
� � � � � � � ��� ��� � � � � � �

� � � � � � � ��� ��� � � � � �.$ � � � � � $ � � � ��� ��� � $ � � � � �
then we say � is an � � � .

For any � � � , the distance between two structures
is equal to the sum of the distances between their cor-
responding substructuress. Thus the distance could be
incrementally computed. In the next section, we will
propose an algorithm call 1 for solving Problem 3.1.
For clustering 3d sequential objects, we define ! �$# �"
%
 �$# 	'& ��� � 	 ��� ��
 � � � � � as an � � � for evaluating the
similarity between 3d sequential structures.

[1] S 22

S 1

a1[2]

l [1]1

a2[2]

l [2]1

l 2 l [2]

Figure 3. Sample of Angle Length Distance

Definition 3.3 Angle Length Distance(ald)
� � �$� � � � � � � ��� � � � � � � �*� �

	 / �0

���

� �
 � � � � � � � � ����
 � � �1$ � � � � �
$ 	 /
0

2��

� �
 � � � � � � � � ����
 � � ��$ � � � � �

3

where � � � � � denotes the angle between the edge � � �
and

the edge � in ��� , and ��� � � � denotes the length of the edge �
in ��� .

In Figure 3, �
 and � � are two sequential structures.
In �
 , �
 � � � is the angle between the first edge and the
second edge, and �
 � � � and �
 � � � are the lengths of the
first edge and the second edge respectively. Similarly we
have � � � � � , � � �

� � and � � � � � . The � � � is the summary of the
normalized angle difference and edge length difference.

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26

N
or

m
al

iz
ed

 d

Structure Pair ID

rmsd
ald

Figure 4. � � � vs ��� ��� � �"
 �$# 	'& � � (��

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26

N
or

m
al

iz
ed

 d

Structure Pair ID

rmsd
ald

Figure 5. � � � vs ��� ��� � �"
 �$# 	'& � � (��
As a similarity measurement, � � � is a simple but effec-

tive. To study the effectiveness of � � � , we download 200
protein structures from the PDB website and link the)��
atoms in each protein to form a 3d sequential structure.
A set of experiments are designed to compare the pro-
posed � � � to ��� ��� . Figure 4 and 5 illustrate the compar-
ison results on 20-vertex substructure pairs and 40-vertex
substructure pairs. We compute the � � � and ��� � � for 30
randomly selected pairs of 20-vertex and 40-vertex sub-
structures, normalizing the distance as follow: below:

� � ��� � �*���
 � � � � / 	
 	
 	�
�	 �
 ��
�� 	 ���	 ���
 	�
�	 �
 ��
�� 	 ��� / 	
 	
 	�
�	 �
 ��
�� 	 ���
Both Figure 4 and 5 show that the trend of � � � curve is
similar with that of ��� ��� . Since we are looking for a dis-
tance measurement to determine whether two structures
are similar, we believe that � � � is a sufficiently good re-
placement for ��� ��� . In the later section, we will pro-
vide further evidence for this by showing some interest-
ing clustering results.

4 The � ��� � � � ��� Model

We next define the �
) � � � 	+
 � model and provide a for-
mal problem statement.

4.1 Definitions and Problem Statement

Definition 4.1 � � ��"�
�� 	 � � �
A 3d sequential structure, � � � "

� 	 � � � is a sequence of �
vertexes where each vertex is a point in a 3d space.

Definition 4.2 � �%��� ��"�
�� 	
Given a � � ��"�
�� 	 �� � , ��� � � � , and � � ��"

� 	 � � � , � � � � � �
where ! � , if there exists � such that

� � � � � ��� � ���#"�"$" ��� � �%$ � � � � ��� �
then we call � a SubObject of � .

The � �%��� ��"�
�� 	 s of � � � � � � include all � � � "

� 	 s of the
form � � �!� " � , where

� ! � ! " ! � . In total, a � � � "

� 	
� � � � � � has 	&% 	 /
('

� � �%�.� � "

� 	 s.

Definition 4.3 �
) �*� � 	+
 � � � � � �*) � � �
A set of � 3d sequential structures is a�
) �*� � 	+
 � � � � � �*) �'� � if

1. Each sequential structures in the set are of length)
2. Given the � � � , � , any two � � ��"

� 	 s, � and � in

the set satisfy � � ��� � � ! � .

For example, give a set of � � � "

� 	,���
 �+"$"�" � �
�, � , if
we have � � � � �
 � ����� !
 where

� ! � - " ! � (, then
���
 �+"$"�" � �
�, � is a �
) � � � 	+
 � � � � � �
 � 	 (�� � (�� . Also we say
it is a �
) � � � 	+
 � with maximum distance of 7.

Property 4.1 Let � be an � � � . For � � � "

� 	 � � � , � � � �
� � and ��� � � � � , if � � � � � � � ��� ��� � � � � � ! � , then for
any � �%�.� � "

� 	 of � , � � � � " � and the ���%�.� ��"

� 	 of � ,
��� ����" � , � � � � � ��" ��� ��� ����" �*� ! � holds.

Proof: According to definition of � � � ,
� � � � ����" ��� ��� � ��" � � = � � � � � � � ��� ��� � � � � � � � � � � � �
� � � ��� ��� � � � � � � � � � � � � " $ � � � ��� ��� " $ � � � � � . Since

4

� � � � � � � ��� ��� � � � �*� ! � , � � � � � � � � � ��� ��� � � � � � � � �
(and � � � � " $ � � � ��� ��� " $ � � � � � � (, thus we have
� � � � ����" ��� ��� ����" � � ! � .

For example, if � � � � � � 	 (��� ��� � � 	 (�*� !
 , then we
know � � � � � (� � (��� ��� � (� � (�*� !
 .
Definition 4.4 Maximum sCluster
Let � be an � � � and � be a dataset of � � � ��"

� 	 s. Let) � ���
 � �
 � �
 $) � � ��� "�"�" � �
 � �
 �%�
 $) � � ��� be
a ��) �*� � 	+
 � � � �!� �*) �'� � where ���
 � "�"�" � �
 � � � . We say) is a � � � � � � � �
) �*� � 	+
 � of � if and only if

1. There does not exist another �
) �*� � 	+
 � � � �!� �) �'���),) � � �����
 � ���
 � ���
 $�) � � ��� "�"$" � ���

	 � ���

	 � ���
�	 $�) � � � � ,
such that ��� �
 � "�"�" � � �
�	 � � � and) �) � .

2. There does not exist another �
) �*� � 	+
 � � � �!� �)
���'� � ,) � � � ���
 � �
 � � � �
 $) � � $ � ��� "�"$" � �
 � �
 � � �
�
 $) � � $ � ��� , where � $ � ' (and) $ � $ � �)�� .

In Figure 6, � is a data set of 5 � � ��"

� 	 s. If) �
��� � � � (� � 	 ��� � � � � 	 � � (� � is a � � � � � � � �
) �*� � 	+
 �
then the first criteria in Definition 4.4 state that) � �
��� � � � (
� � 	 ��� � � � � 	 � � (��� ��� �
 � � � ��� is not an �
) �*� � 	+
 �
on � . Furthermore, criteria 2 gurantees that) � � �
��� � �

� 	 � � (��� � � � � (� � 	 � � is not an �
) �*� � 	+
 � on � as
well.

C={S2[20:35], S4[25:40]} Maximum s-Cluster

C"={S2[15:40], S4[20:45]}

C’={S2[20:35], S4[25:40], S5[7,22]}
Cannot be s-Cluster}

T={S1,S2,S3,S4,S5}

SubC={S2[22:31], S4[27:36]}
but not Maximum s-Cluster

s-Cluster

Figure 6. Sample of � � � � � � � �
) � � � 	+
 �

Problem 4.1 Finding � � � � � � � �
) �*� � 	+
 �
Given a dataset � of � � ��"�
�� 	 , a maximum distance
threshold, � , a minimum length threshold,) and a min-
imum cardinality threshodl � , our problem is to find all
maximum �
) �*� � 	+
 � � � �!� � � �'	'� on � such that � �) and
	 � � .

Definition 4.5 Synchronized � � � "

� 	 Set (SSS)
Given two sets of � � � "

� 	 s) � � ���
 � � �
 �
 �
 ���+"$"�" � � 	 � � �	 �
��	 � � and) � ���
 � �
 ��

 ���+"$"�" � � 	 � � 	 �
 	 ��� , we say) � is
the � � � of) with offset of � ���
 � �
 �
��
 �

 � if and only
if for any �!� "���� � � � � ,

�
 � ���
 � � � � ���� and

 �
��
 �
 � �
���

We denote) � as � � � �) � � ���
 � �
 �
��
 �

 �*� .
In Figure 6,) � ��� � � � (� � 	 ��� � � � � 	 � � (��� is an

� � � of � �%�) � ��� � � � � � �
� ��� � � � �
 � � � � � with offset

of � � � � � � , i.e. � � � � � �%�) � � � � � � � � . On the other hand,
� �%�) is also an � � � of) with offset of � � � � � � , i.e.
� � � �) � � � � � � � � .
Definition 4.6 Longest Synchronized Similar SubObject
Pair (LSSSP)
Given an � � � � , a distance threshold � and two� � � "

� 	 s � � ��� ��
�� � and ��� ��� ��
 � � , if������ �����

� � � � ����" ��� ��� ��� ��"�� �*� ! �
� � � � � � � ��" $ � ��� ��� ��� � � ��"
�1$ � �*� ' �� $ � ' (

�.� ! � � � ! " $ � !
��
��� ! ��� � � ! "
�1$ � !
 �

then we say � � � � ��" ��� ��� ��� ��"�� � ��� % � � � � � ��� � � .
% � � ��� � ��� � � is equivalent to the set of all� � � � � � � ��) �*� � 	+
 � s on ����� � � with respect to the

given � � � and distance threshold. For example, given
� �
 , if � � � � � (� � 	 ��� ��� � 	 � � (�*� � � , � � � � � � �
� 	 ��� ��� � � � � (� � � � and � � � � � (� � � ��� ��� � 	 �
� � � � �
�" 	 , then ��� � � (� � 	 ��� ��� � 	 � � (� � is a� � � � � � � �
) � � � 	+
 � on ����� � � as well as a member
of
% � � � � � ��� � � .

Lemma 4.1 Let � be an � � � . Given) � � ���
 � ���
 ��
��
 ��� "�"$" � � 	 � ���	 ��
��	 ��� and) � ���
 � �
 ��

 ��� "�"$" � � 	 � � 	 �
 	 � �where) � � � � � �) � � ���
 � � , assume �
 � ���
 �
��
 � is a
� �%��� � "

� 	 of �
 � �
 ��

 � for

� ! � ! � . If) is an�
) �*� � 	+
 � with maximum distance threshold of � , then) �
is also an �
) � � � 	+
 � with maximum distance threshold of
� .

Proof: Since) is an �
) � � � 	+
 � , for any
� ! � - " ! � ,

we have � � �
 � �
 �

 ��� ��� � � � �
 � �*� ! � . According to the
definition of � � � , we know � � �
 � ���
 �
��
 ��� ��� � ���� �
��� �*� !
� . So) � is also an �
) �*� � 	+
 � with maximum threshold of
� .

This lemma shows that the set of synchronized
� �%��� � "

� 	 s of an �
) �*� � 	+
 � is also a ��) �*� � 	+
 � . This
combinations lead to a large number of �
) � � � 	+
 � s. Min-
ing maximum �
) � � � 	+
 � can avoid producing this large
number of redundant output.

Lemma 4.2 Let � be an � � � . Given

) � � ���
 � ���
 ��
��
 ��� "�"$" � � 	 � ���	 �
��	 � �) � ���
 � �
 ��

 ��� "�"$" � � 	 � � 	 ��
 	 ���
where) � � � � � �) � � ���
 � � , and both

5

) $ ����� ��� �
 � � � and) �1$ � ��� ��� ��
�� � �
are ��) �*� � 	+
 � s with maximum distance threshold of � . Let

� � �
 ��
 �
 � � � �
 ��

 � � � ���
 �
��
 � � ��� � � � �
If there exists ����� � � � ��
 � � ��� �
� � � � �
 � � ��� which is
� ��� � � � ��� � ��� ��� ��
.� ��� �
� ��� ��
�� ���

� � �
) �*� � 	+
 �) � 	'& � � � � � � � 	'& �
 � & ��� � ��� �
Let� � ���� ��
��� � � � � � � ��
 � � � � � ��� � �
 $ � �
 ��
.� �

 $
 �
 �
� ��� � ��
 � � � � � � � � �
 � � � � � ��� � ���
 $ � �
 ��
 � �
 �
 $
 �
 �

Then

� � � �) � � � ��� � � �� �
.� �
 �� � � $ � ��� � �� ��
 �� ��� �
� � � � ��
 � � ���
is an �
) �*� � 	+
 � with maximum distance threshold of � .

Proof: According to Lemma 4.1, since the � � � "

� 	 s
in � � � �) � � � ��� � � �� �
 � �
 �� �*� $ � ��� � �� �
 �� � � are
� �%��� ��"�
�� 	 s of the � � ��"

� 	 s in) $ ����� �����
 � ��� , we have�� � � � �
 � ���
 $ � ��
 �
 $
 ��� ��� � ���� $ � ��
��� $
 �*� ! �

� � �
 � � �
 $ � �
 �
 $
 ��� ��� � �� ��
 �� � � ! �
)�&
 �
 � � ��� � ���� ��� �
 �
 � �
���

Similarly we know

� � �
 � � �
 $ ��� � � �� �
 �
 $
 � �
 �� ��� ��� � �
 ��
 � � � � ! �
Furthermore, because � ��� ���� �
��� ��� ��� ��� � �
�� � ��� is an
� � � and the two � � � "

� 	 s are ���%�.� ��"

� 	 s of ��� � � � �

 � � ��� ��� � � � �
 � � � respectively, thus it is an �
) �*� � 	+
 �
with maximum threshold � also.

S1[6:20] S3[20:34] S5[40:54]

S1[4:15] S3[18:29] S4[6:17]

S4[9:45] S5[41:77]

S1[7:15] S3[21:29]

S4[9:17] S5[41:49]

Figure 7. Sample of Lemma 4.2

In Figure 7, ���
 � � � � 	 ��� � - �
� � � � � ��� � � � � � � 	 ��� and

���
 � � � � (��� � - � � (� � � ��� � � � � (� 	 � � � imply that ���
 � � �� 	 ��� � - � � (� � � ��� � � � � � �
�� � and ���
 � � � � 	 ��� � - � � (�
� � ��� ��� � � (�� � � ��� are �
) �*� � 	+
 � s with maximum distance
threshold of � . By combining them with the �
) � � � 	+
 �
of ��� � � � � � 	 ��� ��� � � � ��

���� , we have a new �
) � � � 	+
 � ,
���
 �
 � � 	 ��� � - � �

� � � � ��� � � � � � �
���� ��� � � � � � � � � .

Algorithm 1
% � � � � � ����� � � �!� �*)��

Input: two sequences ��� � ,
maximum distance � ,
minimum length)

Output: � � � � � � � �
) �*� � 	+
 � � ����� � � �!� �) � � �
1. for i=0 to � � �

/*compute distance matrix*/
a. for j=i to � � �

i. � � �!� " � � � � " � � � � � � �$� � � � ��� ��� " � �
2. �
 � �$�*	�� 	
3. for j=0 to � � % ��� /*search in up-triangle*/
a. for i=0 to � � � � " /*compute distance-sum*/

sum[i]= �

2� , �$� �!�#" $ � �
b. Search in each diagonal
i. � �
� �
ii.for i=0 to � � � � " �)

1)Binary search where� � � � � � � � � � � � � � � �)(&
 �
 � � � � � � ! �
and (! � ! � � � � " �) �

2) � ��� � �1$ � � �!� " $ � �
3)If �)

then �
 � �$�*	�� �
 � �$�*	 $ ��� � � � ��� ��� "
��" $ ���
4. Search LSPs in down-triangle similar with step 3
5. Return �
 � �$�*	

Figure 8. Algorithm for mining
% � � � �

5 Algorithm

In this section, we will look at our algorithm for find-
ing �
) �*� � 	+
 � . Our approach detects clusters which are
made up of 3d sequential substructures whose pairwise
distance is no more than user-specified � . Our algo-
rithm, a modified apriori mining process, can find all
qualified �
) �*� � 	+
 � s without loss. Mining

% � � ��� from
pairwise � � � "

� 	 s is the basis for generating �
) � � � 	+
 � s.
To find the

% � � � � of two � � ��"

� 	 s is equivalent to
finding ��) �*� � 	+
 � on the set of two � � ��"

� 	 s. Given
two � � � "

� 	 s � and � , we assume that � and �
have the same length. The algorithm for computing�
) �*� � 	+
 � � � � ����� � � �!� �) � � � is as shown in Algorithm
1:

In Figure 9, � � �!�#" � in the distance matrix represents
the distance between the � � � � and ��� " � . We convert it to
distance summary matrix by summing up the distances
by each diagonal. Assuming that the maximum distance
threshold � is 1.0, we see there are three

% � � � � s, ��� � � �
� ��� ��� (� � ��� ����� � (� � ��� ��� � � � ��� � ��� � ��� � � � � ��� ��� � �
	 � � .

Having generate the initial
% � � ��� s, we can grad-

ually generate all the �
) � � � 	+
 � s with larger cardinality
using a modified-apriori mining algorithm shown in Al-

6

0.40.20.40.6

0.2 0.1 0.5 0.1 0.3 0.3

0.1

0.3

P[0] P[2] P[4]P[1] P[3]

0.1

0.4 0.4 0.7 0.3
 0.7

0.20.20.40.20.10.1

0.2
 0.1 0.6 0.1 0.4

0.6

P[5]

1.50.40.6

0.2 0.7 1.1 0.5 1.8 1.1

0.1

1.4

0.6

S[0]

S[1]

S[2]

S[3]

S[4]

0.8

0.4 0.4 0.7 0.3
 0.7

0.30.51.10.60.50.1

0.2
 0.2 1.1 0.7 0.9

2.0

P[5]

Distance Summary MatrixDistance Matrix

P[0] P[2] P[4]P[1] P[3]

Figure 9. Sample of pairwise sCluster

w=8

Input

S5[1:70]
S4[1:35]
S3[1:50]
S2[1:30]
S1[1:60]

u=3

S4[9,17] S5[41:49]
S1[7:15] S3[21:29]

L(4)

L(3)

S1[6:20] S3[20:34] S5[40:54]

S1[4:15] S3[18:29] S4[6:15]

C(3)

S3[16:29] S4[4:17] S5[36:49]

S1[6:17] S3[20:31] S5[44:55]

S1[4:17] S3[18:31] S4[6:19]

S5[30:54]S3[10:34]

L(2)

eplsion=1.5

S4[4:17]S3[16:29]

S1[6:25] S5[40:59]

S4[6:22]S1[4:20]

C(4)

S4[8,17] S5[40:49]
S1[6:15] S3[20:29]

S4[7:25] S5[41:59]

S1[2:17] S3[16:31]

Figure 10. Sample of step 3 in Mining Maxi-
mum �
) �*� � 	+
 �

gorithm 2. The algorithm is essentially a level by level
algorithm in which candidate �
) � � � 	+
 � containing $ �
� � ��"�
�� 	 � are generate at level $ �

using �
) � � � 	+
 � that
are found in the level. Each of these candidates will
then go through a verification process in Step 3.2 to test
whether they are actually a �
) � � � 	+
 � . If this is so, they
will be added to the list of �
) �*� � 	+
 � s found at level $ �
which will in turn generate candidate �
) �*� � 	+
 � s at the $ � level. We will illutrate the algorithm using an ex-
ample.

In Figure 10, we have a input of 5 � � � "

� 	 s, and our
aim is to look for all maximum �
) � � � 	+
 � with maximum
distance threshold � � � " 	 , minimum length) � �
and minimum cardinality � � � . After computing% � � � � , we have

% � � � which includes 6 �
) �*� � 	+
 � s. In
the �
) �*� � 	+
 � s, ���
 � � � �
���� � - � � � �

� � � and ���
 � � �

Algorithm 2 Mining Maximum �
) �*� � 	+
 � � � �!� �) � � �
Input: a set of � sequence � � ���
 � � � � "�"$" � � 	 �

maximum distance � ,
minimum length)
minimum cluster cardinality �

Output: � � � � � � � �
) �*� � 	+
 � � � � ���
 � "�"�" � � 	 � �!� �) � � �
1. Generate all

% � � � � s% � � ��� �
 �
 � � � 	
% � � ��� � �
 � �����

for i = 1 to n
for j=i to n% �� ��� % �� � $ % � � � � � ���
 � ��� � �!� � % �
2. k=2
3. while(

% �� � ��)
3.1 Generate candidates C(k+1) from

% �� �
a.)��� $ � ��� 	
b. For any �
 ��� � � % �� � :
�
 � ���
 � �
 ��

 ���+"$"�" � ��� /
 � ��� /
 ��
	� /
 ��� � � � � � ��
+� � �
� � � ��� � � ��� � ��
 � � ���+"$"�" � ��� /
 � ��� � /
 ��
 � � /
 ��� ��
 � ��
 ��
�
 ���
i. If ���
 � �
 �

 ��� "�"�" � ��� /
 � �
� /
 ��
�� /
 � � is an � � � of

��� � � ��� � ��
�� � ��� "�"$" � ��� /
 � ��� � /
 ��
�� � /
 ��� ��
 � ��
 ��
�
 � �
Then

1) � � �
 �
 �
 �
� � �
 �

 ��� � ���
 �
��
 � , � ��� � � � � �
2)If
 �
 � � �
 �)

Then
a) �
)) ��� � � � � 	+
 �

���
 � � �
 �
 �
 ��� "�"�" � ��� /
 � � � � /
 ��
 � � /
 � ,
� � � � � $ � �
 � � � ��
 � $

 �
 �
 ���
��
 � ��
 $ � �
 � � � �
�
 $

 �
 �
 � �

b)) �� $ � ���)��� $ � � $ � �
)) ��� � � � � 	+
 �
3.2 Look-up

% � � � to refine each candidate in)��� $ � �
a.
% �� $ � ��� 	

b. For � � ���
 � � � �
 ��
 � �
 ��� "�"$" � ��� /
 � � � �� /
 ��
 � �� /
 ���
� � � � � �� ��
 � �� ��� ��
 � � � �
 �
 � �
 � � �)��� $ � �

i. If there exists ��� � � ��� � �
�� � ��� ��
 � ���
 ��
 �
 � � � % � � �
which is an � � � of ��� � � � � � ��
 � � ��� ��
 � � �
 �
 �
 � �

Then
1) � � � �� �
 � �� �
� � � � � �
 � � ��� � ��� � ��
�� � �
2) � � � �
 �
 � �
 �
� � � �
 �
 �
 ��� � ���
 ��
 �
 �
3)If
 � �� � � � � �)

Then
a) �
)) �*� � 	+
 � �

���
 � � �
 $ � � �� � � � � ��
 �
 $
 � �� �
 � � ���+"$"�" �
��� /
 � � � � /
 $ � � �� � � � � ��
 � � /
 $
 � �� �
 � � ���
� � � � � � ��
 � � ��� ��
 � � �
 �
 �
 � �

b)
% �� $ � ��� % �� $ � � $ � �
)) �*� � 	+
 � �

4. Mark non-maximum �
) �*� � 	+
 �
a) For each � � % � � � , � ��� � � �

If there exists � � � % �� $ � � and � � � �
Then mark � as non-maximum �
) �*� � 	+
 �

5. Return

�
�
���
 � � �
� � % � �+�
and � is not a non-maximum �
) �*� � 	+
 �

Figure 11. Algorithm for mining maximum�
) � � � 	+
 �
7

� (��� � � � � � � � � � , we see

���
 � � � �
�� � � � � � � ���
 � � � � (��� � � � � � � � � �
and in

% � � � , we know ��� - �
� � � � � ��� � � � � � �
 ��� is an�
) �*� � 	+
 � . It restricts the candidate ���
 � � � �
���� � - �

� � �
� � ��� � � � � � � � ��� to ���
 � � � � 	 ��� � - �

� � � � � ��� � � � � � � 	 ��� .
Similarly, we produce)�� � � �)�� ��� � % � � � and

% � � � .
Property 5.1 Algorithm 2 generates all qualified maxi-
mum �
) � � � 	+
 � s without false positive and negative.

Proof: Firstly, L(2) includes all
% � � � � s between any

two � � ��"

� 	 � . In step 3, for any longest ��) �*� � 	+
 �
� � ���
 � �
 �

 ��� � � � � � �
 � ��� � - � � - �
 - � , there must
exist � � ���
 � � �
 �
 �
 ��� � � � � � � �
 � � � , � � ��� � � � � � �
�� � ��� � - � � � - �
�� - � and � � ���
 � � �
 �
 �
 ��� � - � � � - �
 � - �
where�� � � �
 �

 � � � � �
 ��
 �
 � ��� � � �
 ��

 � � � � �
 �
 �
 �

� � � ��
 � � � � � � � ��
 � � � ��� � � � � ��
 � � � � � � � �
�� � �� � - �
 - � � � � � - ��
 � - � ��� � � � - ��
 - � � � � � - �
 � - �
According to Lemma 4.2, step 3 in Algorithm 2 will gen-
erate � and put it into

% � � � without loss. Similarly, we
can deduct that all the longest ��) �*� � 	+
 � s with substruc-
tures will be in

% �� � without loss. In step 4, those longest�
) �*� � 	+
 � which could be covered by bigger �
) �*� � 	+
 �
are marked as non-maximum ��) �*� � 	+
 � . Thus, we know
all the maximum �
) �*� � 	+
 � s are found without false pos-
itive and negative. Furthermore, if we retaing the cluster-
ing results � �
���
 % � �+� , we can incrementally create new�
) �*� � 	+
 � s when new sequential 3d objects are added.

6 Experiments

We implement the �
) �*� � 	+
 � algorithm in C. All our
experiments are done on a PC with a Pentium 4 1.6Ghz
CPU, 256MB of SDRAM and a 7200rpm 20GB harddisk
running Windows XP. Since there are no other algorithm
that discover �
) �*� � 	+
 � , we design an alternative algo-
rithm based on ��� ��� , named ��� ��� - � � �
 �) �*� � 	+
 � � �$# .
Because ��� ��� cannot be incrementally calculated, we
adopt a step-by-step extension approach to explore the% � � � � . The extension will be proceeded when the
current substructure pair is qualified but will terminated
when the ��� ��� is larger than the given threshold. Af-
ter computing

% � � ��� , the method for generating and
refining candidates and clusters is similar with that in�
) �*� � 	+
 � .

Synthetic data sets and a set of real protein struc-
tures are used in our experiments. In the synthetic data
sets, the value of the coordinates are randomly gener-
ated and ranging from 0-100. 4 synthetic 500- � � � "

� 	

data sets are generated. The numbers of vertexes in the
4 data sets are 50, 100, 150 and 200 respectively. If we
use � � ��"

� 	 s less than 500, we randomly select required� � � "

� 	 s from these 4 data sets. The real data set con-
sists of 200 protein 3d structures downloaded from � � �
website where every two protein have similarity of amino
acid sequence lower than 25%. On average, each protein
has 227)�� atoms (vertexes). We truncate the long pro-
tein in order to investigate performance on shorter struc-
ture data sets.

7 Performance Analysis

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500

R
es

po
ns

e
tim

e(
s)

of sObjects

of vertexes=50
of vertexes=100
of vertexes=150
of vertexes=200

Figure 12. Response time vs. # of � � ��"

� 	 s
in synthetic data set

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

R
es

po
ns

e
tim

e(
s)

of vertexes

of sObjects=100
of sObjects=200
of sObjects=300
of sObjects=400
of sObjects=500

Figure 13. Response time vs. # of vertexes
in synthetic data set

We evaluate the response time of the �
) � � � 	+
 � algo-
rithm as we increase the number of � � � "

� 	 s and aver-

8

age number of vertexes. Figure 12 and 13 presented the
average response time of our algorithm on various syn-
thetic datasets. We set the minimum distance threshold
� � � " 	 , minimum length) � � (, and minimum cluster
cardinality � � � . The response time has a superlinear
growth with respect to both the increase in the number of� � ��"�
�� 	 s and the number of vertexes. The reason is that
each � � � between any two pair of vertexes is calculated
during the computation of

% � � ��� .

0

300

600

900

1200

1500

0 100 200 300 400 500

R
es

po
ns

e
tim

e(
s)

of sObjects

of vertexes=50
of vertexes=100
of vertexes=150
of vertexes=200

Figure 14. Response time vs. # of � � ��"�
�� 	 s
in protein dataset

0

500

1000

1500

0 50 100 150 200

R
es

po
ns

e
tim

e(
s)

of vertexes

of sObjects=100
of sObjects=200
of sObjects=300
of sObjects=400
of sObjects=500

Figure 15. Response time vs. # of vertexes
in protein set

Figure 14 and 15 showed the response time versus the
dataset size and the average number of vertexes in the
protein dataset. Since the edge length between two neigh-
boring) � atoms varies slightly compared to that in the
randomized data set, we invoke the clustering algorithm
with a smaller minimum distance threshold � as

� "
 , and

keep minimum length) as � (and minimum cardinality
� at � . The observation here is similar to that for the syn-
thetic datasets: the response time grows quickly with the
data set size and average � � � "

� 	 length.

The number of �
) �*� � 	+
 � s being output are given in
Figure 16 and 17. The number of �
) �*� � 	+
 � grows sig-
nificantly with the average number of vertexes because
the

% � � � � s includes all the possible ���%�.� ��"

� 	 pairs.
We investigated the distance threshold using 200 pro-

tein structures, each of which having 200) � in aver-
age. In Figure 18, we see the response time of minimum
length) � � (increases significantly when � � � " � . This
is because the growth of �
) �*� � 	+
 � s leads to a superlinear
increasing of the time for generating and refining candi-
dates. In Figure 19, the growth of minimum length)
leads to a significant increase in response time especially
when the maximum distance threshold � is large.

0

200

400

600

800

1000

1200

1.4 1.5 1.6 1.7 1.8

R
es

po
ns

e
tim

e(
s)

Minimum distance epsilon

w=20
w=21
w=22

Figure 18. Response time vs. �

0

200

400

600

800

1000

1200

0 50 100 150 200

R
es

po
ns

e
T

im
e(

s)

of vertexes

epsilon=1.5
epsilon=1.6
epsilon=1.7
epsilon=1.8

Figure 19. Response time vs. � �����
 � 	+
 �
 �

Next, we studied the effect of the minimum length

9

vertexes u=2 u=3 u=4 u=5 u=6 time
50 1318 98 128

100 38592 17532 1084 5 444
150 117896 78177 7754 116 1136
200 246384 225588 36795 1734 8 2954

Figure 16. sClusters in synthetic data (# of sObject=200 � � � ")
vertexes u=2 u=3 u=4 u=5 u=6 u=7 time(s)

50 317 37 1 140
100 9602 6252 925 22 418
150 30683 40077 34100 49110 18982 3 1038
200 48409 71108 58240 72670 32792 157 1578

Figure 17. sClusters in real data (# of sObject=200 � � � "
)

threshold by invoking the algorithm with minimum
length) � � (and minimum cardinality � � � . Figure
20 showed that the response time decreases drastically
with the minimum length because the number of

% � � � �
decreases significantly with the minimum length.

0

200

400

600

800

1000

1200

19 20 21 22 23 24 25

R
es

po
ns

e
tim

e(
s)

Minmum Length w

epsilon=1.5
epsilon=1.6
epsilon=1.7
epsilon=1.8

Figure 20. Response time vs.)
To illustrate the effectiveness of �
) � � � 	+
 � , we ran-

domly select an �
) �*� � 	+
 � from the above experi-
ment results on the real protein structure datasets,
and plot them in Figure 21. The results are inter-
esting. Each two of the four proteins, Pdb1bpm,
Pdb1ayl, Pdb1aln and Pdb1amx, have amino acid se-
quence homology less than 25% so they are ignored
by most of the existing protein motif mining meth-
ods. However, our �
) �*� � 	+
 � method find that their four
substructures Pdb1bpm[224:243], Pdb1ayl[226:245],
Pdb1aln[67:86] and Pdb1amx[104:123] share similar 3d
shapes. This will be very interesting to biologists and
drug-designers.

Finally, we compare the �
) �*� � 	+
 � algorithm with the��� � � - � � �
 �) � � � 	+
 � � �$# algorithm. Because the range

0.1

1

10

100

1000

10000

0 50 100 150 200

R
es

po
ns

e
T

im
e(

s)

of vertexes

sCluster
rmsd-based Clustering

Figure 22. �
) �*� � 	+
 � � � " ��� ��� -
� � �
 �) �*� � 	+
 � � �$# � � � � � � �
� � � �����
 � 	+
��
 �

of ��� ��� value and the range of � � � value are different,
we set maximum distance threshold for ��� ��� such that
it generates almost as many clusters as the ��) �*� � 	+
 �
algorithm. Due to the high computational complexity
of the alternative algorithm which hardly produces re-
sults for large datasets in reasonably acceptable time,
we use a small portion of the real protein data set for
performance comparison. In the experiment for varying� � � "

� 	 length, Figure 22 shows that �
) �*� � 	+
 � outper-
forms the ��� ��� - � � �
 �) �*� � 	+
 � � �$# by a magnitude of 3.
Likewise, when the number of � � � "

� 	 s is varied, Figure
23 also shows that ��) �*� � 	+
 � is faster than ��� ��� Cluster-
ing by a magnitude of 3.

10

Pdb1bpm[224:243]

6 10 14 18 22X -35
-25

-15
-5

Y

25
35
45
55
65

Z
Pdb1ayl[226:245]

6 10 14 18 22 26
X -34

-24

-14

Y

20
30
40
50
60

Z

Pdb1aln[67:86]

-18 -14 -10 -6 -2 2X -32
-28

-24
-20

-16

Y

74
84
94

104

Z
Pdb1amx[104:123]

-26 -22 -18 -14 -10X -48
-44

-40
-36

-32
-28

Y

52
62
72

Z

Figure 21. Result sample on real data set

0.1

1

10

100

1000

10000

0 10 20 30 40 50

R
es

po
ns

e
T

im
e(

s)

of sObjects

sCluster
rmsd-based Clustering

Figure 23. �
) �*� � 	+
 � � � " ��� ��� -
� � �
 �) �*� � 	+
 � � �$# � � � � � � �
� � � ��� � � ��"�
�� 	 �

8 Conclusions and Future Work

In this paper, we look at substructure clustering of
of sequential 3d objects such as a set of consecutive

) , atoms in protein structures. Then we propose an�
) �*� � 	+
 � model to support these applications. An ef-
fective and efficient distance measurement, � � � , is de-
signed to evaluate the distance between sequential 3d ob-
jects. In addition, we devise a fast algorithm for discover-
ing longest synchronized similar subobject pairs between
two � � � "

� 	 s. Finally we develop a modified-apriori al-
gorithm which efficiently find all maximum �
) � � � 	+
 � .

The applications of �
) �*� � 	+
 � model ranges widely
from bioinformatics, biopharmaceutical research and
moving-object group detection. In the future, the�
) �*� � 	+
 � could be improved to discover similar 3d ob-
jects rather than only sequential 3d structures. We can
also extend the �
) �*� � 	+
 � algorithm by producing cen-
troid for each cluster, leveraging on the centroid for
speeding up the clustering process, and visualizing the
centroid for better interpretation.

Acknowledgment: We would like to thank Guoguan Lu
for his program to compute ��� � � on sequential 3d ob-
jects. And we also appreciate Xia Cao and Zeyar Aung
for their helpful suggestions.

11

References

[1] I. Eidhammer, I. Jonassen, and W. R. Taylor. Struc-
ture comparison and structure patterns. Journal of
Computational Biology, 7:685–716, 2000.

[2] L. G. Top: A new method for protein structure com-
parisons and similarity searches. Journal of Appl.
Cryst., 33:176–183, 2000.

[3] Y. Lamdan and H. Wolfson. Geometric hashing:
A general and efficient model based recognition
scheme. In International Conference on Computer
Vision, pages 213–29, 1998.

[4] H. S. Nagesh, S. Goil, and A. N. Choudhary. A
scalable parallel subspace clustering algorithm for
massive data sets. In International Conference on
Parallel Processing, 2000.

[5] P. Patel, E.Keogh, J.Lin, and S.Lonardi. Mining
motifs in massive time series databases. In ICDM,
2002.

[6] B. Rost and C. Sander. Pitfalls of protein sequence
analysis. Current Opinion in Biotechnology, 5:372–
380, 1994.

[7] S. Srinivasa and S. Kumar. A platform based on the
multi-dimensional data model for analysis of bio-
molecular structure. In VLDB, 2003.

[8] H. Wang, W. Wang, J. Yang, and P. S. Yu. Cluster-
ing by pattern similarity in large data set. In SIG-
MOD, pages 394–405, 2002.

[9] X. Yan and J. Han. Closegraph:mining closed fre-
quent graph patterns. In KDD, 2003.

[10] J. Yang and W. Wang. Cluseq: efficient and effec-
tive sequence clustering. In ICDE, 2003.

[11] J. Yang, W. Wang, H. Wang, and P. S. Yu. delta-
cluster: Capturing subspace correlation in a large
data set. In ICDE, 2002.

[12] J. Yang, W. Wang, P. S. Yu, and J. Han. Mining
long sequential patterns in a noisy environment. In
SIGMOD Conference, 2002.

12

