
On the Integration of Structure Indexes and Inverted Lists
Paper Id: 616

Raghav Kaushik Rajasekar Krishnamurthy Jeffrey F Naughton Raghu Ramakrishnan
University of Wisconsin, Madison

{raghav,sekar,naughton,raghu}@cs.wisc.edu

Abstract

We consider the problem of how to combine structure
indexes and inverted lists to answer queries over a na-
tive XML DBMS, where the queries specify both path
and keyword constraints. We augment the inverted list
entries to integrate them with a given structure index,
and present novel algorithms for evaluating branching
path expressions. Our experiments show the benefit of
integrating the two forms of indexes.

We also consider the problem of evaluating path ex-
pression queries with (several alternative) extensions
that incorporate relevance ranking. By integrating the
above techniques with the Threshold Algorithm proposed
by Fagin et al., we obtain instance optimal algorithms to
push down top k computation.

1 Introduction
Recently, there has been a great deal of interest in

the development of techniques to evaluate path expres-
sions over collections of XML documents. In general,
these path expressions contain both structural and key-
word components. For example, consider the query
//section/figure/title/“Graph”. This query looks for the
keyword “Graph” (its keyword component) appearing
at the end of a the sequence of structural containments
//section/figure/title (its structural component). Sev-
eral methods have been proposed for processing path ex-
pressions over graph/tree-structured XML data. These
methods can be classified into two broad classes. The
first involves graph traversal where the data graph is tra-
versed using the input query [16, 24]. The other in-
volves information-retrieval style processing using in-
verted lists [7, 9, 20, 22, 30, 32, 35]. Methods have
been proposed to optimize queries in the presence of
both these alternatives [16, 19, 24]. In this framework,
structure indexes [14, 21, 25] have been proposed to be
used as a substitute for graph traversal [24]. These struc-
ture indexes typically address only the structural com-
ponent of a path expression query. To the best of our
knowledge, no published work has addressed how to in-
tegrate structure indexes with information retrieval style
inverted list processing for queries with both structure

and keyword components. This paper attempts to fill
this gap by proposing and evaluating an approach that
merges structural summaries and inverted lists. Our con-
tributions in this regard are:
• Evaluating path expressions using structure in-

dexes and inverted lists (Section 3) We show how
we can use structure indexes in conjunction with
inverted lists to efficiently answer queries with both
structure and value components. Our approach is to
augment the inverted list entries with information
derived from a structure index. Our query evalua-
tion algorithm uses these modified entries to elimi-
nate most inverted list joins.

• Evaluation of these techniques (Section 7) We
have implemented our approach in the Niagara
XML data management system [27]. Our experi-
ments using Niagara demonstrate that we can derive
substantial benefits by integrating the two forms of
indexes.

While finding all documents or elements that satisfy
a given path expression is a common use of path ex-
pression querying, users who specify keyword-based IR
queries typically want just the k most relevant answers.
Several proposals have been made to incorporate the IR
notion of relevance to XML queries [2, 12, 15, 28]. In
this paper, we also study how integrating structure in-
dexes with inverted lists can impact the evaluation of
path expression queries, where we rank all documents
that match the query and return the top k documents in
order of relevance, along with the specific elements that
matched the query in each of these documents. We al-
low a broad class of relevance functions (Section 4) that
covers the standard tf-idf notion of ranking. The algo-
rithms we propose are based on Fagin et al.’s Threshold
Algorithm (TA) [11]. Our setting poses novel challenges
(Section 4.2), since the ranking function we allow is not
necessarily monotonic [11]. Also, unlike TA which is
a middleware algorithm, our focus is on the database
server where additional access paths are available. This
violates certain assumptions under which TA is shown to
be instance optimal [11]. Our contributions here are:
• Algorithm to Merge Ranked Inverted Lists (Sec-

tion 5): We adapt Fagin et al.’s Threshold Algo-

1



rithm [11] to join ranked inverted lists to evalu-
ate a single path expression. The technical chal-
lenge is due to the fact that the ranking function we
use is not monotonic, as required by the algorithms
in [11].

• Using Structure Indexes for top-k Computation
(Section 6): The above algorithm is “instance op-
timal” across a broad class of algorithms. How-
ever, in our domain, the presence of additional ac-
cess paths leads to new algorithms that are better
on some instances. The above algorithm thus fails
to be instance optimal in the presence of these new
access paths. However, we show that a structure
index can be used in conjunction with the ranked
inverted lists to design a new algorithm that is in-
stance optimal even in the presence of these access
paths. We extend this algorithm to the case when
the query is a bag of simple path expressions (Sec-
tion 6.1), in which case, it is instance optimal for
a broad subclass of ranking functions allowed. We
present the results of experiments over the Niagara
system [27] in Section 7.

2 Background

2.1 Data Model

Each XML document is a tree. An XML tree
is a directed graph G = (VG, VT , EG, root , ΣG, oid ,
label , ord). VG is the set of element nodes while VT

is the set of text nodes, one per keyword in the XML
document. ET is the set of edges which are constrained
to induce a spanning tree over VG ∪ VT . Each edge in
ET is a parent-child edge. There is a distinguished node
in VG called the root with no incoming edges. Nodes
in VT have no outgoing edges, that is, they occur at the
leaves of the tree. Nodes in VG ∪VT are labeled through
the label function. We assume that the labels of nodes in
VT are the respective keywords they represent and that
they are distinct from those of nodes in VG. The labels
of nodes in VT are placed in quotation marks to distin-
guish them. All nodes in VG ∪ VT are assigned unique
ids through the oid function. Each node is assigned a
unique ordinal number, through the ord function, which
corresponds to its sibling position. We can define a to-
tal ordering on all nodes in VG ∪ VT by ordering parents
before children and using the ordinal number between
siblings. We refer to this as the document order. The
document order corresponds to the order in which the
data appears in the XML document.

Figure 1 is an example XML tree. This data repre-
sents one of the XQuery use cases available at [8]. The
data represents an XML document that stores the con-
tents of a book, in this case “Data on the Web”. The book
has a root book element along with tags for sections, fig-
ures, titles and paragraphs (p). These tags induce a tree
structure on the document. The actual contents of the

book appear at the leaf level of this tree. Some of these
contents are omitted for clarity.

An XML database is a collection of XML
trees/documents. The oid s are constrained to be unique
across the whole database. The id of the root node of
a document is the document id. The whole database
consists of an artificial root node with the special label
ROOT that has as its children the roots of each individ-
ual document. An example would be a database of books
where each book is an XML document, like the one in
Figure 1.

2.2 Path Expression Queries

A simple path expression has the form “s1 l1 s2 l2 . . .
sk lk” where each li except lk is a tag name, lk is a
tag name or keyword, and each si is either / or // de-
noting respectively parent-child and ancestor-descendant
traversal. If lk is a keyword, the simple path expression
is called a simple keyword path expression.

A branching path expression has the form
“s1 l1[Pred1] s2 l2[Pred2] . . . sk lk[Predk]” where
each Predi is an optional predicate, each li except lk
is a tag name, lk is a tag name or keyword, and each si

is either / or // denoting respectively parent-child and
ancestor-descendant traversal. If lk is a keyword, then
Predk must be absent. A predicate is a simple path
expression.

The result is the set of all nodes that match the path
expression query. This is standard notation for path ex-
pressions, with the exception that we allow the trailing
label to be a keyword.

Some example queries on the data in Figure 1 are:

1. //section//title/“web”
2. //section[/title]//figure
3. //section[/title/“web”]//figure[//“graph”]

If a branching path expression has at least one keyword,
we call it a text query. Otherwise, we call it a struc-
ture query. Queries 1 and 3 are instances of text queries
while Query 2 is an instance of a structure query. The
structure component of a text query TQ is the structure
query SQ(TQ) obtained by dropping all keywords from
TQ. For instance, the structure component of Query 3
above is Query 2.

2.3 Structure Indexes

title image

figure

title image

figure

title

section

sectionauthor

book

title p

title p

2 3 4

6 7

9 10

1514

11

12 13

85

1

Figure 2. Example structure index

2



title

"Data on the Web"

"Peter Buneman""Serge Abiteboul"

author author

"Dan Suciu"

author

section

book

p

title

image

figure

title

p

section

title

section

title p
figure

title image

section

title p

title p

section

section

title p p

section

"Intro"

ptitle
title image

figure

p

"..."

"..."

"..."

"Audience"

"Web ..."

Figure 1. Sample data
A structure index I(G) for the data graph G corre-

sponding to an XML database is another labeled, di-
rected graph. The idea is to preserve all the paths in the
data graph in the summary graph, while having far fewer
nodes and edges. A structure index is used for query an-
swering by associating an extent with each node in the
index. In general, any partition of the element nodes de-
fines a structure index where we (1) associate an index
node with every equivalence class, (2) define the extent
of each index node n, ext(n), to be the equivalence class
that formed it and (3) add an edge from index node A to
index node B if there is an edge from some data node
in ext(A) to some data node in ext(B). Henceforth,
whenever we refer to a structure index, we mean an in-
dex obtained from a partition of the data nodes through
the above construction. Thus, even a simple grouping of
the data nodes by label defines a structure index. Each
node A in the index has a unique identifier id(A). Notice
that a structure index indexes only the structural part of
the XML database — it ignores the text nodes.

Figure 2 shows an example structure index. The num-
bers shown beside each node indicate the id of that node
in the index. Each element node is associated with ex-
actly one index node inducing a partition on the data
nodes.

The index result of executing a path expression R on
I(G) is the union of the extents of the index nodes that
match R. The extent mapping has the property that the
result of any path expression R on G is contained in the
result of R on I(G). For a particular path expression
query Q, if the index result is equal to the result of Q on
the data graph, then I(G) is said to cover Q.

2.4 Inverted Lists

Several native XML database systems [19, 27] create
inverted lists on tag names and keywords. Algorithms
to effectively process queries using these lists have been
proposed [30, 35]. We assume the following representa-
tion for inverted lists.
• For each element node n with tag t, there is an en-

try in the corresponding inverted list of the form
<docid, start, end, level, indexid>. We denote
start as n.start and likewise for the other fields.

• For each text node with label K, there is an en-
try in the corresponding inverted list of the form
<docid, start, level, indexid>.

Here, docid refers to a unique document identifier and
level is the depth of the node in the tree. The start and
end numbers need to satisfy the following properties:

1. For each element node n, n.start < n.end.
2. If (element) node n1 is an ancestor of element

node n2, then n1.start < n2.start < n2.end <
n1.end.

3. If (element) node n1 is an ancestor of text node n2,
then n1.start < n2.start < n1.end.

4. If element nodes n1 and n2 are siblings and
ord(n1) < ord(n2), then n1.end < n2.start. A
similar property holds when one or both of n1 and
n2 are text nodes.

Path expressions can be evaluated by joining inverted
lists [30, 35]. In order to make these joins more efficient,
auxiliary indexes have been proposed [7, 9, 16]. For ex-
ample, in Niagara [16], B-Trees are used to skip parts
of the inverted lists during query processing. We denote
the algorithm that joins inverted lists to evaluate a path
expression p as IV L(p). We use IV L as a subroutine in
our algorithm. Any of the published techniques to join
inverted lists [7, 9, 20, 22, 30, 35] can be used for this
procedure.

2.5 Integrating Structure Indexes with In-
verted Lists

In order to integrate structure indexes with inverted
lists, we add a new indexid field to the list entries. For
a specific structure index I , the indexid field is set as
follows.
• For an element node n, let the unique index node in

whose extent n appears be N . Then, n.indexid =
id(N).

• For a text node n, let the unique index node in
whose extent the parent of n appears be N . Then,
n.indexid = id(N).

For example, for the data shown in Figure 1, with first
level section elements (that is, children of the root), we
store an index id of 4. For the keyword “web” occurring
under book/title, we store an index id of 2 corresponding
to book/title in the index.

3



3 Evaluating Path Expression Queries

We first present a simple scenario to illustrate how
we can integrate structure indexes and inverted lists. We
then present the details of how a structure index can be
used to convert a simple path expression query into an in-
verted list scan. For branching path expressions, it turns
out that the number of joins to be performed can be re-
duced using a structure index. Finally, we show that even
for simple path expressions, performing multiple joins
can out-perform a scan. We introduce the notion of ex-
tent chaining to address this issue.

3.1 A Simple Example
Consider the following query over the data shown

in Figure 1: //section[//figure/title/”graph”] that asks
for all sections that have a figure whose title contains
the keyword “graph”. Here, // refers to the ancestor-
descendant separator while / refers to the parent-child
separator in the XML tree.

Evaluating the above query over a native XML
database system like Niagara [27] or Timber [19] would
involve joining the inverted lists corresponding to the
tag names section, figure and title, and the key-word
“graph”. Now suppose that we have a structure index on
this data, for instance the 1-Index [25], which is shown
in Figure 2.

Now consider the following evaluation strategy.
1. Execute the structure component //sec-

tion[//figure/title] on the structure index to obtain a
set of pairs of index ids corresponding to matching
<section,title> pairs. In this case, this step would
return S = {<4, 12>,<4, 14>,<7, 14>}.

2. Evaluate the join section[//“graph”] using the re-
spective inverted lists, with the additional condition
that a joining <section,“graph”> pair satisfies: the
corresponding index id pair must be in S.

This strategy is correct since for any joining node pair
<ns, nw> (here, ns is an element node with label sec-
tion and nw is a text node with label “graph”):

1. The fact that the parent of nw has index id 12 or 14
means that nw is under the path figure/title.

2. Since ns has some path to nw and since nw is under
figure/title, ns satisfies the query.

Notice that we replace three joins with one, in the pro-
cess incurring an index evaluation cost. The structure in-
dex is typically much smaller than the data. Hence, the
evaluation using the structure index is likely to do well.

3.2 Simple Path Expressions

The algorithm for evaluating a simple path expres-
sion q using a structure index I is given in Figure 3.
Steps 2-4 extract the structure component q′ of q and
check whether I covers q′. We assume that I comes with
an interface to check this property. The algorithm uses
I only if it covers q′. In this case, it evaluates q′ on I
to obtain a set S of index ids. If t is a tag name, then

procedure evaluateSPEWithIndex(q, I)
/* evaluate simple path expression q using index I */

begin
1. Let q = p sep t
2. if (t is a keyword) then q′ = p
3. else q′ = q
4. if (I does not cover q′) then
5. use IV L(q) to evaluate without structure index
6. Evaluate q′ on I
7. Let S be the set of indexids returned
8. if (t is a keyword and sep is //) then
9. foreach (i ∈ S) do
10. put all descendants of i in S
11. Scan the inverted list for t returning

only those entries e where e.indexid ∈ S
end

Figure 3. Using structure index for simple
path expression

since I covers q′ = q, Step 11 returns exactly the entries
matching q.

If t is a keyword and sep is /, then for each entry e
returned in Step 11, the following holds: e.indexid ∈ S
which means that the parent of e matches q′ = p. Hence
e matches q. The algorithm handles the case when sep
is // by adding the (index) ids of descendants of all (in-
dex) nodes matching p (Steps 8-10).

3.2.1 Branching Path Expressions
A branching path expression consists of multiple simple
path expressions. We adapt the solution for simple path
expressions to address each individual branch and then
join appropriate lists.

We discuss the evaluation algorithm for branching
path expression queries with one predicate. These
ideas extend to generic branching path expressions in a
straightforward manner. Queries with one predicate can
be represented as p1[p2 sep t]p3 where p1,p2 and p3 are
simple structure expressions, sep is / or // and t is a key-
word. Examples of queries of this kind are:
Q1 //section[/section/title/“web”]/figure/title
Q2 //section[/section//title/“web”]/figure/title
Q3 //section[/section/title/“web”]//figure/title
Q4 //section[/section/title//“web”]/figure/title

We assume that the structure index covers p1, //p2

and //p3. Depending on the presence of // in p2, p3 or
sep, we get the following cases.

Case 1: None of p2, p3 and sep contains //, as in
Q1.
Case 2: p2 contains //, as in Q2.
Case 3: p3 contains //, as in Q3.
Case 4: sep is //, as in Q4.

Cases 2,3 and 4 are not disjoint.
In addition to the usual parent-child and ancestor-

descendant join, we make use of the level numbers in
the inverted list entries to perform level joins. For in-
stance, section/2title returns all title elements that are
grand-children of a section element. In general, we use
the notation e1/

de2 to denote a binary level join. This

4



can be trivially implemented by comparing level num-
bers during an ancestor-descendant check.

In Section 3.2, we saw how we can augment the scan
of an inverted list to incorporate a set of indexids. Using
this idea, we were able to convert a simple path expres-
sion query into a scan of a single list. We generalize this
approach to inverted list joins as follows. For a 2-way
join, we use a set S of indexid pairs obtained using the
structure index to filter the result of the join so that only
those pairs of entries whose indexids match some pair
in S are returned. For n-way joins, we use a set S of
n-tuplets of indexids. We use the special entry > for an
indexid to denote that any value is a match. Notice that
for any inverted list join algorithm IV L, the modifica-
tion described above is straight-forward.

We explain our algorithm by discussing how it han-
dles Cases 1 and 2 above. Cases 3 and 4 can be simi-
larly handled. The detailed algorithm is shown in Ap-
pendix A.

Consider Q1. Let the structure index I be the one
shown in Figure 1. I is applicable since it covers
the three expressions //section, //section/title and //fig-
ure/title. By evaluating the structure component of the
query, //section[/section/title]/figure/title on I , we ob-
tain a set S of triplets of ids of index nodes matching
section, section/title and figure/title nodes. In this
case, S = {< 4, 9, 12 >}. We then evaluate the join
//section[/3“web”]/2title using IV L with S. This strat-
egy is correct since if <ns, nw, nt> is a node-triplet re-
turned finally (with corresponding labels section, “web”
and title):

1. ns matches //section, nw matches //sec-
tion/title/“web” and nt matches //figure/title.

2. ns is the great grand-parent of nw (due to a level
difference of 3), so <ns, nw> matches //sec-
tion[/section/title/“web”].

3. ns is the grand-parent of nt (level difference of 2),
so <ns, nw, nt> matches Q1.

We now move on to Case 2. Consider Q2. The
main difference from Case 1 is that there is a //
as part of the predicate which means that, for Q2,
the distance between a section node and a “web”
node is not known in advance. Suppose evaluating
the structure component of Q2 on I returns a set of
triplets S. Now, the idea is to check if we can
skip the section//title join in the predicate. In or-
der to replace e1 =//section[/section//title/“web”] with
e2 =//section[//“web”] using S, we need to verify the
following. If an entry s (corresponding to node ns) in the
inverted list for section and an entry w (corresponding
to node nw) in the inverted list for “web” satisfy e2 and
some triplet < i1, i2, i3 >∈ S, then there must actually
be a path from ns to nw matching /section//title/“web”.
We ensure this by checking that there is exactly one path
in the structure index from i1 to i2. Now, we know that
there is some path p/“web” from ns to nw because of

the containment check. By the property of structure in-
dexes, there is a path matching p from i1 to i2. Also,
since < i1, i2, i3 >∈ S, there is a path p′ matching sec-
tion//title from i1 to i2. But since there is exactly one
path from i1 to i2, p = p′. Hence, we can skip the joins.
As for the /figure/title join, since there is no // separator,
it can be replaced with /2title (as in Case 1). Putting this
together, we evaluate the join //section[//“web”]/2title
using IV L with S.

3.3 Extent Chaining

In the above algorithm, we attempt to skip joins
whenever possible using the structure index. As we will
see next, it turns out that skipping joins is not always
beneficial. We introduce the notion of extent chaining to
address this deficiency.

Consider the query q =//figure/title. In [9], the au-
thors introduce algorithms to make use of B-tree indexes
on the inverted lists while performing containment joins.
The algorithm does not examine those parts of the in-
verted lists that do not participate in the join. Depend-
ing on the document structure, the join could return the
figure/title nodes by examining far fewer than the total
number of title entries. We perform an experiment that
shows this behavior (see Section 7 for details of our ex-
perimental setup). We run the query //africa/item over
the XMark [33] data where the data size is 100MB (see
Figure 8 for the XMark schema). Performing the join us-
ing the algorithm proposed in [9] (which is implemented
in our system [27]) is about 15 times faster than scan-
ning the item inverted list. This happens since the join
processes only the fraction of the item inverted list that
appear under the element africa by making use of the
secondary B-Tree index.

In the algorithm described in the previous section, we
attempt to skip joins whenever possible. As we just saw,
however, there are cases when this is not beneficial; joins
could actually restrict the computation and make it more
efficient. Next, we discuss how to adapt our algorithm
to address this problem. The algorithm in [9] uses the
fact that title is constrained to be under figure to ignore
irrelevant parts of the title inverted list. Observe that we
can achieve a similar effect using the set of indexids cor-
responding to //figure/title. This is done by chaining all
title entries based on indexids. That is, each entry has a
pointer to the next entry in the same document with the
same indexid. We refer to this as extent chaining. Now
the inverted list entry for an element and keyword has an
additional next field for this pointer.

The scan of an inverted list is modified to take ad-
vantage of extent chaining as follows. The algorithm
is shown in Figure 4. In step 3, we obtain the first en-
try in a list corresponding to a given indexid. We main-
tain a directory for this purpose. If the database contains
only one document, for instance, then the structure index
itself can store this information. For the above exam-
ple over the XMark schema, using performing the scan

5



procedure scanWithChaining(L, S)
/* returns entries in list L with indexid∈ S */

begin
1. currEntries = φ
2. foreach (id ∈ S) do
3. add first entry in L with indexid id to currEntries
4. while (currEntries 6= φ) do
5. minEntry = entry with minimum

start number in currEntries
6. get entry e in L corresponding to minEntry
7. delete minEntry from currEntries
8. if (minEntry.next 6= NULL) then
9. add minEntry.next to currEntries
10. output e
end

Figure 4. Scan with extent chaining

of the item inverted list using extent chaining is 1.06
times faster than performing the join //africa/item. The
speedup is low in this case since the africa list contains
only one entry. In Section 7, we discuss the tradeoff
between performing a linear scan and using an extent
chain.

Generalizing this approach to joins of inverted lists,
we pass the projection of the appropriate column of S
(set of indexid n-tuples for an n-way join) to the corre-
sponding scan.

4 Ranked IR-Style Path Queries

We now consider the role of structure indexes in
supporting information retrieval style relevance-based
querying over a corpus of XML documents. We first de-
fine the class of queries we consider and describe the as-
sociated relevance semantics we allow. We also discuss
the challenges involved in pushing down top k computa-
tion.

4.1 Query Language and Ranking Metric

Several proposals have been to incorporate relevance-
based search into XML queries [2, 12, 15, 28]. The goal
of this paper is not to define the best relevance met-
ric over XML data, but instead it is to study the im-
pact of merging structure indexes with inverted lists in
relevance-based computation. This section is intended
to define the class of queries and relevance functions we
consider.

We define a relevance query to be a bag of simple key-
word path expressions, analogous to the “bag of words”
query model in information retrieval. Thus, we allow
simple structural specification in addition to keywords.

We next examine our model for relevance computa-
tion. Let D be an XML document and p be a sim-
ple keyword path expression query. The relevance of
D to p is computed using a non-negative ranking func-
tion R(p, D). For a bag of simple keyword path ex-
pressions, Q = {p1, . . . , pl}, we can talk about the
relevance of document D for each pi. The relevance
of D with respect to Q is computed by combining

all R(pi, D) through a non-negative merging function
MR(R(p1, D), . . . , R(pl, D)) (Merge-Relevance).

The ranking function R must be consistent with term
frequency (tf). The term frequency of p in D, tf(p, D),
is defined to be the number of (distinct) nodes in D
that match p. As a special case, if p is //t where t
is a tag name or keyword, we refer to tf(p, D) as the
term frequency of t. R(p, D) must satisfy the following
property: for path expressions p1 and p2, tf(p1, D) <
tf(p2, D) ⇔ R(p1, D) < R(p2, D). We also require
that if tf(p, D) is 0, then R(p, D) = 0. We refer to the
above as the tf-consistency property.

The merging function MR must be mono-
tonic [11], that is, for documents D1 and D2,
if R(pi, D1) ≥ R(pi, D2) for each i from 1
to l, then MR(R(p1, D1), . . . , R(pl, D1)) ≥
MR(R(p1, D2), . . . , R(pl, D2)). We also require
that for document D, if each R(pi, D) is 0, then
MR(R(p1, D), . . . , R(pl, D)) = 0. Any pair of
ranking and merging functions that satisfy the above
properties is permitted. Note that one particular example
of a merge-rank function is a weighted sum of the
individual ranks. Here, the weights could be inverse
document frequencies (idf). Hence, the above definition
of relevance permits the traditional IR notion of tf-idf
based ranking.

4.1.1 Extending Ranking to Include Proximity

We can extend the relevance metric to account for
keyword proximity when the input is a bag of sim-
ple keyword path expressions. For this purpose,
we modify the relevance computation by multiply-
ing the merge-rank function by a proximity function
ρ. Thus, for a bag of path expressions {p1, . . . , pl},
the relevance of a document D is measured as
MR(R(p1, D1), . . . , R(pl, D1))×ρ(D, p1, . . . , pl). We
assume that the value of the proximity function lies in the
range [0, 1]. Note that we do not assume anything about
what the notion of proximity is: it could be measured
by merely treating the document as a text document and
using any standard IR notion of proximity, or could re-
flect the tree structure of the document by assigning a
higher weight if there is a deeply nested element that
contains all the keywords. A relevance function is said to
be (1) well-behaved if R is tf-consistent, MR is mono-
tonic and ρ ∈ [0, 1], (2) proximity-sensitive if it is well-
behaved and ρ is not identically 1. Note that for a single
simple keyword path expression, MR and ρ are not rel-
evant, instead relevance is computed using the ranking
function R.

4.2 Optimizing Top k Computation

The main problem in this domain is to try to find the
top k answers without evaluating the entire query. In
order to push down the top k computation, we need ac-
cess paths based on relevance. We assume that for each
tag name (keyword) t, there is an additional inverted list

6



procedure compute top k(k,a,sep,b)
/* query is: a sep b; sep is / or // */

begin
1. ListA = rellist(a) /* relevance list for a */
2. ListB = rellist(b) /* relevance list for b */
3. topKresults = φ
4. mintopKrank = 0
5. while (more entries in both ListA and ListB) do
6. currDocB = next document in ListB
7. if ((R(b,currDocB) <= mintopKrank) and

(number of documents in topKresults is k)) then
8. break
9. if (currDocB /∈ topKresults) then
10. Evaluate a sep b on currDocB
11. Let the result be currDocResult
12. Add currDocResult to topKresults
13. currDocA = next document in ListA
14. if (currDocA /∈ topKresults) then
15. Evaluate a sep b on currDocA
16. Let the result be currDocResult
17. Add currDocResult to topKresults
18. Retain only top k documents in topKresults
19. Set mintopKrank appropriately
20. return topKresults
end

Figure 5. top k algorithm for 2-way join
rellist(t) where the entries within a document are in
document order and the inter-document order is in de-
scending order of relevance of t (R(t, D)).

Fagin et al. proposed the threshold algorithm (TA) to
merge ranked lists in middleware [11]. There are two
main differences in our setting.

• When we join two inverted lists, the relevance
of the result is not “monotonic” in the rele-
vance of the inputs. In other words, suppose
we are evaluating a//b. If we were to directly
apply the threshold algorithm, then we need the
following property: for documents d1 and d2,
if R(a,d1)>R(a,d2) and R(b,d1)>R(b,d2) then
R(a sep b,d1)>R(a sep b,d2). This is not true in
our scenario.

• TA is a middleware algorithm and is provably op-
timal under certain assumptions. Our focus is on
the XML database server where additional access
paths, like the original inverted lists, are available.
These access paths violate the assumptions under
which TA is proved to be optimal.

We next explore how each of these differences can be
handled.

5 Adapting TA to Inverted List Joins

We present the details for two-way join queries. The
adaptation for more joins is straight-forward. Consider
the path expression a sep b. The algorithm for this case,
compute top k, is given in Figure 5. For steps 10 and 15,
we can use any standard algorithm that merges two in-
verted lists [7, 9, 20, 22, 30, 35].

The procedure compute top k executes a sep b on a
per-document basis in the process maintaining the top k
documents (based on relevance) among the documents
processed so far in the set topKresults. When it real-
izes that none of the future documents can be part of the
top k, it stops processing and returns the results. This
termination condition is shown in Step 7. The maximum
relevance any future document can have is the relevance
of the current document in ListB. If the latter value is
smaller than the relevance of the kth document in top-
Kresults, then no more documents need to be processed
since the list is ordered by relevance. In addition, if we
have seen all entries in either list, then the join termi-
nates. This is so since we have executed the join for all
documents containing both a and b.

The main difference from the original threshold al-
gorithm is the use of R(b,currDoc) in Step 7 above.
Also, unlike the original threshold algorithm, we do not
assume that each document appears in every list. We
handle this through the condition for the while loop in
Step 5.

For a generic simple keyword path expression
query Q, we modify compute top k by using the list cor-
responding to the result node of Q to define the terminat-
ing condition like in Step 7 above, and evaluating Q for
each document accessed, using any standard query eval-
uation algorithm [7, 9, 20, 22, 30, 35]. The details are
omitted for lack of space.

5.1 Instance Optimality

In [11], the notion of instance optimality is introduced
and it is shown that the threshold algorithm is instance
optimal among a certain class of algorithms. Similar re-
sults apply in our context. We use the following termi-
nology from [11] to formalize this claim.

We consider the following modes of access to the rel-
evance lists. For a particular list L, we can obtain the
entries for the next document in relevance order — this
corresponds to a sorted access to that document. Al-
ternatively, we can specify a document id and ask for
all entries pertaining to it. This is a random access to
that document. Either access to a document returns all
entries in that document. An algorithm to compute the
top k documents is said to make a wild guess [11] if it
makes a random access on list L for a document id with-
out having seen it under sorted access under some (pos-
sibly other) list.

We now recall the notion of instance optimality [11].
Let A be a class of algorithms, and let D be a class
of legal inputs to the algorithms. We assume that we
are considering a particular non-negative cost measure
cost(A, D) of running algorithm A over input D. We
say that an algorithm B ∈ A is instance optimal over
A and D if for every A ∈ A and D ∈ D, we have:
cost(B, D) = O(cost(A, D)). In other words, there are
constants c, c′ such that cost(B, D) ≤ c× cost(A, D)+
c′ for every choice of A and D. We note that instance

7



optimality is a stronger notion of optimality than worst-
case, or even average-case optimality.

In our context, we define cost(A, D) of running al-
gorithm A over input D to be the number of document
accesses, both sorted and random, by A across all lists.
Computing the relevance of a document is counted as
one document access. If a document is accessed on mul-
tiple lists, it is counted once per list. Similarly, if a doc-
ument is accessed multiple times in the same list, it is
counted once per access. We have the following theo-
rem (the proof is omitted for lack of space).
Theorem 1: Let q be a simple keyword path expression
query. Let D be the class of all databases. Let A be
the class of all algorithms that correctly find the top k
documents (and corresponding nodes) for q over every
database and that do not make wild guesses. Then, com-
pute top k is instance optimal over A and D.

5.2 Issues With Additional Access Paths

Recall that we have inverted lists sorted on document
id in addition to lists in relevance order. Just as in Sec-
tion 3.3, where we skip parts of an inverted list within
a document using secondary indexes, it is possible to
skip documents during a containment join over all doc-
uments. We illustrate this next with an example. Con-
sider the simple keyword path expression query q = a/b.
Suppose the XML database has 201 documents with ids
from 1 to 201. Let documents 1 to 100 have only a ele-
ments and documents 101 to 200 have only b elements.
Let document 201 have an a element with child b. Con-
sider the following algorithm for evaluating q.

1. Look at the first document in the two lists — 1
and 101.

2. Since the document ids are different, use the larger
id (in this case, 101) to seek to the first document
in the list for a with document id greater than or
equal to 101.

3. The list for a is now positioned at document 201.
4. Since the document ids are still different, seek on

the list for b to the first document with id ≥ 201.
5. Now both lists are positioned at 201.
6. Perform the join over document 201.
7. Since there are no more documents on both lists,

return.
This evaluation accesses only three documents. On the
other hand, compute top k accesses all documents. The
above algorithm performs efficiently on this instance due
to the presence of a secondary index. Notice that in
Step 3, the list for a is positioned at document 201 as a
result of the random access in Step 2. But document 201
is not accessed through sorted access before this. This
classifies as a wild guess and is not permitted in the class
of algorithms considered in the instance optimality dis-
cussion.

We next show how we obtain an instance optimal al-
gorithm even in the presence of these access paths. We
use a structure index along with extent chaining for this
purpose.

procedure compute top k with sindex(k,q,sep,b)
/* query is: q sep b; sep is / or //,

q is a simple path expression, b is a keyword */
begin
1. ListB = rellist(b) /* relevance list for b */
2. if (sep is /) then
3. indexidList = list of ids of index nodes matching q
4. else /* sep is // */
5. indexidList = list of ids of index nodes matching q

and their descendants in the structure index
6. topKresults = φ
7. mintopKrank = 0
8. while (more entries in ListB) do
9. currDoc = next document in ListB with at least

one entry e such that e.indexid ∈ indexidList
(use extent chaining)

10. if ((R(b,currDoc) < mintopKrank) and
(number of documents in topKresults is k)) then

11. break
12. currDocResult = {e : e ∈ ListB corresponding to

currDoc and e.indexid ∈ indexidList}
(use extent chaining)

13. Add currDocResult to topKresults
14. if (topKresults has k + 1 documents) then
15. remove document with least relevance
16. Set mintopKrank appropriately
17. return topKresults
end

Figure 6. top k algorithm using structure
index

6 Instance Optimality with a Structure In-
dex

We show how structure indexes can be used to obtain
an instance optimal algorithm even in the presence of
these access paths. We first consider the case when the
relevance query has a single path expression. We then
extend our algorithm in Section 6.1 to the case when the
relevance query is a bag of path expressions.

The evaluation of a simple keyword path expression
Q = q sep b using a structure index I that covers it re-
sults in a scan on the inverted list of b with a set S of
indexids. The algorithm for computing the top k docu-
ments in this case is shown in Figure 6. We modify the
idea of extent chaining introduced in Section 3.3 to chain
all entries in the relevance inverted lists with the same
indexid even across documents. Thus, each entry has a
pointer to the next entry with the same indexid even if it
is not in the same document. We observe the following
about this algorithm.
• Steps 2-5 initialize the indexidList appropriately

depending on whether sep is / or //.
• The terminating condition in Step 13 is similar to

the one in the procedure compute top k.
• The evaluation of currDocResults in Step 15 (for

a single document) can be performed using intra-
document extent chaining described in Section 3.3.

• In Step 12, we use inter-document extent chaining
to advance to the next document in ListB having at

8



least one match for q sep b.

Implementation Note

When performing a scan using extent chaining, to get
the next entry in the list (like in Step 5 in Figure 4),
we might need to compare the next pointers of more
than one entry and find which of them appears first in
the relevance list. The relative position of two docu-
ments in a relevance list cannot be obtained by com-
paring their document ids. Hence, we introduce rel-
evance document ids (reldocids). All documents ap-
pearing in a relevance list are assigned reldocids based
on their order in the list. The next pointer of an en-
try contains the reldocid and start number of the next
entry with the same indexid. Using the reldocids, we
can compare the next pointers of more than one en-
try. An entry in the relevance list for a tag name is of
the form: <reldocid, start, end, level, indexid, docid,
next reldocid, next start>. An entry for a keyword
is the same except for the absence of end. We empha-
size that the reldocid is used only for extent chaining. In
particular, when we talk about document ids, we refer to
the unique document id that is common to a document
across all lists.

Instance Optimality

In addition to the sorted and random access modes on
the relevance lists, we allow sorted and random access
on the inverted lists sorted on document id. We modify
the wild guess definition to obtain what we call a strict
wild guess, by excluding the following: (1) random ac-
cess on any list to first document with id ≥ a given id,
and (2) random access on any list L to a document with
reldocid obtained from the next field of an entry (in L).
Cost is measured in the same way as in Section 5.1. In
particular, the index evaluation cost is not counted for
the purpose of this discussion.
Theorem 2: Let q be a simple keyword path expression
query. Let D be the class of all databases such that q
is covered by structure index I . Let A be the class of
all algorithms that correctly find the top k documents
(and corresponding nodes) for q over every database
and that do not make strict wild guesses. Then, com-
pute top k with sindex is instance optimal over A and
D.

6.1 Extension to Bag of Simple Keyword Path
Expressions

We now extend the above algorithm to the case when
the query is a bag of simple keyword path expressions;
intuitively, this corresponds to the class of IR queries
with multiple keywords. Consider the evaluation of
query Q = {p1, p2}. Using the structure index, we can
convert each pi to a scan on the appropriate relevance
list. What remains now is to merge these relevance lists
and apply the relevance function for Q (which merges
the relevances of the pi and takes a product with the

procedure compute top k bag(k,p1 sep1 a,p2 sep2 b)
begin
1. ListA = rellist(a) /* relevance list for a */
2. ListB = rellist(b) /* relevance list for b */
3. Obtain indexidListA and indexidListB appropriately

using the structure index
//as in Steps 2-8 of compute top k withsindex

4. topKresults = φ
5. mintopKrank = 0
6. while (more entries in either ListA or ListB) do
7. currDocA = next document in ListA, as per extent chaining
8. currDocB = next document in ListB, as per extent chaining
9. Ra = R(a,currDocA)
10. Rb = R(b,currDocB)
11. if ((MR(Ra,Rb) <= mintopKrank) and

(number of documents in topKresults is k)) then
12. break
13. if (currDocA /∈ topKresults) then
14. Evaluate the two path expressions on currDocA
15. Let the result be currDocResult
16. Add currDocResult to topKresults
17. Do similarly for currDocB
18. Retain only top k documents in topKresults
19. Set mintopKrank appropriately
20. return topKresults
end

Figure 7. top k algorithm for 2 simple key-
word path expressions

proximity function ρ). This merge is similar to the merge
algorithm in Figure 5. The algorithm is shown in Fig-
ure 7. Since the merging function is monotonic and ρ lies
in the range [0, 1], this algorithm can easily be shown to
be correct for all well-behaved relevance functions. This
algorithm naturally extends when Q has more than two
simple path expressions.

We show that for the special case when the relevance
function is not proximity-sensitive, this algorithm is in-
stance optimal for an interesting class of bag queries,
over the class of algorithms that do not make strict wild
guesses, as defined above. A bag B of simple path ex-
pressions is defined to be disjoint if the trailing terms of
no two simple path expressions in B are the same. For
example, the bag {book//“XML”,author/“Abiteboul”} is
disjoint while the bag {book//“XML”,article//“XML”} is
not.
Theorem 3: Let Q = {q1, q2, . . . , ql} be a bag of simple
keyword path expression queries. Let D be the class of
all databases such that each qi is covered by structure
index I . We have the following.

1. For any database D ∈ D, compute top k bag cor-
rectly returns the top k documents over any given
well-behaved relevance function.

2. Suppose that Q is a disjoint bag and that the rele-
vance of a document is computed using a function
that is well-behaved but not proximity-sensitive. Let
A be the class of all algorithms that correctly find
the top k documents (and corresponding nodes) for
Q over every database and that do not make strict

9



site

regions open_auctionspeople closed_auctions

open_auction

bidder

date

closed_auctionperson{...,namerica,...}

annotation

happiness

profile

education

keyword

description

item

Figure 8. XMark Schema
wild guesses. Then, compute top k bag is instance
optimal over A and D.

The optimality of the algorithm is open for proximity-
sensitive relevance functions.

7 Experimental Results

We have implemented the above algorithms as part
of the Niagara XML database system [27]. We present
the results of some preliminary experiments that yield
a sense for the efficacy of our techniques. We first
present our results for evaluating branching path expres-
sion queries using structure indexes and inverted lists.
We then move on to relevance queries. Our experiments
are run on a Linux Workstation with 256MB of RAM.
We use a 16MB buffer pool.

7.1 Evaluation of Branching Path Queries

We use the XMark XML-benchmark data [33] for this
set of experiments. This data models an auction site. The
element relationships relevant to this paper are shown
in Figure 8. The tag names are self-explanatory. The
data size is 100MB. The structure index we use is the 1-
Index [25]. A study of how the choice of structure index
impacts performance is future work. We report the per-
formance results for four queries involving structure and
value constraints based on warm buffer pool times. We
measure the speedup, defined to be the ratio of the (ex-
ecution) time taken in the absence of a structure index
(inverted list join) to the time taken by our algorithm. In
the presence of alternative query plans, we use the execu-
tion time corresponding to the best plan. Table 1 shows
the queries and the respective speedups. We discuss in
Section 8 what happens when we use other inverted list
join algorithms proposed in the literature.

The main observations to be made from the above
numbers are:

• The benefit of using a structure index in conjunction
with inverted lists is considerable with speedups of
as high as about 43 times for simple path expres-
sions and about 7 times for branching path expres-
sions.

• The speedup obtained is dependent on the number
of joins saved. At the extreme, if we remove all
joins replacing them with a scan, then the speedup
obtained is highest. Thus, for the first query above
which is a simple path expression, the speedup ob-
tained is highest.

Using a secondary index while performing an in-
verted list join adds an overhead, especially when we
skip only small portions of the lists. Using an extent
chain instead of a linear scan may exhibit similar behav-
ior. In a separate set of experiments, we compare the per-
formance of extent chaining as opposed to performing a
linear scan by varying the query selectivity. Our conclu-
sion is that if the selectivity is below a certain threshold,
using extent chaining is beneficial; otherwise, a modi-
fied scan algorithm that judiciously uses the extent chain
only if it finds half a page of contiguous entries that do
not belong to the query result works best. The worst case
cost of this algorithm in our experimental setup was 20%
more than the cost of a linear scan, and the best case ben-
efits were similar to the original extent chain based scan.
Details of this study are omitted for lack of space.

7.2 Relevance Queries

We have implemented the compute top k withsindex
algorithm shown in Figure 6. Recall that this is an in-
stance optimal algorithm for relevance queries consist-
ing of a single (simple) path expression. We wish to
study the benefit obtained through two aspects of this
algorithm — the early termination condition and extent
chaining. Consider a query q = p//t. In the scenario
where t occurs in many documents but very few of these
match q, extent chaining is likely to yield significant per-
formance benefit. On the other hand, if t occurs in many
documents and most of these occurrences match q, the
early termination condition is likely to contribute.

To study this, we use NASA’s public astronomy XML
archive [4]. We pick a different data set for this study
since we want a data set with multiple files to make
ranked queries meaningful. The data has 2443 XML
documents with a total size of about 33MB. We consider
two queries — Q1 and Q2 — that search for occurrences
of a particular word “photographic” under two different
paths p1=keyword and p2=dataset respectively. There
are very few occurrences of “photographic” under key-
word, while all occurrences are under dataset.

Table 2 shows the results of our experiment. For each
value of k, we report the speedup obtained through our
algorithm, measured as the ratio of the time taken to fully
execute the query on the database to the time taken by
our algorithm. We also report the number of documents
accessed by our algorithm.

We observe first of all that there is a significant benefit
to be obtained by pushing down the top k computation,
instead of evaluating the query completely and then ex-
tracting the top k results. For Q1, notice that the number
of documents accessed by our algorithm varies very little
with k. This indicates that the benefit is chiefly through
extent chaining. On the other hand, for Q2, the number
of documents accessed increases linearly with k, show-
ing the role played by the early termination condition.

10



Query in English Path expression Speedup
Find occurrences of “attires” under item descriptions //item/description//keyword/“attires”] 43.3
Find open auctions that had a bid in 1999 //open auction[/bidder/date/“1999”] 6.85
Find the persons who attended Graduate school //person[/profile/education/“Graduate”] 5.06
Find closed auctions where the happiness level //closed auction[/annotation/happiness/“10”] 3.12
was 10

Table 1. Speedups Using Structure Index
Value of k Speedup for Q1 # Documents Accessed Speedup for Q2 # Documents Accessed

by our algorithm by our algorithm
1 16.04 20 18.07 2
5 14.92 25 10.38 6
10 14.53 25 8.13 10
50 12.42 27 3.67 51
100 12.42 27 2.15 101
300 12.42 27 1.7 301

Table 2. Results for top k queries
8 Related Work

Several methods have been proposed for processing
queries over graph-structured XML data. These meth-
ods can be classified into two broad classes. The first
involves graph traversal where the data graph is tra-
versed using the input query [16, 24]. The other in-
volves information-retrieval style processing using in-
verted lists [7, 9, 20, 22, 30, 32, 35]. Methods have been
proposed to optimize queries in the presence of both
these alternatives [16, 19, 24]. In this framework, struc-
ture indexes such as the ones proposed in [14, 21, 25]
have primarily been used as a substitute for graph traver-
sal [24]. However, to the best of our knowledge, no pub-
lished work has addressed how to integrate structure in-
dexes with information retrieval style inverted list pro-
cessing. This is the focus of our paper. We note that our
techniques apply irrespective of which specific structure
index and inverted list join algorithm is used. The tech-
nique we propose is similar to the algorithm proposed
in [34] using path ids in the context of evaluating branch-
ing path expression queries over XML data stored in an
RDBMS. That algorithm is correct for nonrecursive data
sets — it turns out that it does not give the correct result
when the input XML data has an ancestor and descen-
dant element with the same tag name. Since path ids are
a special form of structure indexes [25], and their tech-
nique is based on containment joins, the solution pre-
sented in this paper can be easily applied to tbeir context.

Several techniques for inverted list joins have been
proposed [7, 9, 20, 22, 30, 35]. While our technique
works when any of these algorithms used to join inverted
lists (i.e., as IV L), the actual speedup obtained depends
on the specific algorithm. We now discuss how the re-
sults reported in Section 7 vary with the specific join al-
gorithm. The inverted list join algorithms can be broadly
classified as follows: merge-based algorithms [22, 35],
stack-based algorithms [7, 30] and extensions to these
using secondary indexes [7, 9, 16, 20]. In Niagara [16],
the inverted list join algorithm is a merge-based algo-
rithm that uses auxiliary B-Tree indexes to skip parts of

the inverted lists. We use this implementation to show
the benefit of integrating structure indexes. Since the
parts of the XMark dataset relevant to the above queries
are not recursive (i.e., no two elements where one is an
ancestor of the other have the same tag name), the stack-
based algorithms [7, 30] do not add any benefit to merge-
based inverted list processing for this dataset. Indeed,
the speedups we report in Section 7 are relevant when
any of the above algorithms is used, except for the XR-
Tree [20]. We defer a study of this speedup to future
work.

Several proposals have been made for ranked search
over a corpus of document databases combining key-
word and structure components [17, 28]. Recently,
in [2, 3, 12, 29, 31], query languages that integrate in-
formation retrieval related features such as ranking and
relevance-oriented search into XML queries have been
proposed. Techniques to evaluate these ranked queries
are also proposed in [2, 3, 29, 31]. A survey of commer-
cial XML search engines is available in [23]. In [26],
the problem of ranking SGML documents using term
occurrences is considered. The focus of our paper is
not on defining the best query model over XML docu-
ments. Instead our interest is in understanding the role of
structure indexes in efficiently push down top k compu-
tation. To the best of our knowledge, none of these previ-
ous techniques uses structure indexes of the kind we de-
scribe in our paper. Several previous projects have dealt
with supporting ranked keyword search, like [1, 18] over
structured databases, [5, 10, 13] over graph-structured
data, [6, 11] over web sources and [15] over XML data.
Our query language permits a structural component in
addition to keyword specification.

9 Conclusions
We presented methods of integrating structure in-

dexes and inverted lists. By appropriately augmenting
inverted list entries, we showed how inverted list joins
could be replaced with an index navigation when eval-
uating branching path queries. Our experiments on the

11



Niagara native XML database system showed the effi-
cacy of this approach.

Throughout our discussion, we assumed that an XML
document has two parts — one that is summarized by
the structure index and one that is not. We used element
nodes and text nodes to identify these parts. There can
be several ways of defining these parts. For instance, the
values of some text nodes can be captured in the structure
index by treating them as tag names. The techniques
presented in this paper are applicable irrespective of how
we arrive at these two parts. However, this paper is not
about how we define these parts. This is an interesting
area for future work. Other such areas include looking
at the tradeoffs involved in picking a structure index and
integrating multiple structure indexes with inverted lists.

We also considered the evaluation of top k queries
over XML documents. We showed how the augmented
“relevance” inverted lists combined with adaptations of
the Threshold algorithm proposed by Fagin et al. yields
instance optimal algorithms for pushing down top k
computation. In our context, the ranking function is non-
monotonic and there are additional access paths avail-
able. Using a structure index, we were able to suc-
cessfully adapt the Threshold algorithm to proximity-
sensitive ranking functions. When the ranking func-
tion is well-behaved, our algorithm is instance-optimal.
While we presented algorithms for tree structured data,
they can be extended to work for graph-structured data.
Several avenues remain for future work. For instance,
the problem of running structured queries over hyper-
linked XML documents remains open.

References

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for
keyword-based search over relational databases. In Proceedings
of ICDE, 2002.

[2] S. Al-Khalifa, C. Yu, and H. V. Jagadish. Querying structured
text in an xml database. In SIGMOD, 2003.

[3] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relax-
ation. In EDBT, 2002.

[4] X. A. A. at NASA. XML astronomy archive at NASA.
http://xml.gsfc.nasa.gov/archive.

[5] G. Bhalotia et al. Keyword searching and browsing in databases
using BANKS. In Proceedings of ICDE, 2002.

[6] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries
over web-accessible databases. In ICDE, 2002.

[7] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
Optimal XML pattern matching. In Proceedings of SIGMOD,
2002.

[8] D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and M. Ste-
fanescu. XQuery: A query language for XML. World Wide Web
Consortium, http://www.w3.org/TR/xquery, Feb 2000.

[9] S. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo.
Efficient structural joins on indexed XML documents. In Pro-
ceedings of VLDB, 2002.

[10] S. Dar et al. DTL’s Dataspot: database exploration using plain
language. In VLDB, 1998.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algo-
rithms for middleware. In Proceedings of PODS, 2001.

[12] N. Fuhr and K. Grobjohann. XIRQL: A language for information
retrieval in XML documents. In Proceedings of SIGIR, 2001.

[13] R. Goldman et al. Proximity search in databases. In Proceedings
of VLDB, 1998.

[14] R. Goldman and J. Widom. Dataguides: Enabling query formu-
lation and optimization in semistructured databases. In Twenty-
Third International Conference on Very Large Data Bases, pages
436–445, 1997.

[15] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:
Ranked keyword search over XML documents. In Proceedings
of SIGMOD, 2003.

[16] A. Halverson et al. Mixed mode XML query processing. In
VLDB, 2003.

[17] M. Hearst and C. Plaunt. Subtopic structuring for full-length
document access. In Proceedings of SIGIR, 1993.

[18] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-
style keyword search over relational databases. In VLDB, 2003.

[19] H. Jagadish et al. TIMBER: A native XML database. VLDB
Journal, 2003.

[20] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: Indexing
XML Data for Efficient Structural Joins. In ICDE, 2003.

[21] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth. Covering
indexes for branching path queries. In Proceedings of SIGMOD,
2002.

[22] Q. Li and B. Moon. Indexing and querying XML data for regular
path expressions. In Proceedings of VLDB, 2001.

[23] R. Luk et al. A survery of search engines for XML documents.
In SIGIR Workshop on XML and IR, 2000.

[24] J. McHugh and J. Widom. Query optimization for XML. In
Proceedings of VLDB, 1999.

[25] T. Milo and D. Suciu. Index structures for path expressions. In
ICDT: 7th International Conference on Database Theory, 1999.

[26] S. Myaeng et al. A flexible model for retrieval of SGML docu-
ments. In SIGIR, 1998.

[27] J. Naughton et al. The Niagara internet query system. IEEE Data
Engineering Bulletin, 24(2), 2001.

[28] G. Navarro and R. Baeza-Yates. Proximal nodes: A model to
query document databases by content and structure. ACM Trans-
actions on Information Systems, 15(4), 1997.

[29] T. Schlieder and H. Meuss. Result ranking for structured queries
against XML documents. In DELOS Workshop on Information
Seeking, Searching and Querying in Digital Libraries, 2000.

[30] D. Srivastava, S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel,
and Y. Wu. Structural joins: A primitive for efficient XML query
pattern matching. In Proceedings of ICDE, 2002.

[31] A. Theobald and G. Weikum. The index-based XXL search en-
gine for querying XML data with relevance ranking. In EDBT,
2002.

[32] W. Wang, H. Jiang, H. Lu, and J. X. Yu. PBiTree Coding and
Efficient Processing of Containment Joins. In ICDE, 2003.

[33] Xmark: The xml benchmark project.
http://monetdb.cwi.nl/xml/index.html.

[34] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a
path-based approach to storage and retrieval of XML documents
using relational databases. ACM Transactions on Internet Tech-
nology (TOIT), 1(1):110–141, 2001.

[35] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G.Lohman. On
supporting containment queries in relational database manage-
ment systems. In Proceedings of SIGMOD, 2001.

12



A Evaluating Branching Path Queries us-
ing Structure Indexes and Inverted Lists

procedure evaluateWithIndex(q, I)
begin
1. Let q = p1[p2 sep t]p3

2. if (I does not cover p1 or //p2 or //p3) then
3. use IVL(q) to evaluate without structure index
4. Let l1, l3 be the trailing tag names of p1, p3 respectively
5. Let d2 = number of tag names in p2 + 1
6. Let d3 = number of tag names in p3

7. Let p
′

2
= /d2t

8. Let p
′

3
= /d3l3

9. Evaluate q′ = p1[p2]p3 on I
10. Let indexTriplets = {< i1, i2, i3 >: i1, i2, i3 match

l1, l2, l3 respectively in the evaluation of q′ on I}
11. if (sep is //) then /* matches case 4 */
12. foreach (< i1, i2, i3 >∈ indexTriplets) do
13. foreach (i

′

2
descendant of i2) do

14. add < i1, i
′

2
, i3 > to indexTriplets

15. p
′

2
= //t

16. if (q matches case 2) then
17. skipJoins2 = true

/* verify if we can use index to skip joins in p2 */
18. foreach (< i1, i2, i3 >∈ indexTriplets) do
19. skipJoins2 = exactlyOnePath(i1,i2)
20. if (skipJoins2 is true) then p

′

2
= //t

21. else p
′

2
= p2 sep t

22. if (q matches case 3) then /* symmetric to case 2 */
23. skipJoins3 = true

/* verify if we can use index to skip joins in p3 */
24. foreach (< i1, i2, i3 >∈ indexTriplets) do
25. skipJoins3 = exactlyOnePath(i1,i3)
26. if (skipJoins3 is true) then p

′

3
= //l3

27. else p
′

3
= p3

28. if (skipJoins2 is false) then
29. foreach (< i1, i2, i3 >∈ indexTriplets) do
30. i2 = >
31. if (skipJoins3 is false) then
32. foreach (< i1, i2, i3 >∈ indexTriplets) do
33. i3 = >
34. Perform the join l1[p

′

2
]p

′

3
using IV L

with indexTriplets and return the results
end

procedure exactlyOnePath(i1,i2)
/* i1 and i2 are nodes in I */
/* returns true if there is exactly one path from i1 to i2 */
begin
1. Go backwards from i2 to i1 in I
2. Let p be a path from i1 to i2
3. if (any node in p has > one in-coming edge in I) then
4. if (sources of > 1 are reachable from i1) then

/* found 2 paths from i1 to i2 */
5. return false
6. if (i1 is part of a cycle) then
7. return false
8. return true
end

Figure 9. Evaluation algorithm for branch-
ing path expressions using structure index

13


