
Online Latent Variable Detection in Sensor Networks

Jimeng Sun Spiros Papadimitriou
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

{jimeng,spapadim,christos}@cs.cmu.edu

Christos Faloutsos

Abstract
Sensor networks attract increasing interest, for a broad

range of applications. Given a sensor network, one key is-
sue becomes how to utilize it efficiently and effectively. In
particular, how can we detect the underlying correlations
(latent variables) among many co-evolving sensor measure-
ments? Can we do it incrementally? We present a system
that can (1) collect the measurements from the real wire-
less sensors; (2) process them in real-time; and (3) deter-
mine the correlations (latent variables) among the sensor
streams on the fly.

1 Introduction
As sensor network infrastructures become more and

more mature, an important issue that needs to be explored
even further is: how to effectively make good use of the data
from senor networks. Can we find some deeper knowledge
from the data? Can we perform the traditional data mining
tasks in the context of sensor networks? For example, how
can we quickly discover the major trends in the whole sys-
tem? More specifically, in sensor networks, what are the
underlying trends/correlations among all the sensors? How
can we monitor those correlations in real time? How can we
interpret the correlations? To answer those questions, we
present a system prototype that has the following features:
1) it communicates with multiple wireless sensors (or, op-
tionally, a simulator plug-in) to monitor the measurements
online; 2) it analyzes the data in real time (with a single
pass) to track the latent variables; 3) it can help spot out-
liers; 4) it can easily handle missing sensor measurements.

In the following, we will first describe the system’s ar-
chitecture in section 2; then we elaborate on some of the
demonstration examples in section 3.

2 Architecture
First, we introduce the different data sources supported

by the system. Second, we describe the system frontend.
Third, we illustrate how the pattern discovery and predic-
tion tasks are performed in the system backend.

Figure 1. Architecture

2.1 Data Sources

We developed our system in Java. Figure 1 shows the
overall architecture. Data are produced by sources; our sys-
tem supports three types: real sensors, synthetic sources
(e.g., generated by equations), and playback. We describe
each next.

Generally speaking, the data source is a real sensor net-
work. Specifically, in our system, it is directly collected
from wireless sensors (Berkeley motes). We also study the
wireless sensor motes. We use MICA2 wireless motes with
MTS310 sensor boards, which have the multiple sensing
modalities (e.g. light intensity, temperature, acoustic, etc.).
Our system communicates with the motes through MIB510
interface board with 433MHz radio frequency.



Figure 2. Sensor dataflow

2.2 System Frontend
After the raw data are obtained from the source, they are

fed into the system frontend. The system frontend serves the
following purposes:

1. It communicates with data sources to obtain raw data.

2. It cleans and calibrates the data before feeding them
into the system backend.

3. It communicates with the user via the user interface to
obtain certain parameters. These are also fed into the
backend.

2.3 System Backend
The major task of the system backend is to perform on-

line analysis of the incoming data in the stream processing
module. This determines the number of latent variables and
monitor their values. The number of latent variables essen-
tially is the number of correlated groups among the sensors.
Each sensor has a participation weight for each of these
latent variables, which can be viewed as the participation
strength of the sensor belongs to that group. Another im-
portant task of this key module is to forecast future values,
with the help of the latent variables.

The algorithm we apply here does incremental/adaptive
SVD on the multiple data streams. The details and perfor-
mance evaluation are presented elsewhere [1]. The impor-
tant features are: (1) efficient tracking of the latent variables
(comparable to static SVD); (2) limited parameter tuning
(all parameters are well-understood and defaults suffice for
the vast majority of applications); (3) very good scalability;
(4) dynamic change of the number of latent variables based
on the sensor measurements.
3 Demonstration

The data source consists of 8 sensor streams, 4 temper-
ature streams and 4 light intensity streams. Each sensor
stream comes from a MTS310 sensor board that connects
to a MICA2 wireless mote in real time. Figure 2 shows
the data flow. The top window of Figure 3 shows the mea-
surements of light intensity and temperatures 1. All streams

1Note that the actual unit of the measurements are not important. In
order to show two different kinds of measurements on the same plots, we
scale the data so that they are comparable.

Figure 3. Demonstration Screenshot

have constant trend originally. Hence, only one constant la-
tent variable are needed in Figure 3 at the beginning. The
reconstruction can be trivially obtained by multiplying dif-
ferent weights for each stream.

When the environment changes, for example when
someone covers up one of the sensors (and thus the light
intensity from it decreases), the changes directly affect the
observable measurements in the top window of Figure 3.
More importantly, it affects the latent variable in the middle
window of Figure 3 too. Specifically, the original constant
latent variable varies according the change of the original
sensor measurements. The reconstruction is still fairly good
in Figure 3. After that, when the measurements fall back to
the normal/constant trend, the system drops the additional
latent variable and becomes normal again (see Figure 3).

Our system is intuitive and informative for the users. The
users can interact with the system directly at the demonstra-
tion without much explanation. By doing so, they can eas-
ily understand/appreciate the algorithm behind. In practice,
this system can help humans monitor a large number of sen-
sors in real time. It detects the trends, patterns and correla-
tions among them, and summarizes the input sources into a
few latent variables. When such a correlation is broken, the
system spots it easily, introducing a new latent variable; the
fact that there is a change in the number of latent variables,
can be flagged as an anomaly.

4 Conclusion
We have presented a system that can handle multiple co-

evolving streams. Specifically, it can track the correlations
incrementally, in real-time; it can discover corresponding
latent variables quickly, and it can spot broken correlations,
flagging them as anomalies.

References
[1] S. Papadimitriou, J. Sun, and C. Faloutsos.

Viper:incremental pattern discovery on multiple
streams. In Submitted for publication, 2004.


