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Abstract

In this paper we show that the topologies of most
logarithmic-style P2P systems like Pastry, Tapestry or
P-Grid resemble small-world graphs. Inspired by Klein-
berg’s small-world model [7] we extend the model of build-
ing “routing-efficient” small-world graphs and propose
two new models. We show that the graph, constructed ac-
cording to our model for uniform key distribution and log-
arithmic outdegree, will have similar properties as the
topologies of structured P2P systems with logarithmic out-
degree. Moreover, we propose a novel model of building
graphs which support uneven node distributions and pre-
serves all desired properties of Kleinberg’s small-world
model. With such a model we are setting a reference base
for nowadays emerging P2P systems that need to sup-
port uneven key distributions.

Keywords: Distributed Hash Tables, Routing, Small-World
graphs, Storage Load Balancing

1. Introduction

After the success of the first generation of P2P systems,
such as Napster and Gnutella, an immense research activ-
ity started to address drawbacks of the original P2P sys-
tems, such as centralization (Napster) and enormous band-
width consumption (Gnutella). One outcome of this re-
search was a variety of approaches to structured P2P overlay
networks [1, 13, 14, 15] providing better scalability, accu-
racy and efficiency. Since then, the number of proposed so-
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lutions for structured P2P overlay networks has been grow-
ing rapidly, so that it is somewhat difficult to qualitatively
and quantitatively compare them. Still it is not hard to no-
tice that many of the proposed solutions share similar prop-
erties and are structured in a comparable way.

Among the wide range of proposed structured P2P
overlay networks a majority can be characterized as
logarithmic-style P2P overlay networks which, al-
though being different in their maintenance algorithms,
share the same structural properties and search algo-
rithm characteristics. E.g. expected search cost in P2P sys-
tems like balanced P-Grid [1], Chord [15], Pastry [14]of
them maintains on average O(log N) entries in their rout-
ing tables.

In this paper we first provide one way to better under-
stand the common characteristics of these systems by re-
lating them to the seminal work on small-world graph con-
struction introduced by Kleinberg [7]. This applies in par-
ticular for randomized overlay network structures [6] and
randomized variants of deterministic structures such as ran-
domized Chord [8, 19]. The first contribution of our pa-
per is to clarify the relationship among logarithmic struc-
tured overlays and Kleinberg’s model. We introduce a mod-
ified version of Kleinberg’s model where the outdegree of
the overlay graph is logarithmic instead of constant. This
not only provides a better insight into the nature of existing
logarithmic-style overlay networks, but also a foundation to
develop less constrained overlay network structures and to
trade-off between search and maintenance cost by choos-
ing the routing table sizes flexibly by varying from constant
to logarithmic size.

In a second step we address within the same framework
a problem that is receiving recently increasing interest in
many data-oriented P2P applications. In this type of ap-
plications it is important to preserve semantic relationships
among resource keys, such as ordering or proximity, to al-
low semantic data processing, such as complex queries or
information retrieval. This implies that the construction of
(efficient) overlay networks has to support the case of non-



uniformly distributed resource keys while exhibiting good
load-balancing properties. Examples of overlay networks
that have been proposed to address non-uniform key dis-
tributions are CAN [13], P-Grid [1] and Mercury [4]. CAN
and P-Grid can partition the key-space upto any granular-
ity, such that each partition has a balanced number of keys
assigned to them. In doing so each of the CAN and P-
Grid overlay networks sacrifice some desirable properties.
Search efficiency in terms of the number of overlay hops
can’t be guaranteed in CAN for arbitrary partitioning of
the key-space (zones). In contrast, P-Grid’s randomization
helps retaining routing efficiency [2], however peers require
more than logarithmic routing states. Mercury [4] uses
heuristics to deal with the presence of skewed key-spaces
and utilizes Small-World connectivity. We provide a formal-
ized theoretical framework that covers the whole class of
“routing efficient” Small-World networks for skewed key-
spaces, including Mercury’s heuristics. We prove that in
such an overlay network both routing latency and the num-
ber of routing states per peer stay O(log N) independent of
the skew of the key-space partition.

By proposing the extension to Kleinberg’s model we are
providing a foundation for a novel type of structured overlay
networks that would support load balancing for unbalanced
key and workload distributions, to tradeoff routing table size
with search cost, and is expected to be robust due to use of
randomization. Given such a foundation for the structural
aspect of overlay networks, an orthogonal research ques-
tion will be the development of algorithms for constructing
and maintaining this type of overlay networks. This work
can build on the ample experience that has been developed
over the last years for the various variants of structured over-
lay networks, and we wrap the paper outlining some possi-
ble design choices and difficulties in realizing a real overlay
network.

2. Background

The Small-World phenomenon in social networks was
discovered in the sixties [11]. Since then there were numer-
ous works and proposals to explain and model small-world
graphs. One approach for building small-world graphs was
presented by Watts and Strogatz [17]. The idea was to
randomly rewire a regular graph. Starting from a regular
graph with constant outdegree, with probability parameter
p ∈ [0..1] at each node an edge is re-linked to another ran-
domly chosen node. With the parameter p = 1, one obtains
a completely random graph and with p = 0, the graph re-
mains regular. When the probability p is between 0 and 1,
one obtains a wide range of small-world graphs, that have
properties of both regular and random graphs: high cluster-
ing coefficient and low diameter. Kleinberg proved [7] that
among that wide range of small-world graphs, there exists

only one class of small-world graphs in which decentralized
(greedy) routing is most efficient. Kleinberg proposed dif-
ferent algorithms for constructing small-world graphs. The
idea is to rewire the links to other nodes not randomly, but
depending on the distance to the other node.

In Kleinberg’s model nodes populate a regular k-
dimensional lattice and each node has a neighboring link
to the neighboring nodes that are a unit distance away
from the given node. Each node also has a constant num-
ber of long-range links that are chosen among the whole
set of nodes. Node u chooses to have a long-range link
to v with probability inversely proportional to d(u, v)r,
where d(u, v) is the distance between these nodes and
r is a structural parameter. It was proven that to con-
struct “routing-efficient” small-world graph (where greedy
distance minimizing routing will perform best) is pos-
sible iff the structural parameter r is equal to the space
dimension.

Several recent works employ various small-world prop-
erties for building P2P systems, e.g., Symphony [9], Mer-
cury [4] or SWAM [3] to name a few. There are other on-
going work in the area trying to extend Kleinberg’s model
and to use his ideas to improve the performance of P2P net-
works, like [18, 5].

2.1. Notations and definitions

In the following we will introduce a variation of Klein-
berg’s model which shows that the properties of standard
logarithmic-cost overlay networks, i.e. logarithmic cost of
routing (in terms of overlay hops) with logarithmic size
routing tables, can be achieved under much weaker assump-
tions than usually made. Since many existing DHT propos-
als are based on one-dimensional key spaces (e.g., Chord,
P-Grid, Pastry), we will give the result for this case, and
more precisely for the case of an interval topology. Analo-
gous result can be given for other topologies, in particular
the ring topology. Unlike as in Kleinberg’s proof, we relax
our assumptions such that we do not need peers to be con-
nected in a grid, but only that they are randomly distributed
in the space according to some probability density function
f .

Before introducing the model we provide some notations
and definitions that we will use:

- G: the graph resembling P2P overlay network

- N : number of nodes (peers) in the P2P system (the
graph G)

- R: the identifier (key) space where nodes (peers) are
populated

- id: the identifier (key) of the node (peer)
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- f : the probability density function setting the manner
of how identifiers of the nodes (peers) are distributed
in R

3. Extended Kleinberg’s Small-World model
for Uniform Key Distribution and Loga-
rithmic Outdegree

First we extend Kleinberg’s Small-World model for Uni-
form Key Distribution, i.e. f = const. We model a P2P
overlay network as a directed graph G = (P, E) with N
nodes. Each peer of a P2P overlay network corresponds to
a node in the graph and the routing table entries of this
peer correspond to the outgoing edges from that node1. The
nodes are embedded into the key-space R by uniformly ran-
domly distributing them on the unit interval [0; 1) such that
each node u obtains an unique identifier uid ∈ [0; 1). The
distance among two nodes u and v is given as

d(u, v) = |vid − uid|. (1)

The edges E of the graph G can be classified into neigh-
boring edges NE and long-range edges LE. Each node u
has two neighboring edges: one to the left neighbor and
one to the right neighbor. This condition makes G always
connected. Different to Kleinberg’s model we assume that
a node has log2 N long-range edges (instead of a constant
number of long-range edges). Node u can have long-range
edge to any node v ∈ LEu for which |vid − uid| ≥ 1

N and
v is chosen such that

P [v ∈ LEu] ∝ 1
d(u, v)

.

With the condition |vid−uid| ≥ 1
N we restrict the choice

of long-range edges to nodes that are not too close. Rout-
ing in such an overlay network is based on greedy distance
minimizing routing. In each step a node u forwards a search
request for a target key t to the node with the minimal dis-
tance to the target node t among all nodes reachable through
an edge from u. We prove that under this model, the ex-
pected search cost in number of overlay hops is O(log2 N)
as in all logarithmic-cost P2P overlay networks. The proof
is structurally the same as for Kleinberg’s model, however,
the bounds have to be derived differently due to the changed
model.

Theorem 1 The expected routing cost in the graph built
according to “Model for uniform key distribution” using
greedy distance minimizing routing is O(log2N).

Proof. The probability that a node u chooses a node v

as a long range contact is
1

d(u,v)∑
v∈LEu

1
d(u,v)

. First we have to

1 We use the terms “peer” and “node” interchangeably.

calculate the upper bound of
∑

v∈LEu

1
d(u,v) for any node

u. The sum can acquire its highest value when it is calcu-
lated for a node u which is at the center of the key-space.
Thus if we measure the sum for uid = 1

2 , it gives an upper-
bound. The distance from u to the closest node will be
at least du ≥ 1

N . We can calculate expected mean of in-
verse distance values from the node u to all the other nodes
given probability density function f(x) as 2

∫ 1
2

dh

1
xf(x)dx.

Because nodes are distributed uniformly f(x) = 1 and∑
v∈LEu

1
d(u,v) is upper-bounded by:

N2
∫ 1

2

1
N

1
x

dx = 2N ln x|
1
2
1
N

< 2N ln N. (2)

Hence, the probability that node u will choose v as one
of its long-range links is at least

1
d(u, v)2N ln N

. (3)

Let us view the key-space as log2 N partitions
A1, A2, .., Alog2 N , where each partition Aj is popu-
lated by the nodes whose distance from the target node t
is [2− log2 N+j−1; 2− log2 N+j). During greedy routing af-
ter a node forwards the search request to node s we say
that the message is at partition Aj if the distance be-
tween the current message holder s and the target t is
within the range 2− log2 N+j−1 ≤ d(s, t) < 2− log2 N+j .
We calculate the probability Pnext that the current mes-
sage holder has at least one long-range link to some node
v in some partition Al where l < j, i.e. the current mes-
sage holder can forward the message closer to the target at
least by one partition. There are at least 2N2− log2 N+j−1

such nodes. The distance from the current message holder
to the most distant node in the partition Al is at most
2− log2 N+j−1 + 2− log2 N+j = 3 ∗ 2− log2 N+j−1. Us-
ing (3) we can determine that the probability that node u
will choose some v in Al as one of its long-range links is at
least

2N2− log2 N+j−1

3 ∗ 2− log2 N+j−1 · 2N ln N
=

1
3 ln N

. (4)

Since each node has log2 N long-range links, Pnext is
on expectation at least

Pnext ≥ 1−
(
1− 1

3 ln N

)log2 N

> 1− e−
1

3 ln 2 = c. (5)

Thus, when each node has log2 N long-range links the
lower bound of the probability that the message will be for-
warded closer to the target partition does not depend on N
and is a constant that we denote by c. The probability that
the message will stay in the same partition when node u for-
wards it to the next node is at most Psame ≤ 1− c.
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Let us denote by Xj the total number of hops and EXj

as the expected total number of hops that greedy distance
minimizing routing will make within the partition Aj be-
fore jumping into some partition Al that is closer to the tar-
get t, i.e., l < j. If NAj is the number of nodes in Aj then
we have

EXj =
NAj∑

i=0

iPr[Xj = i] <

∞∑

i=0

i(Psame)iPnext

=
∞∑

i=0

i(1− c)ic =
1− c

c
. (6)

There exist log2 N partitions of the key-space and the ex-
pected number hops in each of them is less than 1−c

c , so the
expected total number of hops that the algorithm will need,
including the long-range hops is at most ( 1−c

c + 1) log2 N .
The expected number of nodes that algorithm will have to
visit using neighboring edges from the partition A1 to the
target node t is N

∫ 1
N

0
f(x)dx = 1. Therefore the total ex-

pected number of hops is 1
c log2 N + 1, i.e. O(log2 N).

q.e.d.
Note that a tighter bound can be derived by determin-

ing the expected number of long-range hops, and thus
our derivation is gives a pessimistic upper-bound, which
nonetheless suffice to prove that the expected cost is
O(log2 N).

3.1. Similarities with logarithmic-style P2P over-
lays

Notice the fact that EXj is a small constant. This means
that each logarithmic partition of the key-space is reached
in a constant number of hops. This result can be explained
by the fact, that such a small-world graph possesses nice
“probabilistic partitioning” properties which are also widely
exploited in traditional logarithmic-style P2P overlays. In-
deed, in traditional logarithmic-style P2P overlays each peer
u views the identifier space partitioned in log2 N logarith-
mic partitions of identifier space where each partition is
twice bigger than the previous one (or k times bigger if
we consider base k logarithmic partitioning, e.g. in Pas-
try k = 16). The routing table of u in such systems con-
tains log2 N links to some node from every partition. E.g. in
Chord [15] the chosen node will be with the smallest identi-
fier of the given partition, in Pastry [14] and P-Grid [1] - any
random node of the partition. While routing, the message in
every next hop is being routed to a node which belongs to a
partition, that is at least twice (k times) smaller than the pre-
vious partition where the previous message holder (node)
used to be. Therefore we can imagine such a P2P network
as a space where the message approaches the target with
steps of logarithmically decreasing size.

Overlays based on a graph built according to the above
mentioned variation of Kleinberg’s model, will have a very
similar topology and routing properties as logarithmic-style
P2P overlays. Indeed we can partition the identifier space of
any node u into log2 N partitions A1, A2.., Alog2 N , where
Aj consists of all nodes whose distance from u is between
2− log2 N+j−1 and 2− log2 N+j (every next partition is twice
bigger as the previous one). It is interesting to observe,
that in this case node u has almost equal probabilities to
choose the long-range neighbor from each of these par-
titions. Therefore when each node chooses log2 N long-
range neighbors in the same way, they will be uniformly dis-
tributed among the partitions, whereas in logarithmic-style
P2P overlays log2 N neighbors would be chosen strictly
from each partition. We can consider logarithmic-style P2P
overlay topologies as one “special case” of small-world
topology with stronger restrictions. This provides insight
into how our modification of Kleinberg’s model relaxes ex-
isting logarithmic-cost overlay networks where routing en-
tries have to point to each logarithmic partition of the key-
space. Hence the possibility to generalize and model the
behavior of logarithmic-style P2P topologies from a small-
world model point of view.

The feature of “Kleinbergian” graphs to model logarith-
mic P2P topologies suggests a more flexible manner of
maintaining the networks. One of the possibilities would
be to maintain a variable number of entries in routing ta-
bles for a tradeoff of logarithmic to polylogarithmic search
cost, an observation that was also made in Symphony [9].
It also implies that the networks built according to “Klein-
bergian” style would be more robust and resistant to net-
work churn. Even in the case of connectivity loss, the rout-
ing cost will be at worst poly-logarithmic given we have at
least one long-range link and the neighboring links intact.

4. Extended Small-World Model for Skewed
Key Distribution

The main purpose of P2P overlay networks is to distrib-
ute resources among peers, such that resources can be be
efficiently located and the workload is distributed as uni-
formly as possible among peers. In most standard P2P over-
lay networks uniform workload distribution is achieved by
applying randomized hashing functions, such as SHA-1, to
resource identifiers such that the hashed identifiers are uni-
formly distributed in the key-space. Then by also uniformly
distributing peers in the key-space an approximately uni-
form load distribution is achieved. However, in many data-
oriented P2P applications it is important to preserve rela-
tionships among resource keys, such as ordering or prox-
imity, to allow semantic data processing, such as complex
queries or information retrieval. Thus uniform key distrib-
ution cannot be assumed, and in order to achieve uniform
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workload peers will be distributed non-uniformly in the
key-space. In addition, different resources might be associ-
ated with different workload patterns, e.g. query frequency,
which require further adaptations in the distribution of the
peers over the key-space.

In the following we show that the construction we intro-
duced in the previous Section 3 can be extended to peers,
distributed non-uniformly in the key-space, without loos-
ing routing efficiency in terms of either the expected rout-
ing latency or the number of routing states per peer. This
provides the theoretical foundation for developing a novel
class of P2P overlay networks that are able to deal with non-
uniform load distributions.

4.1. Model for skewed key distribution

We assume that there exists a mechanism that assigns
peers according to a non-uniform distribution in the key-
space adapting to the load-distribution (e.g., storage), such
that the balanced number of data objects are assigned to
each peer, irrespectively of their distribution in the key-
space. Several examples of such mechanisms have been re-
cently discussed in the literature [2, 16, 12]. Thus each peer
acquires its identifier according to a non-uniform proba-
bility density function f . In order to account for the non-
uniform peer distribution peers have to choose their long-
range neighbors in graph G according to the following cri-
terion: a peer u chooses peer v as long-range neighbor with
a probability that is inversely proportional to the integral of
probability density function between these two nodes, i.e.

P [v ∈ LEu] ∝ 1
| ∫ vid

uid
f(x)dx| . (7)

As in the previous model we restrict the choice of long-
range neighbors to the peers that are not too close, therefore
v ∈ LEu for which | ∫ vid

uid
f(x)dx| ≥ 1

N . Using these crite-
rions we claim that routing in the resulting overlay network
is as efficient as in the case of uniform (balanced) key dis-
tribution.

Theorem 2 The expected routing cost in the graph built
according to the “Model for skewed key distribution” using
greedy distance minimizing routing is O(log2N).

Proof. We have to show that by using the modified se-
lection criterion for long-range links we are constructing a
routing-efficient graph G. The schema of the proof is de-
picted in Figure 1. The idea underlying our model is to nor-
malize the space R in such a way that the normalized space
R′ will have a uniform probability density function f ′. Any
node u with identifier uid in the space R will have a corre-
sponding identifier u′id in the space R′. The value of identi-
fier u′id is chosen as u′id =

∫ uid

0
f(x)dx, such that

∫ uid

0

f(x)dx =
∫ u′id

0

f ′(x)dx

Stretching 

the space

Space with 

skewed 

distribution 

function

R

R’

Unstretching 

the space

Building the graph 

G’ in the space R’
Space with 

uniform 

distribution 

function

Graphs 

are 

equivalent

1
)[ )(

−
∝∈ ∫

v

u

dxxfuLEvP

( ) 1),(')[ −∝∈ vuduLEvP

Graph G’ 
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Building the graph G 

in the space R

Graph G 

in R

Figure 1. Normalization of the space

and peer identifiers are uniformly distributed in R′. The dis-
tance between two nodes u and v in the space R′ can be rep-
resented as

d′(u′id, v
′
id) = |

∫ vid

uid

f(x)dx|. (8)

As described in the previous section we already know
how to construct a “routing-efficient” graph, i.e. choosing
long-range links proportional to 1

d′(u′
id

,v′
id

) . As we have
already proven, the resulting graph G′ will be “routing-
efficient”, i.e. the expected search cost using greedy dis-
tance minimizing routing will be O(log2 N).

R’

R

f’

f

∫⋅= − id

id

v

uidid dxxffvud )(')','(' 1

),( idid vud

Figure 2. Mapping of nodes from R to R′

As shown in Figure 2 using the original criterion for se-
lecting long-range links for uniform key distribution in
space R′, i.e. inverse proportional to d′(u′id, v

′
id), is equiv-

alent to choosing long-range links directly in space R
using the modified criterion, i.e. inverse proportional
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to
∫ vid

uid
f(x)dx. The resulting graph G in the origi-

nal space R will have the same connectivity as the graph
G′ constructed in space R′, although the peers have dif-
ferent identifiers. The search efficiency depends only
on the connectivity of the graph, therefore the result-
ing graph G will have the same search efficiency as graph
G′, i.e. O(log2 N). q.e.d

4.2. Building efficient structured overlay for non-
uniformly distributed key-spaces

The adaptation of our model in practice is straight-
forward in the case where each peer in the P2P network
knows the global key distribution, i.e. the probability den-
sity function f . In such a case the following network con-
struction model can be applied.

While joining the network, some peer u generates a value
according to probability density function f and assigns it as
its identifier. The peer u contacts any known peer and is-
sues a query with that identifier. When u gets an answer
from some peer v (in this case v has the closest identifier
to u), u announces to v that it will become its immediate
neighbor. Both u and v correct in their routing tables of the
immediate neighboring links.

Since the peer u knows the function f it can calculate the
pdf hu that satisfies (7). The peer u draws log2 N random
values according to hu and queries for these values. The
peers that respond are added to u’s routing table as long-
range neighbors. In such a way the peer u completely joins
the network.

The task however is more complicated for a more real-
istic situation, where peers do not have information of the
distribution f and have to acquire it locally, by interacting
with other peers. Moreover, the distribution f may vary over
time, further complicating the design of a practical system.
In such a case, at each peer an iterative process of revis-
ing its routing table according to the current knowledge on
f has to be employed. The above mentioned steps have to
be repeated whenever a peer obtains more precise informa-
tion about f . Such iterative process can be performed indef-
initely if the function f changes over time in the system. In
this way the topology would be always self-adjusted to the
current conditions of the system.

As our future work we plan to investigate what mainte-
nance cost is necessary under various models of network
churn in order for each peer to be able to predict locally a
good enough approximation of the probability density func-
tion f for the construction of “routing-efficient” P2P net-
works.

5. Conclusions

The work of Kleinberg on small-world graphs caused
a stir in P2P community. It boosted the research towards
investigating randomized topologies [8, 10] and even re-
sulted in new proposals such as Symphony [9] and Mer-
cury [4]. We used Kleinberg’s model to provide a perspec-
tive on existing standard P2P overlay networks and to ex-
plain their nature. In this paper we introduced two vari-
ants of Kleinberg’s model which allow to model a large
class of P2P overlay networks. The first model for uniform
key distribution and logarithmic outdegree allows us to bet-
ter understand the behavior of logarithmic-style P2P over-
lay networks. The flexibility of Kleinberg’s model demon-
strates the possibility of making flexible logarithmic P2P
topologies by allowing them to change routing table size
from constant to logarithmic. With our second model we
showed that with Kleinberg’s principle of building “routing-
efficient” networks we can build P2P topologies for skewed
key distributions. As for now, we are working on the theo-
retical analysis of variation of the expected search cost and
on models that can take into account an unstable P2P en-
vironment (nodes are allowed to fail). As our future work
we will adapt our variant of overlay network, P-Grid, ac-
cording to the proposed model and thus develop solutions
for the construction and maintenance of the network. Doing
that, an important aspect will be the study of various trade-
offs between, maintenance and search cost, load balancing
characteristics and robustness of the resulting networks in a
more generic setting as it can be done today with the rela-
tively constrained topologies used.
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