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tMany s
ienti�
 appli
ations generate massive vol-umes of data through observations or 
omputer sim-ulations, bringing up the need for e�e
tive indexingmethods for eÆ
ient storage and retrieval of s
ienti�
data. Unlike 
onventional databases, s
ienti�
 data ismostly read-only and its volume 
an rea
h to the orderof petabytes, making a 
ompa
t index stru
ture vital.Bitmap indexing has been su

essfully applied to s
ien-ti�
 databases by exploiting the fa
t that s
ienti�
 dataare enumerated or numeri
al. Bitmap indi
es 
an be
ompressed with variants of run length en
oding for a
ompa
t index stru
ture. However even this may notbe enough for the enormous data generated in someappli
ations su
h as high energy physi
s. In this paper,we study how to reorganize bitmap tables for improved
ompression rates. Our algorithms are used just as aprepro
essing step, thus there is no need to revise the
urrent indexing te
hniques and the query pro
essingalgorithms. We introdu
e the tuple reordering problem,whi
h aims to reorganize database tuples for optimal
ompression rates. We propose Gray 
ode ordering al-gorithm for this NP-Complete problem, whi
h is an in-pla
e algorithm, and runs in linear time in the orderof the size of the database. We also dis
uss how thetuple reordering problem 
an be redu
ed to the travel-ing salesperson problem. Our experimental results onreal data sets show that the 
ompression ratio 
an beimproved by a fa
tor of 4 to 7.�This work was funded by he Dire
tor, OÆ
e of S
ien
e, Divi-sion of Mathemati
al, Information, and Computational S
ien
esof the U.S. Department of Energy under 
ontra
t DE-AC03-76SF00098.

1 Introdu
tionAdvan
es in te
hnology have enabled the produ
tionof massive volumes of data through observations andsimulations in many s
ienti�
 appli
ations su
h as biol-ogy, high-energy physi
s, 
limate modeling, and astro-physi
s. In 
omputational high-energy physi
s, simula-tions are 
ontinuously run, and events that are notablefor physi
ists are stored with all the details. The num-ber of events that need to be stored in one year is inthe order of several millions [20℄. In astrophysi
s, te
h-nologi
al advan
es enabled devoting several teles
opesfor observations, results of whi
h need to be stored forlater query pro
essing [21℄. Genomi
 and proteomi
te
hnologies are now 
apable of generating terabytesof data in a single day's experimentation [28℄. Thesenew data sets and the asso
iated queries are signi�-
antly di�erent than those of the traditional databasesystems, most importantly due to their enormous sizeand high-dimensionality (more than 500 attributes inhigh-energy physi
s experiments). These new data setsand the asso
iated queries pose a new 
hallenge for ef-�
ient storage and retrieval of data and require novelindexing stru
tures and algorithms.Most of the s
ienti�
 databases of pra
ti
al inter-est are read-only, i.e., large volumes of data are storedon
e and never updated. Further use of the data istypi
ally by means of sele
tion queries. Various typesof queries, su
h as partial mat
h and range queries,are exe
uted on these large data sets to retrieve usefulinformation for s
ienti�
 dis
overy. As an example, auser 
an pose a range query to retrieve all events withenergy less than 15 GeV, and the number of parti
lesless than 13. When the data are large and read-only,as in the 
ase of s
ienti�
 databases, indexing te
hnolo-1



gies are well-known to signi�
antly improve the per-forman
e of query and data analysis, thus developingindex stru
tures tailored for s
ienti�
 data is 
ru
ial toe�e
tively explore su
h data. Due to the s
ale and highdimensionality of these databases, simple extensions oftraditional indexing strategies are inadequate: R-treesand its variants are well-known to lose e�e
tiveness forhigh dimensions; hashing-based indi
es la
k storage ef-�
ien
y; and transformation based approa
hes are note�e
tive for partial mat
h and range queries. Further-more, most of the indexing approa
hes do not fo
us onthe size of the index stru
ture itself. However, due tothe huge data volume in a typi
al s
ienti�
 database,the size of the indexing stru
ture be
omes as importantas other parameters and must be taken into a

ount.Fo
using on the major 
hara
teristi
s of s
ienti�
data, su
h as being read-only, having spe
ial a

esspatterns and numeri
al attributes, resear
hers havemanaged to develop indexing te
hniques that are fea-sible for high dimensional s
ienti�
 databases. Bitmapindexing, whi
h has been e�e
tively utilized in manymajor 
ommer
ial database systems [2, 14, 27℄, has alsobeen the most popular approa
h for s
ienti�
 databases[3, 15, 22, 24, 25, 27℄. Several te
hniques have beenproposed exploiting the bitmap indexing approa
h fors
ienti�
 data. The general idea is to organize the dataas a two dimensional table. Events are stored rowwiseas tuples. Every attribute is partitioned to several bins,and these bins form the 
olumns of the table. A tableentry is 1, if the tuple of this row is in the bin of the
olumn, and "0" otherwise. Thus, the index table is a0-1 table. This table needs to be 
ompa
ted to be e�e
-tively used on a large database. General purpose text
ompression te
hniques are 
learly not suitable for thispurpose sin
e they signi�
antly redu
e the eÆ
ien
yof queries [11, 24℄. Spe
ialized bitmap 
ompressions
hemes have been proposed to over
ome this prob-lem. The two most e�e
tive s
hemes in the literatureare Byte-aligned Bitmap Code (BBC) [2℄ and Word-Aligned Hybrid Code (WAH) [1, 11, 24, 25, 26℄. Bothof these s
hemes, like many others [3, 27℄, are based onrun-length en
oding, i.e., they both repla
e repeatedruns of 0s or 1s in the 
olumns by a single instan
e ofthe symbol and a run 
ount. These methods not only
ompress the data but also enable fast bitwise logi
aloperations, whi
h translates to faster query pro
essing.Run-length en
oding and its variants exploit uni-form segments of a sequen
e, thus their performan
esdepend dire
tly on the presen
e of su
h uniform seg-ments. Their e�e
tiveness varies for di�erent organi-zations of the database tuples, sin
e ordering of tuplesa�e
t uniform segments in the 
olumns. In this paper,we study how to reorder tuples of a database to a
hieve

higher 
ompression rates. Our te
hniques are used as aprepro
essing step before 
ompression, only to improvethe performan
e, without a�e
ting algorithms used for
ompression and querying. We state this tuple reorder-ing problem as a 
ombinatorial optimization problem,and propose heuristi
s for e�e
tive solutions for thisNP-Complete problem [16℄. We show a redu
tion ofthe tuple reordering problem to the traveling salesper-son problem, whi
h is a well-studied 
ombinatorial op-timization problem. However, given the enormous sizesof the databases, we are only restri
ted to memory andtime eÆ
ient heuristi
s, whi
h takes away the appli
a-bility of most frequently used te
hniques su
h as sim-ulated annealing. In this paper, we propose Gray 
odesorting to order the rows of a bitmap table for largersegments of uniform 1s. Our algorithm is linear, inthe size of the database, and an in-pla
e algorithm,i.e., does not require any auxiliary memory allo
ation.Theoreti
ally, we prove that our algorithm is optimal,when all 
ells of a bitmap table are full. In pra
ti
e,our experiments on s
ienti�
 data showed signi�
antimprovements in 
ompression rates. In many instan
es,
ompressed �le size for the reordered �le less than halfthe 
ompressed size of the original �le. We have alsoobserved a 5.36 times redu
tion in 
ompresses �le sizeon data set HEP1, bitmap table for whi
h has has 122
olumns and 2,173,762 rows.The remainder of this paper is organized as follows.In the next se
tion, we present 
ompression algorithmsfor bitmap tables. Se
tion 3 dis
usses the tuple reorder-ing problem. We �rst de�ne the problem, and intro-du
e Gray 
ode ordering, whi
h is tailored for the tuplereordering problem. Next, we dis
uss the redu
tion tothe traveling salesperson problem. Experimental re-sults are presented in Se
tion 4. Finally, we dis
ussfuture work and 
on
lude with Se
tion 5.2 Compressing Bitmap TablesThe data that 
omes from s
ienti�
 experiments is
omposed of attributes that are numeri
al or enumer-ated. Unlike 
onventional databases, a data re
ord ina s
ienti�
 database involves many more attributes,up to order of a hundreds. And the number of tu-ples is huge due to the te
hnologi
al advan
es thatmake it possible to generate huge volumes of data ona daily basis. High energy physi
s simulations gen-erate millions of events to be stored in a single year.Due to su
h large data volume, even simple queriesare extremely slow without an e�e
tive index stru
-ture in pla
e. However, neither the well-known multi-dimensional indexing te
hniques [19, 10℄ nor their ex-tensions [13, 12, 5, 7, 6℄ have been su

essful in s
ienti�




database systems, partly due to the e�e
ts of the infa-mous dimensionality problems [4, 23℄ and the massives
ale of these systems.Most pra
ti
al approa
hes for indexing s
ienti�
data are based on bitmap indexing strategies [2, 27,24, 14, 3, 22, 8, 9, 25, 15, 1, 11, 26℄. For example,Wu, Otoo, and Shoshani proposed an e�e
tive bitmapindexing te
hnique for large-s
ale high energy physi
sdata [26℄. This te
hnique uses a 
ompression te
hnique
alled word-aligned hybrid (WAH) to 
ompress the in-dex stru
ture to 
onveniently small sizes without losinga

essing eÆ
ien
y. Exploiting the fa
t that ea
h at-tribute is numeri
 or enumerated, data are partitionedinto several bins, where the number of bins per ea
hattribute 
ould vary. If a value falls into a bin, this binis marked \1", otherwise \0". Sin
e a value 
an onlyfall into a single bin, only a single \1" 
an exist forea
h row of ea
h attribute. After binning, the wholedatabase is 
onverted into a huge 0-1 bitmap, whererows 
orrespond to tuples and 
olumns 
orrespond tobins. Table 1 shows a binning example with three at-tributes, ea
h partitioned into two bins. The �rst tuplet1 falls into the �rst bins in the attributes 1 and 2, andthe se
ond bin in attribute 3. Note that after binningwe 
an treat ea
h tuple as a binary number. For in-stan
e t1 = 101001 and t2 = 010101.
Table 1. Bitmap exampleTuple Attribute 1 Attribute 2 Attribute 3bin1 bin2 bin1 bin2 bin1 bin2t1 1 0 1 0 0 1t2 0 1 0 1 0 1t3 1 0 0 1 1 0t4 1 0 1 0 0 1t5 1 0 1 0 1 0t6 0 1 0 1 1 0Binning method itself 
annot 
ompress the size, andinstead, might even in
rease the size [3℄. However, it
onverts the original table to a more 
on
ise formatwith only two di�erent values: \0" and \1". Run lengthen
oding [18℄ 
an therefore, be used over every 
olumnto 
ompress the data when long runs of pure \0" orpure \1" blo
ks be
omes possible. Pure run lengthen
oding is not a good strategy for indexing be
ause ofits a

essing ineÆ
ien
y.Unlike traditional run length en
oding, WAH mixesrun length en
oding and dire
t storage. For instan
e,if the word length is 32, every 
olumn is partitioned tomany length-31 blo
ks. If a blo
k is a mixture of both\0" and \1", mark the most signi�
ant bit of en
oded

word \0" to indi
ate this word is literal word and 
opythe blo
k to left 31 bits dire
tly. Otherwise, withoutlosing generality, assuming the blo
k �lled with all \1",we 
ontinue to s
an and 
ount the number of 
onse
u-tive blo
ks whi
h are �lled in with all \1". To en
ode,the most signi�
ant bit is marked \1" to indi
ate thisword is a �ll word, and se
ond signi�
ant bit is marked\1" to indi
ate the blo
k is �lled with \1"s. The re-maining bits are used to store the number of blo
ks.Table 2 presents an example. The �rst row is a 
ol-umn from the original bitmap, whi
h starts with a 1,
ontinues with 20 0s, followed by 3 1s, 79 0s, and endswith 21 1s. The se
ond 
olumn partitions it into 4 seg-ments, ea
h of whi
h has 31 bits. Row 3 lists the hexrepresentation of those segments, and row 4 is its WAHen
oding. The �rst word is a literal word mixing 0 and1, thus there is no 
hange to its en
oding. The se
ondand third word are \�ll word" with all 0. We then putthem together. The en
oding therefore is 80000002.The fourth word is another literal word.3 Improving Compression Rates by Tu-ple ReorderingRun-length en
oding and its variants exploit uni-form segments of a sequen
e, thus their performan
esdepend dire
tly on the presen
e of su
h uniform seg-ments. Their e�e
tiveness 
an be improved by aligningdata for longer uniform segments. In this se
tion, westudy the problem of reorganizing bitmap tuples formore eÆ
ient run-length en
oding. In the next subse
-tion, we des
ribe the problem, whi
h we 
all the tuplereordering problem. Then we dis
uss feasibility of reor-ganization, and requirements for an e�e
tive reorder-ing algorithm. Finally, we dis
uss solution te
hniques.First, we propose exploiting Gray 
odes for ordering.Then we present a redu
tion of the problem to the trav-eling salesperson problem.
3.1 Problem FormulationOur obje
tive in reordering is to in
rease the perfor-man
e of run-length en
oding by having longer uniformsegments and thus fewer number of blo
ks. Re
all thatrun-length en
oding, when used on bitmaps, pa
ks ea
hsegment of \1"s into a blo
k and stores a pointer toea
h blo
k together with the length of the blo
k. Thusits eÆ
ien
y depends on the number of su
h blo
ks.Consider two 
onse
utive tuples in the bitmap table.If the tuples are on the same bin for an attribute, thenthey will be pa
ked to the same blo
k. If not, then anew blo
k should start. EÆ
ien
y 
an be enhan
ed byreordering tuples so that they fall into the same bins



Table 2. WAH compressionoriginal bits 1�1, 20�0, 3�1, 79�0, 21�131-bit groups [1�1,20�0, 3�1, 7�0℄, [31�0℄,[31�0℄, [10�0, 21�1℄groups in hex 40000380 00000000 00000000 001FFFFFWAH(hex) 40000380 80000002 001FFFFFas mu
h as possible. An example is illustrated in Fig-ure 1. In this example, the original table has 12 blo
ks,whereas the reordered table requires only 7 blo
ks.Let di�(ti; tj) be the number of attributes that tu-ple ti and tuple tj fall in di�erent bins. Noti
e thatdi�(�i; �i+1) gives how many new blo
ks start at theith tuple after reordering when run-length en
oding isused, where �i denotes the ith tuple in ordering �. Anexample for 
omputing the di� values is illustrated inFigure 2. For example di�(t1; t2) = 2, sin
e tuples t1and t2 fall into di�erent bins for the �rst two attributes.We 
an now formally de�ne the tuple reordering prob-lem.De�nition 1 (Tuple reordering problem) Let �be an ordering of m tuples so that �i denotes the ithtuple in the ordering. Tuple reordering problem is�nding an ordering � that minimizesm�1Xi=1 di�(�i; �i+1): (1)In Equation 1, we sum di� values over all 
onse
-utive tuples to attain how many new blo
ks start forthe whole table. The �rst tuple requires starting ablo
k for ea
h attribute. Thus the number of blo
ks
an be 
omputed as A + m�1Xi=1 di�(�i; �i+1), where Ais the number of attributes. Thus �nding an order-ing that minimizes Equation 1 minimizes number ofblo
ks in the reordered table. For instan
e, Equation 1returns 2 + 2 + 2 + 1 + 2 = 9 for the initial order-ing, whi
h means with the addition of A the numberof attributes there will be 9 + 3 = 12 blo
ks in the
ompressed table. Whereas for the reordered table inFigure 1, Equation 1 returns 0 + 1 + 1 + 1 + 1 = 4,whi
h means only 7 blo
ks in the 
ompressed �le.
3.2 Heuristics for Tuple ReorderingIn this se
tion we propose te
hniques to reorderdatabase tuples for better 
ompression rates. Firstwe dis
uss feasibility of reorganizing a database andwhat is ne
essary for an ordering algorithm to be e�e
-tive. We propose two approa
hes for tuple reordering.

The �rst approa
h exploits the Gray 
odes for tuplereordering. We show that this te
hnique is optimal un-der 
ertain 
onditions. The se
ond approa
h redu
esthe problem to the well-studied traveling salespersonproblem.3.2.1 Feasibility of Tuple ReorderingDatabases are seldom reordered, sin
e their enormoussizes make even moving data to implement a spe
i�edreordering a big 
hallenge. Thus one needs to be 
are-ful while designing algorithms to �nd su
h reorderings.For an ordering algorithm to be applied to a database,it needs to be memory eÆ
ient. The memory require-ment needs to be at least linear in the order of tuples.Preferably, the algorithm is in-pla
e, whi
h means itshould not use any auxiliary memory. Also, it willbe 
omputationally ineÆ
ient, if not infeasible, to ap-ply a te
hnique to the whole database. An e�e
tivete
hnique should be lo
al, i.e., it must be suÆ
ient toapply our te
hniques to the portions of the databaseto improve 
ompression rates. This lo
ality providess
alability to a te
hnique, sin
e it 
an be applied todatabases of arbitrary sizes.Reordering database tuples has only lo
al e�e
ts,thus it is easy to lo
alize reordering algorithms to onlyportions of the database. Reordering larger portions ofthe database is expe
ted to yield better performan
e,thus it is still important to limit the memory require-ment of the ordering algorithm to order larger portionsof the database. The Gray 
ode ordering proposedin the subsequent se
tion is an in-pla
e algorithm andthus optimal in terms of memory requirement. It 
aneven be applied to the whole database, sin
e it has aregular a

ess pattern and requires a small number ofpasses over the bitmap table. The last se
tion des
ribesa redu
tion to the traveling salesperson problem, one ofthe most well-studied 
ombinatorial optimization prob-lems and a testbed for various optimization te
hniques.This redu
tion enables adoption of a wide variety ofte
hniques to the tuple reordering problem, howeverthese te
hniques almost invariably require additionalstorage, whi
h is often superlinear in the number oftuples.



t1t2t3t4t5t6 26666664 1 0 1 0 0 10 1 0 1 0 11 0 0 1 1 01 0 1 0 0 11 0 1 0 1 00 1 0 1 1 0 37777775 t1t4t5t3t6t2 26666664 1 0 1 0 0 11 0 1 0 0 11 0 1 0 1 01 0 0 1 1 00 1 0 1 1 00 1 0 1 0 1 37777775(a) Original Table (b) Reordered Table
Figure 1. Example for tuple reorderingt1t2t3t4t5t6 26666664 1 0 1 0 0 10 1 0 1 0 11 0 0 1 1 01 0 1 0 0 11 0 1 0 1 00 1 0 1 1 0 37777775 t1 t2 t3 t4 t5t6 3 1 1 3 2t5 1 3 1 1t4 0 2 2t3 2 2t2 2(a) Original Table (b) Di�eren
e values between tuples
Figure 2. Function di� on an example3.2.2 Gray Code OrderingA Gray 
ode is an en
oding of numbers so thatadja
ent numbers have only a single digit dif-fering by 1. For binary numbers two adja
entnumbers di�er only by one digit. For instan
e(000; 001; 011;010; 110; 111;101;100) is a binary Gray
ode. Binary Gray 
ode is often referred to as the \re-
e
ted" 
ode, be
ause it 
an be generated by the re-
e
tion te
hnique des
ribed below.1. Let S = (s1; s2; : : : sn) be a Gray 
ode.2. First write it forwards and then append thesame 
ode writing it ba
kwards. That is(s1; s2; : : : ; sn; sn; : : : ; s2; s1).3. Append 0 at the beginning of the �rst n numbers,and 1 at the beginning of the last n numbers.As an example, take the Gray 
ode (0; 1). Write itforwards, then add the same sequen
e ba
kwards, andwe get: (0; 1; 1; 0). Then we add 0's and 1's to get:(00; 01; 11; 10). We 
an use this new sequen
e as aninput to our algorithm. After the re
e
tion step weget (00; 01; 11; 10; 10; 11; 01;00). We add the �rst dig-its to attain: (000; 001; 011; 010;110;111; 101;100). Itis worth noting that Gray 
odes are not unique, anddi�erent orders on the same numbers might satisfy theGray 
ode property. We use the term fundamentalGray 
ode to refer to a Gray 
ode generated by the

re
e
tion te
hnique des
ribed above with using (0; 1)as the initial sequen
e. We will also refer to ordering aset of numbers with respe
t to fundamental Gray 
odesor shortly Gray 
ode ordering, whi
h we des
ribe next.De�nition 2 (Gray 
ode rank) The Gray 
oderank g(s) of an n-bit binary number s is the rank ofthis number in an n-bit fundamental Gray-
ode.For instan
e, g(0000) = 1, sin
e it is the �rst numberin the 4-bit fundamental Gray 
ode. And g(0001) = 2,sin
e it follows 0000, in the fundamental Gray 
ode.De�nition 3 (Gray 
ode sorting) A sequen
e S =(s1; s2; : : : ; sm) is Gray 
ode sorted i�g(si) � g(si+1)for i = 1; 2; : : :m � 1, where g(si) refers to the Gray
ode rank of si.The sequen
e (0001; 0010; 0101;1100; 1110;1011) isGray 
ode sorted be
ause g(0001) = 2 � g(0010) =4 � g(0101) = 7 � g(1100) = 9 � g(1110) = 12 �g(1011) = 14.This brings the question of how to eÆ
iently order aset of numbers to be Gray 
ode sorted. We 
an reversethe fundamental Gray 
ode generation pro
ess, to sortnumbers with respe
t to the fundamental Gray 
ode.As the �rst step, we 
an divide numbers as those thatstart with 0 and those that start with 1. Clearly those



that start with 0 will pre
ede others in the ordering.Then we 
an re
ursively order those that start with0. The same 
an be applied to the se
ond group butwe need to reverse their ordering due to the re
e
tiveproperty of the Gray 
ode. In Algorithm 1, we presentthe pseudo-
ode of this algorithm. In this algorithm,S(A; i; j) denotes the jth signi�
ant bit of the ith tuplein table A. Note that the reversion does not need tobe a separate step in the algorithm, but we present itseparately for 
larity of the presentation.GC-sort (A; start; end; b)1: i start2: j  end3: while i < j do4: De
rement j until S(j; b) = 05: In
rement i until S(i; b) = 16: if i < j then7: Swap the ith and jth tuples on the table8: end if9: end while10: if b < no of bits then11: GC-sort (A; 1; j; b+ 1)12: GC-sort (A; j + 1; end; b+ 1)13: Reverse (j + 1; end)14: end ifAlgorithm 1: An in-pla
e Gray 
ode sorting algo-rithm. GC-sort (A; start; end; b) sorts numbers be-tween indi
es start{end in A a

ording to their leastsigni�
ant b bits in Gray 
ode order. S(A; i; j) denotesthe jth signi�
ant bit of the ith number in table ALemma 1 Algorithm 1 orders numbers in A to beGray 
ode sorted, when initially invoked with GC-sort(A; 1;m; n), where m is the number of tuples, and n isthe number of bits.Proof The proof is based on indu
tion on the numberof bits. First observe that re
ursive 
alls respe
t theprevious orderings, sin
e after one pass, the re
ursive
alls only operate on the segment of tuples that all startwith the same bit pre�x.The indu
tive basis is for n = 1, when it is easy toobserve the 
orre
tness of the algorithm. It is also easyto see that numbers that start with 0 should pre
edethose that start with 1 for Gray 
ode sorting. By theindu
tive hypothesis, the numbers that start with 0 aresorted 
orre
tly by the algorithm a

ording to their lastn�1 bits, and adding 0 does not a�e
t their Gray 
odepre
eden
e. Similarly, numbers that start with 1 areGray 
ode sorted re
ursively a

ording to their last n�1bits, however putting 1 at the beginning requires the re-
e
ted order, whi
h we a
hieve by Reverse (j+1; end).

Figure 3 illustrates this algorithm. It is important tonote that Algorithm 1 is an in-pla
e algorithm, whi
his important for our appli
ation sin
e we have to dealwith very large datasets.Re
all that sin
e 
onse
utive numbers di�er at onlyone bit, Gray 
ode numbers have maximum bit-levelsimilarity between 
onse
utive numbers. This obser-vation 
an be used for ordering database tuples, sin
eevery tuple in the database 
an be 
onsidered as an n-bit binary number. By Gray 
ode sorting, we 
an im-pose similarity between 
onse
utive numbers. And ifall distin
t tuples exist, i.e., if all 
ells of the bitmap ta-ble are full, Gray 
ode sorting will produ
e an optimalordering. We formalize this 
laim with the followingtheorem.Theorem 1 Gray 
ode ordering provides an optimalsolution for the tuple reordering problem, if all 
ells ofthe bitmap table are full.Proof The algorithm orders identi
al tuples 
onse
u-tively. Thus at most one bit di�ers between two 
on-se
utive tuples, whi
h implies optimality.By the result of Theorem 1, Algorithm 1 gives anoptimal solution when all 
ells are full, however in pra
-ti
e this will rarely happen, and the solution may notbe optimal. Gray 
ode ordering is more e�e
tive whenmost of the 
ells are full, whi
h means it is more e�e
-tive with in
reasing number of rows, and thus largerdatabases. Its performan
e also depends on the num-ber of attributes, and the number of bins per attribute.In
reasing these two terms in
reases the number of 
ellsin the bitmap table, making the table more sparse.Nevertheless, even when the bitmap table has a lotof empty 
ells, Gray 
ode ordering imposes bit-levelsimilarity between 
onse
utive tuples very e�e
tivelyas eviden
ed by the experimental results.3.2.3 Redu
tion to the traveling salespersonproblemIn this se
tion, we des
ribe a redu
tion of the tuplereordering problem to the traveling salesperson prob-lem (TSP). TSP is a very well-studied problem, andmany e�e
tive heuristi
s have been proposed in the lit-erature [17℄, and has been a testbed to demonstratethe e�e
tiveness of optimization methods su
h as sim-ulated annealing and geneti
 algorithms. However ourtarget appli
ation is database reorganization where thenumber of tuples (verti
es of the TSP graph) may beeasily in the order of millions, and the enormous sizesof these problems require memory- and time-eÆ
ientheuristi
s.
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Figure 3. Illustration of Algorithm 1.Traveling salesperson problem 
an be intuitively de-�ned as �nding a shortest path that visits all 
ities ina given map. In a graph theoreti
al formulation, 
ities
orrespond to verti
es of a graph, and a weight fun
tionis de�ned on edges that 
onne
t verti
es. The obje
-tive is to �nd a path visiting all verti
es that minimizesthe sum of weights of the edges between su

essive ver-ti
es. We des
ribe a graph model to redu
e the tuplereordering problem to the TSP.Sin
e we are seeking an ordering of tuples, we willhave verti
es to represent tuples and de�ne a weightfun
tion so that an optimal solution to the TSP prob-lem minimizes the number of blo
ks in run-length en-
oding. Given, a bitmap B as a set of tuples, de�neits graph GB = (V;E) so that ea
h tuple ti in B isrepresented by a vertex vi, and ea
h pair of verti
es viand vj is 
onne
ted by an edge (vi; vj) in E. De�nethe weight of an edge (vi; vj) as di�(ti; tj) as de�nedin Se
tion 3.1.Theorem 2 Given a bitmap B, de�ne graph GB =(V;E) so that ea
h tuple ti is represented by a vertexvi 2 V . All pairs of tuples ti and tj are 
onne
ted by anedge with weight diff(ti; tj). Optimal TSP solution onGB, gives an optimal solution to the tuple reorderingproblem.
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Figure 4. Reduction to TSP. TSP graph for thebitmap Table in Figure 1. Dark arrowed edges indi-
ate an optimal TSP solution.Proof TSP ordering gives traversal of verti
es thatminimizes the sum of edge weights between 
onse
u-tive verti
es. When we repla
e verti
es with tuples weget an ordering of tuples that minimizes the di� valuesbetween 
onse
utive tuples. Thus minimizing the totaledge weight 
orresponds to minimizing Equation 1, thus



the number of blo
ks.TSP heuristi
s 
an be used to 
onstru
t an order-ing, or improve a given ordering. However, expli
it
onstru
tion of the TSP graph is not feasible for re-ordering database tuples. The TSP graph has � n2 �potential edges. We 
an drop edges whose weights arezero, but even then number edges will be O(n2) fora bitmap table. Infeasibility of 
onstru
ting the TSPgraph restri
ts us to simple greedy strategies whereedge weights 
an be 
omputed on the air during the
ourse of the algorithm. In our experiments, we used a2-swit
h te
hnique, whi
h repeatedly seeks for a pair ofverti
es swit
hing positions of whi
h de
reases the solu-tion value. To further improve eÆ
ien
y, we restri
tedthe sear
h for pairs to only those within a spe
i�ed dis-tan
e. It will be worthwhile to observe performan
es ofother TSP heuristi
s from the literature, but it shouldbe noted that one 
an use only a limited sele
tion dueto the very large sizes of the problems, and more im-portantly Gray 
ode is already very e�e
tive and anin-pla
e algorithm.A similar problem has been studied by Pinar andHeath in the 
ontext of in
reasing memory performan
eof sparse matrix-ve
tor multipli
ation [16℄. The 
on-ventional data stru
tures for sparse matri
es requireone memory indire
tion (extra load operation), duringmatrix-ve
tor produ
t operations. Pinar and Heathdes
ribed how to redu
e the number of memory indi-re
tions by exploiting nonzeros in 
onse
utive positionsin a 
olumn, and proposed a reordering method to re-order rows to align nonzeros of the matrix to 
onse
u-tive positions in 
olumns. Their method is based on agraph model that redu
es the problem to the TSP. Tu-ple reordering problem is similar, sin
e a bitmap 
an be
onsidered as a sparse matrix, with tuples 
orrespond-ing to rows and bins for all attributes 
orresponding to
olumns. We have a nonzero at row i and 
olumn ji� ith tuple is in bin j. However, the pra
ti
al aspe
tsof these two problems are signi�
antly di�erent, hen
erequire di�erent solution te
hniques. Sparse matri
esarising in many appli
ations de�ne systems of linearequations and are square. Re
tangular matri
es ariseespe
ially in optimization, but even then the numberof 
olumns and the number of rows are 
lose, at least inthe same order. In databases however, the number oftuples, whi
h 
orresponds to rows in a sparse matrix,is several orders of magnitude larger than the num-ber bins, whi
h 
orresponds to number of 
olumns ina sparse matrix. Sparse matri
es are mu
h smaller indimension 
ompared to number tuples in a database.

4 Experimental ResultsIn this se
tion, we dis
uss our empiri
al work to vali-date our proposed methods. We applied our reorderingte
hniques to several data sets from various appli
a-tions to observe the de
rease in the sizes of the bitmaptables. As we will soon present in detail, we have ob-served signi�
ant improvements, whi
h should dire
tlytranslate into improvements in query pro
essing times.Remember that s
ienti�
 databases, whi
h is the mainmotivation for our resear
h are mostly read-only, thusreorganization needs to be done only on
e, for fasterpro
essing times in all future queries. Nevertheless, wealso present the running times and s
alability of ourmethods to prove the feasibility of appli
ation of ourmethods on very large databases.It is also worth noting that our methods are usedas a prepro
essing step before a
tual 
ompression al-gorithms, to align 1s in the bitmap table into 
onse
-utive positions. Thus, any 
ompression algorithm 
anbe employed to 
ompress our reorganized data. In ourexperiments we used WAH 
ompression algorithm [26℄.We present the e�e
tiveness of our methods based onthe improvement fa
tor, whi
h we 
ompute as the ratioof the 
ompressed bitmap table size of the original datato the 
ompressed bitmap table size of the reordereddata, i.e,improvement fa
tor = 
ompressed size of original
ompressed size of reorderedThus, an improvement fa
tor of 5 means, 
ompressedreordered data takes 5 times less spa
e than the 
om-pressed original.Table 3 reveals the e�e
tiveness of our Gray 
odereordering algorithm on 6 data sets from various appli-
ations. In this table, the �rst three 
olumns give thename of the problem, number of tuples, and numberof 
olumns in the bitmap table, respe
tively. The nexttwo 
olumns present the sizes of the 
ompressed bitmaptables for the original and reordered data, respe
tively.The last 
olumn presents the improvement fa
tor. Outof the 6 data sets, the �rst two data sets (HEP1 andHEP2) are from high energy physi
s appli
ations. Thethird data set, histobig, 
omes from an image databasewith 112,361 images. Images are 
olle
ted from a 
om-mer
ial CD-ROM and 64-dimensional 
olor histogramsare 
omputed as feature ve
tors. The fourth data set,sto
k, is a time-series data whi
h 
ontains 360 dayssto
k pri
e movements of 6500 
ompanies, i.e., 6500data points with dimensionality 360. Histogram dataset is partially 
orrelated, whereas the sto
k data set ishighly 
orrelated. The last two data sets are 
omposedof do
ument feature ve
tors from 20 newsgroups based



Table 3. Improvement in compression of real data setsBitmap table Compressed size (bytes) ImprovementName #
olumns #rows Original Reordered fa
torHEP1 122 2; 173; 762 3; 149; 590 587; 773 5.36HEP2 907 2; 173; 762 11; 482; 527 7; 008; 601 1.64histobig 64 112; 361 209; 066 54; 605 3:83sto
k 360 6; 500 156; 980 22; 904 6:85irve
tor16 160 19; 997 14; 952 2; 971 5:03irve
tor32 320 19; 997 17; 135 11; 064 1:55on tf/idf followed by SVD redu
tion.As seen in Table 3, 
ompression rates are magni�edwhen the tuples are reordered with respe
t to Gray
ode ordering in all problem instan
es from all appli-
ations. The 
ompressed index size for data sto
k is7 times less than the original after reordering. Theimprovement fa
tors are 5.36 and 1.64 for high energyphysi
s data sets HEP1 and HEP2, respe
tively. Com-paring the results for these two data sets, we see that,as expe
ted, improvements are more signi�
ant, whenthe number of 
olumns is smaller. Fewer number of
olumns means more room for improvement for a re-ordering algorithm, sin
e more tuples are likely to fallinto the same bins, and thus it is possible to order tu-ples so that 
onse
utive tuples fall into same bins in alot of attributes. A similar trend 
an be observed in in-formation retrieval data sets irve
tor16 and irve
tor32,where the improvement fa
tors are 5.03 and 1.55 re-spe
tively. Nevertheless, improvements are signi�
anteven for larger numbers of 
olumns. It should also benoted that the Gray 
ode ordering te
hnique 
an be ap-plied to arbitrary data sizes, sin
e it is an in-pla
e algo-rithm. This means the e�e
tiveness of our te
hniqueswill only get better, as we apply these te
hniques tolarger data sets.As already dis
ussed, our proposed te
hniques areprepro
essing steps for 
onventional 
ompression algo-rithms and asso
iated query running te
hniques, andthus these query running te
hniques 
an be used as is,together with our algorithms. For this reason, we arenot presenting any results on query run times, sin
e ithas been already reported that query run times are lin-early dependent on the 
ompressed bitmap table sizes.We expe
t our improved 
ompression rates to translatedire
tly into improved query run times. Noti
e that thee�e
ts of our improved 
ompression rates will be even

more dramati
 under limited resour
es, whi
h is typi-
al in large-s
ale systems. Compa
ted index stru
tureswill grant better lo
ality for algorithms, providing ase
ond sour
e of improvement.In the se
ond set of experiments, we have tested theperforman
e of Gray 
ode ordering for varying numbersof 
olumns. We �xed the number of rows at 1,000,000and tested the performan
e of our algorithm by varyingthe number of bins per attribute to 
hange the numberof 
olumns to be 50, 100, 150, 200, 250, and 300. Theresults of our experiments are presented in Figure 5. Inthis �gure original 
orresponds to the size of the 
om-pressed bitmap tables for the original data, whereasreordered 
orresponds to the size for 
ompressing re-ordered data. As observed in this �gure, 
ompresseddata sizes grow with in
reasing number of 
olumns. Re-ordering signi�
antly de
reases 
ompressed index sizein all 
ases. The improvement fa
tor is 2.52 2.08, 1.64,1.92, 1.68 and 1.68, when the number of 
olumns is 50,100, 150, 200, 250, and 300, respe
tively. Fewer num-ber of 
olumns leaves more room for improvement forreordering due to in
reased likelihood of tuples in thesame bins, whi
h is ni
ely exploited by our Gray 
odeordering algorithm.In the next set of experiments, we tested the runtime performan
e of our algorithm. We run exper-iments on a Linux ma
hine with 2:4GHz CPU and1GByte memory. We used the irve
tor data from aninformation retrieval appli
ation, whi
h has 19,996 tu-ples and 32 attributes, as our base data set, and ran-domly sele
ted tuples, and attributes for our s
alabilitystudies. The results presented in Figures 6{8 are theaverages of �ve runs on di�erent problems of the samesize. That is the run time of the algorithm for 1,00 rowsis reported as the average run time for 5 randomly se-le
ted row sets of size 1,000.



Figure 5. Performance for varying numbers of
columns
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Figure 8. Algorithm scalability on bins per at-
tributeFigure 6 studies the e�e
t of number of rows in therun time. For these runs, we used 30 attributes allof whi
h are partitioned into 10 bins. The number ofobje
ts vary from 5000 to 19000. In Figure 6, the x-axis is the number of rows, and the y-axis is the runtime in se
onds, and the results 
learly show the linearrelation between the number of rows, and the runtime.Similarly, Figures 7 and 8, observe the e�e
t of numbersof attributes and bins per attribute on the run time.In Figure 7, we �x the number of obje
ts as 19; 000,the number of bins per attribute as 40. In Figure 8, we�x the number of obje
ts as 19; 000 and the number ofattributes as 30. All results 
on�rm the linear relationbetween the runtime of our algorithm and the bitmaptable size.In the �nal set of experiments, we applied the 2-swit
h heuristi
 des
ribed in Se
tion 3.2.3 on the TSPgraphs for tuple reordering. As expe
ted the runtimeswere orders of magnitude slower 
ompared to Gray
ode ordering. For instan
e, Gray 
ode ordering onHEP1, whi
h has 122 
olumns and 2,173,762 rows tookonly 43.4 se
onds, whereas the 2-swit
h heuristi
 onthe TSP graph took over 1,600 se
onds. We have ob-served some improvement in the 
ompression (aroundonly 1%), but the huge gap in run time was daunting.We have observed similar results in the other data sets.5 Con
lusions and Future WorkWe studied the problem of improving bitmap index
ompression rates by reorganizing data layout. Our al-gorithms reorder database tuples so that 
onse
utivetuples are likely to fall into same bins to boost theperforman
e of run-length en
oding based 
ompressions
hemes. We de�ned the tuple reordering problem,



whi
h aims to �nd an ordering of tuples that maxi-mizes the similarity (measured by being in the samebin), between 
onse
utive tuples. We proposed Gray
ode ordering te
hnique for the tuple reordering prob-lem, whi
h exploits the idea of Gray 
odes. Our algo-rithm runs in linear time in the size of the database,and does not require any extra storage. This pro-vides the appli
ability of our algorithm to very largedata segments, even to the whole database. We alsopresented a redu
tion of the tuple reordering problemto the well-known, well-studied traveling salespersonproblem(TSP). However, enormous sizes of the prob-lems hinder appli
ability of frequently used TSP te
h-niques for the tuple reordering problem. Our exper-iments showed that bitmap 
ompression rates 
an bemagni�ed by reordering database tuples. In many in-stan
es, 
ompressed �le size for the reordered �le lessthan half the 
ompressed size of the original �le. Wehave also observed a 5.36 times redu
tion in 
ompresses�le size on data set HEP1, bitmap table for whi
h hashas 122 
olumns and 2,173,762 rows.This paper shows the in
ontestable advantages ofdata reorganization for elevating bitmap index 
om-pression and introdu
es an important problem, whi
hwe 
all the tuple reordering problem. While ourte
hniques are very e�e
tive in de
reasing 
ompressedbitmap indi
es, they are only our �rst steps in this di-re
tion, and leaves mu
h for further resear
h. The per-forman
e of Gray 
ode sorting algorithm is a�e
ted bythe order, in whi
h we pro
ess the 
olumns, and thus�nding a good ordering of 
olumns will be another in-teresting resear
h proje
t. Also, the literature in TSPis extremely ri
h, a more detailed study on adoptingTSP te
hniques for the tuple reordering problem isworth investigating. Although enormous problem sizeshinder most of the te
hniques, a thorough study intoTSP literature might be able to produ
e te
hniques,whi
h avoid expli
it 
onstru
tion of the TSP graph andmight be applied to smaller segments of the data. Fi-nally, existing 
ompression algorithms are tuned for un-ordered data, whereas our algorithms provide long uni-form segments in the data. We expe
t signi�
ant ad-ditional improvements in 
ompression rates by tuningexisting 
ompression algorithms to reorganized data.In general, an interesting avenue will be better inte-gration of ordering and 
ompression algorithms, whereordering algorithms are tuned for the 
ompression al-gorithm to be used, and the 
ompression algorithmsare tuned for the reordered data.A
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