Compressing Bitmap Indices by Data Reorganization*

Ali Pinar
Computational Research Division
Lawrence Berkeley National Laboratory
apinar@lbl.gov

Tao Tao
Department of Computer Science
U. Illinois at Urbana-Champaign

taotao@cs.uiuc.edu

Hakan Ferhatosmanoglu
Department of Computer Science

The Ohio State U.

hakan@cis.ohio-state.edu

Abstract

Many scientific applications generate massive vol-
umes of data through observations or computer sim-
ulations, bringing up the need for effective indexing
methods for efficient storage and retrieval of scientific
data. Unlike conventional databases, scientific data is
mostly read-only and its volume can reach to the order
of petabytes, making a compact index structure vital.
Bitmap indexing has been successfully applied to scien-
tific databases by exploiting the fact that scientific data
are enumerated or numerical. Bitmap indices can be
compressed with variants of run length encoding for a
compact index structure. However even this may not
be enough for the enormous data generated in some
applications such as high energy physics. In this paper,
we study how to reorganize bitmap tables for improved
compresston rates. Qur algorithms are used just as a
preprocessing step, thus there is no need to revise the
current indexing technigques and the query processing
algorithms. We introduce the tuple reordering problem,
which aims to reorganize database tuples for optimal
compression rates. We propose Gray code ordering al-
gorithm for this NP-Complete problem, which is an in-
place algorithm, and runs wn linear time in the order
of the size of the database. We also discuss how the
tuple reordering problem can be reduced to the travel-
wng salesperson problem. Qur experimental results on
real data sets show that the compression ratio can be
improved by a factor of 4 to 7.

*This work was funded by he Director, Office of Science, Divi-
sion of Mathematical, Information, and Computational Sciences
of the U.S. Department of Energy under contract DE-ACO03-
76SF00098.

1 Introduction

Advances in technology have enabled the production
of massive volumes of data through observations and
simulations in many scientific applications such as biol-
ogy, high-energy physics, climate modeling, and astro-
physics. In computational high-energy physics, simula-
tions are continuously run, and events that are notable
for physicists are stored with all the details. The num-
ber of events that need to be stored in one year is in
the order of several millions [20]. In astrophysics, tech-
nological advances enabled devoting several telescopes
for observations, results of which need to be stored for
later query processing [21]. Genomic and proteomic
technologies are now capable of generating terabytes
of data in a single day’s experimentation [28]. These
new data sets and the associated queries are signifi-
cantly different than those of the traditional database
systems, most importantly due to their enormous size
and high-dimensionality (more than 500 attributes in
high-energy physics experiments). These new data sets
and the associated queries pose a new challenge for ef-
ficient storage and retrieval of data and require novel
indexing structures and algorithms.

Most of the scientific databases of practical inter-
est are read-only, i.e., large volumes of data are stored
once and never updated. Further use of the data is
typically by means of selection queries. Various types
of queries, such as partial match and range queries,
are executed on these large data sets to retrieve useful
information for scientific discovery. As an example, a
user can pose a range query to retrieve all events with
energy less than 15 GeV, and the number of particles
less than 13. When the data are large and read-only,
as in the case of scientific databases, indexing technolo-

gies are well-known to significantly improve the per-
formance of query and data analysis, thus developing
index structures tailored for scientific data is crucial to
effectively explore such data. Due to the scale and high
dimensionality of these databases, simple extensions of
traditional indexing strategies are inadequate: R-trees
and 1its variants are well-known to lose effectiveness for
high dimensions; hashing-based indices lack storage ef-
ficiency; and transformation based approaches are not
effective for partial match and range queries. Further-
more, most of the indexing approaches do not focus on
the size of the index structure itself. However, due to
the huge data volume in a typical scientific database,
the size of the indexing structure becomes as important
as other parameters and must be taken into account.

Focusing on the major characteristics of scientific
data, such as being read-only, having special access
patterns and numerical attributes, researchers have
managed to develop indexing techniques that are fea-
sible for high dimensional scientific databases. Bitmap
indexing, which has been effectively utilized in many
major commercial database systems [2, 14, 27], has also
been the most popular approach for scientific databases
[3, 15, 22, 24, 25, 27]. Several techniques have been
proposed exploiting the bitmap indexing approach for
scientific data. The general idea is to organize the data
as a two dimensional table. Events are stored rowwise
as tuples. Every attribute is partitioned to several bins,
and these bins form the columns of the table. A table
entry is 1, if the tuple of this row is in the bin of the
column, and 70" otherwise. Thus, the index table is a
0-1 table. This table needs to be compacted to be effec-
tively used on a large database. General purpose text
compression techniques are clearly not suitable for this
purpose since they significantly reduce the efficiency
of queries [11, 24]. Specialized bitmap compression
schemes have been proposed to overcome this prob-
lem. The two most effective schemes in the literature
are Byte-aligned Bitmap Code (BBC) [2] and Word-
Aligned Hybrid Code (WAH) [1, 11, 24, 25, 26]. Both
of these schemes, like many others [3, 27], are based on
run-length encoding, i.e., they both replace repeated
runs of Os or 1s in the columns by a single instance of
the symbol and a run count. These methods not only
compress the data but also enable fast bitwise logical
operations, which translates to faster query processing.

Run-length encoding and its variants exploit uni-
form segments of a sequence, thus their performances
depend directly on the presence of such uniform seg-
ments. Their effectiveness varies for different organi-
zations of the database tuples, since ordering of tuples
affect uniform segments in the columns. In this paper,
we study how to reorder tuples of a database to achieve

higher compression rates. Our techniques are used as a
preprocessing step before compression, only to improve
the performance, without affecting algorithms used for
compression and querying. We state this tuple reorder-
ing problem as a combinatorial optimization problem,
and propose heuristics for effective solutions for this
NP-Complete problem [16]. We show a reduction of
the tuple reordering problem to the traveling salesper-
son problem, which is a well-studied combinatorial op-
timization problem. However, given the enormous sizes
of the databases, we are only restricted to memory and
time efficient heuristics, which takes away the applica-
bility of most frequently used techniques such as sim-
ulated annealing. In this paper, we propose Gray code
sorting to order the rows of a bitmap table for larger
segments of uniform 1s. Our algorithm is linear, in
the size of the database, and an in-place algorithm,
1.e., does not require any auxiliary memory allocation.
Theoretically, we prove that our algorithm is optimal,
when all cells of a bitmap table are full. In practice,
our experiments on scientific data showed significant
improvementsin compression rates. In many instances,
compressed file size for the reordered file less than half
the compressed size of the original file. We have also
observed a 5.36 times reduction in compresses file size
on data set HEP1, bitmap table for which has has 122
columns and 2,173,762 rows.

The remainder of this paper is organized as follows.
In the next section, we present compression algorithms
for bitmap tables. Section 3 discusses the tuple reorder-
ing problem. We first define the problem, and intro-
duce Gray code ordering, which is tailored for the tuple
reordering problem. Next, we discuss the reduction to
the traveling salesperson problem. Experimental re-
sults are presented in Section 4. Finally, we discuss
future work and conclude with Section 5.

2 Compressing Bitmap Tables

The data that comes from scientific experiments 1s
composed of attributes that are numerical or enumer-
ated. Unlike conventional databases, a data record in
a scientific database involves many more attributes,
up to order of a hundreds. And the number of tu-
ples is huge due to the technological advances that
make 1t possible to generate huge volumes of data on
a daily basis. High energy physics simulations gen-
erate millions of events to be stored in a single year.
Due to such large data volume, even simple queries
are extremely slow without an effective index struc-
ture in place. However, neither the well-known multi-
dimensional indexing techniques [19, 10] nor their ex-
tensions [13, 12, 5, 7, 6] have been successful in scientific

database systems, partly due to the effects of the infa-
mous dimensionality problems [4, 23] and the massive
scale of these systems.

Most practical approaches for indexing scientific
data are based on bitmap indexing strategies [2, 27,
24, 14, 3, 22, 8, 9, 25, 15, 1, 11, 26]. For example,
Wu, Otoo, and Shoshani proposed an effective bitmap
indexing technique for large-scale high energy physics
data [26]. This technique uses a compression technique
called word-aligned hybrid (WAH) to compress the in-
dex structure to conveniently small sizes without losing
accessing efficiency. Exploiting the fact that each at-
tribute 1s numeric or enumerated, data are partitioned
into several bins, where the number of bins per each
attribute could vary. If a value falls into a bin, this bin
is marked “1”, otherwise “0”. Since a value can only
fall into a single bin, only a single “1” can exist for
each row of each attribute. After binning, the whole
database is converted into a huge 0-1 bitmap, where
rows correspond to tuples and columns correspond to
bins. Table 1 shows a binning example with three at-
tributes, each partitioned into two bins. The first tuple
t1 falls into the first bins in the attributes 1 and 2, and
the second bin in attribute 3. Note that after binning
we can treat each tuple as a binary number. For in-
stance t; = 101001 and ¢, = 010101.

Table 1. Bitmap example

Tuple | Attribute 1 | Attribute 2 | Attribute 3

binl bin2 | binl bin2 | binl bin2
tq 1 0 1 0 0 1
ts 0 1 0 1 0 1
ts 1 0 0 1 1 0
ta 1 0 1 0 0 1
ts 1 0 1 0 1 0
tg 0 1 0 1 1 0

Binning method itself cannot compress the size, and
instead, might even increase the size [3]. However, it
converts the original table to a more concise format
with only two different values: “0” and “1”. Run length
encoding [18] can therefore, be used over every column
to compress the data when long runs of pure “0” or
pure “1” blocks becomes possible. Pure run length
encoding is not a good strategy for indexing because of
its accessing inefficiency.

Unlike traditional run length encoding, WAH mixes
run length encoding and direct storage. For instance,
if the word length is 32, every column is partitioned to
many length-31 blocks. If a block is a mixture of both
“0” and “1”7, mark the most significant bit of encoded

word “0” to indicate this word 1s literal word and copy
the block to left 31 bits directly. Otherwise, without
losing generality, assuming the block filled with all “17,
we continue to scan and count the number of consecu-
tive blocks which are filled in with all “1”. To encode,
the most significant bit is marked “1” to indicate this
word 1is a fill word, and second significant bit 1s marked
“1” to indicate the block is filled with “1”s. The re-
maining bits are used to store the number of blocks.
Table 2 presents an example. The first row is a col-
umn from the original bitmap, which starts with a 1,
continues with 20 0s, followed by 3 1s, 79 Os, and ends
with 21 1s. The second column partitions it into 4 seg-
ments, each of which has 31 bits. Row 3 lists the hex
representation of those segments; and row 4 is its WAH
encoding. The first word is a literal word mixing 0 and
1, thus there 1s no change to its encoding. The second
and third word are “fill word” with all 0. We then put
them together. The encoding therefore is 80000002.
The fourth word is another literal word.

3 Improving Compression Rates by Tu-
ple Reordering

Run-length encoding and its variants exploit uni-
form segments of a sequence, thus their performances
depend directly on the presence of such uniform seg-
ments. Their effectiveness can be improved by aligning
data for longer uniform segments. In this section, we
study the problem of reorganizing bitmap tuples for
more efficient run-length encoding. In the next subsec-
tion, we describe the problem, which we call the tuple
reordering problem. Then we discuss feasibility of reor-
ganization, and requirements for an effective reorder-
ing algorithm. Finally, we discuss solution techniques.
First, we propose exploiting Gray codes for ordering.
Then we present a reduction of the problem to the trav-
eling salesperson problem.

3.1 Problem Formulation

Our objective in reordering is to increase the perfor-
mance of run-length encoding by having longer uniform
segments and thus fewer number of blocks. Recall that
run-length encoding, when used on bitmaps, packs each
segment of “1”s into a block and stores a pointer to
each block together with the length of the block. Thus
its efficiency depends on the number of such blocks.
Consider two consecutive tuples in the bitmap table.
If the tuples are on the same bin for an attribute, then
they will be packed to the same block. If not, then a
new block should start. Efficiency can be enhanced by
reordering tuples so that they fall into the same bins

Table 2. WAH compression

original bits

1x1, 200, 3x1, 79x0, 21x 1

31-bit groups

[1x1,20x0, 3x1, 7x0], [31x0],[31x0], [10x0, 21x1]

groups in hex

40000380 00000000 00000000 O01FFFFF

WAH (hex)

40000380 80000002 001FFFFF

as much as possible. An example is illustrated in Fig-
ure 1. In this example, the original table has 12 blocks,
whereas the reordered table requires only 7 blocks.

Let diff(¢;,t;) be the number of attributes that tu-
ple #; and tuple ¢; fall in different bins. Notice that
diff (7, mi41) gives how many new blocks start at the
tth tuple after reordering when run-length encoding is
used, where 7; denotes the ¢th tuple in ordering 7. An
example for computing the diff values is illustrated in
Figure 2. For example diff(¢1,2) = 2, since tuples ¢;
and ¢- fall into different bins for the first two attributes.
We can now formally define the tuple reordering prob-
lem.

Definition 1 (Tuple reordering problem) Let =
be an ordering of m tuples so that m; denotes the ith
tuple in the ordering. Tuple reordering problem 1is
finding an ordering ™ that minimizes

m—1
> diff(m, miga). (1)
i=1

In Equation 1, we sum diff values over all consec-
utive tuples to attain how many new blocks start for
the whole table. The first tuple requires starting a
block for each attribute. Thlis the number of blocks

e

can be computed as A + Z diff(m;, mi41), where A
is the number of attribute;. 1Thus finding an order-
ing that minimizes Equation 1 minimizes number of
blocks in the reordered table. For instance, Equation 1
returns 24+ 2+ 2+ 14 2 = 9 for the initial order-
ing, which means with the addition of A the number
of attributes there will be 9 + 3 = 12 blocks in the
compressed table. Whereas for the reordered table in
Figure 1, Equation 1 returns 0 + 1+ 14+ 14+ 1 = 4,
which means only 7 blocks in the compressed file.

3.2 Heuristicsfor Tuple Reordering

In this section we propose techniques to reorder
database tuples for better compression rates. First
we discuss feasibility of reorganizing a database and
what is necessary for an ordering algorithm to be effec-
tive. We propose two approaches for tuple reordering.

The first approach exploits the Gray codes for tuple
reordering. We show that this technique is optimal un-
der certain conditions. The second approach reduces
the problem to the well-studied traveling salesperson
problem.

3.2.1 Feasibility of Tuple Reordering

Databases are seldom reordered, since their enormous
sizes make even moving data to implement a specified
reordering a big challenge. Thus one needs to be care-
ful while designing algorithms to find such reorderings.
For an ordering algorithm to be applied to a database,
it needs to be memory efficient. The memory require-
ment needs to be at least linear in the order of tuples.
Preferably, the algorithm is ¢n-place, which means it
should not use any auxiliary memory. Also, it will
be computationally inefficient, if not infeasible, to ap-
ply a technique to the whole database. An effective
technique should be local, i.e., it must be sufficient to
apply our techniques to the portions of the database
to improve compression rates. This locality provides
scalability to a technique, since it can be applied to
databases of arbitrary sizes.

Reordering database tuples has only local effects,
thus it is easy to localize reordering algorithms to only
portions of the database. Reordering larger portions of
the database is expected to yield better performance,
thus 1t is still important to limit the memory require-
ment of the ordering algorithm to order larger portions
of the database. The Gray code ordering proposed
in the subsequent section is an in-place algorithm and
thus optimal in terms of memory requirement. It can
even be applied to the whole database, since it has a
regular access pattern and requires a small number of
passes over the bitmap table. The last section describes
a reduction to the traveling salesperson problem, one of
the most well-studied combinatorial optimization prob-
lems and a testbed for various optimization techniques.
This reduction enables adoption of a wide variety of
techniques to the tuple reordering problem, however
these techniques almost invariably require additional
storage, which 1s often superlinear in the number of
tuples.

t 10 1 0 01
ty 10 1 0 01
ts 10 1 0 10
t3 10 01 10
ts 01 01 10
ts 01 01 01

(b) Reordered Table

Figure 1. Example for tuple reordering

1 1 0 1 0 0 1
ta 0 1 0 1 0 1
ts3 1 0 0 1 1 0
t4 1 0 1 0 0 1
t5 10 10 10
ts 0 1 0 1 1 0
(a) Original Table
1 1 0 1 0 0 1
ta 0 1 0 1 0 1
ts3 1 0 0 1 1 0
t4 1 0 1 0 0 1
t5 10 1.0 10
ts 0 1 0 1 1 0

(a) Original Table

ty ta i3 ta 13
ts| 3 1 1 3 2
511 3 1 1
210 2 2
ts| 2 2
to | 2

(b) Difference values between tuples

Figure 2. Function diff on an example

3.2.2 Gray Code Ordering

A Gray code is an encoding of numbers so that
adjacent numbers have only a single digit dif-
fering by 1. For binary numbers two adjacent
numbers differ only by one digit. For instance
(000,001,011,010, 110,111,101, 100) is a binary Gray
code. Binary Gray code is often referred to as the “re-
flected” code, because 1t can be generated by the re-
flection technique described below.

1. Let S = (51, 82,...8,) be a Gray code.

2. First write it forwards and then append the
same code writing 1t backwards. That 1is

(81,82, ., 8n,8n, ..., S52,81).

3. Append 0 at the beginning of the first n numbers,
and 1 at the beginning of the last n numbers.

As an example, take the Gray code (0,1). Write it
forwards, then add the same sequence backwards, and
we get: (0,1,1,0). Then we add 0’s and 1’s to get:
(00,01,11,10). We can use this new sequence as an
input to our algorithm. After the reflection step we
get (00,01,11,10,10,11,01,00). We add the first dig-
its to attain: (000,001,011,010,110,111,101,100). Tt
is worth noting that Gray codes are not unique, and
different orders on the same numbers might satisfy the
Gray code property. We use the term fundamental
Gray code to refer to a Gray code generated by the

reflection technique described above with using (0, 1)
as the initial sequence. We will also refer to ordering a
set of numbers with respect to fundamental Gray codes
or shortly Gray code ordering, which we describe next.

Definition 2 (Gray code rank) The Gray code
rank g(s) of an n-bit binary number s is the rank of
this number in an n-bit fundamental Gray-code.

For instance, ¢(0000) = 1, since it is the first number
in the 4-bit fundamental Gray code. And ¢(0001) = 2,
since 1t follows 0000, in the fundamental Gray code.

Definition 3 (Gray code sorting) A sequence S =
(81,82,...,5m) is Gray code sorted iff

g(si) < g(siy1)

for i =1,2,...m — 1, where g(s;) refers to the Gray
code rank of s;.

The sequence (0001,0010,0101,1100,1110,1011) is
Gray code sorted because ¢(0001) = 2 < ¢(0010) =
4 < ¢g(0101) = 7 < ¢(1100) = 9 < g(1110) = 12 <
¢(1011) = 14.

This brings the question of how to efficiently order a
set of numbers to be Gray code sorted. We can reverse
the fundamental Gray code generation process, to sort
numbers with respect to the fundamental Gray code.
As the first step, we can divide numbers as those that
start with 0 and those that start with 1. Clearly those

that start with 0 will precede others in the ordering.
Then we can recursively order those that start with
0. The same can be applied to the second group but
we need to reverse their ordering due to the reflective
property of the Gray code. In Algorithm 1, we present
the pseudo-code of this algorithm. In this algorithm,
S(A, 1, j) denotes the jth significant bit of the éth tuple
in table A. Note that the reversion does not need to
be a separate step in the algorithm, but we present it
separately for clarity of the presentation.

GC-sort (A, start,end, b)
1: @« start
2: j —end
3: while i < j do
4: Decrement j until S(j,6) =0
5: Increment ¢ until S(¢,0) =1
6: if i < j then
7 Swap the ith and jth tuples on the table
g8 end if
9: end while
10: if b < no_of_bits then
11: GC-sort (A,1,5,6+ 1)
122 GC-sort (A,j+ 1,end, b+ 1)
13: Reverse (j + 1, end)
14: end if

Algorithm 1: An in-place Gray code sorting algo-
rithm. GC-sort (A, start,end,b) sorts numbers be-
tween indices start—end in A according to their least
significant b bits in Gray code order. S(A, ¢, j) denotes
the jth significant bit of the ith number in table A

Lemma 1 Algorithm 1 orders numbers in A to be
Gray code sorted, when initially invoked with GC-sort
(A, 1,m,n), where m is the number of tuples, and n is
the number of bits.

Proof The proof is based on induction on the number
of bits. First observe that recursive calls respect the
previous orderings, since after one pass, the recursive
calls only operate on the segment of tuples that all start
with the same bit prefiz.

The inductive basis is for n = 1, when it is easy to
observe the correctness of the algorithm. It is also easy
to see that numbers that start with 0 should precede
those that start with 1 for Gray code sorting. By the
mductive hypothests, the numbers that start with 0 are
sorted correctly by the algorithm according to their last
n—1 bits, and adding 0 does not affect their Gray code
precedence. Similarly, numbers that start with 1 are
Gray code sorted recursively according to theiwr last n—1
bits, however putting 1 at the beginning requires the re-
flected order, which we achieve by Reverse (j+1,end).

Figure 3 illustrates this algorithm. It is important to
note that Algorithm 1 is an in-place algorithm, which
is important for our application since we have to deal
with very large datasets.

Recall that since consecutive numbers differ at only
one bit, Gray code numbers have maximum bit-level
similarity between consecutive numbers. This obser-
vation can be used for ordering database tuples, since
every tuple in the database can be considered as an n-
bit binary number. By Gray code sorting, we can im-
pose similarity between consecutive numbers. And if
all distinct tuples exist, i.e., if all cells of the bitmap ta-
ble are full, Gray code sorting will produce an optimal
ordering. We formalize this claim with the following
theorem.

Theorem 1 Gray code ordering provides an optimal
solution for the tuple reordering problem, if all cells of
the bitmap table are full

Proof The algorithm orders tdentical tuples consecu-
twely. Thus at most one bit differs between two con-
secutive tuples, which implies optimality.

By the result of Theorem 1, Algorithm 1 gives an
optimal solution when all cells are full, however in prac-
tice this will rarely happen, and the solution may not
be optimal. Gray code ordering is more effective when
most of the cells are full, which means it is more effec-
tive with increasing number of rows, and thus larger
databases. Its performance also depends on the num-
ber of attributes, and the number of bins per attribute.
Increasing these two terms increases the number of cells
in the bitmap table, making the table more sparse.
Nevertheless, even when the bitmap table has a lot
of empty cells, Gray code ordering imposes bit-level
similarity between consecutive tuples very effectively
as evidenced by the experimental results.

3.2.3 Reduction to the traveling salesperson
problem

In this section, we describe a reduction of the tuple
reordering problem to the traveling salesperson prob-
lem (TSP). TSP is a very well-studied problem, and
many effective heuristics have been proposed in the lit-
erature [17], and has been a testbed to demonstrate
the effectiveness of optimization methods such as sim-
ulated annealing and genetic algorithms. However our
target application is database reorganization where the
number of tuples (vertices of the TSP graph) may be
easily in the order of millions, and the enormous sizes
of these problems require memory- and time-efficient
heuristics.

t, 0010 t, 0010 t, 0010
t, 1100 Incremanti i ——t, 1100 t, 0001
t, 0101 Decrementj t, 0101 _SWa ¢ 0101
t, 0001 j—1t,0001 t,1100
t; 1011 ty 1011 t, 1011
ty, 1110 ty, 1110 ts 1110
GC-sort(A,1,3,2
t, 0001 t, 0001 t, 0001
t, 0010 t, 0010 t, 0010
t, 0101 Reverse(4,6)t, 0101 GC—sort(A,4,6,223 0101
t, 1100 t, 1011 t, 1100
t61110 t61110 t, 1011
t51011 t21100 telllo

Figure 3. lllustration of Algorithm 1.

Traveling salesperson problem can be intuitively de-
fined as finding a shortest path that visits all cities in
a given map. In a graph theoretical formulation, cities
correspond to vertices of a graph, and a weight function
is defined on edges that connect vertices. The objec-
tive is to find a path visiting all vertices that minimizes
the sum of weights of the edges between successive ver-
tices. We describe a graph model to reduce the tuple
reordering problem to the TSP.

Since we are seeking an ordering of tuples, we will
have vertices to represent tuples and define a weight
function so that an optimal solution to the TSP prob-
lem minimizes the number of blocks in run-length en-
coding. Given, a bitmap B as a set of tuples, define
its graph Gp = (V, E) so that each tuple ¢; in B is
represented by a vertex v;, and each pair of vertices v;
and v; is connected by an edge (v;,v;) in E. Define
the weight of an edge (v;,v;) as diff(¢;,¢;) as defined
in Section 3.1.

Theorem 2 Given a bitmap B, define graph Gp =
(V,E) so that each tuple t; is represented by a vertex
v; € V. All pairs of tuplest; andt; are connected by an
edge with weight dif f(t;,t;). Optimal TSP solution on
Gp, gives an optimal solution to the tuple reordering
problem.

Figure 4. Reduction to TSP. TSP graph for the
bitmap Table in Figure 1. Dark arrowed edges indi-
cate an optimal TSP solution.

Proof TSP ordering gives traversal of vertices that
minimizes the sum of edge weights between consecu-
tive vertices. When we replace vertices with tuples we
get an ordering of tuples that minimazes the diff values
between consecutive tuples. Thus minimizing the total
edge weight corresponds to mintmizing Fquation 1, thus

the number of blocks.

TSP heuristics can be used to construct an order-
ing, or improve a given ordering. However, explicit
construction of the TSP graph is not feasible for re-

ordering database tuples. The TSP graph has (;)

potential edges. We can drop edges whose weights are
zero, but even then number edges will be O(n?) for
a bitmap table. Infeasibility of constructing the TSP
graph restricts us to simple greedy strategies where
edge weights can be computed on the air during the
course of the algorithm. In our experiments, we used a
2-switch technique, which repeatedly seeks for a pair of
vertices switching positions of which decreases the solu-
tion value. To further improve efficiency, we restricted
the search for pairs to only those within a specified dis-
tance. It will be worthwhile to observe performances of
other TSP heuristics from the literature, but it should
be noted that one can use only a limited selection due
to the very large sizes of the problems, and more im-
portantly Gray code is already very effective and an
in-place algorithm.

A similar problem has been studied by Pinar and
Heath in the context of increasing memory performance
of sparse matrix-vector multiplication [16]. The con-
ventional data structures for sparse matrices require
one memory indirection (extra load operation), during
matrix-vector product operations. Pinar and Heath
described how to reduce the number of memory indi-
rections by exploiting nonzeros in consecutive positions
in a column, and proposed a reordering method to re-
order rows to align nonzeros of the matrix to consecu-
tive positions in columns. Their method is based on a
graph model that reduces the problem to the TSP. Tu-
ple reordering problem is similar, since a bitmap can be
considered as a sparse matrix, with tuples correspond-
ing to rows and bins for all attributes corresponding to
columns. We have a nonzero at row ¢ and column j
iff ¢th tuple is in bin j. However, the practical aspects
of these two problems are significantly different, hence
require different solution techniques. Sparse matrices
arising in many applications define systems of linear
equations and are square. Rectangular matrices arise
especially in optimization, but even then the number
of columns and the number of rows are close, at least in
the same order. In databases however, the number of
tuples, which corresponds to rows in a sparse matrix,
is several orders of magnitude larger than the num-
ber bins, which corresponds to number of columns in
a sparse matrix. Sparse matrices are much smaller in
dimension compared to number tuples in a database.

4 Experimental Results

In this section, we discuss our empirical work to vali-
date our proposed methods. We applied our reordering
techniques to several data sets from various applica-
tions to observe the decrease in the sizes of the bitmap
tables. As we will soon present in detail, we have ob-
served significant improvements, which should directly
translate into improvements in query processing times.
Remember that scientific databases, which is the main
motivation for our research are mostly read-only, thus
reorganization needs to be done only once, for faster
processing times in all future queries. Nevertheless, we
also present the running times and scalability of our
methods to prove the feasibility of application of our
methods on very large databases.

It is also worth noting that our methods are used
as a preprocessing step before actual compression al-
gorithms, to align 1s in the bitmap table into consec-
utive positions. Thus, any compression algorithm can
be employed to compress our reorganized data. In our
experiments we used WAH compression algorithm [26].

We present the effectiveness of our methods based on
the improvement factor, which we compute as the ratio
of the compressed bitmap table size of the original data
to the compressed bitmap table size of the reordered
data, i.e,

compressed size of original

improvement factor = -
compressed size of reordered

Thus, an improvement factor of 5 means, compressed
reordered data takes 5 times less space than the com-
pressed original.

Table 3 reveals the effectiveness of our Gray code
reordering algorithm on 6 data sets from various appli-
cations. In this table, the first three columns give the
name of the problem, number of tuples, and number
of columns in the bitmap table, respectively. The next
two columns present the sizes of the compressed bitmap
tables for the original and reordered data, respectively.
The last column presents the improvement factor. Out
of the 6 data sets, the first two data sets (HEP1 and
HEP2) are from high energy physics applications. The
third data set, histobig, comes from an image database
with 112,361 images. Images are collected from a com-
mercial CD-ROM and 64-dimensional color histograms
are computed as feature vectors. The fourth data set,
stock, is a time-series data which contains 360 days
stock price movements of 6500 companies, i.e., 6500
data points with dimensionality 360. Histogram data
set is partially correlated, whereas the stock data set is
highly correlated. The last two data sets are composed
of document feature vectors from 20 newsgroups based

Table 3. Improvement in compression of real data sets

Bitmap table Compressed size (bytes) | Improvement

Name #columns H#rows Original Reordered factor
HEP1 122 2,173,762 | 3,149,590 587,773 5.36
HEP2 907 2,173,762 | 11,482,527 7,008,601 1.64
histobig 64 112,361 209, 066 54,605 3.83
stock 360 6,500 156,980 22,904 6.85
irvector16 160 19,997 14,952 2,971 5.03
irvector32 320 19,997 17,135 11,064 1.55

on tf/idf followed by SVD reduction.

As seen in Table 3, compression rates are magnified
when the tuples are reordered with respect to Gray
code ordering in all problem instances from all appli-
cations. The compressed index size for data stock 1s
7 times less than the original after reordering. The
improvement factors are 5.36 and 1.64 for high energy
physics data sets HEP1 and HEP2, respectively. Com-
paring the results for these two data sets, we see that,
as expected, improvements are more significant, when
the number of columns is smaller. Fewer number of
columns means more room for improvement for a re-
ordering algorithm, since more tuples are likely to fall
into the same bins, and thus it 1s possible to order tu-
ples so that consecutive tuples fall into same bins in a
lot of attributes. A similar trend can be observed in in-
formation retrieval data sets irvectorl6 and irvector32,
where the improvement factors are 5.03 and 1.55 re-
spectively. Nevertheless, improvements are significant
even for larger numbers of columns. It should also be
noted that the Gray code ordering technique can be ap-
plied to arbitrary data sizes, since it is an in-place algo-
rithm. This means the effectiveness of our techniques
will only get better, as we apply these techniques to
larger data sets.

As already discussed, our proposed techniques are
preprocessing steps for conventional compression algo-
rithms and associated query running techniques, and
thus these query running techniques can be used as is,
together with our algorithms. For this reason, we are
not presenting any results on query run times, since it
has been already reported that query run times are lin-
early dependent on the compressed bitmap table sizes.
We expect our improved compression rates to translate
directly into improved query run times. Notice that the
effects of our improved compression rates will be even

more dramatic under limited resources, which is typi-
cal in large-scale systems. Compacted index structures
will grant better locality for algorithms, providing a
second source of improvement.

In the second set of experiments, we have tested the
performance of Gray code ordering for varying numbers
of columns. We fixed the number of rows at 1,000,000
and tested the performance of our algorithm by varying
the number of bins per attribute to change the number
of columns to be 50, 100, 150, 200, 250, and 300. The
results of our experiments are presented in Figure 5. In
this figure original corresponds to the size of the com-
pressed bitmap tables for the original data, whereas
reordered corresponds to the size for compressing re-
ordered data. As observed in this figure, compressed
data sizes grow with increasing number of columns. Re-
ordering significantly decreases compressed index size
in all cases. The improvement factor is 2.52 2.08, 1.64,
1.92, 1.68 and 1.68, when the number of columns is 50,
100, 150, 200, 250, and 300, respectively. Fewer num-
ber of columns leaves more room for improvement for
reordering due to increased likelihood of tuples in the
same bins, which is nicely exploited by our Gray code
ordering algorithm.

In the next set of experiments, we tested the run
time performance of our algorithm. We run exper-
iments on a Linux machine with 2.4GHz CPU and
1GByte memory. We used the irvector data from an
information retrieval application, which has 19,996 tu-
ples and 32 attributes; as our base data set, and ran-
domly selected tuples, and attributes for our scalability
studies. The results presented in Figures 6-8 are the
averages of five runs on different problems of the same
size. That is the run time of the algorithm for 1,00 rows
is reported as the average run time for 5 randomly se-
lected row sets of size 1,000.

30 o

dered
20 B teordere —‘
10 FENE

1
L

compressed size (M bytes)

| [I T T
50 100 150 200 250

diffarant data sets

Figure 5. Performance for varying numbers of

columns

3.5

3

25

2

time(s)

15

1

0.5

4000 6000 8000 10000 12000 14000 16000 18000 20000

rows

Figure 6. Algorithm scalability on the number

of rows

time(s)

10 15 20 25 30
columns

Figure 7. Algorithm scalability on the number
of attributes

200

time(s)

10 20 30 40 50 60 70 80 90
bins

Figure 8. Algorithm scalability on bins per at-
tribute

Figure 6 studies the effect of number of rows in the
run time. For these runs, we used 30 attributes all
of which are partitioned into 10 bins. The number of
objects vary from 5000 to 19000. In Figure 6, the z-
axis i1s the number of rows, and the y-axis is the run
time in seconds, and the results clearly show the linear
relation between the number of rows, and the runtime.
Similarly, Figures 7 and 8, observe the effect of numbers
of attributes and bins per attribute on the run time.
In Figure 7, we fix the number of objects as 19,000,
the number of bins per attribute as 40. In Figure 8, we
fix the number of objects as 19,000 and the number of
attributes as 30. All results confirm the linear relation
between the runtime of our algorithm and the bitmap
table size.

In the final set of experiments, we applied the 2-
switch heuristic described in Section 3.2.3 on the TSP
graphs for tuple reordering. As expected the runtimes
were orders of magnitude slower compared to Gray
code ordering. For instance, Gray code ordering on
HEP1, which has 122 columns and 2,173,762 rows took
only 43.4 seconds, whereas the 2-switch heuristic on
the TSP graph took over 1,600 seconds. We have ob-
served some improvement in the compression (around
only 1%), but the huge gap in run time was daunting.
We have observed similar results in the other data sets.

5 Conclusions and Future Work

We studied the problem of improving bitmap index
compression rates by reorganizing data layout. Our al-
gorithms reorder database tuples so that consecutive
tuples are likely to fall into same bins to boost the
performance of run-length encoding based compression
schemes. We defined the tuple reordering problem,

which aims to find an ordering of tuples that maxi-
mizes the similarity (measured by being in the same
bin), between consecutive tuples. We proposed Gray
code ordering technique for the tuple reordering prob-
lem, which exploits the idea of Gray codes. Our algo-
rithm runs in linear time in the size of the database,
and does not require any extra storage. This pro-
vides the applicability of our algorithm to very large
data segments, even to the whole database. We also
presented a reduction of the tuple reordering problem
to the well-known, well-studied traveling salesperson
problem(TSP). However, enormous sizes of the prob-
lems hinder applicability of frequently used TSP tech-
niques for the tuple reordering problem. Our exper-
iments showed that bitmap compression rates can be
magnified by reordering database tuples. In many in-
stances, compressed file size for the reordered file less
than half the compressed size of the original file. We
have also observed a 5.36 times reduction in compresses
file size on data set HEP1, bitmap table for which has
has 122 columns and 2,173,762 rows.

This paper shows the incontestable advantages of
data reorganization for elevating bitmap index com-
pression and introduces an important problem, which
we call the tuple reordering problem. While our
techniques are very effective in decreasing compressed
bitmap indices, they are only our first steps in this di-
rection, and leaves much for further research. The per-
formance of Gray code sorting algorithm is affected by
the order, in which we process the columns, and thus
finding a good ordering of columns will be another in-
teresting research project. Also, the literature in TSP
is extremely rich, a more detailed study on adopting
TSP techniques for the tuple reordering problem is
worth investigating. Although enormous problem sizes
hinder most of the techniques, a thorough study into
TSP literature might be able to produce techniques,
which avoid explicit construction of the TSP graph and
might be applied to smaller segments of the data. Fi-
nally, existing compression algorithms are tuned for un-
ordered data, whereas our algorithms provide long uni-
form segments in the data. We expect significant ad-
ditional improvements in compression rates by tuning
existing compression algorithms to reorganized data.
In general, an interesting avenue will be better inte-
gration of ordering and compression algorithms, where
ordering algorithms are tuned for the compression al-
gorithm to be used, and the compression algorithms
are tuned for the reordered data.

Acknowledgments

We are grateful John Wu from Lawrence Berkeley Na-

tional Laboratory for his provision of some of the data
sets, and insightful discussions.

References

[1] S. Amer-Yahia and T. Johnson. Optimizing
queries on compressed bitmaps. In VLDB, pages

329-338, 2000.

[2] G. Antoshenkov. Byte-aligned bitmap compres-
sion. Technical Report, Oracle Corp., 1994. U.S.
Patent number 5,363,098.

[3] A.Shoshani, L.M.Bernardo, H.Nordberg,
D.Rotem, and A.Sim. Multidimensinal in-
dexing and query coordination for tertiary
storage management. In SSDBM, pages 214-225,
1999.

[4] S. Berchtold, C. Bohm, D. Keim, and H. Kriegel.
A cost model for nearest neighbor search in high-
dimensional data space. In Proc. ACM Symp. on
Principles of Database Systems, pages 78-86, Tus-
con, Arizona, June 1997.

[5] S. Berchtold, D. Keim, and H. Kriegel. The X-tree:
An index structure for high-dimensional data. In
Proceedings of the Int. Conf. on Very Large Data
Bases, pages 28-39, Bombay, India, 1996.

[6] C. Bohm, S. Berchtold, and D. A. Keim. Search-
ing in high-dimensional spaces: Index structures
for improving the performance of multimedia
databases. ACM Computing Surveys, 33:322-373,
2001.

[7] K. Chakrabarti and S. Mehrotra. The hybrid tree:
An index structure for high dimensional feature
spaces. In Proc. Int. Conf. Data Engineering,
pages 440-447, Sydney, Australia, 1999.

[8] C.-Y Chan and Y. E. Ioannidis. Bitmap index
design and evaluation. In SIGMOD, pages 355—
366, 1998.

[9] C.-Y Chan and Y. E. Toannidis. An efficient
bitmap encoding scheme for selection queries. In

SIGMOD, pages 215-226, 1999.

[10] V. Gaede and O. Gunther. Multidimensional ac-
cess methods. ACM Computing Surveys, 30:170—
231, 1998.

[11] T. Johnson. Performance measurement of com-
pressed bitmap indices. In VL DB, pages 278-289,
1999.

[12] K. Lin, H. V. Jagadish, and C. Faloutsos. The
TV-tree: An index structure for high-dimensional

data. VLDB Journal, 3:517-542, 1995.
[13] D. B. Lomet and B. Salzberg. The hb-tree: A

multi-attribute indexing method with good guar-
anteed performance. ACM Transactions on

Database Systems, 15(4):625-658, December 1990.

[14] P. O'Neil. Model 204 architecture and perfor-
mance. In 2nd International Workshop in High
Performance Transaction Systems, pages 40-59,

Asilomar, CA, September 1987.

[15] Ekow J. Otoo, Arie Shoshani, and Seung won
Hwang. Clustering high dimensional massive sci-
entific dataset. In SSDBM, pages 147-157, Fair-
fax, Virginia, July 2001.

[16] A. Pinar and M. Heath. Improving performance
of sparse matrix-vector multiplication. In Proc. of
Supercomputing 99, 1999.

[17] G. Reinelt. The traveling salesman: computa-
tional solutions for TSP applications. Springer-
Verlag, Lecture Notes in Computer Science, Vol:

840, 1994.

[18] D. Salomon. Data Compression 2nd edition.
Springer Verlag, New York, 2000.

[19] H. Samet. The Design and Analysis of Spatial
Structures. Addison Wesley Publishing Company,
Inc., Massachusetts, 1989.

[20] SciDAC. Scientific data management center.
http://sdm.lbl.gov/sdmcenter/, 2002.

[21] SNAP. Supernova acceleration

http://snap.lbl.gov/, 2004.

probe.

[22] K. Stockinger. Bitmap indices for speeding up
high-dimensional data analysis. In DEXA, 2002.

[23] R. Weber, H.-J. Schek, and S. Blott. A quantita-
tive analysis and performance study for similarity-
search methods in high-dimensional spaces. In
Proceedings of the Int. Conf. on Very Large Data
Bases, pages 194-205, New York City, New York,
August 1998.

[24] K. Wu, E. J. Otoo, and A. Shoshani. A perfor-
mance comparison of bitmap indexes. In Proceed-
wngs of the 2001 ACM CIKM International Con-
ference on Information and Knowledge Manage-
ment, pages b59-5b61, Atlanta, Georgia, November
2001.

[25] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.
Compressing bitmap indexes for faster search op-
erations. In SSDBM, pages 99-108, Edinburgh,
Scotland, UK, July 2002.

[26] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.
An efficient compression scheme for bitmap in-

dices. Technical Report 49626, LBNL, April 2004.
[27] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.

On the performance of bitmap indices for high
cardinality attributes. Technical Report 54673,
LBNL, March 2004.

[28] M. J. Zaki and J. T. L. Wang. Special issue on
bioinformatics and biological data management.
Information Systems, 28:241-367, 2003.

