
Achieving class-based QoS for transactional workloads

Bianca Schroeder Mor Harchol-Balter
Carnegie Mellon University

Department of Computer Science
Pittsburgh, PA USA

<bianca, harchol>@cs.cmu.edu

Arun Iyengar Erich Nahum
IBM T.J. Watson Research Center

Yorktown Heights, NY USA
<aruni,nahum>@us.ibm.com

Abstract

In e-commerce applications certain classes of users de-
sire mean response time guarantees and are willing to pay
for this preferential level of service. Unfortunately, to-
days commercial DBMS, which lie at the heart of most e-
commerce applications, do not provide adequate support
for class-based quality of service guarantees. When de-
signing methods for providing such guarantees, it is further-
more desirable that they be effective across workloads and
not rely on changes to DBMS internals for portability and
ease of implementation. This paper presents an External
Queue Management System (EQMS) that strives to achieve
the above goals.

1. Introduction

Transaction processing systems lie at the core of mod-
ern e-commerce applications such as on-line retail stores,
banks and airline reservation systems. The economic suc-
cess of these applications depends on the ability to achieve
high user satisfaction, since a single mouse-click is all that
it takes a frustrated user to switch to a competitor. Given
that system resources are limited and demands are varying,
it is difficult to provide optimal performance to all users at
all times. However, often transactions can be divided into
different classes based on how important they are to the on-
line retailer. For example, transactions initiated by a “big
spending” client are more important than transactions from
a client that only browses the site. A natural goal then is to
ensure short delays for the class of important transactions,
while for the less important transactions longer delays are
acceptable.

It is in the financial interest of an online retailer to be able
to ensure that certain classes of transactions (financially lu-
crative ones) are completed within some target mean re-
sponse time. It is also financially desirable for the online
retailer to be able to offer a Service Level Agreement (SLA)

to certain customers, guaranteeing them some target mean
response time that they desire (with possible deteriorated
performance for customers without SLAs). This paper pro-
poses and implements algorithms for providing such perfor-
mance targets on a per-class basis

A guaranteed mean response time for some class of
transactions is one form of a Quality of Service (QoS) tar-
get. In many situations it is useful to provide more gen-
eral QoS targets such as percentile targets, where x% of
response times for a class are guaranteed to be below some
value y. Percentile targets are often demanded by clients as
part of a Service Level Agreement (SLA), for example to
ensure that at least 90% of the client’s transactions see a re-
sponse time below a specified threshold. In addition to per-
class response time and percentile targets, another common
QoS target is to provide low variability in response times.
The reason is that users may judge a relatively fast service
still unacceptable unless it is also predictable [5, 11, 25].

Because the dominant time associated with serving an
e-commerce transaction is often the time spent at the back-
end database (rather than the front-end web/app server), it is
important that the QoS be applied to the backend database
system to control the time spent there. Yet, commercial
database management systems (DBMS) do not provide ef-
fective service differentiation between different classes of
transactions.

In designing a framework for providing class-based QoS
targets one strives for the following high-level design goals:

Diverse per-class QoS target metrics The system should
allow for an arbitrary number of different classes,
where the classes can differ in their arrival rates, trans-
action types, etc. Each class is associated with one or
more QoS targets for (per-class) mean response time,
percentiles of response time, variability in response
time, best effort, or any combination thereof.

Portability and ease of implementation Ideally the sys-
tem should be portable across DBMS, and easy to im-
plement.

Self-tuning and self-adaptive The system should ideally
have few parameters, all of which are determined by
the system, as a function of the QoS targets, without
intervention of the database administrator. The system
should also automatically self-adapt to changes in the
workloads and QoS targets.

Effective across workloads Database workloads are di-
verse with respect to their resource utilization charac-
teristics (CPU, I/O, etc.). We aim for a solution which
is effective across a large range of workloads.

No sacrifice in throughput & overall mean response time
Achieving per-class targets should not come at the
cost of an increase in the overall (over all classes)
mean response time or a drop in overall throughput.

With respect to the above design goals, the prior work
is limited. Commercial DBMS provide tools to assign
priorities to transactions, however these are not associ-
ated with any specific response time targets. Research on
real-time databases does not consider mean per-class re-
sponse time goals, but rather looks only at how an indi-
vidual transaction can be made to either meet a deadline
or be dropped (we never drop transactions). The only ex-
isting work on per-class mean response time guarantees for
databases is based on modified buffer pool management al-
gorithms [6, 7, 14, 22]. These techniques are not effective
across workloads, since they focus only on one resource:
Tuning the buffer pool will for example have little effect
on CPU-bound or lock-bound workloads. Moreover, they
don’t cover more diverse QoS goals such as percentile or
variability goals. A major limitation of all the above ap-
proaches is that they rely on changes to DBMS internals.
Their implementation depends on complex DBMS specifics
and is neither simple, nor portable across different systems.

Our approach aims at achieving the above high-level
design goals through an external frontend scheduler. The
scheduler maintains an upper limit on the number of trans-
actions executing simultaneously within the DBMS called
the Multi-Programming Limit, or “MPL” (see illustration in
Figure 1). If a transaction arrives and finds MPL number
of transactions already in the DBMS, the arriving transac-
tion is held back in an external queue. Response time for a
transaction includes both waiting time in the external queue
(queueing time) and time spent within the DBMS (execu-
tion time).

The immediately apparent attribute of our approach is
that it lends itself to portability and ease of implementation
as there is no dependence on DBMS internals. Also mov-
ing the scheduling outside the DBMS, rather than schedul-
ing individual DBMS resources (such as the bufferpool or
lock queues), makes it effective across different workloads,
independent of the resource utilization.

DBMS

MPL=4incoming
transactions external

queue

Figure 1. Simplified view of mechanism used to
achieve QoS targets. A fixed limited number of trans-
actions (MPL=4) are allowed into the DBMS simul-
taneously. The remaining transactions are held in an
unlimited external queue. Response time is the time
from when a transaction arrives until it completes, in-
cluding queueing time.

With respect to obtaining diverse QoS targets, the core
idea is that by maintaining a low MPL, we obtain a better
estimate of a transaction’s execution time within the DBMS,
and hence we are able to maintain accurate estimates of the
per-class mean execution times. This in turn gives us an up-
per bound on the queueing time for a transaction, which can
be used by the scheduler in order to ensure that QoS targets
are met. The actual algorithms that we use are more com-
plex and rely on queueing analysis in order to meet a more
diverse set of QoS targets, and behave in a self-adaptive
manner.

The external scheduler achieves class differentiation by
providing short queueing times for classes with very strin-
gent QoS targets, at the expense of longer queueing times
for classes with more relaxed QoS targets. There are no
transactions dropped. One inherent difficulty in this ap-
proach is that not every set of targets is feasible, e.g., not
every class can be guaranteed a really low response time.
An external scheduler therefore also needs to include meth-
ods for determining whether a set of QoS targets is feasible.

The effectiveness of the external scheduling approach
and whether it requires sacrifices in overall performance
(e.g. throughput or mean response time) depends on the
choice of the MPL. For scheduling to be most effective a
very low MPL is desirable, since then at any time only a
small number of transactions will be executing inside the
DBMS (outside the control of the external scheduler), while
a large number are queued under the control of the external
scheduler. On the other hand, too low an MPL can hurt the
overall performance of the DBMS, e.g., by underutilizing
the DBMS resources resulting in a drop in system through-
put. Therefore, another core problem an external scheduler
needs to solve is that of choosing the MPL.

In this paper we propose and implement a unified exter-
nal scheduling framework called EQMS (External Queue
Management System) that addresses all of the above prob-
lems. Figure 2 gives an overview of the EQMS architecture.

Figure 2. Overview of the EQMS system.

The EQMS takes as input a set of classes with one or several
QoS targets for each class. These are specified by the online
retailer and are not part of the EQMS. The core component
of the EQMS is the Scheduler which decides on the order
in which transactions are dispatched to the DBMS such that
the associated QoS targets are met. The scheduler relies on
the MPL Advisor to determine an MPL that provides suffi-
cient scheduling control, while keeping performance penal-
ties, such as loss in throughput, below a threshold defined
by the DBA (database administrator). The MPL Advisor
also checks for the feasibility of a given set of targets. The
EQMS combines feedback control (based on information
collected by the Performance Monitor) with queueing the-
ory to operate in a self-tuning and self-adaptive fashion.

We demonstrate the effectiveness of our solution in ex-
periments with two different DBMS, IBM DB2 and Post-
greSQL. We create a range of workloads, including CPU-
bound, I/O-bound, and high vs. low lock contention work-
loads, based on different configurations of TPC-C [23] and
TPC-W [24]. We show that our solutions apply equally
well across all workloads studied. The reason is that the
core idea of limiting the MPL reduces contention within the
DBMS at the bottleneck resource, independent of what the
particular bottleneck resource is.

The paper is organized as follows: Section 2 reviews
related work. Section 3 describes the experimental setup.
Section 4 details the algorithms used by the Scheduler to
achieve class-based mean response time targets and Sec-
tion 5 explains how to schedule for more complex QoS
goals, including percentile and variability goals. Section 6
describes the techniques used by the Scheduler and the MPL
Advisor to adapt in dynamic environments. We conclude in
Section 7.

2. Related work

When looking at prior work on providing QoS guaran-
tees for DBMS transactions two points are apparent: First,

prior work focuses on scheduling datbase internal resources
and hence requires modifications to DBMS internals; our
goal is to provide QoS guarantees externally, transparent
to the underlying DBMS. Second, only per-class mean re-
sponse time targets have been considered; our goal is to pro-
vide methods for a wider range of QoS targets, including
variabiility or percentile targets.

Below we describe prior work on providing guarantees
for DBMS transactions. Most of the work is in the area
of real-time DBMS (RTDBMS), which is concerned with
deadlines rather than targets involving mean response time.
Commercial DBMS provide tools to assign priorities to
transactions, however these are not associated with any
specific response time targets. The little work that involves
per-class guarantees is primarily simulation-only, and
does not cover complex QoS goals such as percentile or
variability goals, and is not portable in that it requires
the modification of database internals (e.g. the bufferpool
manager).

Work on RTDBMS
In Real-time DBMS, there is a deadline (typically a

hard deadline) associated with each transaction. The goal
of RTDBMS is to minimize the number of transactions
which miss their deadlines. If a hard deadline is missed,
the transaction is dropped. Examples of work in this area
include: [1–4, 12]. This work is different from our own in
that it does not allow for mean response time targets or
variability targets. Also, in our work, no transactions are
dropped. The RTDBMS typically involves using a special-
ized database engine, and the mechanism is implemented
internally, making it less portable.

Commercial DBMS
As a testament to the importance of the problem of

providing different service levels most commercial DBMS
provide priority mechanisms in some form. For example,
both IBM DB2 [16] and Oracle [20] offer CPU scheduling

tools for prioritizing transactions. Although different
classes are given different priorities with respect to system
resources, it is not clear how these priority levels relate
to achieving specific response time targets. Towards this
end, Kraiss et al. [15] try to map each class to some fixed
priority such that scheduling based on priorities will meet
the desired response time targets. Such an assignment of
priorities to classes does not always exist.

Towards per-class mean response time targets
Carey et al. [10] consider the situation of two classes,

where they strive to make the mean response time for the
high priority class as low as possible by scheduling internal
DBMS resources on a read-only workload. Their work is
a simulation study. In our recent work [18] we consider
the same problem for a more general workload (TPC-C and
TPC-W) under a variety of DBMS via an implementation
of (DBMS internal) lock scheduling and CPU scheduling.

More closely related to our current work are the follow-
ing papers, [6–8,22], all of which have multiple classes each
with a different mean response time target. Other QoS tar-
gets are not considered. Their approach is to schedule inter-
nal memory (buffer pool management). The above are all
simulation studies.

3. Experimental setup

As representative workloads for transactional web appli-
cations, we choose the TPC-C [23] and TPC-W [24] bench-
marks. The TPC-C workload in this study is generated us-
ing software developed at IBM. The TPC-W workload is
generated using the TPC-W Kit from PHARM [9], though
minor modifications are made to improve performance, in-
cluding rewriting the connection pooling algorithm to re-
duce overhead.

Different configurations of these workloads (number of
warehouses, number of clients) result in different levels of
resource utilization for the hardware resources: CPU and
I/O. We experiment with 4 different configurations of TPC-
C and TPC-W as shown in Table 1(top). We chose these
configurations in order to cover different combinations of
resource utilization levels (see Table 1(bottom)). In addi-
tion, varying the configuration will also result in different
levels of lock contention [18]. For example, lock contention
is a large component of a transaction’s lifetime in workloads
WI0 and WI0>CPU , but not in the other workloads.

The TPC-C and TPC-W benchmarks are defined to be
used as closed systems, and we use them this way. We as-
sume a zero “think time” throughout. All results in the pa-
per have been repeated with non-zero think times, and with
open system configurations and results have been found to
be similar. Due to a lack of space, unless otherwise stated,
we show only the results for zero think times, allowing us

Workload Benchmark Config Data- CPU I/O
base load load

WIO TPC-C 40 WH, 4GB low high
100 clients

WIO>CPU TPC-C 10 WH, 1GB med. high
100 clients

WCPU>IO TPC-W 100 EBs, 300MB high med.
Shopping 10K items,

140K customers
WCPU TPC-W 100 EBs, 300MB high low

Browsing 10K items,
140K customers

Table 1. Description of the experimental workloads.

to focus on the effect of varying the MPL in all the graphs.
The DBMS we experiment with are IBM DB2 [16] ver-

sion 8.1, and PostgreSQL [19] version 7.3. Due to lack of
space, all results graphs throughout the paper pertain to the
IBM DB2 DBMS. Results for PostgreSQL are very similar
and we describe these in words only. In all experiments the
DBMS is running on a 2.4-GHz Pentium 4 with 3GB RAM,
running Linux 2.4.23, with a buffer pool size of 2GB. The
machine is equipped with two 120GB IDE drives, one of
which we use for the database log and the other one for
the data. The client generator is run on a separate machine
with the same specifications as the database server, and is
directly connected to the database server through a network
switch.

4. Achieving response time targets

In this section we assume that each of the QoS targets is
a specific mean response time target for each class. Specif-
ically, class i transactions have a target mean response time
of τi. After introducing some notation, we explain the al-
gorithms used by the Scheduler to achieve the per-class re-
sponse time targets and to determine whether a set of targets
is feasible.

4.1. Notation

The notation we use in order to formally explain the ex-
ternal scheduling algorithms is summarized in Table 2, and
is straightforward. The mean response time of transactions
is denoted by T , and can be divided into T Q and T DBMS ,
where the former denotes the mean time the transactions
spend queueing externally to the DBMS and the latter quan-
tity is the mean time that the transactions spend within the
DBMS. That is,

T = T Q + T DBMS

T Q Mean time transactions spend waiting in external queue in system with external scheduling
T DBMS Mean time transactions spend executing in the DBMS in system with external scheduling

T Q
i Mean time transactions in class i spend waiting in external queue

T DBMS
i Mean time transactions in class i spend executing in the DBMS in system with external scheduling

T Overall mean response time, i.e. sum of TQ and TDBMS

R Mean response time in original (no external scheduling) system
Ri Mean response time of class i transactions in original (no external scheduling) system
τi Mean response time target of class i
pi Fraction of transactions that are class i

tcurr current time
T x%

i x-th percentile of Ti

T DBMS x%
i x-th percentile of T DBMS

i

τx%
i Target for x-th percentile of Ti

Table 2. Notation

Furthermore, we denote the per-class response times via a
subscript i denoting class i, where Ti denotes the mean re-
sponse time for class i transactions, and

Ti = T Q
i + T DBMS

i

Notice that the above notation is different from the τi’s
which denotes the ith class’ mean response time target.
Lastly, we define R to be the mean response time in the
original system, without external scheduling. The remain-
ing notation will be explained as needed.

Measurements of the quantities introduced above, i.e.
the queuing times, execution times, and total mean response
times, both per class and aggregated, are needed by the
Scheduler and the MPL Advisor and are therefore tracked
by the Performance Monitor.

4.2. The basic algorithm

The Scheduler relies on the MPL Advisor to choose an
MPL so that the time spent within the DBMS is low and
predictable. In particular, since the Scheduler cannot con-
trol the time a transaction takes to execute inside the DBMS,
the MPL has to be low enough such that for each class the
expected time within the DBMS is lower than the class’ re-
sponse time target. Given n QoS classes with response time
targets {τ1, . . . , τn}, the MPL needs to ensure that for each
class i

T DBMS
i < τi

The main question for the Scheduler is then how to or-
der the transactions within the external queue to achieve the
targets. Observe that for each class i the Scheduler knows
the mean target response time τi and can obtain the mean
database execution time T DBMS

i from the Performance
Monitor. It can therefore determine how much “slack” it

has in scheduling transactions from this class: transactions
in class i can afford on average to wait up to but not more
than

si = τi − T DBMS
i

time units in the external queue before they should start ex-
ecuting in the DBMS.

Based on the slack of a transaction the Scheduler com-
putes a timestamp for when the transaction should be dis-
patched out of the external queue and into the DBMS, which
we call the dispatch target time. Formally, if a new transac-
tion of class i arrives at time ta its dispatch target td is

td = ta + si = ta + τi − T DBMS
i .

Whenever a transaction completes at the DBMS, and we
have to pick the next transaction for execution from the ex-
ternal queue, we pick the transactions in increasing order of
their dispatch targets (td value).

We demonstrate the viability of the above algorithm ex-
perimentally. The above high level description omits an im-
portant issue arising in practice: how does the Scheduler ad-
just to surges and fluctuations in system load which might
make it impossible to achieve all the targets. This practical
concern will be addressed in Section 6.

4.3. Feasibility of assignment

The Scheduler distinguishes two types of infeasible tar-
gets. The first one has already been explained above and
includes per-class targets that are lower than the per-class
mean execution time (i.e. the average time spent inside the
DBMS). The mean response time of a class is the sum of its
queueing time and its execution time, and can obviously not
be smaller than either one of its components. The first con-
dition for a target to be feasible is therefore the following:

T DBMS
i < τi

It is important to note that the mean execution time
T DBMS

i depends on the MPL: a smaller MPL leads to less
contention at the DBMS and therefore to shorter execution
times. It is therefore the goal of the MPL Advisor to recom-
mend an MPL that meets the above condition, provided that
this does not come at a performance penalty (e.g. in terms
of throughput loss) beyond what the DBA has specified as
tolerable. If the MPL Advisor cannot determine an MPL
that satisfies the above condition, then the target τi is not
feasible. The details of how the MPL Advisor works will
be explained in Section 6.1.

The second type of infeasible targets comprises those
that cannot be achieved due to a simple lack of system re-
sources (e.g. suppose every class desires a really low re-
sponse time guarantee). More precisely, we don’t expect
the overall mean response time under class-based prioriti-
zation to be lower than for the unprioritized system. That is
the weighted average over all per-class mean response time
targets is not expected to be lower than the mean response
time in the original unprioritized system.

We describe a simple condition for determining whether
a set of per-class mean response time targets is feasible, i.e.,
whether the set of targets is achievable via some algorithm.

We start by defining the overall target mean response
time (aggregated over all classes):

τoverall =

n∑

i=1

pi · τi

Recall R represents the mean response time in the origi-
nal system (without scheduling).

Obviously a necessary condition for achieving the indi-
vidual τi’s (via some ordering of the external queue) is that

τoverall > R

We now argue (only intuitively) that this also represents a
sufficient condition. The crux of the argument is that the ex-
ternal scheduling (with the limited MPL) does not increase
the overall measured mean response time T as compared
with the original R. That is, when the MPL is chosen care-
fully (as in Section 6.1) we have

T ≈ R

Hence the above condition also implies

τoverall > T

which is sufficient.

4.4. Results for mean response time targets

We experimentally evaluate the accuracy of the Sched-
uler in achieving per-class mean response time targets using

the four workloads in Table 1. In all experiments we use
an MPL of 20, since for our workloads this MPL is high
enough that neither throughput nor overall mean response
time is sacrificed. Tables 3 and 4 show detailed results for
WI0 and WCPU respectively under IBM DB2. Results are
shown in the “Measured” column corresponding to the QoS
target specified in the previous two columns. Mean and max
values are specified for a sequence of 10 experimental runs,
each consisting of 25,000 transactions. At the moment, we
are only concerned with the first two rows of these tables,
which consider per-class response time targets. We have ex-
perimented with three different classes with different targets
and frequencies. As shown in the tables, we are always able
to achieve within 8% of the desired per-class response time
targets for WIO (Table 3) and within 12% of the desired per-
class response time targets for WCPU (Table 4). Recall that
WCPU corresponds to the TPC-W workload which is more
variable. Results for WI0>CPU are very similar to those
for WI0 with errors ranging between 0-5% and results for
WCPU>IO are very similar to those for WCPU with errors
ranging between 1-11%. We also repeated all experiments
for PostgreSQL, where results are slightly worse but still
within 15% of the targets.

5. More complex QoS targets

In this section we consider more complex QoS targets.
These include: Reducing overall variance in response times
(aggregated over all class transactions)(Section 5.1); and
achieving targets on the xth percentile of response time for
multiple classes (Section 5.2).

5.1. Reducing variance

In addition to desiring low mean response time, users
are equally desirous of low variability in response times [5].
Both WCPU and WIO benchmarks are composed of a fixed
set of transaction types. We find that although the variance
within each transaction type is not too high, the overall vari-
ance in response time across all transaction types is quite
high. Specifically, for WCPU , the squared coefficient of
variation (C2) for individual transaction types ranges from
C2 = 2 to C2 = 5; however over all transaction types,
we measure C2 = 15. WIO is less variable. For individual
transaction types we measure values ranging from C2 = .15
to C2 = 0.8, while looking across all transaction types we
measure C2 = 2.3. As a reference point, the exponential
distribution has C2 = 1.

Figure 3(left column) shows the (original) response
times for the different transactions under WCPU and WIO ,
for IBM DB2. Our approach to combatting variability is
to decrease the response time of the long transactions (by
giving them priority) and in exchange increase the response

Experiment
type

Class Frequency Priority QoS target Target
Measured

Mean Max Avg. error

Re-
sponse
times

C1 10% 1 Resp Time 0.7 sec 0.725 0.728 3.5%
C2 20% 2 Resp Time 1 sec 1.02 1.029 2.0%
C3 70% N/A Best effort N/A 1.60 1.69 N/A

Re-
sponse
times

C1 40% 1 Resp Time 0.6 sec 0.653 0.657 8.0%
C2 40% 2 Resp Time 1.3 sec 1.366 1.37 5.0%
C3 20% N/A Best effort N/A 2.54 2.59 N/A

Percentiles
C1 10% 1 80th %tile 1 sec 0.98 1.026 0%
C2 10% 2 95th %tile 2 sec 2.03 2.159 1.0%

C3 80% N/A Best effort N/A
80th %tile: 1.96 2.01 N/A
95th %tile: 2.51 2.89 N/A

Percentiles
C1 20% 1 80th %tile 1 sec 0.981 1.06 0%
C2 20% 2 95th %tile 2 sec 2.002 2.018 .1%
C3 60% N/A Best effort N/A 80th %tile: 2.08 2.18 N/A

95th %tile: 2.69 2.77 N/A

Variability C1 100% 1 Reduce var N/A
C2 = 0.108

(before C2 = 2.3)

Combined

C1 10% 1 Resp Time 0.7 sec 0.73 0.78 4.0%
C2 10% 2 Resp Time 1 sec 0.98 1.09 2.0%
C3 10% 3 80th %tile 1 sec 0.978 0.99 2.0%
C4 10% 4 95th %tile 2 sec 2.04 2.1 2.0%
C5 60% N/A Best effort N/A 1.7

Table 3. Summary of results for different QoS targets for WIO .

Experiment
type

Class Frequency Priority QoS target Target
Measured

Mean Max Avg. error

Re-
sponse
times

C1 10% 1 Resp Time 3 sec 3.37 3.570 12%
C2 20% 2 Resp Time 6 sec 6.564 6642 9%
C3 70% N/A Best effort N/A 10.6 10.8 N/A

Re-
sponse
times

C1 25% 1 Resp Time 2.5 sec 2.79 3.15 11%
C2 25% 2 Resp Time 6.5 sec 6.6 7.4 1.5%
C3 50% N/A Best effort N/A 12.9 14.08 N/A

Percentiles
C1 10% 1 80th %tile 3 sec 3.068 2.7%
C2 10% 2 95th %tile 12 sec 5.9 6.2 0%
C3 80% N/A Best effort NA 80th %tile: 16.1 16.5 N/A

95th %tile: 19.6 21.4 N/A

Percentiles
C1 20% 1 80th %tile 3 sec 2.7 2.89 0%
C2 20% 2 95th %tile 9 sec 7.9 8.4 0%
C3 60% N/A Best effort N/A 80th %tile: 12.01 12.08 N/A

90th %tile: 19.3 20.0 N/A

Variability C1 100% 1 Reduce var N/A
C2 = 0.19

(before C2 = 15)

Combined

C1 10% 1 Resp Time 3 sec 3.271 3.520 9%
C2 10% 2 Resp Time 6 sec 6.285 6.678 6%
C3 10% 3 80th %tile 2.5 sec 2.701 2.945 8%
C4 60% N/A Best effort N/A 80th %tile 11.8 12.4 N/A

95th %tile 19.2 20.4 N/A
Mean 10.5 10.9 N/A

Table 4. Summary of results for different QoS targets for WCPU .

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

Request Type

Me
an

 R
es

po
ns

e T
im

e (
se

c)

no QoS

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

Request Type

Me
an

 R
es

po
ns

e T
im

e (
se

c)

QoS

(WCPU before QoS) (WCPU after QoS)

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Transaction type

Me
an

 re
sp

on
se

 tim
e (

se
c)

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Transaction type

Me
an

 re
sp

on
se

 tim
e (

se
c)

(WIO before QoS) (WIO after QoS)

Figure 3. QoS target reducing variability: Results for WCPU (top) and WIO(bottom).

time of the short transactions, where the goal is to make
all transaction response times as close to the overall mean
response time as possible. This turns out to be possible be-
cause in typical workloads the fraction of transactions with
very long response times is quite small as compared with
the fraction of transactions with short response times (as in
Pareto’s “80-20 rule”). Figure 3(right column) shows the
results of equalizing the response times, hence greatly de-
creasing variance. Under IBM DB2, for WCPU we are able
to decrease C2 from 15 to 0.19. For WIO we are able to de-
crease C2 from 2.3 to 0.11. These results are summarized
in Tables 3 and 4. Under PostgreSQL, for WCPU we are
able to decrease C2 from 14 to 0.09. For WIO we are able
to decrease C2 from 1.6 to 0.8.

The exact algorithm for reducing variability is easy to
implement within our external scheduling framework. We
start with the measured overall mean response time of the
original system R. We denote the mean response time for
the ith transaction type by Ti. Initially some of the Ti’s
are higher than R and some are lower. To make the sys-
tem more predictable, we assign type i transactions a target
mean response time of τi = R. We then apply the standard
method for achieving per-class target mean response times.

For this method to work, it is important to note that it is
desirable that the variability within each type is low, so that
each type is more predictable. For many OLTP servers, e.g.
the database backend of a Web site, this is the case: There
are a limited number of possible transaction types that the
user interface allows for, e.g. ordering, product search, re-
trieving shopping cart contents, and these transaction types
are each limited in scope, resulting in low response time
variability within each type.

5.2. Meeting xth percentile targets

Mean target response times are loose in that they can be
heavily influenced by a small percentage of transactions. It
is conceivable that some customers might prefer stronger
guarantees, namely that 90%, say, of their transactions have
response times strictly below some target. In this section
we describe how to obtain per-class percentile target guar-
antees.

Consider the example of setting a 90th percentile target
denoted by τ90%

i for the transactions in class i. Our ap-
proach for mean response time targets doesn’t apply to per-
centile targets. Thus we need a new approach. Our per-
centile target approach has two parts: First the MPL Ad-
visor determines an MPL value which ensures a 90th per-
centile target on just the execution time T DBMS

i , i.e.

T DBMS 90%
i < τ

where T DBMS 90%
i denotes the 90th percentile of execution

times. We next define an algorithm for scheduling the exter-
nal queue that uses T DBMS 90

%

i to achieve a 90th percentile
target on the response time for class i.

The second step of our approach is to convert
T DBMS,90%

i into a 90th percentile result for response time.
Observe that if the queueing time T Q

i is bounded by some
c, the resulting 90th percentile response time is bounded by

T 90%
i ≤ c + T DBMS,90%

i

That means, when scheduling a transaction, in order to en-
sure a given percentile target τ 90%

i , i.e. ensure that

T 90%
i ≤ τ90%

i

the amount of slack we have in scheduling this transaction
is

τ90%
i − T DBMS,90%

i

We can hence translate percentile targets to dispatch targets
as follows: assign a transaction with target target τ 90%

i the
dispatch target of:

td = tcurr + τ90%
i − T DBMS,90%

i

As before we schedule transactions from the queue in
order of increasing dispatch targets.

Tables 3 and 4 show results for various experiments
with per-class percentile target targets under IBM DB2 for
WIO and WCPU . As shown, in all experiments, for both
workloads, we are able to achieve our percentile response
time targets usually within 3%. Results for WIO>CPU and
WCPU<IO are comparable, with errors in achieving per-
centile targets ranging from 1-4%. For our experiments with
PostgreSQL this number becomes 10%.

5.3. Combination targets

Finally, it is quite plausible that (i) different customer
classes might desire different types of QoS targets, and (ii) a
given customer class might simultaneously request multiple
targets (e.g., a target for the mean and a percentile target).
Both of these “combination” scenarios are easy to achieve
in our external scheduling framework since all targets are
immediately mapped to dispatch targets and transactions are
then pulled from the external queue in order of these targets.
A transaction having multiple QoS targets is assigned the
most stringent of all of its corresponding dispatch targets.

Some results involving combination targets are shown
for IBM DB2 in Tables 3 and 4, and all targets are achieved
with very high accuracy.

6. Making the EQMS self-tuning and adaptive

This section details the self-tuning and self-adaptive fea-
tures of the EQMS that make it robust to dynamic situa-
tions. We first explain how the MPL Advisor tunes and dy-
namically adapts the MPL, the most important parameter of
the EQMS. We then discuss how the Scheduler copes with
varying load conditions, especially with sudden load surges.

6.1. Details of the MPL Advisor

One big advantage of the EQMS approach is that there
are very few parameters to tune. Essentially, the one most
important parameter is the MPL. The proper choice of
the MPL is crucial, though, since too high an MPL will
provide the scheduler with only little control on class
differentiation, while a too low MPL can harm the overall

system performance. Below we first describe how the MPL
Advisor determines a lower bound on the MPL (to limit
loss in throughput, and increase in response time) and then
how it determines an upper bound on the MPL (to allow
sufficient control for achieving a given set of QoS targets).

Determining a lower bound on the MPL
There are two potential risks involved in choosing the

MPL too low. First, a low MPL may cause the DBMS re-
sources to be underutilized, leading to loss in throughput.
Second, a low MPL may increase overall mean response
time, since it enforces a stricter queueing of transactions,
resulting in short transactions being forced to queue behind
long ones (Head-of-Line-Blocking). Our experimental re-
sults across various workloads and system configurations
show that the wrong choice of MPL can result in a drop in
throughput by a factor of 10 and a more than tenfold in-
crease in overall mean response time.

What the MPL Advisor does is to find a lower bound
on the MPL which limits the above problems such that
throughput loss and increase in mean response time are
within tolerable range (where “tolerable” is specified by the
DBA). Finding a good lower bound is a difficult problem
(and is left as an open problem even in recent publica-
tions [13]). Our basic approach is to use a control loop
augmented with queueing theoretic guidance. We develop
queueing theoretic models that capture the basic properties
of the relationship between system throughput and response
time and the MPL. Analysis of the models (parameterized
based on the given system and workload) provides us with
a good initial MPL value, which we then fine-tune through
a control-loop. “Jump-starting” the control-loop with a
close-to-optimal starting value provides fast convergence
times, even when using only small conservative constant
adjustments in each iteration. The details are involved and
addressed in a separate paper [21], also in submission.

Determining an upper bound on the MPL
In Section 4.3 we have identified several necessary con-

ditions for a set of QoS targets to be feasible. In particular,
for each class i that has a mean response time target associ-
ated with it the following condition needs to hold

T DBMS
i < τi

and for each class j with a percentile target

T DBMS 90
%

j < τ90
%

j

needs to hold. Since both T DBMS
i and T DBMS 90

%

j are
affected by the MPL (a higher MPL will lead to higher
contention at the DBMS and therefore to higher T DBMS

i

and T DBMS 90
%

j values) the feasibility of a set of targets

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Multiprogramming limit

Ex
ec

uti
on

 tim
e (

se
c)

W
CPU

W
IO

Figure 4. The mean execution time as a function of
the MPL under WIO and WCPU .

depends on the MPL. The goal of the MPL Advisor is to
choose an MPL such that the above conditions are met.

The basic mechanism is a control loop that dynamically
adjusts the MPL based on measurements provided by the
Performance Monitor; if the measured T DBMS

i is higher
than desired, the MPL is reduced (provided the lower bound
on the MPL determined in the previous subsection is not
violated). In order to decide how much the MPL needs to be
adjusted the MPL Advisor uses queueing theoretic guidance
to provide fast convergence. The details of the algorithm
are explained below, first for response time targets then for
percentile targets.

Determining the right MPL for ensuring the feasibility
of response time targets would be trivial if we had a func-
tion that describes the exact relationship between the MPL
and the mean execution time T DBMS

i . While we cannot
know the exact function, queueing theory reveals a crucial
property of this function: According to Little’s law [17] the
expected execution time T is linear in the MPL value. Fig-
ure 4 verifies 1 this law in experiments for WIO and WCPU .

Based on this observation, we can tune the MPL in a
control loop similar to the following:

1. Periodically monitor the per-class execution times
T DBMS

i .

2. Adjust the MPL if for any class i the mean execution
time increases above the per-class target, i.e.

T DBMS
i > τi

3. Assuming that for some class the execution time is a
factor of f > 1 times the per-class target target, i.e.

T DBMS
i = f · τi

we adjust the MPL as follows:

MPLnew := MPLold · 1/f

1In the case of WCPU , the line is not as straight as for WIO, since the
workload is created using TPC-W which exhibits a very high variability in
service times, leading to higher variability in experimental results.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70 80 90 100

Resp
onse

 tim
e (m

sec)

MPL

95th percentile
90th percentile
80th percentile
60th percentile
40th percentile

Figure 5. Percentile of the execution time at the
server for different MPLs for WIO.

provided that MPLnew does not violate the lower
bound on the MPL.

The above algorithm involves multiplicative adjust-
ments. In practice, combining this with small constant ad-
justments, when close to the target, works well. We find
that for obtaining a good estimate of the mean execution
time in step 1) it suffices for the Performance Monitor to
sample a few hundred transactions in the case of WIO and a
few thousand transactions in the case of WCPU (due to the
inherently higher variability of workload WCPU). In our
experiments the above tuning algorithm finds the optimal
MPL with at most 10 iterations.

Moving from mean response time targets to percentile
targets the above approach does not work anymore, since
Little’s law does not apply to percentiles of response time.
We solve this problem by approximating the DBMS by a
Processor-Sharing (PS) server. While this approximation
might be too crude for exact predictions, the hope is that
it is still useful for providing intuition on the relationship
between the MPL and T DBMS 90

%

i . From queueing theory
2 it follows that in a PS server the percentiles of response
time scale linearly with the number of transactions at the
server. This result enables us to use the same method we
used for mean response time targets for percentile targets as
well.

The effectiveness of the above approach for percentile
targets hinges on the assumption that our DBMS behaves
similarly to a PS server with respect to the linear scaling of
percentile response times as a function of MPL. Our exper-
imental results in Figure 5 show that this assumption is in
fact valid for our workloads running under IBM DB2. Al-
though not shown, we find that the same result holds for
PostgreSQL. We add a disclaimer that the above algorithm
works best when all classes have a similar mix of trans-
actions. This was not a necessary condition on all of our

2This is based on the queueing-theoretic result that under M/G/1/PS,
for a given transaction, its expected response time is proportional to both
the number of transactions at the server and its service demand.

150 200 250 300
0

5

10

15

20

Load (Number of clients)

M
ea

n
re

sp
on

se
 tim

e
(s

ec
)

Best effort
Target Resp 1.3 sec
Target Resp 0.6 sec

150 200 250 300
0

5

10

15

Load (Number of clients)

M
ea

n
re

sp
on

se
 tim

e
(s

ec
)

Target Resp 2.4 sec
Target Resp 1.3 sec
Target Resp 0.6 sec

Figure 6. The graphs show the response times for three classes and workload WIO with increasing load (i.e. increas-
ing number of clients).

previous QoS algorithms, and is needed only here. If that
condition is not met, the control loop that adjusts the MPL
needs to be more complex.

6.2. Adapting to load fluctuations

The results in Sections 4 and 5 have assumed a system
in steady state with a stable arrival process. During the day,
however, the system load may fluctuate. Assuming that the
system is never in overload, there should be no need to drop
transactions, but the load might rise too high for the current
set of targets to be feasible, i.e.

T > τoverall

The EQMS offers two approaches for handling this case.
The first approach assumes it is more important for some

classes to stay within their target than for others. The DBA
indicates this by specifying a priority for each class, in ad-
dition to specifying per-class response time targets. These
priorities only become effective when load conditions make
the per-class targets no longer feasible (i.e. T > τoverall).
We detect this situation by checking whether there are any
“late” transactions in the external queue, i.e., transactions
that have already missed their dispatch target. If tcurr is the
current time and td is the transaction’s dispatch target time,
then late transactions as those for whom

tcurr > td

Whenever we have to choose a new transaction for execu-
tion in the DBMS from the external queue, we first check
whether there are transactions that are late. If there are, we
pick the transaction with the highest priority among the late
transactions. If there are no late transactions in the queue,
we schedule as usual in the order of the dispatch targets.

An alternative approach is to carry the burden of the ex-
cess load equally among all the classes. The burden will be
proportionately shared between the classes in the following

way: For each transaction we compute its lateness, `, as

` = tcurr − td

When scheduling late transactions, we consider the relative
lateness, `rel, of the transaction normalized by its target re-
sponse time τ . Relative lateness is defined as

`rel = `/τ = (tcurr − td)/τ

Whenever we choose a transaction for execution in the
DBMS from the external queue, we first check whether
there are transactions that are late. If there are late transac-
tions in the queue, we pick the transaction with the largest
relative lateness, `rel, for execution. If there are no late
transactions in the queue, we schedule as usual solely based
on the dispatch targets.

We implement both approaches for dealing with fluctuat-
ing load described above and experimentally evaluate them
on the workload corresponding to the second row in Table 3.
In the experiments we vary the load by increasing the num-
ber of clients from 100 to 300. The results are shown in
Figure 6. In the first approach, the targets for the first two
classes are maintained despite the load increase, while only
the third (best effort) class suffers. These results for IBM
DB2 are shown in Figure 6 (left). Observe that the first two
classes have nearly constant mean response times across all
loads. In the second approach, we share the burden across
all the classes. The results are shown in Figure 6 (right),
for the case where the third class has target response time
2.4 seconds. In this figure, the mean response times of all
classes increase by the same factor as load increases.

7. Conclusion

Many time-sensitive applications rely on a DBMS back-
end. From the perspective of these applications, the DBMS
is a mysterious black box: Transactions are sent into the
DBMS and may take either a very short time (msec) or a

very long time (tens of secs), depending largely on the other
transactions concurrently in the DBMS. The application has
no control over which transactions will take long and which
will take a short time.

This paper provides mechanisms and algorithms for con-
trolling the time different transactions spend at a database
backend. We provide methods for creating different QoS
classes and for meeting specified per-class QoS targets.
QoS targets can be mean response time targets, percentile
targets, variability targets, or a combinations of targets.

Our solution is an external scheduling mechanism which
limits the number of concurrent transactions (MPL) within
the DBMS, holding all remaining transactions in an exter-
nal queue. We find that for our workloads there is a good
range of MPL values which allows us to achieve class tar-
gets without hurting overall system performance with re-
spect to throughput and overall mean response time.

The algorithms needed to achieve the QoS targets are
non-obvious and rely on queueing theory results and analy-
ses. We demonstrate the effectiveness of the algorithms on
several benchmark based workloads, including CPU bound,
I/O bound and lock bound workloads, in situations with
multiple classes and multiple targets per class. However,
it is desirable to experiment with other real workloads to
further validate the algorithms.

Our external scheduling approach is extremely portable,
not just to different DBMS, but also to other types of back-
end servers. The queuing theoretic arguments in this paper
do not depend on the server being a DBMS and apply to
general systems as well.

References

[1] R. K. Abbott and H. Garcia-Molina. Scheduling real-time
transactions. In Proceedings of SIGMOD, pages 71–81,
1988.

[2] R. K. Abbott and H. Garcia-Molina. Scheduling real-time
transactions with disk resident data. In Proceedings of Very
Large Database Conference, pages 385–396, 1989.

[3] R. K. Abbott and H. Garcia-Molina. Scheduling I/O requests
with deadlines: A performance evaluation. In IEEE Real-
Time Systems Symposium, pages 113–125, 1990.

[4] R. K. Abbott and H. Garcia-Molina. Scheduling real-time
transactions: A performance evaluation. Transactions on
Database Systems, 17(3):513–560, 1992.

[5] A. Bouch and M. Sasse. It ain’t what you charge it’s the
way that you do it: A user perspective of network QoS and
pricing. In Proceedings of IM’99, 1999.

[6] K. P. Brown, M. J. Carey, and M. Livny. Managing memory
to meet multiclass workload response time goals. In Pro-
ceedings of Very Large Database Conference, pages 328–
341, 1993.

[7] K. P. Brown, M. J. Carey, and M. Livny. Goal-oriented
buffer management revisited. In Proceedings of the 1994
ACM SIGMOD Conference on Management of Data, pages
353–346, 1996.

[8] K. P. Brown, M. Mehta, M. J. Carey, and M. Livny. Towards
Automated Performance Tuning For Complex Workloads.
In Proceedings of the Twentieth International Conference on
Very Large Databases, pages 72–84, Santiago, Chile, 1994.

[9] T. Cain, M. Martin, T. Heil, E. Weglarz, and
T. Bezenek. Java TPC-W implementation.
http://www.ece.wisc.edu/ pharm/tpcw.shtml, 2000.

[10] M. J. Carey, R. Jauhari, and M. Livny. Priority in DBMS
resource scheduling. In Proceedings of Very Large Database
Conference, pages 397–410, 1989.

[11] B. Dellart. How tolerable is delay? Consumers evaluation
of internet web sites after waiting. Journal of Interactive
Marketing, 13:41–54, 1999.

[12] J. Huang, J. Stankovic, K. Ramamritham, and D. F. Towsley.
On using priority inheritance in real-time databases. In IEEE
Real-Time Systems Symposium, pages 210–221, 1991.

[13] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. In Proceedings of ACM
SIGMETRICS ’04, pages 37 – 48, 2004.

[14] K. D. Kang, S. H. Son, and J. A. Stankovic. Service dif-
ferentiation in real-time main memory databases. In Fifth
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, 29 2002.

[15] A. Kraiss, F. Schoen, G. Weikum, and U. Deppisch. With
heart towards response time guarantees for message-based
e-services. In VIII. Conference on Extending Database
Technology (EDBT 2002), pages 732–735, 2002.

[16] I. T. Lab. IBM DB2 universal database administration guide
version 5. Document Number S10J-8157-00, 1997.

[17] J. Little. A proof of the theorem L = λW . Operations
Research, 9:383 – 387, 1961.

[18] D. T. McWherter, B. Schroeder, A. Ailamaki, and
M. Harchol-Balter. Priority mechanisms for OLTP and
transactional web applications. In 20th IEEE Conference
on Data Engineering (ICDE’2004), 2004.

[19] PostgreSQL. http://www.postgresql.org.
[20] A. Rhee, S. Chatterjee, and T. Lahiri. The Oracle Database

Resource Manager: Scheduling CPU resources at the appli-
cation. High Performance Transaction Systems Workshop,
2001.

[21] B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum.
How to determine a good multi-programming level for ex-
ternal scheduling. In submission to ICDE ’06 (Paper 597).

[22] M. Sinnwell and A. Koenig. Managing distributed memory
to meet multiclass workload response time goals. In 15th
IEEE Conference on Data Engineering (ICDE’99), 1997.

[23] Transaction Processing Performance Council. TPC bench-
mark C. Number Revision 5.1.0, December 2002.

[24] Transaction Processing Performance Council. TPC bench-
mark W (web commerce). Number Revision 1.8, February
2002.

[25] M. Zhou and L. Zhou. How does waiting duration informa-
tion influcence customers’ reactions to waiting for services.
Journal of Applied Social Psychology, 26:1702–1717, 1996.

