
PETRANET: a Power Efficient Transaction management technique for
Real-time mobile Ad-hoc NETwork databases

Le Gruenwald Percy Bernedo Prasanna Padmanabhan

University of Oklahoma, Norman, OK 73019, USA
{ggruenwald, percy bernedo, prasannap}@ou.edu

1. Introduction

A Mobile Ad-Hoc Network (MANET) is a collection of
wireless autonomous mobile nodes with no fixed infrastruc-
ture. Since no fixed infrastructure is required, MANET
fits well in military operations, emergency disaster res-
cue, and mobile ad-hoc voting. There are many issues that
have to be addressed while designing a technique for man-
aging real-time database transactions in MANET: 1) en-
ergy limitations; 2) client and server mobility; 3) real-time
constraints imposed on transactions; and 4) frequent dis-
connection and network partitioning. We have designed
PETRANET1: a Power-Efficient Transaction management
technique for Real-time mobile Ad-hoc NETwork databases
that addresses the above specified issues. In this paper, we
present a system prototype that we have developed to im-
plement PETRANET for a military database application.

2. PETRANET design and implementation

2.1. Real Time Transaction Types

There are two types of real time transactions in PE-
TRANET: firm and soft. Firm transactions have one dead-
line and are aborted if they have missed their deadlines.
Soft transactions have two deadlines; they continue execu-
tion with a lower priority when their first deadlines have ex-
pired and are finally aborted when their second deadlines
have passed.

2.2. Power consumption and modes of operations

We have considered three power modes of operation of a
mobile node. It is important to note that these modes of op-
eration are hardware specific; nevertheless they have some

1 This material is based upon work supported by (while serving at)
the National Science Foundation (NSF) and the NSF Grant No. IIS-
0312746. Any opinion, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessar-
ily reflect the views of the NSF

common characteristics: 1) Active mode - Wireless Card
can transmit and receive packets; CPU is in a completely
functional state; 2) Doze mode - Wireless Card can trans-
mit and receive packets; CPU is working at a lower compu-
tational rate; 3) Standby mode - Wireless Card can neither
transmit nor receive packets; all the circuits of the CPU ex-
cept timer and RAM are switched OFF.

2.3. Client Side

The work flow of transactions at the client side is as fol-
lows: the user on a client mobile node can set deadline(s)
and select a transaction from a set of predefined transac-
tions. If the transaction is firm, the client will switch to
active mode to reduce the chance that the transaction will
miss its deadline; otherwise it will switch to doze mode.
The client then needs to send the transaction to an appropri-
ate server (called the coordinator) for processing. To choose
this server, it considers the location, remaining energy and
transaction workload of each server [3]. Firm transactions
are sent to the nearest server that has the least workload,
while soft transactions are forwarded to the server with the
highest remaining energy. The goal is to reduce the num-
ber of transaction aborts while maintaining a balance of en-
ergy consumption distribution among mobile hosts.

2.4. Server Side

2.4.1. Transaction Distribution. When a transaction is
submitted to a server (coordinator), its operations are parsed
to determine which database items are needed. Then a
global schema stored on each server is used to determine
whether the operation can be processed locally or not and
in which servers reside the needed database items. At this
point, if we are dealing with a distributed transaction, we
intercept the operation and then we store the results in tem-
porary tables and replace the distributed operation by a lo-
cal one that points to the just created local table(s).

2.4.2. Power State Switching. The server examines its
transaction’s queue every time an operation is ready to be



executed. If all the transactions are soft the server will
switch to doze mode to save energy, otherwise if there is
at least one firm transaction, the server will switch to ac-
tive mode (if its remaining energy allows it 2).

2.4.3. Real Time Scheduler. Currently PETRANET does
not modify the operating system scheduler, still it sets dif-
ferent priorities for the incoming transactions [5]. The real
time scheduler sets priorities based on the transactions’
slack time. The transaction with the smallest slack time will
have the highest priority while all the others will have a
waiting priority3. Each client’s connection is served by one
thread with a round robin scheduling policy. Each thread
can hold only one transaction at a time; this is why setting
the thread’s priority would affect directly the scheduling of
the transaction.

2.4.4. Commit Protocol. We use the MySql XA interface
(X OPEN Distributed Transaction Processing (DTP)) which
provides a mechanism to put a transaction into a PREPARE
state before its actual commit [4]. Currently, we assume im-
mediate constraint check; so we PREPARE for committing
the transaction at the end of each of its operations. There-
fore at commit time we only need to perform a One Phase
Commit(1PC) protocol [6],[7].

2.4.5. Result Submission. After a transaction’s coordina-
tor database server gets back the acknowledgments or par-
tial results from the participating servers, it sends the results
to the client. Due to disconnections and network partition-
ing, the results might not always be delivered in the first at-
tempt. The server, instead of re-executing the whole trans-
action, will use the temporary table(s), where the partial re-
sults were stored, to retrieve the results. The temporary ta-
ble(s) is/are kept as long as the transaction has slack time re-
maining. The coordinator names these tables using a combi-
nation of the transaction ids and the client’s IP addresses; so
it can recognize when it needs a resubmission. After a suc-
cessful result delivery, the temporary tables are dismissed.

3. Testing Application

We have worked with The University of Oklahoma’s
Military Reserve Officer Training Corps (OU Military
ROTC) to gather the requirements for a military data-
base application. Its database tables have been created and
populated with one million rows which are stored with par-
tial replication in each server.

2 The operating system will not allow to switch to the highest power
consuming mode when the remaining energy is less than 5 percent.

3 The priority is so low that the operating system scheduler will not give
them quanta

4. Demonstration of the PETRANET

During the demonstration, a set of 10 PDAs and 5 lap-
tops, equipped with a GPS and wireless card, will be pro-
vided. The conference participants will be able to interact
with the servers through PDAs. They will be able to walk
into different rooms and stay connected due to the multi-hop
wireless communication; disconnection will occur when a
node is out of range of all the other nodes. The clients’
front end will allow the conference participants to choose a
transaction from a set of predefined transactions, set (man-
ually) a deadline and transaction type (firm or soft) for it
unless it has a predefined deadline/type, submit it for exe-
cution and wait for the results. The conference participants
will observe how the PDAs change their power modes to
save energy after submitting the transaction and while wait-
ing for the results.

5. Conclusions and future research

We have successfully implemented and tested PE-
TRANET using the OU military ROTC database. We
are currently working on energy-efficient and real-time
data caching, commit and concurrency control proto-
cols for MANET databases. We will also work with the
Norman Fire Department to gather its application require-
ments and will implement them in our prototype. We will
also investigate additional MANET database system archi-
tectures.

References

[1] D. Barbara, Mobile Computing and Databases - A Survey,
IEEE Transactions on Knowledge and Data Engineering,
pp.108-117, 1999.

[2] [Hong] X. Hong, M. Gerla, G. Pei, and C. Chiang, A
group mobility model for ad hoc wireless networks, in Proc.
ACM/IEEE MSWiM, 1999.

[3] Chuo Ning Lau, Handling mobile host disconnection, data
caching, replication in managing real-time transactions for
mobile ad-hoc network databases, Master’s Thesis, The Uni-
versity of Oklahoma, 2002.

[4] M. Matthews, Distributed Transaction Processing with
MySQL XA, MySQL Users Conference, 2005.

[5] B. Adelberg, H. Garcia-Molina, B. Gao, Emulating Soft Real-
Time Scheduling Using Traditional Operating System Sched-
ulers, in Proc. IEEE RT Systems Symposium, pp 292-298,
1994.

[6] C. Bobineau and P. Pucheral and M. Abdallah, A Unilat-
eral Commit Protocol for Mobile and Disconnected Comput-
ing, Technical Report, PRiSM Laboratory, University of Ver-
sailles, France, March 2000.

[7] M, Abdallah, R. Guerraoui, P. Pucheral ,One-Phase Commit:
Does it make Sense?, ICPADS, pp. 182-192, 1998.


	Introduction
	PETRANET design and implementation
	Real Time Transaction Types
	Power consumption and modes of operations
	Client Side
	Server Side
	Transaction Distribution.
	Power State Switching.
	Real Time Scheduler.
	Commit Protocol.
	Result Submission.


	Testing Application
	Demonstration of the PETRANET
	Conclusions and future research

