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Abstract

Many real world applications involve not just a single
dataset, but a view of multiple datasets. These datasets may
be collected from different sources and/or at different time in-
stances. In such scenarios, comparing patterns or features
from different datasets and understanding their relationships
can be an extremely important part of the KDD process. This
paper considers the problem of optimizing a mining task over
multiple datasets, when it has been expressed using a high-
level interface. Specifically, we make the following contri-
butions: 1) We present an SQL-based mechanism for query-
ing frequent patterns across multiple datasets, and establish
an algebra for these queries. 2) We develop a systematic
method for enumerating query plans and present several al-
gorithms for finding optimized query plan which reduce exe-
cution costs. 3) We evaluate our algorithms on real and syn-
thetic datasets, and show up to an order of magnitude perfor-
mance improvements.

1 Introduction
Within the last decade, data mining has emerged as an im-

portant component of databases and information systems. A
large body of research exists on algorithms for a variety of
data mining tasks, targeting a variety of applications, data
types, and execution environments.

It has been well recognized that data mining is an inter-
active and iterative process, i.e., a data miner cannot expect
to get interesting patterns and knowledge by a single execu-
tion of one algorithm. In order to support this process, one
of the long-term goals of data mining research has been to
build a Knowledge Discovery and Data Mining System (KD-
DMS) [16, 19]. The vision is that such a system will provide
an integrated and user-friendly environment for efficient exe-
cution of data mining tasks or queries. Along this line, much
research has been conducted to provide database support for
mining operations. This includes the work on query language
extensions [14, 18, 25, 36] and implementing mining algo-
rithms in a database system [9, 30]. Logic and algebra based
methods have also been proposed to model the mining pro-

cess [7, 13, 20]. The subfield of constraint association mining
allows mining of interesting association rules by taking of a
variety of constraint conditions as input [6, 22, 27, 31].

In the above research projects, the focus has typically been
on mining a single dataset. However, in many situations, such
as in a data warehouse, the user usually has a view of multi-
ple datasets collected from different sources. In such scenar-
ios, comparing the patterns from different datasets and un-
derstanding their relationships can be an extremely important
part of the KDD process. This, however, requires support for
complex queries on multiple datasets in a KDDMS.

Such support involves significant and new optimization
challenges. Suppose a user needs to find patterns that fre-
quent with a certain support in both � and � . While this can
be answered by taking intersection of the results from both

� and � , this is likely to be very expensive. Instead, we
can compute patterns frequent in either of the two datasets,
and then simply find which of these are frequent in the other
dataset. However, this leads to two different evaluation plans,
corresponding to using the dataset � and � , respectively, for
the initial evaluation. The two evaluation plans can have dif-
ferent costs, depending upon the nature of the datasets � and

� . Furthermore, as the number of datasets and the complex-
ity of the query condition increases, the number of possible
evaluation plans can also grow.

Thus, there is a need for techniques for enumerating dif-
ferent query plans and choosing the one with the least cost,
similar to what have been developed for traditional database
queries [8]. However, compared with query optimization in
traditional databases, the problem we consider is quite differ-
ent in the following ways. First, the basic operators in our
algebra are mining operators, which are more complex than
the relational algebra operations. Second, the search space of
query plans can be very large in our case. Third, reasonable
cost models are not available for a given mining operator.

In this paper, we start with a simple mechanism for speci-
fying mining queries across multiple datasets. Then, by rep-
resenting these queries through an algebra, and developing a
set of transformation and optimization techniques, we estab-
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lish an approach for optimizing these queries. Our work is
specifically in the context of frequent pattern mining. Algo-
rithms for frequent pattern mining have formed the basis for a
number of other mining problems, including association min-
ing, correlations mining, and mining sequential and emerging
patterns [15].

To summarize, this paper makes the following contribu-
tions:

1. We present an SQL based mechanism and establish an
algebra for querying frequent patterns across multiple
datasets.

2. We introduce several new operators and develop a num-
ber of transformations on this algebra to enable aggres-
sive optimizations.

3. We present several heuristic algorithms for finding effi-
cient query plans.

4. We evaluate our query optimization techniques on both
real and synthetic datasets, and demonstrate up to an or-
der of magnitude performance gains as compared to the
naive execution.

2 Motivating Examples
To further motivate and facilitate our study, we consider dif-

ferent scenarios and list many examples of the kind of queries
our framework targets.
Mining the Data Warehouse for a Nation-wide Store: Con-
sider a store that has three branches, in New Jersey, New
York, and California, respectively. Each of them maintains
a database with last one week’s retail transactions. To under-
stand how the geographical factors impact shopping patterns,
queries of the following type are likely to be asked:
Q1: Find the itemsets that are frequent with support level

0.1% in any of the stores.
Q2: Find the itemsets that are frequent with support level

0.1% in each store.
Q3: Find the itemsets that are frequent with support level

0.05% in both the stores on east coast, but are very infre-
quent (support less than 0.01%) in the west coast store.

Finding Signature Itemsets for Network Intrusion: In a
signature detection system, frequent itemsets can serve as the
patterns to signal well-known attacks [28]. Suppose a tcp-
dump dataset contains the TCP packet information of several
different network intrusion attacks. We can split the avail-
able data into several datasets, with one dataset correspond-
ing to each intrusion type and a normal dataset corresponding
to the situation when no intrusion is occurring. Queries of the
following type have been used to capture the signature pat-
terns [28]:
Q4: Find the itemsets that are frequent with a support level

80% in either of the intrusion datasets, but are very in-
frequent (support less than 50%) in the normal dataset.

Q5: Find the itemsets that are frequent with a support level
70% in each of the intrusion datasets, but are very in-
frequent (support less than 60%) in the normal dataset.

Dataset ��� Dataset ���
TransID Items TransID Items

1 � 1, 2, 5 � 1 � 1, 2, 4, 5 �
2 � 2, 4 � 2 � 2, 3, 5 �
3 � 1, 2, 5 � 3 � 1, 2, 5 �
4 � 1, 3, 4 � 4 � 1, 2, 3 �
5 � 2, 3, 4 � 5 � 1, 3 �
6 � 1, 3,4 � 6 � 3, 4 �
7 � 1, 2 �
8 � 1, 2, 3, 4, 5 �

Table 1. Datasets ��� and �
	
Q6: Find the itemsets that are frequent with a support level

85% in one of the intrusion datasets, but are very infre-
quent (support less than 65%) in all other datasets.

Besides frequent items, mining other frequent patterns, in-
cluding subgraphs, subtrees, or topological patterns, is also
very useful in many domains. Examples of domain where
such patterns have been shown to be useful are study of chem-
ical compounds, protein tertiary structure analysis, motifs dis-
covery, among others [24, 17]. Again, comparing patterns
across multiple datasets is important in each of these areas.
For example, a biologist may be interested in finding se-
quences that are frequent in a human gene, but infrequent in
chicken gene, and/or, the sequences are frequent in both the
species.

In order to simplify our discussion, we will focus on fre-
quent itemset mining tasks only in the rest of this paper. Be-
cause the down-closure property is applicable to other pat-
terns as well, our work can be easily adapted to the tasks in-
volving such patterns.

3 SQL Extensions and Algebra for Mining
Across Multiple Datasets

In this section, we first introduce an SQL based mechanism
for querying frequent itemsets across multiple datasets (Sub-
section 3.1). Then, we establish an algebra for expressing the
information required to answer such a mining query (Sub-
section 3.2). Finally, we discuss the mapping from a mining
query in its SQL format to an algebra expression (Subsec-
tion 3.3).
3.1 SQL Extensions

Let � � �
� � 	���������� �
��� be the set of datasets we are target-
ing. Each of these comprises transactions, which are set of
items. The datasets are also homogeneous, i.e, an item has an
identical name across different datasets. Let ������� be the set
of all the possible items in all datasets.

We define the following schema,��� ���
 !��"$#&%(')� � ��� � �
	 ��������� � �+*
For a table

�
of this schema, the column with attribute

�-, �
stores all possible itemsets, i.e, the power-set of �.����� . The
column with attribute

�-, ��/ stores the frequency of the item-
sets in the dataset �
/ . For example, consider two transaction
datasets � � and � 	 , as shown in Table 1. The set of distinct
items in the two datasets, ������� , is �10 �324�657�987�;: � . Table 2 con-
tains a portion of the

�
table for the datasets �+� and �<	 .
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� � � ���
� 1 � 6/8 4/6� 2 � 6/8 4/6� 3 � 4/8 4/6� 4 � 6/8 2/6� 5 � 3/8 3/6� 1, 2 � 4/8 3/6� 1, 3 � 3/8 2/6

: : :� 1, 2, 3, 4, 5 � 1/8 0

Table 2.
�

Table for the Datasets ��� and �
	
Such a table can only be used as a virtual table or a logi-

cal view, as the total number of itemsets is likely to be too
large for the table

�
to be materialized and stored. In our

SQL extensions, a frequent itemset mining task on multiple
datasets is expressed as an SQL query to partially materialize
this table. The following query

� � is an example.
Query � � :
SELECT ��� ���	��� 
��	��� �
����� ���	��� �
FROM Frequency( ����
��	�������	� ) �
WHERE ( ��� 
�������� AND ��� ��������� AND ��� ������� �! )

OR ( ��� �"������� AND ��� �#������� AND
( �$� 
%����� �! OR ��� ������� �& ))

Here, we want to find the itemsets that are either frequent
with support level ' , 0 in both � and � , and frequent in (
with support level ' , ' : , or frequent (with support level ' , 0 )
in both ) and ( , and also frequent in either � or � (with
support level ' , ' : ).

3.2 Basic Algebra for Queries
Our algebra contains only one mining operator * � and two

operations, intersection ( + ) and union ( , ). We begin with the
definition of a view of the

�
table. A view of the

�
table is

a table with a subset of the rows and columns of the
�

table,
which always contains the column of the attributes � , and the
exact frequency of an itemset can be replaced by a Null value
(denoted as - ).

Given this, we define the basic mining operator * � to gen-
erate above simple views (containing only two columns) of

�
table.

The frequent itemset mining operator * � ' ��. �0/ * com-
putes the frequent itemset from a single dataset ��. with sup-
port level / . It returns a two-column table, where the first
column contains itemsets in ��. which have the support level
/ , and the second column contains their corresponding fre-
quency in the dataset � . .

Table 3 shows the results of * � operator on the datasets ���
and � 	 (shown in Table 1) with support level ' , : and ' , 8 ,
respectively.

Next, we define the two operations that can combine the
views of the

�
table. Let

� � and
� 	 be two views of the

�
table. Let

��1� and
��1	 be the projections of

� � and
� 	 on the

attribute � .

Intersection (
� � + � 	 ) returns a table whose first column con-

tains the itemsets appearing in the first columns of both
� �

and
� 	 , and other columns contain frequency information for

243�5 � �7698!: ;=< 2>3�5 ���=6?8!: @A<
I ��� I ���
� 1 � 6/8 � 1 � 4/6� 2 � 6/8 � 2 � 4/6� 3 � 4/8 � 3 � 4/6� 4 � 6/8 � 5 � 3/6� 1,2 � 4/8 � 1,2 � 3/6� 3,4 � 4/8

Table 3. Basic Operators on
�

Table
2>3�5 ���7698!: ;=<CB 243�5 � �A698!: @A< 2>3�5 ���D6?8!: ;=<CE 243�5 � �A698!: @A<� ��� ��� � ��� ���
� 1 � 6/8 4/6 � 1 � 6/8 4/6� 2 � 6/8 4/6 � 2 � 6/8 4/6� 3 � 4/8 4/6 � 3 � 4/8 4/6� 1,2 � 4/8 3/6 � 4 � 6/8 F� 5 � F 3/6� 1,2 � 4/8 3/6� 3,4 � 4/8 F
Table 4. Intersection and Union Operation

these itemsets in the datasets appearing in
� � and

� 	 . For-
mally,

� �G+ � 	 is defined as
H �JI�LK �JI�4M�NO I � � N O I � �

Note that P Q is the standard database join operation (over the
attribute � ), with one important difference. Any column that
is common between

� � and
� 	 is merged. In merging the

columns, an actual count is preferred over a - (Null) value.
Union (

� � , � 	 ) returns a table whose first column contains
the itemsets appearing in the first columns of either

� � or� 	 , and other columns contain the frequency of these itemsets
in the datasets appearing in

� � or
� 	 . Formally,

� �J, � 	 is
defined as H �JI�JR �JI�4MLSTVU I � � STVU I � �
Note that we take an outerjoin [33]. Null is inserted for en-

tries for which values are not available from either
� � or

� 	 .
Note that the results of the two operations are still views of

the
�

table. Table 4 provides examples for each of these two
operations.

Based upon the definitions of the above operations, we can
easily prove the following:

Lemma 1 The operations, intersection '?+ * and union '�, * ,
satisfy the associative, commutative, and distributive proper-
ties.

3.3 Mapping from SQL Queries to Basic Algebra
In the following, we discuss how a restricted class of queries

can be directly modeled using the above operator and opera-
tions. This class of queries involves constraint conditions (the
WHERE clauses) which do not contain any negative predi-
cates, i.e., a condition which states that support in a certain
dataset is below a specified threshold. We call this class of
queries positive queries. In Section 6, we will discuss how
a more general class of mining queries, which could involve
negative conditions as well, can be expressed by this algebra
as well.
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Let us consider a positive query � with the condition ) .
Clearly, the condition ) can be restated in the DNF form,
with conjunctive clauses ) ��� ,�,�, � )�� . Formally,

��� � ��� � �7� � ��� � �
	��
��	 ��� �7�7� � ��	���� ���������
where, � / .�� �-, � / .�� / is a positive predicate, i.e., a con-

dition which states that support in a certain dataset ( � / . ) is
greater than or equal to a specified threshold ( / ). The corre-
sponding basic algebra expression is as follows. We replace� / . by the operator * � ' � / . �0/ * . We can represent the query
by

��� � �"!�#
$�%&%&%'$
�"!)(
where, in each

�+*�,
, the corresponding * � operator is con-

nected using intersection operations. Therefore, for query� � , its corresponding basic algebra expression
��- # is as fol-

lows. H/. � H 
�� ��� � M�0 . � H ���	��� � M M�0 . � H � ����� �& M21 � �
$ H/. � H 
��	��� �! M�0 . � H ���?����� M�0 . � H � �	����� M M21 � �
$ H/. � H ���	��� ���  M�0 . � H ���?����� M�0 . � H � �	����� M M21 ��3

4 Query Optimization Overview
This section gives an overview of the challenges in query

optimization. The first important observation is that the costs
of the mining operators, such as * � , are typically much
higher than those of union and intersection operations. There-
fore, we need to focus on mining operators in our optimiza-
tion process.

Let us consider the naive evaluation of the basic algebra ex-
pression

�4- # for the query
� � stated in the previous section.

We need to invoke the * � operator 5 times, including mining
frequent itemsets on datasets � , � , and ( with two different
supports ' , 0 and ' , ' : , and on dataset ) with support ' , 0 . The
important observation here is that in such a naive evaluation, a
large fraction of the computation is either repetitive or unnec-
essary. By repetitive computation, we imply finding the fre-
quency of an itemset on a dataset more than once, because of
different mining operators. For example, the computation of
* � ' � � ' , 0 * is repetitive. This is because * � ' � � ' , ' : * is also
evaluated and * � ' � � ' , 0 *76 * � ' � � ' , ' : * . By unnecessary
computation, we imply finding the frequency of the itemsets
which do not appear in the generated view of the basic alge-
bra expression. For example, the computation of frequency
for each itemset in the set * �
1 ' � � ' , 0 *
8 ��1- # on the dataset

� is unnecessary.
4.1 Challenges in Mining Query Optimization

In view of the above example, the main challenges in op-
timizing evaluation of a given query can be summarized as
follows.

New Mining Operators: As discussed above, to reduce the
cost of evaluating a basic algebra expression, we need to re-
duce repetitive and unnecessary computations. In particular,
in the basic algebra, there is no easy way to remove unnec-
essary computations. Therefore, new mining operators are
needed to address this problem. Particularly, we will use con-
straint and group mining operators in our work.

Query Plan Enumeration: Assume we have new mining op-
erators. Now, the problem is how to use them in an effective
manner. For a given complicated mining query, a number of
different sequences of mining operators can be used to eval-
uate this query. Clearly, if we can enumerate the different
query plans, we can use a cost model to find the one with
the least cost. However, enumerating query plans for a given
mining query is a very different problem than the one for tra-
ditional database queries.
Algorithms for Finding Optimized Query Plans: The chal-
lenge of finding optimized query plans is two-folds. On one
hand, the search space of possible query plans can be very
large for a complicated query. Therefore, even if the costs
associated with the different query plans are known, we still
need efficient algorithms to find the one with the least cost.
At the same time, the cost of a query plan is very hard to es-
timate. Though this cost can be stated as the sum of the costs
for each individual mining operator in the plan, the cost of a
mining operator can depend on the mining operators preced-
ing it. Therefore, precise cost models are almost impossible,
and we find to find good heuristics.

In the following two subsections, we introduce the tools we
use to address the problem of repetitive and unnecessary com-
putations. These are, the new mining operators, and using
containing relations.
4.2 New Operators

To reduce the unnecessary computation, two new operators,
) � and 9 � , are introduced.
1. Frequent itemset mining operator with constraints
) � ' � .��0/ �;: * finds the itemsets that are frequent in the
dataset �J. with support / and also appears in the set : . : is
a set of itemsets that satisfies the down-closure property, i.e.,
if an itemset is frequent, then all its subsets are also frequent.
This operator also reports the frequency of these itemsets in

�L. . Formally, ) � ' �J. �D/��<: * computes the following view
of the

�
table:

: + * � ' �L. �D/ *
The typical scenario where this operator helps remove unnec-
essary computation is as follows. Suppose the frequent item-
set operator intersects with some view of the

�
table, such

that the projection of this view on the attribute � is : . This
operator pushes the set : into the frequent itemset generation
procedure, i.e., : serves as the search space for the frequent
itemset generation. Thus, the unnecessary computation for
the itemsets that are not in : can be saved.
2. Group frequent itemset mining operator 9 � '>= * , where
=?� �A@ ��� �D/ �CB ������� � @ �ED �0/ DFB�� , finds the itemsets that
are frequent in each dataset � / with support / / , and reports
their frequency in each of these datasets. Formally, 9 � '/= *
computes the following view of the

�
table:

* � ' � � �D/�� * + ����� + * � ' � D7�D/GD *
The idea behind this operator is as follows. The frequency
count for all datasets in = is carried out in parallel. Thus, all
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supersets of an itemset that is determined to be infrequent in
any of the datasets is pruned.

We use the following example to illustrate the use of these
operators. Consider the following view of the

�
table (we

need to find the itemsets with support ' , 0 that are frequent in
� and are also either frequent in � or in ) ),

H/. � H 
�� ��� � M�0 . � H ��� ��� � M M $ H/. � H 
�� ����� M�0 . � H ���	��� � M M
Applying the ) � operator, we can evaluate * � ' � � ' , 0 * first,
and then intersect it with

H �L� H ��� ��� � � . �JI H 
�� ��� � M M $ �L� H ���?�����!� . �JI H 
��?����� M M M
Here, we first find the frequent itemsets in � , and then among
them, find those are either frequent in � or in ) . Compared
with the naive method where we find the frequent itemsets
on each dataset and them perform intersection, the cost of
finding frequent itemsets in � and ) but infrequent in �
is saved. Formally, this evaluation reduces the unnecessary
costs of * � 1 ' � � ' , 0 *
8 '9* � ' � � ' , 0 * + * � ' � � ' , 0 *6* 1 on the
dataset � and * ��1 '9) � ' , 0 *�8 '�* � ' � � ' , 0 * +�* � '9) � ' , 0 *9* 1
on the dataset ) . However, the cost of finding itemsets
which are frequent in � but infrequent in both � and )
(( * ��1 ' � � ' , 0 *�8 '�* � ' � � ' , 0 * , '9* � '�) � ' , 0 *6* 1 ) is still un-
necessary.

Applying the 9 � operator, this view can be evaluated as� � H���� 
�� �������J� � ���	��� ���	� M $ � � H��
� 
�� �������J� � ���	�������	� M
Here, we first find the itemsets which are frequent in both �

and � , and then we find the itemsets which are frequent in
both � and ) . No unnecessary computation is involved now.
However, the itemsets that are frequent in � , but also frequent
in both � and ) , are generated twice. Specifically, the com-
putation of the itemsets in the set '�* � ' � � ' , 0 * + * � ' � � ' , 0 * +
* � '9) � ' , 0 *9* 1 for dataset � has now become repetitive.
4.3 Containing Relation

An important tool to remove repetitive computation is based
on the containing relation for the sets of frequent itemsets.
The containing relation is as follows: �
� / , * � ' ��. � � *
contains all the frequent itemsets in * � ' ��. �0/ * . Therefore,
if the first one is available, invocation of the second can be
avoided. Instead, a relatively inexpensive selection operator,
denoted as � , can be applied. Formally, for ��� / , we have,. � H 
��&��� M ����������� H/. � H 
��&��� M M
This containing relations can be also extended to the our two
new operators, ) � and 9 � .

Let us revisit the query
� � . In view of this relation, at most

one invocation of the mining operator * � on each dataset
is required. Thus, we only need four invocations of the * �
operator, i.e., mining frequent itemsets on datasets � , � , and
( with support ' , ' : , and on dataset ) with support ' , 0 . This
method, which removes all repetitive computation due to * �
operator, but does not use ) � and 9 � operators, is referred
to as the Optimization RR (Remove Repetition). It should
be noted that though the repetitive computation due to * �
operator is removed here, much unnecessary computation is
still involved.

4.4 Overview of Query Plan Generation
The discussion in the previous two subsections focused on

removing unnecessary and repetitive computations, respec-
tively. Each was considered independently. In generating an
efficient plan for evaluating a query, it is important to con-
sider both. As our example has shown, removing unnecessary
computation can introduce repetitive computation, and vice-
versa. Clearly, this makes query optimization a challenging
task. In many cases, removing both unnecessary and repeti-
tive computation for a query evaluation is not possible.

In the next two sections, we present a systematic approach
for finding efficient query plans. Our approach includes the
following three key elements:

M table Formulation: The basic algebra expression of a
given query is encoded into an  table. In the  table, each
column represents a conjunctive-clause in the condition, and
each row represents a dataset. Each cell in the table contains
a predicate that appears in the condition and needs to be eval-
uated. Further, the query evaluation process can be depicted
as a coloring scheme of the  table. Therefore,  table pro-
vides an intuitive way to enumerate possible query plans.
Query Plan Generation: The efficient query plans are gener-
ated with the help of the coloring scheme of the  table. We
partition the query plan into two phases. The first phase con-
tains the mining operators that are independent of the mining
results generated from the mining operators evaluated before
it. The second phase contains the mining operators that are
dependent on these results. Such partition allows us to derive
good heuristics to reduce the evaluation costs.
Transformations: Consider a query containing the negative
predicates. To optimize such queries, we will use a set of
transformations. To express such queries in our algebra, we
introduce two additional mining operators. Then, we will
show how these mining operators can be removed, and there-
fore, the basic algebra expression is constructed.

Among the above three issues, we discuss the first two in
Section 5, and the last in Section 6.

5 Query Plan Generation
5.1 A Unified Query Evaluation Scheme

This subsection describes a general representation, the  -
table, for query evaluation based on the basic algebra expres-
sion of a given query. As we will show, such a scheme pro-
vides an intuitive way to describe the possible query plans.
Definition 1 Assume the basic algebra expression of a query
� is �"! � � � , ����� , �$#
where, each

� / involves intersection among one or more * �
operators. Let � be the number of distinct datasets that ap-
pear in

�
. Then, the  -table for the basic algebra expression

of this query is a table with � rows and � columns, where the
row % corresponds to the dataset ��/ , and the column & cor-
responds to the clause

� . . If * � ' �</ �0/ * appears in
� . , the

cell at & -th column and % -th row will have / , i.e.,  /(' . � / .
Otherwise, the cell  /)' . is empty.
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� � � 	 ���
A 0.1 0.05
B 0.1 0.05
C 0.1 0.1
D 0.05 0.1 0.1

Table 5. M Table for the query
� �

� � � 	 ��� ��� ���
A 0.1 0.1 0.05
B 0.1 0.1 0.05
C 0 0 0.1 0.1 0.1
D 0.05 0.1 0.1 0.1

Table 6. M Table for the query
�

As an example, the  table for the query
� � has 8 rows and

5 columns and is shown in Table 5.
Note that the mapping between the  tables and the basic

algebra expressions is one-to-one. It is important to note that
the  table representation can be used to answer more com-
plex queries, which could have negative predicates as well.
This is discussed in Subsection 6.2.

Now, we focus on query plan generation using the  -table
and the operators we have defined so far. To facilitate our
discussion, we will use the  table in Table 6 as our run-
ning example. One of the most important features of  ta-
ble is that it can capture the evaluation process for a query
by using a simple coloring scheme. Initially, all the cells are
non-colored (white). The operators, * � , ) � , and 9 � , can
color a number of non-empty cells black (shaded). The query
evaluation process is complete when all non-empty cells are
colored black.

As a running example, consider applying * � ' � � ' , ' : * ,
) � ' � � ' , 0 � * ��1 ' � � ' , 0 *9* ,and 9 � ' � ) � ' , 0�� � �&( � ' , 0.� * con-
secutively on an initially non-colored table  of the query�

. Table 7 shows the resulting colored table. We now define
how each operator colors the table.
Frequent mining operator * � ' � / �D/ * : An invocation of
the frequent mining operator on the dataset ��/ , with sup-
port / , will turn each non-empty cell at row % who is greater
than or equal to / black. In our example, the first operator,
* � ' � � ' , ' : * , will turn the cells  � ' � ,  � ' 	 , and  � ' � black.
Frequent mining operator with constraint ) � ' ��/ �0/ �;: * :
The coloring impacted by this operator is dependent on the
current coloring of the table  . Let : be the set of frequent

� � � 	 � � � � � �
A 0.1 0.1 0.05
B 0.1 0.1 0.05
C 0 0 0.1 0.1 0.1
D 0.05 0.1 0.1 0.1

Table 7. Colored M Table for the query
�

itemsets defined by all the black cells, and let * be the set of
columns where these black cells appear. Then, by applying
this operator on dataset ��/ with support / , all cells on row %
whose column is in the set * , and whose value is greater than
or equal to / , will turn black. In our running example, the
third operator

�L� H �
� �����!� . �JI H 
��?����� M M
picks the black cells  � ' � and  � ' 	 by the parameter� � . �JI H 
��	��� � M
The set * includes the first two columns. Therefore, this

operator turns the cells  	 ' � and  	 ' 	 black.
Group frequent itemset mining operator 9 � '/= * : The pa-
rameter = � �A@ ��� �0/ � B ������� � @ � D �D/ D B�� , speci-
fies the support level / / for the dataset � / . Let the dataset

��� � � 0 �	� �  correspond to the row %
� . Let * / be the
set of columns whose cells at row %
� are less than or equal
to the correspond / / . Let * � * / � ' .;��� ����� � * / D ' .<D . In-
voking this operator will turn every cell in the row defined
by � %;0 �������&� %  ��
 * black. In our example, the operator
9 � ' � ) � ' , 0�� � �&( � ' , 0.� * , will turn the cells the right-bottom
rectangle defined by � 54�68 ��
 � 54�687�3: � black.

By the above formulation, the query evaluation problem has
been converted into the problem of coloring the table  . The
possible query plans can be intuitively captured in this frame-
work. Note that different operators can be used, and in dif-
ferent order, to color the entire table black. There are differ-
ent costs associated with each of them. The next subsection
addresses the problem of finding efficient query evaluation
plans.

5.2 New Query Plans
For a given  table with � rows and � columns, the total

number of possible query plans using only * � and ) � op-
erators is � '9'�� /��$�/�� � & / *�� 
 2��

,����,�� # . , * , where & / is the number
of different support levels in the row % . Clearly, using the 9 �
operator will make this number even higher. Furthermore,
another difficulty in this optimization process is that it is very
hard to associate cost functions for the three operators. We
are not aware any research on predicting the running time for
a specific mining algorithm on a given dataset. The costs of
) � operator depends on the mining results from the oper-
ators proceeding it. Though this is somewhat similar to the
Join optimization problem in the traditional databases [3], the
cost from such a mining operator is even harder to estimate.

To deal with these challenges, we use a set of heuristics and
greedy algorithms to help find efficient query plans. Specif-
ically, a basic idea of our approach is to partition the query
plan into two phases. The first phase contains only the min-
ing operators that are independent of the mining results gen-
erated from the mining operators evaluated before it. The sec-
ond phase contains the mining operators that are dependent on
these results. In other words, only * � and 9 � can be used
in the first phase, and ) � can be used in the second phase.
Such partition allows us to derive good heuristics to reduce
the evaluation costs.
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In the following, we first present two algorithms that are
based upon the use of the * � and ) � operators. Then, we
describe another algorithm that further exploits the 9 � oper-
ator.

5.2.1 Using Constraint Based Operator
The constraint based mining operator ) � ' ��. �0/ �;: * helps
reduce the computational cost as follows. At any stage � ,
suppose that we need to color the cell  /)' . . As long as an-
other black cell is available in the same column, ) � operator
can be used.

The algorithms we present here are based upon aggressively
using the ) � operator. The goals of each phase in a query
plan is as follows. In the first phase, we use the * � ' ��. �0/ *
operators so that each column has at least one black cell.
In the second phase, we use the ) � ' ��. �0/ �;: * operators to
color all other non-empty cells in the table.

Approach for Phase One: To understand the complexity
of optimizing the cost for this phase, let us assume that we
know the cost for the operator * � ' ��. �0/ * . Our goal is to
find the set of operations which has the least cost for color-
ing all columns of the table. This problem can be general-
ized and formulated as follows. For a set * � �&* �
��������� *�� � ,
* � � ����� � *���� ��0 ������� � � � , where each set *$/ has a cost func-
tion and corresponds to a set of columns whose cells can be
turned black by a * � mining operator. we need to find the a
subset of * who can cover �10 ��������� �;� with the least cost. This
is a generalized set-covering problem, and is NP-hard [10].

Note, in our case, each row only needs at most one invo-
cation of the * � operator, due to the containing relation.
Clearly, the search space in this phase is much smaller than
the entire search space for a query plan. Therefore, we can
enumerate the coloring schemes and find the one with the
minimal cost in � ' &�� 
 ����� 
 & ��* � � ' � � * time complexity.
Here, � and � are the number of rows and columns respec-
tively in table  , and & / is the number of different support
levels in the row % . In practice, the above enumeration can be
done without a very high cost.

However, the problem still is that precise cost functions are
not available. The heuristic approach we use is based on the
observation that no repetitive computation due to the * � op-
erator is involved in the phase one. So, we can solely focus
on reducing the unnecessary computations. A natural heuris-
tic for minimizing unnecessary computation is through the
support level. For a single dataset, higher support level for
the * � operator implies lower unnecessary computation. We
use this in our implementation.

Approach for Phase Two: We can use either of the two
greedy algorithms, Algorithm 1 and Algorithm 2, which are
listed in the Figure 1. The first algorithm tries to reduce
the repetitive computation by invoking ) � operator for each
dataset at most once. Therefore, frequency of any itemset will
be counted at most two times for a dataset: one from the * �
operator in the phase one and second from the ) � operator

Input: table � after phase-one coloring
Algorithm 1

Find datasets whose corresponding rows has non-colored cells;
For each row, find the lowest support level among non-colored cells;
On each row, we invoke the �L� operator with the lowest

support level. Across the rows, this operator is invoked in the
decreasing order of support level used for the �L� operator.

Algorithm 2
Find the rows having the non-colored cells with highest support

among the non-colored cells in the entire table;
Invoke the �L� operator to color these cells in these rows;
Repeat the above steps until all cells are colored.

Figure 1. Algorithms for Phase Two

Input: table � without coloring
Algorithm 3

Build a collection of candidate sets by running the enumeration
algorithm for

. � H 
 � ��� M operator;
For the candidate set

.
, let
. � H 
��&��� M�� .

If there exists another mining operator
. � H 
��&����� M in

.
colors same columns as

. � H 
 � ��� M , transform
. � H 
 � ��� M

into
� � H��
� 
 � ��� �J� � 
4� � � � �	� M .

Repeat the above step to see if any more set can be aggregated
into a

� � operation;
Select a set from these transformed candidate sets based on

some heuristic, e.g., the average size of the parameter set 	
for the

� � operation.

Figure 2. Using GF operator for Phase One
in the phase two. However, much unnecessary computation
is involved since ) � operator always picks the lowest sup-
port level for each dataset. The second algorithm targets the
unnecessary computation, since for each support level, ) �
operator will use the smallest possible set : to constraint the
itemset generation. However, much repetitive computation
can be generated, since an itemset can be computed several
times for a dataset.

Let us consider the query
�

. Combining phase one and
phase two, the first algorithm gives the following query plan.

���
���� ��� . � H 
�� ����� M � . � H ��� ��� � M��

���
������ � �L� H 
�� ��� �& �� . � H ��� ��� � M I M��

�L� H �
�?��� �& � H/. � H 
�� ����� M $ . � H ��� ��� � M M I M��
�L� H � � ��� �& � H H/. � H 
��	����� M�0 . � H ���	����� M M $ . � H ���	��� � M M I M

�L� H ���?��� H/. � H 
��?����� M�0 . � H �
�?����� M M I M��
The second algorithm gives the following query plan.
���
���� ��� . � H 
��?����� M � . � H ���	����� M��

���
������ � �L� H ���	����� � . � H 
��	����� M I M��

�L� H � �������!� . � H ���	����� M I M��
�L� H 
�� ��� �! �� H/. � H �L�?����� M�0 . � H � �	����� M M I M��
�L� H ���	��� �! �� H/. � H �L�?����� M�0 . � H � �	����� M M I M��
�L� H � � ��� �& � H/. � H 
�� ����� M�0 . � H ���	����� M M I M��
�L� H ���	��� H H/. � H 
�� ����� M�0 . � H �
�	����� M M I M��

We can see that both query plans can reduce the costs by
aggressively utilizing the available information and the ) �
operator.
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5.2.2 Using the Group Operator
The group mining operator 9 � can help remove some unnec-
essary computation due to * � operator. In the above exam-
ple, suppose that * � ' � � ' , 0 * +�* � ' � � ' , 0 * and * � '9) � ' , 0 * +
* � ' ( � ' , 0 * are generated in phase one. In this way, each col-
umn is also covered, and the unnecessary computation of set
* ��1 ' � � ' , 0 *
8 '9* � ' � � ' , 0 * + * � ' � � ' , 0 *9* 1 on dataset � is
also saved.

The use of 9 � operator only changes the phase one, i.e, our
method for coloring at least cell in each column. Instead of
finding * � ' �J. �0/ * operations to cover each column, we now
need to find 9 � operations to meet the same goal. Algorithm
3, described in Figure 2, uses the 9 � operator in a efficient
way. It results in the following query plan for our example
query:

���
�� � ��� � � H���� 
�� ��� � �J� � ���	�������	� M��� � H��
� ���	�������J� � � ���������	� M��

���
������ � �L� H 
�� ��� �! �� H/. � H ���	����� M�0 . � H � �	��� � M M I M��

�L� H ��� ��� �! �� H/. � H ���	����� M�0 . � H � �	��� � M M I M��
�L� H � �	��� �& � H/. � H 
�� ��� � M�0 . � H ��� ��� � M M I M��
�L� H ���?��� H H/. � H 
��?����� M�0 . � H �
� ����� M M I M��

6 Generalized Queries and Transformations
In this section, we describe how the approach presented in

the previous two sections can be applied to a more general
class of queries. Specifically, we consider two additional re-
quirements for a mining query. The first is to allow negative
predicates in the query. The second is to allow users to spec-
ify conditions related with the Null values in the materialized
views. In Subsection 6.1, we introduce these two require-
ments, and the algebra extensions to capture these require-
ments. In Subsection 6.2, we describe how we can transform
the extended algebra expression into the basic algebra expres-
sion, and thus use the  -table and the algorithms from the
previous section for query optimization.
6.1 Generalized Queries

Admissible Queries: We initially define a class of queries we
consider admissible queries. For a given query, we transform
the constraints into the disjunctive normal form (DNF), � �
� � � � � � % %&%���� where, ) / is a conjunctive-clause, i.e., it
involves AND operation on one or more predicates.
Definition 2 A query is considered admissible if each
conjunctive-clause in the DNF format contains at least one
positive predicate, i.e.,

�-, � / � / .
For example, a query involving the following condition is not
admissible.
��� 
 � � ����� OR ( �$� 
 � ����� � AND ��� 
 3 � ��� �& M )

This is because the first conjunctive-clause,
�-, � � @ ' , 0 ,

contains only a negative predicate. The significance of the
admissible condition is that we are able to transform such a
query into a basic algebra expression (Subsection 6.2).

Counting Requirements: The views generated from a basic
algebra expression can contain Null values. In some cases,
a user may be interested in removing the Null values in the

final query answers. We introduce a new notation, � , for this
purpose. In the Select clause of original query, replacing � /
by � ' �
/ * denotes that the null value needs to removed, i.e.
the actual frequency information is required. For simplicity,
we denote the set of datasets having � in the Select clause
as )�*���� . We call this function � as counting requirement
since this can directly map into a counting operator discussed
below.

Algebra Extensions: The two additional operators to help
map an admissible query with negative predicate and count-
ing requirement are as follows.

The negative frequent itemset mining operator * � ' ��. �0/ *
computes itemsets in � . with support level less than / . For-
mally, assuming 2 1

#�� � to be the power-set of ������� , and
* ��1 ' �L. �D/ * is the projection of * � ' ��. �0/ * on the column
of attributes � , we have. � H 
��!� � M � H � I	��
 �
� . �JI H 
��&��� M M�� ��� �
The counting operator � ' : � � . * counts the frequency for

each itemset in the set : on dataset � . . To simplify its eval-
uation, this operator is only defined on a set : that satisfies
the down-closure property.

Mapping to Extended Algebra: Consider mapping a admis-
sible query with negative predicates and/or counting require-
ments. For the DNF format of the query condition (SELECT
clauses), we replace the negative predicates with their cor-
responding infrequent itemsets mining operator. Further, we
map the datasets with � functions to the counting operator.
Therefore, we can build the extended algebra expression

��*
for a given query � with the condition ) . Let � ' � * is the
final answering set for � .� H�� M � �"! N O I


 H��� I! � 
 	 � MLNO I %&%&% N O I 

H��� I! ��
 	 � M

where, � �
/ �
��������� �
/ # � � )�*���� , and
�� 1* is the minimal

extension of
��1* which satisfies the down-closure property.

6.2 Transformations for Query Optimization
In the following, we introduce two transformations which

can remove the the negative frequent itemsets operator * �
and the counting operator � from � '>� * , and replace them by� ' � ..�0/ * operators.

To facilitate our discussion, we use the following query, de-
noted by

�
, as a running example.

SELECT �$� ���	��� 
�� �$� ����� H ��� � M �	��� �
FROM Frequency( ���?
��	�������	� ) �
WHERE ( �$� 
%����� � AND ��� � ������� AND

NOT( ��� ������� �& OR ��� �#����� �& ))
OR ( ��� �"������� AND ��� ��������� AND
NOT( ��� 
 ����� �! OR ��� ������� �& ))

The query involves finding the itemsets which are frequent
with support level ' , 0 in both the datasets � and � , but in-
frequent (support less than ' , ' : ) in the datasets ) and ( , or
vise versa. The DNF form of the condition � is:H 
%������� � � � ��� � � � � ��� �! � � � ��� �! M

� H ��������� � ��������� � 
 � ��� �& � � � ��� �! M���
can be expressed as:H/. � H 
��?����� M�0 . � H �
�?����� M�0 . � H �L�?��� �& M"0 . � H � �	��� �& M�M

$ H/. � H ���	����� M�0 . � H � �	��� � M�0 . � H 
�� ��� �! M�0 . � H ��� ��� �& M�M
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The answering set of this query can be expressed as� H � M � ��� N O I

 H �� I� �	� M

Now, we introduce the two transformations to remove the
counting operator and negative mining operator.
Transformation 1: (Removing Counting Operator) This
transformation takes three steps. In the first step, for any
dataset �L.�� )�*���� , which suggests that a counting operator
� might be needed, we add the boolean clause � . � ' into
every conjunctive-clause in the DNF format of condition ) .
Thus, we generate a new condition, denoted as ) � . Clearly, in
this new condition, two boolean clauses on the same dataset
may appear in a single conjunctive-clause. In the second step,
we remove these redundant boolean clauses by the following
rule. If the boolean clause besides the new one is positive,
the new one is removed, and if the boolean clause besides the
new one is negative, the negative boolean clause is removed.
Finally, we construct

� *��
corresponding to condition ) � after

the second step, and apply the selection operator with condi-
tion ) to get � '>� * . Formally,� H�� M ����! H � ! � M
Let us illustrate this transformation on our running example.

The set )�*���� includes only the dataset ) . In the first step,
the new condition � � is
H 
 ������� � � ������� � � � ��� �& � � � ��� �& � �"��� M �H ��������� � � � ����� � 
 � ��� �& � � � ��� �& � ����� M M
In the second step, the condition � � becomes:H 
%������� � � ����� � � ����� � � � ��� �& M �H �"������� � �#������� � 
 � ��� �& � � � ��� �& M M
In the final step, we construct

� � �
,

� � � � H/. � H 
�� ��� � M�0 . � H ���	��� � M�0 . � H ���	� M�0 . � H � � ��� �& M
$ H/. � H ���	��� � M�0 . � H � �	����� M�0 . � H 
��	��� �! M�0 . � H �
� ��� �& M�M
The answering set � ' � * becomes � � ' � � � * .
Transformation 2: (Removing Negative Frequent Itemset
Operator) This transformation is based upon the following
Lemma.
Lemma 2 Let ) be any condition, and

�
*
is the set satisfy-

ing this condition, then we have� * + * � ' � ..�D/ * � � *��	��
 �
����� ' � * , ' � * + * � ' � .1�0/ *9*9*
Note that the �������<'?- * value is treated as ' . The detailed
proof is omitted here, but the correctness of this lemma can
be observed from the fact that� * + * � ' � ..�D/ *�6 � * , ' � * + * � ' � ..�0/ *9*
This lemma suggests that the negative frequent itemset opera-
tor can be removed by applying the union( + ), intersection( , ),
and selection operator.

By applying Lemma 2, all the negative frequent itemset op-
erator can be removed from

� ���
. Let�G* ����* � ' � / � �D/ � * + ����� * � ' � / D �0/ D * +

* � ' � / � D�� ��� �0/ D�� � * + ����� + * � ' � /�� �0/ �&*
We denote

� *��� to contain only the sets of frequent itemsets

for ) . , such as
� * �� � * � ' � / � �D/ � * + ����� + * � ' � / D �0/ D * .

Therefore, we have the following equality:� * � � � * ��' � *��� , ' � *��� + * � ' � / � D�� ��� �D/GD�� � *9* ,

Query Conditions CSET� � �! #" �	$&%' #" �	$)(* #"4�+$),- ."4�� � 5 �* #" �	$&%'/#"4� <�0 5 %1 #" �	$<�2/#" �0< � A �� 3 5 �2 ." ��$)%1 ." ��$)(�/3"4��$),4/#"4� <50 � C �5 (� #" �	$&,- ." ��$ �*/."4�+$&%'/."4� <�76 5 �* #" � 0&%' #" � 0)(* #" � <8$),4/#" � � D ��:9 �! #" �	$&%' #" �	$)(* #" ��$),-/."4� � D ��7; 5 �2 ." ��$)%1/."4�+$)(�/3"4��$),4/#"4� <50 � D �5 %' #" �	$
�2/."4�+$)(�/3"4��$),4/#"4� <505 (� ." ��$<�2/."4�+$)%1/3"4��$),4/#"4� <50
Table 8. Test Queries for Our Experiments

����� , ' � * �� + * � ' � /�� �0/ �&*9*6*
Further, we can see that for each

�
* � , the selection operator
( � ) can be removed because of the outside selection operator.
In sum, this transformation removes all the negative frequent
itemset mining operator, such as * � ' ��. �0/ * , in

�+*��
by ap-

plying this equality and removing the selection operator for
each conjunctive clause )G. .

After these two transformations, the entire computation cost
to evaluate the query � has been shifted to compute

��*��
. To

simplify the discussion, we treat computing
� * �

as an in-
stance of this generalized problem of evaluating expression� !

, where,
��! � � � , ����� , � #

, and,
����� . � H 
"� � ����� � M 0 %&%&% 0 . � H 
 �=< ��� �>< M

Therefore, in our example, we have
��?�� � � � � H/. � H 
�� ��� � M�0 . � H ��� ��� � M�0 . � H ��� � M MG1 � �

$ H/. � H 
��?����� M�0 . � H �
�?����� M�0 . � H �L�?� M�0 . � H � �	��� �! M M+1 � �
$ H/. � H ���	����� M�0 . � H � ����� � M MG1 � 3

$ H/. � H ���	����� M�0 . � H � ������� M�0 . � H 
�� ��� �! M M+1 � 6
$ H/. � H �L� ����� M�0 . � H � �	����� M�0 . � H ��� ��� �! M M+1 � 9

Clearly,
� !

uses only the * � operator and two operations
defined in the basic algebra. For a given query � , the expres-
sion using only the basic algebra and generated through the
above two transformations is the basic algebra expression of
� . Finally, we can see the  table corresponding to

� -
is

the table (Table 6) used in Section 5.

7 Experimental Evaluation
This section reports a series of experiments we conducted

to demonstrate the efficacy of the optimization and transfor-
mation techniques we have developed. Particularly, we were
interested in the following questions:

1. What are the performance gains from the use of new
mining operators, ) � and 9 � , and what are the key
factors impacting the level of gain.

2. Compared with the naive evaluation method, what per-
formance gains are obtained from the of different opti-
mizations, and new query plans generated using the three
algorithms we have presented.

7.1 Implementation of Operators
The operators used in our query evaluation are the frequent

mining operator, the counting operator, the frequent itemset
with constraints operator, and the group frequent itemset op-
erator. For our experimental study, Borgelt’s implementation
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Query Naive ORR CF-1 CF-2 GF-1� � H�� ��� ���&��� M 397 168 158� � H�� ��� ���&��� M 626 352 158� 3 H�� ��� ���&��� M 914 619 236 386 277� � H  ��� ���& �� M 1024 279 265� � H  ��� ���& �� M 1381 687 265� 3 H  ��� ���& �� M 2206 1558 394 484 471

Table 9. Performance (in seconds) on IPUMS
datasets

Query Naive ORR CF-1 GF-1� 6 H�	  ��
�0 ! �� M 1229 1085� 9 H�	  ��
�0 ! �� M 1178 1032 301 218� ; H�	  ��
�0 ! �� M 2502 1350 1304� 6 H�� �
�
���&�
� M 1525 1361� 9 H�� �
�
���&�
� M 1313 1152 491 216� ; H�� �
�
���&�
� M 2634 1392 1470

Table 10. Performance (in seconds) on DARPA
datasets

of the well-known Apriori algorithm [5] is used as the fre-
quent mining operator.

The other three operators were derived from it as follows:
Counting operator � ' : � �J. * : Initially, the set of itemsets
: is organized as a prefix tree, where each node corresponds
to an itemset. Then, a single pass on the dataset � . is taken
to project each transaction onto the prefix tree, using a depth-
first traversal.
Frequent itemset mining operator with constraints:
) � ' � ..�D/��<: * : Initially, the set of itemsets : is put into a
hash table. The processing of ) � is similar to the frequent
itemset mining operator, with one exception in the candidate
generation stage. While placing an itemset in the candidate
set, not only all its subsets need to be frequent, but the item-
set needs to be in the hash table as well.
Group frequent itemset mining operator 9 � '>= * : The pa-
rameter = � � @ ��� �0/ �CB ��������� @ �ED �0/ D�B�� , specifies the
support level / / for the dataset �
/ . There are three differences
between the implementation of this operator and the imple-
mentation of the common frequent mining operator. First,
each node representing an itemset in the prefix tree has one
count field for each dataset in = . Second, the counts for each
dataset are updated independently. Finally, in the candidate
generation stage, an itemset is treated as a candidate set if all
of its subsets are frequent in every dataset in = .
7.2 Datasets

Our experiments were conducted using three groups of data,
each of them comprising four different datasets.
IPUMS: The first group of datasets is derived from the
IPUMS 1990-5% census micro-data, which provides infor-
mation about individuals and households [1]. The four
datasets each comprises 50,000 records, corresponding to
New York, New Jersey, California, and Washington states,
respectively. Every record in the datasets has 57 attributes.
After discretizing the numerical attributes, the datasets have a

Query Naive ORR CF-1 CF-2 GF-1� � 3825 727 338� � 7048 3384 1138� 3 10369 7617 1344 1462 977� 6
2828 1395� 9
2753 1324 693 283� ;

10105 7368 1815

Table 11. Performance (in seconds) on QUEST
datasets with query parameters / �C� ' , 5�� and
/ 	 � ' , 0 �

Query Naive ORR CF-1 CF-2 GF-1� � 5120 971 351� � 9016 4379 1599� 3 13285 9764 1743 1827 1042� 6
3823 2039� 9
3662 1876 904 364� ;

13034 9394 2511

Table 12. Performance (in seconds) on QUEST
datasets with query parameters / ��� ' , 2�:
� and
/ 	 � ' , '�� �

total of 2,886 distinct items.
DARPA’s Intrusion Detection: The second group of
datasets is derived from the first three weeks of tcpdump data
from the DARPA data sets [28]. The three datasets include
the data for three most frequently occurring intrusions, Nep-
tune, Smurf, and Satan. The first two are Denial of Service
attacks (DOS) and the last one is a type of Probe. Further,
an additional dataset includes the data of the normal situation
(i.e., without intrusion). Each transaction in the datasets has
40 attributes, corresponding to the fields in the TCP packets.
After discretizing the numerical attributes, there are a total of
343 distinct itemsets. The neptune, smurf, satan, and normal
datasets contain 107,201, 280,790, 1,589, and 97,277 records,
respectively.
IBM’s Quest: The third group of datasets represents the
market basket scenario, and is derived from IBM Quest’s
synthetic datasets [2]. The first two datasets, dataset-1 and
dataset-2, are generated from the � 2 ' , �
� , � 2 '�'C' dataset by
some perturbation. Here, the number of items per transactions
is 20, the average size of large itemsets is 8, and the number of
distinct items is 2000. For perturbation, we randomly change
a group of items to other items with some probability. The
other two datasets, dataset-3 and dataset-4, are similarly gen-
erated from the � 2 ' , � 0 ' , � 2 '�'C' dataset. There are a total
of 1943 distinct items in the four datasets, and each of them
contains 1,000,000 transactions.

7.3 Test Queries
Our experiments use six different queries, which are listed

in the Table 8. The first three queries, � � � � 	 , and � � ,
are applicable on IPUMS datasets, and the New York, New
Jersey, California, and Washington datasets are labeled as
the datasets � , � , ) , and ( , respectively. The other three
queries, � � � � � , and ��� , correspond to the queries in the mo-
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tivating example on finding the signature itemsets for network
intrusion, presented in Section 2. The neptune, smurf, satan,
and normal datasets are labeled as the datasets � , � , ) , and
( , respectively. Further, in the Table 8, the )�*���� is speci-
fied. Finally, each query requires two different support levels,
/�� and / 	 . The evaluation using the IBM Quest dataset used
all six queries.

In our experiments, up to five different query plans were
implemented for each query. The exact number depended
upon the applicability of specific optimization strategies on
the given query. The five query plans are as follows:

1. Naive: using the naive evaluation method.
2. ORR: applying Optimization RR and using Transforma-

tion 1 to remove the negative predicate.
3. CF-1: applying the constraint frequent itemset mining

operator ) � and using the Algorithm 1.
4. CF-2: applying the constraint frequent itemset mining

operator ) � and using the Algorithm 2.
5. GF-1: applying the group frequent itemset mining op-

erator 9 � and using the Algorithm 3 (in Phase 1, and
Algorithm 1 in Phase 2).

7.4 Experimental Results
This subsection reports the results we obtained. All experi-

ments are performed on a 933MHZ Pentium III machine with
512 MB main memory.

Table 9 presents the running time for the first three queries
on IPUMS datasets. Table 10 shows the results from the other
three queries, � � � � � , and ��� , on DARPA datasets. Also, all
six queries were used with the QUEST synthetic datasets, and
the results are presented in Tables 11 and 12. Each query is
executed with two different pairs of support levels.

The queries � � and � � mainly show how the ) � and 9 �
operators can reduce the evaluation cost. The ) � operator
amounts to an average of more than 3 times speedup on both
real and synthetic datasets. The speedups are higher with
Query � � than query � � , since the ) � operator is applied
three times in � � and only two times in � � . Further, the
9 � operator performs better than ) � operator for both the
queries, and gains an average of 8 times the speedup on the
real datasets, and up to 0 8 times speedup on the synthetic
datasets.

The queries ��	 , � � , � � , and � � benefit from the Optimiza-
tion RR and are able to use the ) � operator. The ORR ver-
sions can achieve up to two times the speedup in these cases,
and CF-1 always performs better than ORR. The query plan
CF-1 can achieve an additional speedup of more than 5. Fur-
ther, in all test cases, the versions CF-1 perform a little better
than the version CF-2. This suggests that in the phase two,
reducing the repetitive computation is more important. At
last, the query � � can be optimized by removing the negative
predicate, but the ) � and 9 � operators cannot be applied.

The results from the query � � give rise to the following
question: “Why does the GF-1 query plan perform better
than the CF-1 plan on QUEST datasets, and CF-1 performs

better than GF-1 on IPUMS datasets”. A related issue is
that depending on the datasets and queries, the performance
gains from the ) � and 9 � operators can vary significantly.
For example, the difference in speedup varies from 3 to 14
in our experiments. By further analyzing the detailed cost of
each query, we believe that one of the key factors impacting
the performance gains from both ) � and 9 � operators is
the ratio of the size of the intersection set with size of the set
generated directly from the common frequent itemset mining
operator. The less the ratio is, the more gain we can get from
the 9 � operator by reducing the unnecessary computation
and lesser repetitive computation is introduced. For exam-
ple, in the query � ��' : ' � �651:
� * on IPUMS datasets, the size
of intersection set is 0 �

times smaller than the total size of
the four sets of frequent itemsets. However, in query � � on
QUEST synthetic datasets, the size of the intersection set is
more than 0 '�'C' times smaller than the total size of the four
sets of frequent itemsets.

To summarize, the new query plans CF-1 and GF-1 do re-
sult in improved performance, provided they are applicable
on a given query. In our experiments, they show an improve-
ment ranging from a factor of 2 to 15. Moreover, the size
of intersection set is a significant factor impacting the perfor-
mance gains from the use of ) � and 9 � operators.

8 Related Work
Much research has been conducted to provide database sup-

port for mining operations. This includes extending the
database query languages to support mining tasks [14, 18,
25], implementing data mining algorithms on a relational
database system [30, 9], and applying user-defined functions
(UDFs) to express data mining tasks [36]. However, all of
these efforts focus on mining a single dataset with relatively
simple conditions. Similarly, constraint frequent itemset min-
ing has been used to guide the user to discover useful in-
formation and speedup mining process on a single dataset
[6, 22, 26, 27, 31]. In particular, the algorithms for con-
straint frequent itemset mining cannot efficiently answer our
queries, since the conditions in our queries corresponds to a
set of (in)frequent itemsets. These cannot be directly used to
reduce the search space with their methods.

Raedt and his colleagues have studied the generalized in-
ductive query evaluation problem [21, 23]. Although their
queries target multiple datasets, they focus on the algorithmic
aspects to apply version space tree and answer the queries
with the generalized monotone and anti-monotone predicates.
In comparison, we are interested in answering queries involv-
ing frequency predicates more efficiently. We have developed
a table based approach to generate efficient query plans.

Our research is also different from the work on Query
flocks [32]. While they target complex query conditions,
they allow only a single predicate involving frequency, and
on a single dataset. The work on multi-relational data min-
ing [12, 35] has focused on designing efficient algorithms
to mine a single dataset materialized as a multi-relation in
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a database system.
Finally, a number of researchers have developed tech-

niques for mining the difference or contrast sets between the
datasets [4, 11, 34]. Their goal is to develop efficient algo-
rithms for finding such a difference, and they have primar-
ily focused on analyzing two datasets at a time. In compari-
son, we have provided a general framework for allowing the
users to compare and analyze the patterns in multiple datasets.
Moreover, because our techniques can be a part of a query
optimization scheme, the users need not be aware of the new
algorithms or techniques which can speedup their tasks.

9 Conclusions
The work presented in this paper is driven by two basic ob-

servations. First, analyzing and comparing patterns across
multiple datasets is critical for many applications of data min-
ing. Second, it is desirable to provide support for such tasks
as part of a database or a data warehouse, without requiring
the users to be aware of specific algorithms that could opti-
mize their queries.

We have presented a systematic approach for expressing and
optimizing frequent itemset queries that involve complex con-
ditions across multiple datasets. Specifically, we have pro-
posed an SQL-based mechanism and have established an al-
gebra for such queries. We have developed a number of new
optimizations, new operators, transformations, and heuristic
algorithms for finding query plans with reduced execution
costs. Our experiments have demonstrated up to an order
of magnitude performance gains on both real and synthetic
datasets. Thus, we believe that our work has provided an im-
portant step towards building an integrated, powerful, and ef-
ficient KDDMS.

Our future work will concentrate on several issues that re-
main open. First, providing cost functions for mining oper-
ators is an open and important issue. The cost of a mining
operator depends on many factors, including the mining algo-
rithm, the size of the datasets, and many other characteristics
of the transaction datasets, such as density [29]. We are cur-
rently working on methods to estimate such costs. Second,
our techniques will need some modifications for dealing with
evolving datasets, or where there is a temporal order between
the datasets. Finally, research is needed to incorporate other
conditions, such as those defined in constraint itemsets min-
ing, and apply other mining operators, such as the maximal
frequent itemset operator.
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