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Abstract

Relational data streams and XML streams have previ-
ously provided two separate research foci, but their uni-
fied support by a single Data Stream Management System
(DSMS) is very desirable from an application viewpoint. In
this paper, we propose a simple approach to extend rela-
tional DSMSs to support both kinds of streams efficiently.
In our Stream Mill system, XML streams expressed as SAX
events, can be easily transformed into relational streams,
and vice versa. This enables a close cooperation of their
query languages, resulting in great power and flexibility.
For instance, XQuery can call functions defined in our SQL-
based Expressive Stream Language (ESL) using the logi-
cal/physical windows that have proved so useful on rela-
tional data streams. Many benefits are also gained at the
system level, since relational DSMS techniques for load
shedding, memory management, query scheduling, approx-
imate query answering, and synopsis maintenance can now
be applied to XML streams. Moreover, the many FSA-based
optimization techniques developed for XPath and XQuery
can be easily and efficiently incorporated in our system. In-
deed, we show that YFilter, which is capable of efficiently
processing multiple complex XML queries, can be easily in-
tegrated in Stream Mill via ESL user-defined and system-
defined aggregates. This approach produces a powerful and
flexible system where relational and XML streams are uni-
fied and processed efficiently.

1 Introduction

There is much current interest in processing streaming
XML data, using queries expressed with languages such
as XPath and XQuery [10, 14, 15, 28]. Meanwhile, a
parallel line of research is focusing on the design of data
stream management systems (DSMSs) that support continu-
ous SQL queries over relational data streams [4, 13, 19, 20].
The integration of these two approaches is highly desirable
because of the same considerations that now drive the seem-

ingly unstoppable push to manage XML documents in tra-
ditional DBMSs. This strong drive for closer integration is
created by the fact that many stream applications have to
deal with both streaming relational and XML data, com-
bine them, and publish results in any combination of the
two formats. The technical benefits expected from this in-
tegration are also significant and include (i) consolidation
of the two competing efforts now spent on system build-
ing and marketing and (ii) synergism between the two tech-
nologies by combining their respective areas of strength.
For instance, research on streaming XML has produced ad-
vanced FSA-based techniques for supporting multiple com-
plex queries on structured documents [14, 15, 28]. On the
other hand, relational DSMSs are already providing solu-
tions for many problems that remain unsolved in the frame-
work of XML streams. For instance, DSMSs have shown
how windows and other synopses are much needed in con-
tinuous queries to overcome the blocking behavior of tradi-
tional aggregates and to support efficient queries under lim-
ited memory [4, 19]. These constructs are now supported
efficiently by all relational DSMSs and they will be very
useful on XML streams as well.

In this paper, we present the design of a unified sys-
tem that integrates the representation of the two kinds of
streams and their processing. Our system supports con-
tinuous queries written in SQL, XQuery, and in a combi-
nation of the two languages—e.g., XQuery statements can
use SQL:2003 OLAP functions and other user defined func-
tions.

The architecture of our system was chosen after evalu-
ating and discarding alternative designs. An obvious ap-
proach consists in building two subsystems—one for XML
streams and the other for relational streams—and using
pipes to communicate between them while converting be-
tween the two types of streams. This approach was dis-
carded in favor of the approach presented in this paper that
is preferable because it (i) avoids duplication of implemen-
tation efforts, and (ii) achieves tight integration of the data
models and query languages. Our approach consists in ex-
tending a relational DSMS with efficient support for XML



streams and XQuery. For this purpose, we use Stream Mill
[12] and its Expressive Stream Language (ESL) that com-
plies with SQL:2003 standards, but also supports efficiently
user-defined aggregates because of their proven ability to
express very complex queries [11, 29].

Our approach to support XML streams consists in en-
coding SAX events as relational tuples, and then using ESL
to express the wide variety of tasks that integrate relational
and XML streams. Queries expressed in XPath or XQuery
are thus compiled into equivalent ESL programs that call
on user-defined aggregates (UDAs) or system-defined ag-
gregates (SDAs). In the rest of the paper, we describe
this approach and the many benefits it offers from an ap-
plication viewpoint. We also show that the various FSA-
based optimization techniques proposed for XPath/XQuery
[14, 15, 28] can be supported well in our approach, by ei-
ther UDAs natively defined in ESL, or UDAs defined in
procedural programming languages, or SDAs built into the
system. In particular, we discuss ESL implementation of
YFilter, which supports the parallel processing of multiple
XQuery statements, without any extension to current rela-
tional query language.

1.1 Organization of the Paper

The rest of the paper is organized as follows. After a
short review of related work in Section 2, Section 3 dis-
cusses how we unify the two kinds of data streams with
ESL. Section 4 explores continuous queries for which a
close integration of relational and XML query languages
is desirable—e.g., to allow XQuery to support analytics on
data streams. Section 5 explains ESL UDAs in detail. In
Section 6, we describe the FSA-based processing of multi-
ple XQuery/XPath statements using UDAs and SDAs. The
overall system implementation is studied in Section 7. Sec-
tion 8 concludes our discussion.

2 Related Work

There is much ongoing research work on data streams
and continuous queries [13, 19, 20, 26]. CQL [4] intro-
duces several stream-oriented concepts and SQL-based con-
structs. Windows represent a very important construct in
CQL, insofar as they are used in the computation of ag-
gregates and joins on streams, and to map from streams
to relations. Windows have also found many applications
in traditional databases and are now part of the new OLAP
Function standards of SQL:2003 [1, 6], which are supported
in most commercial DBMSs.

In the meanwhile, the need for processing streaming
XML data is growing fast, propelled by a strong demand
from applications [14, 28], in which data aggregation, time-
windows, and path expressions frequently need to be sup-

ported. XQuery (which embeds XPath) is expected to
be the language of choice for these applications. Many
navigation-based techniques to answer queries on streaming
XML input have been proposed, with different application
foci. Techniques explored include single-query processing
[30, 15], processing of multiple XPath expressions [28],
processing of XPath for twig-queries [9], predicate evalua-
tion [7], backward-axes handling [8], and streaming queries
with disk-resident index assistant [21]. In comparison, until
now little has been proposed on the problem of integrating
relational and XML streams. In the approach proposed in
[22], the stream of XML tokens is viewed as multiple punc-
tuated relational streams, on which path and twig matching
can be supported via specialized stream joins.

There is also ongoing research on the features of XQuery
language itself. The basic XQuery has shown to be ef-
fective at expressing simple streaming applications, such
as those discussed in [14]. User-defined functions enable
native extensibility in XQuery, which makes the language
Turing-complete [25] and thus capable, at least in princi-
ple, of expressing every possible application on stored data.
Unfortunately, it lacks support for basic grouping function-
alities which are normal in SQL, not to mention complex
OLAP queries, and non-blocking queries on streaming data.
There has been much research work in this area [5, 18];
for instance, Natix [27] provides a tuple-based algebra that
includes grouping operators for construction of XML ele-
ments. The addition of a “group by” clause to XQuery to
better support OLAP applications and analytics was pro-
posed in [17, 24]. However, these extensions focus on
querying stored data, as opposed to data streams on which
only non-blocking aggregates are allowed.

3 Unified View for Relational and XML Data
Streams

In this section, we discuss how to create, query, and unify
relational and XML data streams. All of these objectives
are realized by Expressive Stream Language (ESL), which
is the application language of the Stream Mill system that
supports:
• Continuous queries (CQ) on data streams,
• Ad hoc queries on database tables, and
• Spanning applications that combine and compare

streaming data with stored data.

To facilitate the learning of the language and its use on
spanning applications, ESL is based on SQL and minimizes
extensions from its SQL:2003 standards [12, 11].

3.1 Relational Data Streams

In the Stream Mill system, each data stream is imported
from an external wrapper via the (mandatory)SOURCE
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clause in itsCREATE STREAMdeclaration.
For example, consider a hypothetical online web store

for book auctions, where both new and used books are
traded. Bidders can place bid on books with a certain
BookID. Let us assume that bids for used books arrive as
the relational data stream declared as follows:

Example 1. Relational data streams definition.

CREATE STREAM UsedBookBidStream (BookIDint,
BidderID char(10), BidPrice real, BidTime timestamp)

SOURCE ‘port4445’

Example 1 above uses a wrapper (SOURCE ‘port4445’)
that is created automatically by the system for each port
used in the program. Rather than using these defaults, users
can easily create their own wrappers as described in [12].

New streams can be defined and transduced from exist-
ing streams, in a fashion similar to that used to define virtual
views in SQL. For instance, to derive a stream consisting of
the bids where the bidding price is above 200, we can write:

Example 2. Performing Selection operation on streams.

CREATE STREAM expensiveItemsAS
SELECT BookID, BidderID, BidPrice, BidTime
FROM UsedBookBidStreamWHERE BidPrice > 200

3.2 XML SAX Event Data Streams

Say that, besides the relational stream of bids on used
books, there is another stream of XML messages, which
records the bidding information on new books. A sample
bid may look like that of Figure 1, below:

<Bid BidTime = "2005/02/25T13:24:34">
<BookID>100001</BookID>
<BidderID>TC0027</BidderID>
<BidPrice>65.00</BidPrice>

</Bid>

Figure 1. A sample XML message for a bid

These streaming XML bids are parsed using the Simple
API for XML (SAX); a standard interface to parse stream-
ing XML [23], which provides a sequential view of an XML
document through a stream of events. In Stream Mill sys-
tem, we then represent the SAX stream using a triplet-based
format, (event, name, value), that we call SAX-3. Thus, the
following SAX-3 relational stream is generated, by a SAX
based XML parser, from the XML stream of Figure 1:

(‘start’, ‘Bid’, _),
(‘attr’, ‘BidTime’, ‘2005/02/25T13:24:34’),
(‘start’, ‘BookID’, _)
(‘text’, _, ‘100001’),
(‘end’,‘BookID’, _),

...
(‘end’, ‘Bid’, _)

Here, ‘start’ denotes the start-of-element event, and
‘end’ denotes the end-of-element event. In these two
triplets, thenamecolumn contains the element name, and
the value column is null. The second triplet shows that
each attribute of an element is represented by an ’attr’ event
with the remaining two columns storing the attribute’s name
and value, respectively. Another special event is ’text’, for
which the second column is null and the third column con-
tains the actual text.

The following statement defines a SAX-3 event stream
in ESL:

Example 3. XML SAX-3 event stream definition.

CREATE STREAM SAX-3-Events ( eventvarchar(10),
namevarchar(50), valuevarchar(50) )

SAXSOURCE ‘port4448’

TheSAXSOURCE ‘port4448’ clause in this stream de-
finition specifies the port where we have a special wrapper
to “wrap” XML SAX events. The wrapper basically takes
in the SAX events from the SAX based XML parser and
transforms the events into (event, name, value) triplet struc-
tures.

In addition to this ‘vanilla’ wrapper, Stream Mill can
support more specialized wrappers for more efficient and
compressed representation of SAX events. For example,
the length of data typevarchar can be adjusted if the
DTD or XML Schema is available. Furthermore, for el-
ement like<BookID> , which is a leaf element containing
only plain text, we can combine the two consecutive SAX-
3 event tuples; for instance (‘start’, ‘BookID’,) and (‘text’,
, ‘100001’) can be merged into tuple: (‘start’, ‘BookID’,

‘100001’).
In Stream Mill, we can use arbitrary XQuery FLOWR

statements to write continuous queries on XML streams.
Such queries take SAX-3 events as input and return SAX-3
events as output. For instance, to derive a stream consisting
of the bid XML messages where the bidding price is above
200, we can write:

Example 4. Simple XQuery on a SAX-3 event stream.

CREATE STREAM NewSAX-3-EventsAS (
FOR $b IN Stream(SAX-3-Events)//Bid
WHERE xs:real($b/BidPrice) > 200
RETURN ( $b ) )

Queries written in XQuery return SAX-3 event streams,
and output wrappers can then be used to produce streaming
XML documents from these.

The support for XPath/XQuery statements in ESL will
be discussed in Section 6, where we also discuss the role
of UDAs in the FSA-based parallel processing of multiple
XML queries.
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3.3 From SAX Streams to Relational Streams

SAX-3 event streams are normal relational streams of
triplets and thus can be processed using ESL. This allows
us to support applications where XML streams and rela-
tional streams must be combined. For instance, suppose
we need to merge the bid streams of old books and new
books. We need to transform the XML-structured new-book
bids of Figure 1 into the 4-column flat relational format
of Example 1. However, the bids on new books are first
transformed into a stream of SAX-3 events, thus we trans-
form these SAX-3 events to the relational tuples, such as
(100001, ‘TC0027’, 65.00, ‘2005/02/25T13:24:34’). This
transformation in SQL would require four self-joins, which
is an expensive operation, of the SAX-3 stream. However,
this operation can be easily expressed and efficiently im-
plemented via user-defined aggregates (UDAs) supported
in ESL, as shown in Example 5. (The actual definition of
Flatten() is given in Section 5.2.)

Example 5. Creation of relational data streams out of XML
SAX-3 event streams.

CREATE STREAM NewBookBidStreamAS (
SELECT Flatten(event, name, value)
FROM SAX-3-Events)

An immediate benefit of this flattening is that the streams
for used books,UsedBookBidStream , and new books,
NewBookBidStream , can now be merged using the union
operator to support continuous queries on bids for both new
and used books.

Union is a very important operation on data streams, and
can often be used to avoid join operations that might require
unbounded memory in extreme cases, or return approximate
results by finite window sizes. For instance, suppose that we
have a relational streamCloseStream(BookID, Close-

Time) describing closing auctions. Since we haveUsed-

BookBidStream , defined in Example 1, for used books
andNewBookBidStream , defined in Example 5, for new
books, we can now get the closing price of each book as
soon as its auction closes. The following example illustrates
our approach.

Example 6. Return the winning bid’s price when a certain
auction is closed.

CREATE STREAM BidStream (BookID, BidderID,
BidPrice, BidTime) AS (
SELECT BookID, BidderID, BidPrice, BidTime
FROM UsedBookBidStream
UNION
SELECT BookID, BidderID, BidPrice, BidTime
FROM NewBookBidStream );

CREATE STREAM AuctionBehavior (behavior, id,
price, time) AS (
SELECT ’close’, BookID, Null, CloseTime
FROM CloseStream
UNION
SELECT ’bid’, BookID, BidPrice, BidTime
FROM BidStream;

SELECT PriceReport(behavior, id, price, time)
FROM AuctionBehavior

In this example, bid streams for both used and new books
are first unioned into one single streamBidStream , which
is then unioned withCloseStream into a new streamAuc-

tionBehavior , ordered by itstime value. The resulting
stream is finally passed to the UDAPriceReport , which
basically returns the closing price of an auction upon read-
ing the “close” event for the auction (see Section 5.4 for
details).

Conversely, we can also transform relational data
streams into XML SAX-3 streams by using UDAs.
This makes it possible to apply to relational data
streams, the FSA-based techniques for processing multiple
XPath/XQuery statements in parallel that will be discussed
in Sections 5.3 and 6.2.

4 Querying Integrated Data Streams

In Section 3, we outlined how to use ESL to generate
relational streams from XML streams, and vice versa. But,
in addition to integrating these two types of data streams,
we also want to achieve the cooperation of their respec-
tive query languages. In particular, we would like to en-
able XQuery to take full advantage of the advanced OLAP
functions now available in SQL:2003.

4.1 Continuous Query Support with ESL

Windows play a major role in relational DSMS and are
supported by most data stream systems. ESL adopts the
window constructs specified in SQL:2003 OLAP function
standards to support continuous queries on windows. These
constructs can now be applied on the relational streams, the
SAX-3 streams, and the streams derived from those as illus-
trated by the following example:

Example 7. Continuously return the total number of bids
in the last 10 minutes.
SELECT current time, COUNT(BidPrice)

OVER (RANGE 10 MINUTE PRECEDING)
FROM BidStream

Here,BidStream is the unified data stream created in
Example 6,OVERis a standard SQL:2003 construct to cre-
ate a moving window, andcurrent time is a key word
representing the current system time.

Thus, Example 7 defines a logical window (i.e., a time-
based window) on the input stream. Example 8 shows an-
other important construct used in continuous queries: the
count-based physical window.

Example 8. Continuously return the average bid price of
last 5 bids for every book.

SELECT current time, BookID, avg(BidPrice)
OVER (PARTITION BY BookID ROWS 5 PRECEDING)
FROM BidStream
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An important advantage of Stream Mill over other
DSMSs is that it supports windows on arbitrary UDAs, not
just built-in aggregates. Thus, the aggregate avg() in Ex-
ample 8 can be replaced by any UDA, to express more ad-
vanced queries, as we will see in Section 5.4.

4.2 ESL-Defined Functions in XQuery

Incompleteness of XQuery on Streaming Data. The
native definition of user-defined functions allows XQuery
to achieve Turing-completeness [25]. Unfortunately, the
function-definition mechanism of XQuery is blocking and
thus not suitable for streaming data. This can be illustrated
by the following example showing the definition and invo-
cation of a count-like aggregate:

Example 9. Return the total number of bids.

DECLARE FUNCTION mycount($bidsas xs:AnyType)
AS xs:integer{

IF (empty($bids))THEN 0
ELSE mycount(subsequence($bids,2))+1}

LET $a IN STREAM(“AllBids.xml”)/Bids/Bid
RETURN mycount($a)

The sequence (i.e., the list) of all bids is given to the
XQuery function, that then applies the count function to its
tail (i.e., the subsequence starting from the second element).
As shown in this example, XQuery functions assume that
the whole sequence is present and materialized before the
computation is started. This computation model is block-
ing and will not work when we have an infinite stream of
records. Namely, the native extensibility mechanisms pro-
vided by the current XQuery standards cannot be used to
define online aggregates or aggregates using windows such
as that of Example 7. The problem is further exacerbated
by the lack of explicit grouping constructs in XQuery [17].
Queries with complexGROUP BY/PARTITION BY clauses
are actually very difficult to write in XQuery. Moreover,
while queries with simple groupings can be readily written
in XQuery, they are difficult to implement without multiple
scans of the original document [17].

Curing the Incompleteness of XQuery on Stream-
ing Data. Therefore, the superior expressive power of
XQuery evaporates when processing streaming data. One
approach to solve this problem consists in introducing new
constructs into XQuery—possibly in a fashion akin to the
GROUP BY constructs recently proposed in [17] to assure
the effective support of analytics in XQuery. However, be-
sides requiring the addition of new constructs to the cur-
rent standards, this solution will also complicate the current
evaluation model of XQuery FLOWR expressions, which,
unlike the XQuery function-definition mechanism, is quite
amenable to stream-oriented processing. Therefore, we
will instead take the more natural approach of keeping the

FLOWR constructs intact and explore mechanisms to intro-
duce non-blocking user-defined functions and aggregates in
XQuery. Our solution exploits the fact that XQuery can
accept functions defined in external languages—including
nonblocking functions. In other systems, the functions to
be imported into XQuery would be written in C++ or Java;
but the Stream Mill system closely integrates XQuery and
ESL and thus allows the importation of SQL:2003 analyt-
ical functions as well as window aggregates directly from
ESL. This produces a significant simplification for the user
and the system alike.

Say for instance that we want to support the same win-
dow queries as specified in Section 4.1, on the XML stream
AllBids.XML consisting of messages similar to Figure 1,
all collected under a root elementBids . Then, we can use
the following statements:

Example 10. Continuously return the total number of bids
in the last 10 minutes (XQuery version of Example 7).

DECLARE FUNCTION mycount($priceas xs:real,
$time as xs:time)

AS ELEMENT (Total Bids) {
RETURN SQLXML (

SELECT XMLElement (Name “Total Bids”,
XMLElement (Name “Current Time”, current time),
XMLElement (Name “Number”, count(T.price)

OVER (RANGE 10 Minute PRECEDING)))
FROM STREAM ($price, $time)AS T (price, time) )}

FOR $a IN STREAM(“AllBids.xml”)/Bids/Bid
LET $b := $a/BidPrice
LET $c := $a/BidTime
RETURN mycount($b, $c)

In our XQuery extension, the keywordSQLXMLspec-
ifies that the XQuery function is actually defined using
SQL/XML, which has become a popular XML publishing
standard for relational databases [2]; SQL/XML adds to
SQL specialized publishing functions for structured output
support. Thus we can now call functionmycount ( $b,

$c) , to return the current total number of bids for the last
10 minutes. Note that Example 10 is the same as Example
7—but it is defined in extended XQuery and returns XML
stream.

This extension also allows supportingGROUP BY in
XQuery as shown in Examples 11 and 12, below.

Example 11. Continuously return the average bid price of
last 5 bids for every book (Same as Example 8).

DECLARE FUNCTION myavg($idas xs:integer,
$price as xs:float)

AS ELEMENT (Avg Price) {
RETURN SQLXML (

SELECT XMLElement (Name “Avg Price”,
XMLElement (Name “BookID”, T.id),
XMLElement (Name “Avg”, avg(T.price)

OVER (PARTITION BY T.id ROWS 5 PRECEDING)))
FROM STREAM ($id, $price) AS T (id, price) )}

FOR $a IN STREAM(“AllBids.xml”)/Bids/Bid
LET $b := $a/BookID
LET $c := $a/BidPrice
RETURN myavg($b, $c)
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Using the extended function definition capabilities pro-
posed here for XQuery, all the complex OLAP queries dis-
cussed in [17] can readily be supported. Consider for in-
stance the following query from [17]:

Example 12. Return the average bid price by book
(BookID), bidder (BidderID), (BookID, BidderID), and
overall.

DECLARE FUNCTION myavg($bas xs:AnyType) {
RETURN SQL

(SELECT S.BookID, S.BidderID, avg(S.Price)
FROM Stream ($b/BookID, $b/BidderID, $b/BidPrice)

AS S (BookID, BidderID, BidPrice)
GROUP BY CUBE(S.BookID, S.BidderID))}

LET $b IN STREAM(“AllBids.xml”)/Bids/Bid
RETURN myavg($b)

As pointed out in [17], this simpleCUBE query can
only be expressed in current XQuery by a complex query
that scans the input several times to construct the group-
ing sets. The solution proposed in [17] consists in adding
a new constructGROUP BY to the current FLWOR standard
of XQuery. The simpler solution proposed here is that of
allowing XQuery functions to invoke ESL aggregates. Be-
sides built-in aggregates such as avg() and count(), arbitrary
ESL UDAs can also be invoked in this fashion.

5 Defining ESL UDAs

In this section, we discuss ESL user-defined-aggregates
(UDAs) in more detail and underline the important role
they play in unifying the processing of XML and relational
streams. Then, in Section 5.4, We discuss the use of UDAs
in more advanced queries.

5.1 Introduction to UDAs

Native definition of UDAs is the kernel of ESL. It em-
powers ESL to handle more complex streaming queries via
a small extension of SQL. Let us use the following very sim-
ple example to illustrate the basic idea, which comes from
[16]:

Example 13. Definition of UDA equivalent to standard avg
aggregate.

1 AGGREGATE avg(nextREAL) : REAL {
2 TABLE state(sumREAL, count REAL);
3 INITIALIZE: {
4 INSERT INTO stateVALUES (sum, 1);}
5 ITERATE: {
6 UPDATE state

SET sum = sum + next, count = count + 1;}
7 TERMINATE: {
8 INSERT INTO RETURN

SELECT sum/countFROM state;} }

A new UDA is specified by providing definition of an
INITIALIZE computation (line 3-4), anITERATE computa-
tion (line 5-6), and aTERMINATE computation (line 7-8),

in a single procedure written in SQL. Example 13 defines
an aggregate equivalent to the standard AVG aggregate in
SQL. Line 2 declares a local table,state, where the sum
and count of values processed so far, are kept. Furthermore,
while in this particular example,statecontains only one tu-
ple, it is in fact a table that can be queried and updated us-
ing SQL statements and can contain any number of tuples.
Here, INITIALIZE block inserts the values taken from the
input stream into thestateand sets thecount to 1. TheIT-
ERATE block updates the tuple instate by adding the new
input value to thesum and 1 to thecount . The TERMI-
NATE block returns the ratio between the sum and the count
as the final result of the computation by the “INSERT INTO

RETURN” statement in line 8. TheTERMINATE block is ex-
ecuted right after all the input tuples have been processed.
The definition of all three statement blocks,INITIALIZE ,
ITERATE, andTERMINATE, in one procedure allows sup-
porting the declaration of their shared tables (thestate table
in this example). Because UDAs can also be supported on
moving windows, this avg() UDA can actually be used in
Example 7 of Section 4.1.

In fact, we can move the “INSERT INTO RETURN” state-
ment to theINITIALIZE andITERATE blocks from theTER-
MINATE block, and make theTERMINATE block empty.
This modified UDA returns the average of the tuples seen
so far, after processing each tuple from the input. This new
UDA is actually a non-blocking UDA, which is clearly iden-
tified by the fact that itsTERMINATE block is empty. This
generic aggregate definition mechanism allows tremendous
flexibility and power. In fact, ESL with UDAs is Turing-
complete and allows natively specifying complex mining
functions on data streams. Advanced applications of UDAs
are shown in [16].

5.2 Defining a UDA to Flatten XML Streams

In Section 3.3, we discussed how to use ESL to transform
XML SAX-3 event streams into regular relational streams,
where a Flatten() UDA is called in ESL to do the transfor-
mation.

To achieve this, what we need is to detect an attribute
event forBidTime , and three consecutive start of element
events forBookID , BidderID , andBidPrice . Then, we
flatten their values into one tuple, which follows the re-
lational schema of Example 1, whereas all other SAX-3
events are discarded. (The UDA assumes that the SAX
stream wrapper already wraps the text value of a leaf ele-
ment into itsvalue field, thus we get SAX-3 events such
as (‘start’, ‘BookID’, ‘100001’)).

Example 14 defines such a UDA to flatten SAX-3 events
into relational tuples. In this UDA, a local tableTemp is de-
fined, where the BookID, BidderID, BidPrice and BidTime
values are kept.
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Example 14. Definition of UDA to flatten SAX-3 event
streams into relational streams.

AGGREGATE Flatten (eventvarchar(10),
namevarchar(50), valuevarchar(50))
: (int, char(10), real, timestamp) {
TABLE Temp(BookID int, BidderID char(10),

BidPrice real, BidTime timestamp);
INITIALIZE: { }
ITERATE: {

INSERT INTO Temp VALUES (Null, Null,
Null, CAST(value, timestamp))
WHERE event = ‘attr’ AND name = ‘BidTime’;

UPDATE Temp SET BookID = CAST(value, int)
WHERE event = ‘start’ AND name = ‘BookID’;

UPDATE Temp SET BidderID = value
WHERE event = ‘start’ AND name = ‘BidderID’;

UPDATE Temp
SET BidPrice = CAST(value, real)
WHERE event = ‘start’ AND name = ‘BidPrice’;

INSERT INTO RETURN
SELECT * FROM Temp
WHERE BookID != NULL
AND BidderID != NULL
AND BidPrice != NULL
AND BidTime != NULL;

DELETE FROM Temp WHERE SQLCODE = 0; }
TERMINATE: { } }

In the ITERATE block of this UDA, a new tuple is in-
serted in theTemp table when aBidTime attribute event is
read, and its value (casted to the correct data type) is stored
in theBidTime field. When the input is the start of element
for eitherBookID , or BidderID , or BidPrice , the corre-
sponding field of the tuple is updated. The tuple inTemp

will be returned once each field has been filled with a value.
Once a tuple inTemp has been returned (an event that sets
the system variable SQLCODE to 0), it is no longer needed
and it is deleted.

The TERMINATE block is empty in this example, since
satisfied tuples have already been returned inITERATE.
Therefore, this UDA is non-blocking; indeed it serves as
a stream transducer, where streams are piped in and piped
out.

Similar UDAs can be defined to flatten any number of
elements. For example, if we are only interested in bid
price and time, we can write a UDA which generates (Bid-
Price, BidTime) pairs and feeds into another 2-field rela-
tional stream.

5.3 Generating XML Streams from Relational
Streams Using UDAs

As discussed in previous sections, relational UDAs are
based on SQL, and return relational streams. In Section 5.2,
we showed how to define a UDA to transform XML SAX-3
event streams into relational streams, in order to unify the
two kinds of data streams. Similarly, we must be able to
transform relational streams to XML streams. In general,
two approaches can be taken to address this requirement.

The first approach consists in using SQL to assemble and
return SAX-3 events in the output. For the simple UDA of

Example 13, this involves returning three tuples: a start tu-
ple, a value tuple, and an end tuple (assuming that no at-
tribute is needed). The triplets produced by this UDA upon
invocation (on a window, since this is a blocking UDA) can
be passed to an output wrapper, which takes in the SAX-3
event streams and outputs XML stream messages.

The second approach consists in taking advantage of the
fact that SQL/XML standards are supported in ESL. As a
result, we can use SQL/XML to output XML-structured el-
ements encoded as SAX-3 streams. For Example 13, for
instance, we can just replace its currentTERMINATE code
with:

INSERT INTO RETURN
SELECT XMLElement( Name “Avg”, sum/count)
FROM state;

This statement takes the output values and restructures
them to produce XML SAX-3 triplets. This second ap-
proach leads to simpler statements and avoids the risk of
malformed XML document.

5.4 Advanced Queries on Data Streams

ESL also supports advanced sequence and time-series
queries that represent another important application area for
data streams.

Example 15. Continuously return all the patterns of two
consecutive bids that raise the previous bid by at least 50%.

SELECT BookID, IncreaseDetect(BidPrice)
FROM BidStream GROUP BY BookID;

AGGREGATE IncreaseDetect (BidPricereal) : real {
TABLE temp (price real, rank int);
INITIALIZE: {

INSERT INTO temp
VALUES (BidPrice, 1), (BidPrice, 2);}

ITERATE: {
INSERT INTO temp VALUES (BidPrice, 3);
INSERT INTO RETURN

SELECT t1.price, t2.price, t3.price
FROM temp t1, temp t2, temp t3
WHERE t1.rank = 1 AND t2.rank = 2
AND t3.rank = 3 AND t1.price * 1.5 <= t2.price
AND t2.price * 1.5 <= t3.price;

DELETE FROM temp t WHERE t.rank = 1;
UPDATE temp t SET t.rank = t.rank -1; }

Terminate: { } }

In this example, theBidPrice is extracted from the
originalBidStream and passed to the UDAIncreaseDe-

tect , which detects price increases. A temporary table
temp holds the last three bids; when two consecutive bid
prices exceed the previous bid by 1.5, the UDA returns the
content oftemp , i.e., the sequence of three successive price
increase by 50% or more. This example illustrates the abil-
ity of UDAs to support state-based computations. With-
out UDAs, or similar state-based operators, detecting a se-
quence ofn events normally takesn − 1 self-joins, which
is a very complicated operation on data streams.
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Let us now return to Example 6 in Section 3.3, where we
pass the combined streamAuctionBehavior to a PriceRe-
port() UDA to determine the winning price. The definition
of this UDA is given below:

Example 16. Return the winning bid’s price when a certain
auction is closed (UDA which is called in Example 6).

AGGREGATE PriceReport (behavior varchar, id int, price real, time
timestamp) : (int, real, timestamp) {

TABLE temp (item int, currentprice real);
INITIALIZE: {
ITERATE: { }

UPDATE temp
SET currentprice = price
WHERE behavior = ’bid’ and item = id;

INSERT INTO temp VALUES (id, price)
WHERE behavior = ’bid’ AND SQLCODE != 0;

INSERT INTO RETURN
SELECT t.item, t.currentprice, time
FROM temp t
WHERE behavior = ’close’AND t.item = id;

DELETE FROM temp t
WHERE SQLCODE = 0 AND t.item = id; }

Terminate: { } }

In Example 16, the first two SQL statements inITER-
ATE are used to update current highest bid price for each
item. The last two SQL statements inITERATE are used to
output the winning price when the auction of a certain item
closes. UDAs such as those in Examples 15 and 16 are non-
blocking, and can be used directly in ESL, or in XQuery
functions as discussed in Section 4.2.

6 FSA-Based Support for XPath/XQuery

In Sections 3.3 and 5.2, we discussed how to transform
XML streams into relational streams, where the input XML
messages are flattened into relational tuples, as shown in
Examples 5 and 14. Here, the schema for the input XML,
consisting of bids as those of Figure 1, is rather simple and
regular, and our queries are also simple. In general, we must
deal with complex XML structures and arbitrary queries.

<Auction>
<Book BookID = "100001">

<Title>A Complete Guide to DB2</Title>
<Author>Don Chamberlin</Author>
<Content>

<Chapter>
<Title>Introduction</Title>

</Chapter>...
</Content>

</Book>
</Auction>

Figure 2. A sample XML message for an auc-
tion

For instance, suppose a user is interested in writing
queries to extract ‘books which have a<Title> descendant

Figure 3. FSA for Q0: /Auction/Book/Author

element containing keyword “DB2”’, from XML messages
such as that of Figure 2. The user would normally prefer to
express his/her query in XQuery/XPath, rather than writing
a flatten UDA such as that of Example 14. Indeed, Stream
Mill allows users to write continuous queries directly us-
ing XQuery/XPath. These queries are then supported using
UDAs that implement the FSA-based approach of YFilter
[28] for performance and parallel execution.

6.1 UDA Simulation of Basic FSA

We will begin with a very simple example to explain
the idea of FSA-based XPath processing as in [28], using
UDAs written in SQL. For better performance these aggre-
gates have eventually been implemented as system-defined
aggregates (SDAs), that make full use of Stream Mill’s in-
ternal optimization techniques.

Suppose that an XPath query Q0,/Auction/Book/Author,
is issued by the user to filter the input documents. A simple
FSA can be built to simulate the processing of Q0 based on
the input SAX events, as in Figure 3 (a), where the name on
every edge represents the triggering element name between
two states.

A runtime stack is maintained to keep the active states
while we read in SAX events. The transition between states
is triggered by the start event of an element, whereby new
active states are pushed on top of the stack; similarly, the
end event will perform backtracking by popping out the ac-
tive states from the top of the stack. Every time we reach the
accept state, we find an answer to the XPath and can return
it on the fly. The runtime stack based on the XML input of
Figure 2 is shown in Figure 3 (b).

Based on the non-blocking calculation feature of re-
lational UDAs, as well as its Turing-complete expressive
power, we aim at building a simulation for the execution
of FSA, where we can bridge the different computational
styles of FSA and SQL, and share them under the same re-
lational data model.

We use (i) aTransition table to store the transition
graph, such as that of Figure 3 (a), and (ii) aState table
to store the states of FSA (in theSType column, ‘i’ means
initial state, ‘m’ means middle state, and ‘a’ means accept

8



state). The table schema and sample content are as follows:

StateTable Transition Table
SID SType QID

1 i -
2 m -
3 m -
4 a Q0

SrcID symbol DestID

1 Auction 2
2 Book 3
3 Author 4

Observe that inState table above, only the accept
state has aQID value giving the ID for the satisfied query
when the FSA reaches that state. Here, again, we will
generate a SAX-3 event stream as a result of incoming
XML messages.

Transition and backtracking are done in the ITERATE
state for every input event inSAX-3 stream. The basic UDA
definition is shown in Example 17; observe that the code
in every state can be implemented in just one or two SQL
statements.

Example 17. UDA simulation for simple XPath queries.

Table State (SID int, STypechar(10), QID char(2));
Table Transition (srcID int, symbolchar(50), destID int);

Aggregate FSA (event char(10), name char(50), value char(10)):
(QID char(2)) {

TABLE RuntimeStack (levelint, SID int);
TABLE StackTop (levelint); /*Used to decide the stack top*/
INITIALIZE: {

/* Push initial state in State table into
RuntimeStack table*/ }

ITERATE: {
/*start of element handler*/

/* If (the top state in RuntimeStack is ‘s1’,
AND input event is ‘start’,
AND input event name is ‘e’
AND entry (s1, e, s2) is in Transition table)

Push s2 on top of RuntimeStack */
/*decide accept state*/

/* If (the top state in RuntimeStack is an ”accept” state
in State table)

Return the QID of that state in State table */
/*end of element handler*/

/* If (the input event name is ‘end’)
Delete the top state in RuntimeStack table */}

TERMINATE: { } }

This UDA only returns the IDs of the queries that are
satisfied, but this basic scheme can be extended to output
SAX-3 events of matched elements.

Notice thatTERMINATE state is empty in the previous
UDA, and satisfied queries are returned on the fly. There-
fore, this UDA is actually a non-blocking UDA, which
pipelines the input and the output streams. This is exactly
what we need for streaming XML processing.

6.2 Multiple Complex XPath/XQueries

The previous section described how to filter XML doc-
uments for a simple XPath query (/Auction/Book/Author),
however several extensions are required to enable parallel
processing of more complex XPaths as in YFilter.

Figure 4. FSA for /Auction/*//Title

6.2.1 Multiple XPath Queries with Wild-card ‘*’ and
Descendent Axis ‘//’

As discussed previously, the XPath statement /Auc-
tion/Book/Author is translated into the FSA of Figure 3(a),
where ‘/Auction’ corresponds to the transition from state
1 to state 2. The presence of wild cards in our query
statements do not change this overall translation scheme
by much; for instance, if the above query is changed to
/*/Book/Author, then the transition from state 1 to state 2
in Figure 3(a) will have ‘*’ as its label. However, as pointed
out in [28], the use of the descendant axis brings additional
complications to this translation. For instance, if the above
query is changed to //Auction/Book/Author, then an extra
state, state 0, is needed, along with a transition from state
0 to state 1 with labelε, and a transition from state 1 to it-
self with label ‘*’. Furthermore, in this case, state 0 will
become the start state of the FSA. Thus, integration of these
advanced constructs requires some extensions to the FSA
translation process. This is also illustrated by the exam-
ple shown in Figure 4 that gives the FSA for XPath /Auc-
tion/*//Title.

The ability of supporting parallel processing of a large
number of queries represents an important technology de-
veloped as a result of several research efforts on streaming
XML data. In particular, Yfilter [28] presents a technique
for combining FSA that solves this problem efficiently, by
assuring that the prefixes of the different XPath statements
are combined and shared as much as possible. As shown
in [29], SQL extended with UDAs is Turing Complete, and
can thus easily support UDA that represents such combined
FSA. We use the Transition table of Example 17 to record
the transitions of the combined FSA. This Transition table
can be built incrementally as new queries are added/deleted.
The addition of the wild-card, descendant axis, and parallel
processing of multiple XPaths require small extensions to
the UDA of Example 17; the details are omitted here due to
space constraints. This combined-FSA UDA presents many
opportunities for optimization, for instance use of indexes
and memory tables. Furthermore, the UDA can also be sup-
ported as a system built-in function, in which case it can be
written in an external programming language and can take
advantage of specialized optimization techniques.

6.2.2 XPath/XQueries with Branch Queries

Besides the simple linear XPaths we have discussed
above, our XPath statements can actually contain
structure-based or value-based predicates. For example,
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/Books/Book[Author]/Title will return book titles only for
those books that contain author information. This XPath
expression can be divided into the two subexpressions Q1:
/Books/Book/Author, and Q2: /Books/Book/Title. Before
a result can be returned to the output, the sub-results pro-
duced by these two subexpressions must be joined on their
sharedBook node.

Building on the techniques presented above, we can
now extend our UDAs to process complex XPath and
XQuery statements by decomposing each query into sep-
arate XPaths. But in this case, in addition to returning the
satisfied query ids and the corresponding SAX-3 events, we
also need to return, for each matched element, an internal
element id that is needed later for joins. Such unique id can
be easily maintained by creating an id table with just one tu-
ple, and incrementing it every time a new start-of-element
event is detected. For instance, say that the queries Q1 and
Q2 discussed above are issued on the following XML in-
put, where the number associated with each start element
represents the internal element id:

< Books >1

< Book >2

< Title >3 A Complete Guide to DB2 < /Title >
< Author >4 Don Chamberlin < /Author >
< Content >5...< /Content >

< /Book >
< Book >6

< Title >7 Advanced Database Systems < /Title >
< /Book >

< /Books >

The result set for Q1 (/Auction/Book/Author) contains
only one match, namely,{1-2-4}, where the numbers rep-
resent the satisfied element ids. Similarly, the result set for
Q2 (/Auction/Book/Title) is{1-2-3, 1-6-7}. However, since
the two XPaths need to be joined on their second element,
1-2-4 and 1-2-3 match and 1-2-3 is returned as output, but
there is no match for 1-6-7, which thus produces no output.

Our basic UDA can be easily extended to cope with this
join requirement, and return all the satisfied element ids for
each XPath, as well as the SAX-3 events for the output.
All those element ids are then passed to another UDA to
perform the join operations and output the SAX-3 events
that satisfy the query. Likewise, XQuery statements are first
mapped into several XPath statements joined on some com-
mon nodes, and then processed with techniques similar to
those discussed above.

7 System Implementation and Performance

The Stream Mill system unifies relational data streams
and XML streams using the architecture outlined in Fig-
ure 5. Stream Mill supports the conversion of XML SAX-3
events to flat relational tuples and vice versa, and this paves

Figure 5. Architecture for unifying XML data
streams and Relational data streams

the way to a closer cooperation of relational and XML query
languages, resulting in greater power and flexibility.

Stream Mill supports normal selection, projection,
union, and special join operations on relational data
streams. The system also integrates SQL:2003 OLAP stan-
dards applicable to data streams. The most distinctive fea-
ture of the Stream Mill system is its support for native
UDAs that allow advanced continuous queries on relational
streams. These functionalities can now be used on flattened
SAX-3 streams.

To achieve the full integration of relational and XML
streams and their query languages, the Stream Mill sys-
tem also supports XQuery so that users can express queries
on streaming XML documents by using standard XQuery.
However, XQuery currently fails to provide good support
for analytics, data mining, and many other functions that
are now available in SQL:2003, or in ESL using our ex-
tended UDAs [11]. Therefore, we enable XQuery to call
ESL UDAs and allow it to take full advantage of these pow-
erful facilities.

Given an XQuery statement, Stream Mill first decom-
poses it into several XPaths; these XPaths are added to the
parallel XPath processor, which is a UDA similar to that of
Example 17 and generate the content in global FSA tables.
The results of these XPaths queries are joined to determine
the results of the original XQuery. Furthermore, specialized
external functions and UDAs can be called from XQuery,
and the compiler supports dynamic incorporation of such
functions, and the insertion or deletion of queries that are
processed in parallel by Yfilter UDAs.

7.1 Performance Study

ESL is the application language for the Stream Mill sys-
tem which provides full support for ESL queries via func-
tions such as compilation, optimization, query scheduling,
load balancing, in-memory tables, hash-based indexes, R-
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Figure 6. Scalability Test Results

tree based indexes, and performance monitors [12].
Three implementation approaches were explored for the

parallel processing of XPath statements. The first option is
to use ESL to define UDAs that simulate the Yfilter FSA. As
a second alternative, the same UDAs can be written in pro-
gramming languages such as C/C++, to achieve better per-
formance. Thirdly, system-defined aggregates (SDAs) can
be built to support the Yfilter FSA and achieve optimal per-
formance and scalability. In our experiments, we measured
the performance obtained with the second approach, i.e.,
UDAs written in an external PL, and compared it to that of
the YFilter demo system [3]. In terms of performance, this
a middle-road solution that achieves better performance and
scalability than ESL-coded UDAs, but it not as good as that
expected from SDAs. The results of our experiments are re-
ported in Figures 6 and 7, where FSAESL ext denotes the
C++ coded UDAs.

All of the experiments reported here were performed on
a P4 2.4GHz processor with 1GB memory running JVM
1.4.1 on Linux Red Hat 8.0 machine. As discussed in [28],
we use multi query processing time (MQPT), which in-
cludes the filtering time but not the document parsing time,
as the measure of the efficiency. We perform different ex-
periments to test the scalability and performance for differ-
ent types of queries. Our experiments suggest that, on the
average, the performance of our C++ coded UDAs is com-
parable to that of the original YFilter, although it can be
better or worse for a particular types of queries.

Scalability Test In this test we check the performance
of the systems for increasing number of queries. Figure 6
shows filtering times for increasing number of queries: 10,
20, 50, 100, and 200. The filtering times for YFilter and
FSA ESL ext increase at almost similar rate. This shows
that both systems are equally scalable.

Effect of Different Types of Queries Next, we check the
effect of different types of queries. In this experiment, we

Figure 7. Effect of Different Types of Queries

take five different groups of queries, each group consisting
of a set of 50 queries as follows:

Set1: simple queries that do not contain a wild-card charac-
ters or a ‘//’ descendant axis

Set2: queries with a 0.2 probability of wild-cards
Set3: queries with a 0.2 probability of ‘//’ descendant axes
Set4: queries with a 0.15 probability of wild-card and a 0.5

probability of ‘//’ descendant axes,
Set5: queries with a 0.4 probability of having wild-cards

combined with ‘//’ descendant axes.

Figure 7 shows the MQPTs for the respective implemen-
tations. FSAESL ext has high MQPT for set4, but YFilter
has much higher MQPT for set5. The experiments suggest
that, on the average, the UDA-based implementation in the
Stream Mill system is comparable to the specialized imple-
mentation of YFilter as far as filtering times and scalability
are concerned.

We have also implemented our FSA simulator of YFil-
ter as SDAs using C++ and integrated them in Stream Mill.
Although this work is still in progress and various optimiza-
tion improvements remain to be added, our preliminary re-
sults show that the performance of our SDAs is always bet-
ter than that of YFilter implemented in Java—from 2 times
to 3.5 times faster, depending on different query groups.
This difference is what one would normally expect for re-
spective implementations in Java and C++. In conclusion,
building an implementation of XML and XQuery in Stream
Mill produces performance results comparable to those ob-
tainable by building a complete new system from scratch,
while greatly reducing the effort spent in design and devel-
opment.

8 Conclusion

In this paper, we have presented the approach used by
Stream Mill [12] to unify the processing of XML streams
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and relational data streams into one DSMS. Although very
desirable from an application viewpoint, such a unification
has not been achieved by other DSMSs. Indeed, while
it is straightforward to represent SAX events as relational
streams, supporting complex queries (e.g., those expressed
using XQuery) on such streams represents a difficult re-
search problem.

With an innovative approach, we have shown that this
problem can be solved by exploiting UDAs, rather than
joins as suggested by previous authors. The experience
with Stream Mill shows that ESL UDAs can actually sup-
port FSA-based XQuery/XPath processing of XML streams
with performance that is comparable to that of dedicated
implementations of YFilter.

Relational data streams and XML data streams can now
be easily transformed from one to the other; moreover,
different query languages, such as SQL and XQuery, can
cooperate in the same application, by processing streams
and producing answers in either format. Furthermore, we
provided simple mechanisms whereby complex aggregates
with windows can be defined in ESL and imported into
XQuery. These constructs have proved extremely useful
for relational data streams, but they are not supported in
XQuery, nor can they be added easily—e.g., the native
function-definition mechanisms now provided by XQuery
are blocking. Streaming XML applications can now benefit
from these powerful ESL constructs and from their efficient
implementation provided by Stream Mill [12].
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