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Abstract that supplyall blue parts.” Division is a derived operator

like join, that is, it can be expressed by the basic algebra

Relational division, also known asmall divide is a operators projection, selection, Cartesian product (some
derived operator of the relational algebra that realizes a times called cross-product), union, and difference (see Ap
many-to-one set containment test, where a set is repre-pendixA for operator definitions). However, several algo-
sented as a group of tuples: Small divide discovers whichrithms exist that realize its behavior more efficiently than
sets in a dividend relation contain all elements of the set an execution plan based on the basic operatofis More
stored in a divisor relation. The great divide operator ex- importantly, recent theoretic work has demonstrated that d
tends small divide by realizing many-to-many set contain- vision must be implemented as a stand-alone operator to
ment tests. It is also similar to the set containment join achieve efficiency25).

operator for schemas that are not in first normal form. The small divide operator has two input relations, the
Neither small nor great divide has been implemented in dividend and the divisor. The dividend is composed of zero
commercial relational database systems although the op-or more groups of tuples and each group is matched against
erators solve important problems and many efficient algo- a|| tuples of the divisor relation. The great divide is a Ratu
rithms for them exist. We present algebraic laws that al- ra| extension of small divide, where the divisor can be com-
low rewriting expressions containing small or great divide posed of zero or more groups of tuples like the dividend. It
illustrate their importance for query Optimization, andsdi tests each divisor group against each dividend group.
cuss the use of great divide for frequent itemset discovery, \yhat is the role of algebraic laws for query optimiza-

an important data mining primitive. tion? Before a query is executed by the query execu-

. A recent theoretic rgsult shows that_smalldividestbe _ tion engine of a relational database management system
implemented by special purpose algorithms and not be SiM-RDBMS), the query optimizer rewrites the algebraic rep-

ulated by pure relational algebra expressions to achieve ef osentation of the query according to transformation rules
ficiency. Consequently, an efficient implementation reguir Typically, one type of transformation rules is based on-alge

that the optimizer treats small divide_ as a first-class OPera praic laws and the other maps logical operators to a physical
tor and possesses powerful algebraic laws for query rewrit- oqeat0rs. For instance, the logical operator join is meppe

Ing. to the physical operator hash-join.

An algebraic law is a logical equivalence between two
. different representations of an algebraic expression.h Bot
1 Introduction representations describe the same set of tuples for every
possible database content. Together with heuristics and/o
In this section, we motivate our work, give an intuition of  cost estimations, the optimizer applies transformatidesru
the small and great divide operators, and outline the paper. to subexpressions of the query such that the entire query
can be evaluated with the minimal resource consumption
1.1 Problem Statement and Main Results or the shortest response time. Algebraic laws for the basic
operators of the relational algebra are discussed, for exam
The division operator can be used to answer queriesple, in [13, 24]. The implementation of transformation rules
involving universal quantification like “Find the suppler  (rewrite rules) in a commercial RDBMS are described, for
*This report has the same content as papg}. [However, only this ex.amplel, in g6, 31]. Frameworks for building query opti-
report contains the proofs of laws and theorems as an appewtiich mizers, like Cascaded$| and XXL [3], allow to study the
were omitted in the paper due to space restrictions. code that is required to realize transformation rules in an
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(a) r1 (dividend) (b) r2 (divisor) (c) r3 (quotient)

Figure 1. Division: 7y +1ry =173

RDBMS.
To the best of our knowledge, no commercial RDBMS

has an implementation of relational division. One reason is paper
q \

that there is no keyword in the SQL standard that woul
allow to express universal quantification (that is, the all-
quantifier) intuitively. Another reason is that set contain

erators before we present the algebraic laws in Sedéion
Section6 discusses related work. We conclude the paper in
Section?7. AppendixA gives an overview of the operators
used in this paper. Appendi& contains all proofs. We de-
cided to present the proofs in sufficient detail to make them
easy to comprehend.

2 TheDivision Operator

We will discuss the original division operator as well as a
generalization of it, which was given three different names
in previous work. After this section, we will refer to the two
operators as small divide and great divide for the rest af thi

2.1 TheSmall Divide

ment tests are not considered as important as the exidtentia

element test that is realized by the join operator. However,

special applications like frequent itemset discovery doul
be processed efficiently and formulated more intuitively if

division would be a first-class operator. Suppose that anlations on these schemas.

RDBMS offers one or more efficientimplementations of di-
vision, that is, physical division operators like hashision

or merge-sort division16, 36]. Since division is a derived
operator, an optimizer could replace the division operayor

an expression that simulates the operator and apply tnansfo

Let R, (A U B) and Ry (B) be relation schemas, where
A ={ay,...,an} andB = {by,...,b,} are nonempty
disjoint sets of attributes. Let;(R;) andry(R2) be re-
We cajl the dividend 75
the divisor, andr; the quotientof the division operation
r1 +ro = r3. The schema ofs is R3(A). Figurel il-
lustrates example input and output relations of the dinisio
operator.

The original definition of the division operator was given

mation rules on the basic operators in the expression. In adby Codd [L0], formulated as a query in tuple relational cal-

dition, it should also be able to apply rewrite rules to the di
vision operator directly since efficient implementations a
available in the query execution engine.

The algebraic laws presented in this paper either preserv

the division operator (it occurs in the both expression ef th
equivalence) or produce some non-trivial rewrite resut th
may improve efficiency of the computation in an RDBMS.

Note that there are an infinite number of equivalent expres-

(S)

culus:

DEFINITION 1 (CODD’S DIVISION): 74 T
{t|t=t1. ANt1 €71 Are Cipy (t)}, where i, (x) is

called theimage set ofx underr; and is defined by
ir,(x) ={y [ (z,y) € 1}

In this calculus expression, the tetm= ¢;.A means that a
tuple in the result (quotient) consists of the attributesesl

sions for any given algebraic expression. We have tried tofor A of the dividend tuple; .

distill effective and interesting laws for rule based opzm
ers.

No previous work has covered the rewriting of queries
involving division or generalized division although data-
intensive applications like frequent itemset discoveryigdo
benefit from a division syntax in SQL and an efficient im-
plementation of the operator in a query execution engine.

1.2 Outline

The remainder of this paper is organized as follows. In
the following section, we discuss several definitions fer th

small and great divide, which are used in the proofs of the 1 + 72

laws. In Sectior3, we motivate the potential of the great
divide for an important data mining primitive. In Sectidn

In the following, we give two further equivalent defini-
tions of division, provided by Healy and Maier i&7] using
relational algebra. We use Codd’s, Healy's, and Maier’s
definitions for the proofs of our algebraic laws.

DEFINITION 2 (HEALY'S DIVISION): r1+719 =74 (1) —
ma((ma(ry) X re) —ry)

1Another algebraic definition given in the literature is
ro+ T ((r1 Xr2) X r2)Xre [9], where semi-join k),
anti-semi-join §), and left outer join {1x) are used. An indirect
approach based on counting was discussed18), [where gvr(r1)
is the grouping operatorlB], G is a list of ri’'s attributes and
F is a list of aggregation functions applied to an attribute rqf
TA (A'\/count(B)ﬂc (7'1 X T2) X Yeount(B)—c (7'2))'
A definition in tuple relational calculus isr; + 7o
{t|Vta €redt1 €r1 1t =t1. ANt1.B =12.B} [11]. A def-
inition mixing tuple relational calculus with relationallgebra is

we suggest a hypothetical SQL syntax extension for the op-r; ~ro = {t € wa(r1) | (t) xr2 C 71} [1].



DEFINITION 3 (MAIER’ S DIVISION): 74
Mier, 74 (0B=1 (1))

T2

In [11], the basic division operator was callethall di-
videto distinguish it from a generalization of it, called great
divide, to be discussed next.

2.2 TheGreat Divide

Before we discuss three equivalent definitions of an ex-
tended division operator, we briefly consider another op-
erator related to them: the set containment join. Let
Rl(A U Bl), RQ(BQ U O), anng(A U By UBy U O)
be relation schemas, whede= {a1,...,a,}, B1 = {b1},

By = {b2}, andC = {cy,...,c,} are attribute sets4 and

C are disjoint and may be empt§3; and B, are disjoint
and nonemptyA and B; are disjoint, andB, andC are
disjoint. Note that the setB; and B; consist of a single
set-valuedattribute, respectively. Let; (R;), m2(R2), and
r3(R3) be relations on these schemas. Feeécontainment
join r1 X, o, 72 = 73 IS & join between the set-valued
attributesb, andb,, where we ask for the combinations of
tuplest; € r; andty € ro such that set; .b; contains all el-
ements of set,.b,. Several efficient algorithms and strate-
gies for realizing this operator in an RDBMS have been pro-
posed 19, 29, 30, 32, 33].

We have recently suggested a generalization of division
that we calledset containment divisigndenoted by--7,
because of its similarity to the set containment ja3@]|
Let R1(A U B), Re(B U C), andR3(A U C) be relation
schemas, wheréd = {a1,...,amn}, B ={b1,...,b,}, and
C ={ci,...,cp} are nonempty sets of attribute$,and B
are disjoint, and3 andC are disjoint. Let; (R1), r2(Rs),
andr3(R3) be relations on these schemas. Although we de-
fine a new operator, we continue to use the terms dividend,
divisor, and quotient for the relatioms, r5, andrs, respec-
tively. The dividend relatiom; has the same schema as for
the small divide. However, the divisor relation has addi-
tional attributes”. The set containment division operator is
defined as follows:

DEFINITION 4 (SET CONTAINMENT DIVISION):
715172 = Useno(r) (M1 + 7B (0=t (12))) x (¢)

The idea is to iterate over the groups defined by the at-
tributesr,.C'. Each group is a separate divisor for a divi-
sion with dividendr;. We “attach” the divisor group value
to the resulting quotient tuples by a Cartesian product be-
tween each quotient group and a one-tuple relatipn

The similarity between set containment division and se
containmentjoin can be seen by comparing Fig@rasd3.
Despite the similarity of the output, the operators haveesom
subtle differences:

t

1. The input relations of set containment join are not in

1
2
2

wf wol el o b rof rof =] =
| o] = e[ eof o] = | =

ol =] | o]
| o] = =] =

wof 0| 1|

(a) r1 (dividend) (b) r2 (divisor) (c) r3 (quotient)

Figure 2. Generalized division:  r; +*ry =r3
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Figure 3. Set containment join:
3

71 Xp, Dby T2 =

first normal form due to the set-valued attributes.

. Set containment division does not preserve the “join”
attributes inB.

. Set containment join allows empty sets as join attribute
values whereas set containment division does not have
the notion of an empty set.

. The attribute setd andC of the set containment join
may be empty.

Despite these differences, the operators both solve the sam
problem—to find those pairs of sets;, s2) from two col-
lections of sets wherg, D ss.

In 1982, Robert Demolombe suggestegeaeralized di-
visionoperator, denoted by, that is equivalent (see The-
orem 1 below) to set containment divisioi?]. Besides
a definition of the operator in tuple relational calculus and
predicate calculus, he gives an algebraic definition:

DEFINITION 5 (GENERALIZED DIVISION):
1 -2 T2 (TFA (Tl) X T (7‘2))
maue ((ma (r1) X r2) = (11 X mc (12)))

©2

In 1988, Stephen Todd suggested—presumably indepen-
dent from Demolombe—a generalized division operator but
he did not publish it himself. However, it has been discussed
by Darwen and Datel[l], where it was calledreat divide
denoted by=;. A definition in relational algebra is given
by the following expression:

DEFINITION 6 (GREAT DIVIDE): 71 =5 T2
(ma (1) X mc (r2)) = maue ((ma (1) X 12) = (r1 X 72))



Definition 6 differs only slightly from Definition5 of gen- vide operatorguotient= transactions-* candidatesNote
eralized division. It uses a join instead of a Cartesian prod that this computation does not require the candidate item-
uct. Darwen and Date write that great divide degenerates tosets to have the same sizeThe frequent itemsets can then
small divide, as specified in Definitid if C' = () [11]. We be found by grouping the quotient table @mset count-
prove in Appendi8 the following theorem: ing thetid values per group, and discarding the groups with

THEOREM1: Set containment division=;), generalized insufficient support.

division (=3), and great divide €3) are equivalent opera- _ _
tors. 4 Embedding the Operatorsinto SQL

The three definitions have been suggested independently.
However, while the publications on generalized divi-
sion [12] and great divide 11] solely focus on the rela-
tionship between thivgical operator and the basic division
operator, our previous work on the set containment divi-
sion operator34, 36] put its emphasis on algorithms that
implementphysicaloperators and investigated applications
for this operator. In the rest of the paper, we will use De-
molombe’s termgeneralized divisiorand use the symbol
—=* for the operator.

In this section, we present a straightforward hypothetical
syntax for the small and great divide operator in SQL and
illustrate how these operators can be used for real queries.
We will use a more straightforward example problem do-
main for the queries than in the previous section, namely
the suppliers and parts scenario from database textbooks.

In the SQL standard2p], a production rule is defined
for table referenceswhich occur in the FROM clause of a
query expression. We extend this clause by a nonterminal
(quotien} as follows?

3 Frequent | temset Discovery' An Applica— <table reference> ::= <table factor> |
. .. ' <joi ned table> |
tion of Great Divide <quot i ent >

Without going into every detail of the SQL standard, this

. Frequent |temset_d|_sc0very IS an |mportant data min- rule states that a table can be a base table, derived table,
ing subtask of association rule discovery algoritha]s [t named query, etc., or the result of a join expression or the

searches for combinations of elements that occur more fre- - X ) )
: : result of a division operation. We specify the followingeul
guently in a large amount of sets, calke@nsactionsthan a

user-defined threshold, callesinimum supportMost fre- for expressions involving the small and great divide opera-

guent itemset discovery algorithms such?gsiori proceed tors:

iteratively. In thekth iteration, the algorithm computes alll <quotient> ::= <table reference>
frequentitemsets of size The first iteration simply counts E{ Z'bIDE rBZf or ences

the frequency of each item in the transactions, filters out ON <sear ch condition>

those that have insufficient support, and adds the frequent

ones to the result. Each of the following iterations is two- ~ We illustrate the syntax using an example using a
phase. In theandidate generation phase the kth iter-  Supplier-parts database with a talsiepplie¢s# p#) that
ation, the algorithm computes a superset of the frequentlists the partsi#) supplied by each supplies#) and a ta-
itemsets of sizé:, called candidaté-itemsets. In thesup-  ble parts(p# color). The following query delivers for each
port counting phasethe candidate:-itemsets are probed color the suppliers who supply all parts with that cdtor:
against the transactions to check how many times a candi: SELECT s#, col or

date is contained in a transaction. The itemsets that occur ~ FROM  supplies AS s DI VIDE BY parts AS p

more frequently than the minimum support are added to the ON's.p# = p. p#

result. _ _ Note that we do not distinguish between the small and
Suppose, we want to discover frequent itemsets Us-great divide on the language level. The great divide is a nat-

ing an RDBMS. Let us focus on the support count- ra| generalization of the small divide and can always be
ing phase. For instance, given a table of transactions

transactionsﬂd7 item) and a table of candidate itemsets 2The idea of using a “vertical” representation for itemsatthie same
candidateétemselitem) whereitemsetis a set identifier way as for transactions that we just described was discusd@d]. It is

. . . . - . different from all SQL-based approaches of frequent iterdiEzovery in
anditemis an item identifier. A query-based frequent item- e jiterature as, for example, a1, 37, 39].

set discovery algorithm can computeaotienttable con- 3shown in extended Backus Normal Form (BNF) as28]]

taining value pairs(transactiongid, candidatestemset *We actually ask only for those suppliers who supply at leastpart,

such that the item values belonging dandidates.itemset ~ Natis. thosess values in asuppliergs# .. .) table, where there exists a
. . . . tuple in thesuppliestable with thats# value. This is a slight semantic

are contained in the set of items belongingttansac- difference between set containment join and great divislenentioned in

tions.tid This test is exactly the behavior of the great di- Section2.2



used on the implementation/execution level. Tteotient priate joins between inner and outer query are present does
construct is equivalent to small divide if all divisor at- the query solve a real set containment problem.

tributes appear in the join condition of the ON clause as a
conjunctior of equi-joins. An example use of small divide
is the query “Find the suppliers that supply all blue parts”
that was mentioned in Sectidnl, which can be formulated

Algebraic Laws

Some of the algebraic laws discussed in this section are

as follows: > " .
based on the notion of jpartitionedrelation. We use the
Q2: SELECT s# following notations for partitions:
FROM  supplies AS s DI VIDE BY (
?E(LJI\EAC]— E’Zrts e 1/ andr! denote nonemptigorizontalpartitions of re-
WERE color = 'blue') AS p Ianorl r; such Fhatrg ur! = ri.,_wherez' e {1,2},
ON s. p# = p. p# that is, we define a decompositionqfs tuples The

two partitions may actually be different relations. We

Concerning the power of the suggested SQL syntax, one  just express by this notation that two relations have the
could allow a more general join condition than equi-joins same schema.

between columns in the ON clause. However, the result
of such a query would have a semantics that is completely e r; and r;* denote relations that conform to the

different from small or great divide. We suggest to disallow schemas of theertical partitions R; and ;" of R;,
this case. If such a different behavior is required, a user ca respectively, such thak; U R;* = R;, wherei ¢
still formulate the problem using other, basic operators of {1,2}. Hence, we define a decomposition/®fs at-
the SQL syntax. tributes

We contrast querg); with an equivalent query that sim- e
quers: q query For the laws that follow, we will indicate when we re-

ulates the universal quantification by two “NOT EXISTS” . " L
clauses, applying the mathematical equivalence betweerduire partitions to be disjoint or not. The proofs of the laws

VaJy : p(x,y) and—3z—3y : p(x,y), wherep is a predi- an%t?eorems can bet ft?]unld n AppentBItX wo th that
cate involving variables andy: erore we presen e laws, we State 0 theorems tha

emphasize that this binary operator is clearly asymmetric.
@: SELECT DI STI NCT s#, col or

FROM supplies AS s1, parts AS pl THEOREM2: Small divide is non-commutative, that is,
WHERE NOT EXI STS ( r1 -+ 19 # ro + 11 fOr relationsr; andrs.
SELEC-]— * . . . . . .
FROM parts AS p2 THEOREM 3: Small divide is non-associative, thatis,+
WHERE  p2.color = pl.color AND To =T r1 = 19) = r3 for nonempty relations;, o,
NOT EXI STS ( ;r?d 3) # (o) +rs Py b
SELECT * "3
FROM  supplies AS s2
WHERE s2.p# = p2. p# AND 5.1 Algebraic Lawsfor the Small Divide

s2.s# = sl.s#))

A direct translation of this query asks for each supplier and 5-1.1 Union

colorl_wzek':he:]there isl_ no part of thﬁ sakme co(ljor that is Nt \yhen thedivisor ro IS decomposed into horizontal parti-
supplie y the supplier. We use the keywor DISTINCT tions then one can divide by these divisors separately:
in the outermost SELECT clause to remove duplicates from

the result. Otherwise, we would get the sare# €olor) LAaw 1: ry = (rhUrl) = (r X (ry = 75)) =14,
value combination as many times as there are parts of th

) ®rhis law holds also for overlapping divisor partitions, as
same color iparts

, , illustrated in the example in Figuee In this example, the
Clearly, the query using a special syntax for the set con-r/2 and”/ have one tuple in common with vale= 3. The

tainment problem is more concise and hence (likely) less resulting relation; is the same if the tabl@) is divided

error-prone to formulate than the query based on existen-by the union of table¢c) and(d) compared to dividingf)
tial quantifications. Furthermore, it is not simple to dewvis by (d).

query-rewriting algorithm for a query optimizer that is @bl
to detect those existential quantification constructsdhat
be replaced by a (great) divide operator. Only if the appro-

It can help an RDBMS to employ pipeline parallelism as
follows. Supposey; is grouped od. We can employ effi-
cient group-preserving algorithms for the inner small diévi

SFor tablesr; andrs with schemas; (a, b, ¢) and Rz (b, ¢), respec- " _ r3 as well as the Semi-j(.)".w and dgliver the resu'.t as the
tively, we would use a query lIk6ELECT a FROM r1 DI VI DE BY dividend to the outer small divide, which can be realized by
r2ONril.b =r2.b ANDrl.c =r2.c. a group-preserving algorithm itself.
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Figure 5. An example where the precondition
of Law 2 is not fulfilled

When we decompose thdividendhorizontally instead

of the divisor, we must take care of the situation sketched in

Figure5. There is a quotient candidate value=£ 1) whose

can parallelize a query execution with degpeas follows.
Suppose that the query execution engine can access the data
in tabler; via an index onA. We can employ two parallel
scans on table;: one that starts with the lowest value of

A and scans the leaves of the index in ascending order of
A and another that starts with the highest valuedodnd
retrieves data in descending orderAfBoth scans stop as
soon as they encounter the same valueAorExactly one

of them has to process the entire last group. Higher degrees
of parallelism can be achieved by partitioninginton. > 2
partitions.

5.1.2 Selection

Let p(X) denote a predicate involving only elements of a
set of attributesX. Since onlyr; contains the attribute set
A, we can state the following “selection push-down” law:

LAw 3: Op(A) (7’1 - 7’2) = Op(A) (Tl) - T2.

For a predicate that involves only attributesinthe fol-
lowing “replicate-selection” law holds:

LAaw 4: r; = Op(B) (7‘2) = O0p(B) (Tl) ~ Op(B) (7‘2).

As a third example of selection conditions, we will now
analyze the case where there’s a restriction specified en div
idend attributes i3, only.

EXAMPLE 1:

ap(B) (1) + 12 = (0p(m) (r1) + op(m) (r2)) —

tuples are dispersed across the dividend relations but none ma (T4 (1) X 0-p(p) (12)) -

of the groups containall values of the divisor. However,
the union of the groups does. In other words: o = {)
andry <+ry = @ but (r Ur{)+ry # (0. We have to exclude
this situation in the precondition of La& Formally, the
following precondition must hold:

cr(ri,r)y=Vaema(ry) Nmalry) :
( (r)) v
r2 C g (0a=a (1)) V

r2 75 (0a=a (1) Uoa=q (17))

ro C B (0A=a

Law 2: If condition ¢y (rq,77) is true then(rj Ur{) +
ro = (r] +ro) U (rf +ra).

Since testing conditior; can be expensive, an RDBMS
may use a stricter condition that is easier to check:

ca(ry,rl) = ma () Nwa (ry) = 0.

It can be shown easily that for any relations= r{ U r{
andrs as defined before, if; holds then alse; holds. By
using conditione, instead ofe; with Law 2, an RDBMS

This expression is very similar to Ladv We only have
to take care of the situation whese,, ) (r2) # 0. In this
case, the expression gy (r1) 72 is equal to the empty set
because no dividend tuple has a valueothat can match
a tuple ino_,(p) (r2). Hence, ifo_,p) (r2) contains at
least one tuple, we can enforce that the result relation be
empty by simply removing alll values inr; from the quo-
tient candidates im, ) (1) + 0u(p) (12). The Cartesian
product is merely used to “switcht4 (1) “on or off.”®

Figure 6 illustrates the example and exhibits the inter-
mediate results in detail. The predicate ontheolumnsis
defined a$ < 3. Note that the result tablés) and(i) are
both empty since tablgh) is nonempty.

To make our argumentation clearer, we could rewrite our
expression as follows: Since our equivalence represents a
rather extreme case, we do not state it as a law but leave it
as an example. |

60f course, it would suffice to combing (1) with only a single
tuple ofo_,(B) (r2) by the Cartesian product.
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Figure 6. An illustration for Example 1

5.1.3 Intersection

We can push small divide into intersections of dividend re-
lations.

Law 5: (riNry) +ro = (1) = r2) N () +1r2).

5.1.4 Difference

The following law can be used when we perform two re-
stricted scans over theamedividend relation where both
restrictions are definednly on the attributes im. For ex-
ample,r; = g4>10(r1) andr{ = o,>20(r1). In this case,
we can push small divide into a difference of the dividend
relations:

Law 6: If 7}
(rp =) =1

O'p/(A)(Tl) 2 O.P//(A)(Tl) — Tlll then
(1} +r2) = (1] +1r2).

For a similar law, we require as precondition that(r} )
andr 4 (r}) are disjoint/

Law 7: If w4a (1)) N wa (r))
(rf +re) =7r) +ra.

0 then (r} +rs) —

Clearly, this law can save a lot of resources of an
RDBMS if the computation of = r, would be expen-

"This is not the weakest precondition. For the the law to hold,
it would suffice to require thaa € oa—q (ma (r}) Uma (r})) :
r2 C oa—q(ma(r})) Vra C oca—q(ma(r{)) Vre ¢
0a—a (ma (1)) Uma (r{)) . However, we prove the law only for the
stronger preconditionr 4 (r7) N4 (7)) = 0.

[ay T ag T®]
1 1 1
1 1 2
1 1 3
1 2 1
1 2 3
1 3 2
[a2 T & ] T 3 3
1 1 2 1 1
1 2 2 1 2
1 3 2 1 3
2 1 2 2 1
2 [ 3 2] 2 2 [ 3
[1] 3 2 2 3 2
2| 3 3 3 2 3 3
E3 EX3 * EX3
(@ 3 (o) 7 (c) r2 d) i xry
[Cag T az ]
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[ 3
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5] 3
) ri =72 M s

Figure 7. An example for Law 8

sive. For example, suppose thdt consists of a sin-
gle integer attribute with valueld..10°] and the query is
(O'aglO(Tl) - 7‘2) — (O’a>10(7°1) - 7‘2). Computing only the
first part of the difference is inexpensive.

5.1.5 Cartesian Product

Let A; andAs be disjoint subsets of the attribute sesuch
that4; UAs = A. Letr] be arelation with schem@; (A;)
andri* be a relation with schem&;* (A, U B). As usual,
let R2(B) be the schema of the divisos. Then it suffices
to apply the small divide only to some of the attributes of
the dividend:

LAW 8: (rf x r*) +ro =71} x (1™ +r2).

Figure 7 illustrates Law8 with an example. The law can
help when the query optimizer finds that a predicaté a
theta-joinixy is always true SinC& ye= X.

Let B; and Bs be disjoint nonempty subsets of the at-
tribute setB such thatB; U B, = B. Letr} be a relation
with schemaR; (AU B;) andr;™* be a relation with schema
Ri*(B2). Again, letRs(B) be the schema of the divispy.
Then, we can state the following

Law 9: If 7, (r2) C ri* then(rf x ri*) +ro = 7§ +
B, (r2).

Figure8illustrates Lawd with an example. All intermediate
relations are shown. Note that the Cartesian proddyt
does not necessarily have to be materialized by an RDBMS
provided that the implementation of the subsequent small
divide can cope with pipelined input. The same holds for
the Cartesian product on the left hand side of L&hat
was illustrated irv(d).

ExXAMPLE 2: With the help of Law9 we can prove that
(7‘1 X S) - (7‘2 X S) =r;+7ry. LetB = By U By. We
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Figure 9. An illustration of Example 3
(€) 75, (r2) () mry=(r2) 9) 3

ro. We can derive the following expressions:

Figure 8. An example for Law 9 y o
3 = (11 Moy <y 117) F 12

= 0p, <by (] X r]") =+ ro (Definition of theta-join)

have R} (A U By), R;*(B), R3(B1), R3*(B,) and thus = (Oby<by (17 X 717) + 00, <b, (12)) —
R1 (AU B; UBs) as the dividend schema aitd (B, U Bz) Ta (g (r] X 17%) X op,>5, (12))  (Examplel)
as th.e. divisor schema. We dqf|e:_ ri* = r3*. The = ((rF X r™) = op, <p, (12)) —
conditionr* C mg:=(r2) is fulfilled sincery* = r3* = o (1 (1 X T7%) X & (r)) (Law 4)
Try- (r2) = Trs+ (r2). Hence, we have o Vet b12b2 172
= (r1 + 7, (00, <0, (12))) —
(rf % 5) + (13 x 5) Ta (70 (1] X 17%) X 0451, (r2)) (LaWO)
=(r] x ")+ (r3 xr3") (Definition of s) = (r] + mp, (Oby<by (12))) —
=(r] x ™) +rq (Definition of Ry) Ta (Mo (17) X Oby>by (12))
=ri +7p(r2)  (Law9) (sincea € R; buta ¢ R}*)

Ty +Ts (Definition of Ry) . .
Note that the termr, (r]) X op,>p, (12) is merely used

to test if oy, >, (r2) contains at least one tuple. If yes,
rs is an empty relation because, (r}) represents alk
values inr; and removing these values from the quotient
ri +7p, (0b,<b, (r2)) Would leave no tuples. Otherwise,

is simplyry =7y, (05, <, (r2)). Figure9 sketches some in-
o o ) termediate results that occur during the computation of our
Join, like small divide, is a derived operator. When a small example expression.

divide opera_tor occurs toget_h_er with a join ope_rator in an An RDBMS might be able to execute a plan based on this
expression, it may be beneficial for the execution strategy g ession more efficiently than a plan based on the original
of an RDBMS .to rewrite thejo_ln operator an_d subsegueptly expression because no join betweérandr:* is required.
apply algebraic laws to rewrite the result in combination g,qp, 4 situation occurs, for instance, when there is no index
with small divide. The laws involving the selection operato 4ilable on:.b; and no index on}*.bs, but when there

in Section5.1.2as well as the laws concerning the Cartesian 5o two indexes defined on the coluninsandb, of table
product in Sectiorb.1.5can be used to rewrite expressions

5.1.6 Join

. T o i r9, respectively. O

involving join and small divide, since xg s = op(r X $), _ o o

wherex is a theta-join with the conditiof. The following Let us focus on a special type of join: the semi-join. Let

example illustrates such a rewrite. rs be a relation with schemB&s(A). Then we can state the
following

EXAMPLE 3: Letrj, ri*, andrs be relations with schemas

Ri(a,by), R¥*(b2), and Ry(by, bo), respectively. Further- Law 10: (r1 +r2) X7 = (11 X 73) 72,

more, letri*.b2 be a unique attribute and lef.b, be a for- This law can help an RDBMS if; has few tuples and;
eign key that references™, that is,m, (r2) C r7*. Sup- andr, have many tuples. It may be cheaper to kegn
pose, we want to compute relation= (7 Xp, <p, 777) = memory and to compute the semi-join in one scan oyer
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especially if the join is highly selective and removes many
tuples fromr;. Then, the small divide of the join result with
ro is likely to be cheap.

Hence, there can be at most one dividend tuple for each
B value. We simply have to checkifs (r, x r2) contains
a single value. If it does, then this value is the quotient.

_ Otherwise, there is no quotient.
5.1.7 Grouping

A (r1 X 73)

We consider two special cases involving the grouping oper- _ ' if ooy (’Ycount(A)—w (
ator. Concerning the first special case,sgte a relation LAw 120 7y 7o = 7a (r1 X r2))) # 0, and
with schemaR, (AU X) for some nonempty attribute s&t ¢ otherwise.

Letr; = avyx)—5(r0), Wwheref is an aggregate function
and its result is assigned to the attributesA¥ In other
words, each quotient candidate group of the dividend con-
sists of a single tuple. Hence, in order to find a quotient, the
divisor cannot have more than one tuple. For this special
case, we can formulate

Figurellillustrates an example for this law. Since taf#g
contains a single tuple, this table also constitutes the quo
tient.

The two laws involving the grouping operator can im-
prove the query execution time considerably because the

small divide operation is replaced by a single join operatio

&Y and a projection on the join result. However, since Laws
if o0c—o (7Count(B)—>c (Tz)) # 0, and12 have rather restrictive prerequisites, we believe that
LAW 11 rysry = TA (r1 % 72) their implementation is beneficial only in special purpose
if 0e=1 (Yeount(B)—c (12)) # 0, RDBMS.
and
0 otherwise. 5.2 Algebraic Lawsfor the Great Divide

FigurelOillustrates an example for this law. Here, the ag-
gregation operator computes the sum of thealues for
each group ob in tablery. This value is used as the new
attributea in r1. Since each group formed defined blias

a single tuple the tabl@) constitutes the result.

Now, let us consider another special case.rydie a re- 5.2.1 Union
lation with schemaR, (X U B) for some nonempty attribute
setX. Letr; = pysx)—a(ro), Wheref is an aggregate
function and its result is assigned to the attributestif
In other words, each divisor attribute valéof the divi- LAwW 13: If e (ry) Nme (1) = O thenry +* (ry Ury) =
dend occurs in a single tuple, that is, the groups defined by(r; +* r5) U (11 +* ).

B have size one. Furthermore, let. B be a foreign key
referencing.B, thatis,rs.B C 7 (r1).

We have identified several laws for the great divide op-
erator--*. In the following, we show some of the laws that
we consider as important.

When thedivisor ry is decomposed into horizontal parti-
tions then one can divide by these divisors separately:

This law allows to parallelize the execution of a query. Sup-
pose that the dividend is replicated om nodes of a query
8The assignmenf(X) — B is a simplification. In generalf is a execution engine and that the divisor is equally distridute
list of aggregate functiongy, . ..., f», wheren = | B|, such thatf (X) = according to a hash function en.C across the nodes. Then
(f1(er(X)), -, fulen(X))) = (b1,...,bn) = Bande;(X)isan s nossible to reduce the execution timeltaf the origi-
arithmetic expression using attributes &f, for example,es = Tx3 — . . .. no T .
/Z5. The setX may have any number of attributes, it need not be equal nal time provided that the great divide execution is consid-

to B. erably more expensive than the final union/merge operator




plus the cost for data shipping to and from the nodes.

5.2.2 Selection

The following law is the same as Ladfor the small divide
operator.

LAaw 14: Op(A) (7‘1 - 7‘2) = 0p(A) (Tl) =%y,

A similar “predicate push-down” law holds for attribute
C of the divisor relation:

LAw 15: Op(C) (T1 -* TQ) =7y =" Op(C) (TQ).
The following law is the same as Lawfor the small
divide:

LAW 16: 11 =" oy (r2) = op(B) (11) +7 0p(B) (12)-

5.2.3 Cartesian Product

The following law is the same as La®for the small divide.
It is useful for expressions involving joins when combined
with Laws15and16.

LAW 17: (r] x r7™) =" rp =17 X (17" =% 12).

5.24 Join

The following example illustrates how an expression in-
volving great divide and theta-join can be rewritten using
the laws discussed before.

EXAMPLE 4: Letrj, ri*, andrs be relations with schemas
Ri(a1), Ri*(az,b1), and R (b1, b2), respectively. We can
derive the following expressions:

] May—ay (175 =" 12)
= Oq,—a, (1] X (ri™ +" 1r2)) (Def. of theta-join)
= Ogy=a, ((r] X r7™) =" 19) (Law 17)
= Oay—=ay (1] X 177) +% 12 (Law 14)
(ri Ma,=a, 717) =" ro (Definition of theta-join)

Suppose that an index is available @Gna; or onri*.as.
The joinr] X,,—q, 77" in the last expression can then be
computed very efficiently. If this join has a high seleciyit
it is possible that much fewer dividend groupsbofalues
have to be tested againstin the last expression compared
to the first expression. O

6 Reated Work

An interesting theoretical result about the small divide
operator has recently been publish2f][ It justifies the ef-
forts made by previous work on implementing small divide
and set equality joins as efficiespecial purpose operators

10

which can achieve a time complexity 6f(nlogn) for al-
gorithms based on sorting and counting. They prove that
any expression of the small divide operator in the relationa
algebra with union, difference, projection, selectiond an
equi-joins, must produce intermediate results of quadirati
size?

Set containment join is considered an important opera-
tor for queries involving set-valued attributes3[ 20, 28,

30, 29, 32, 33, 41]. For example, set containment test op-
erations have been used for optimizing a workload of con-
tinuous queries, in particular for checking if one query is
a subquery of another. For instance, Chen and De\gjitt [
suggested an algorithm that re-groups continuous queries t
maintain a close-to-optimal global query execution plan.

Another example of set containment joins is content-
based retrieval using a search engine in document
databases, where a huge set of documents is tested against
a set of keywords that all have to appear in the document.

We have already discussed the area of data mining as
another potential application area in Sect®n

The small divide operator has been studied in the con-
text of fuzzy relationsfor example, §]. In a fuzzy rela-
tion, the tuples are weighted by a number betweeamnd
1. One interpretation of an extended division operator for
fuzzy relations, thduzzy quotient operatdi(], is based
on one of several relaxed versions of the universal quan-
tifier, called “almost all,” which is realized by a so-called
ordered weighted average operatdihe fuzzy quotient op-
erator produces those valuesw€ 7 4(r1), where for “al-
most all” element$ € 7 (r2) the tuple((a) x (b)) isinr
for some fuzzy relations, andr, with schemas?; (AU B)
andR.(B), respectively. Other interpretations of a “fuzzy”
version for division are discussed, for example 5n4].

Carlis proposed a generalization of the division opera-
tor, calledHAS[7]. He argues that “division is misnamed”
because there are more operatotthan division ¢) that
fulfill the equation(r; x ro) o 7o = r1. He further claims
that division is “hard to understand” because, among other
arguments, “division is the only algebra operation thaggiv
students any trouble.” Finally, he writes that divisioniis-*
sufficient” because it is not flexible enough, it allows only
queries of the form “find the sets that contaih elements
of a given set” but it does not help for queries asking for sets
that contain, for example, at least five elements of a given
set.

The HAS operator involves three relations: contains
entities about which we want the answer if it qualifies in the
result, 7o contains entities that are used for the qualifica-
tion, andrz contains the relationships between the entities
in r; andry. For example, in the supplier-parts database

9Their main, more general, result is to show that any relatiaigebra
expression that never produces intermediate results afrgtia size, will
produce only intermediate results of linear size.



mentioned in Sectiod, r; = suppliers ro = parts and

sides such engineering problems, it is interesting to study

r3 = supplies In addition, the HAS operator uses a combi- further data-intensive applications with an intrinsicvent

nation of six “adverbs,” calledssociationsto describe the
qualification: strictly more thanstrictly less thansome of
but not all plus something elsexactly none of plus some-
thing else andnone at all There ar&® — 1 = 63 possible

for a specific HAS operator. Such a combination is consid-
ered as a disjunction of the participating associations.

We illustrate the algebra syntax used if] py show-
ing how the small divide can be expressed by the HAS
operator using one of thé3 association combinations:
r1 VIA r3 HAS (exactlyor strictly more than OF ro. The
combination &xactlyor strictly more thatiis equivalent to
the adverb “at least,” typically used to describe division.

7 Conclusions

We have presented equivalences of the relational algebra (2]

for two important operators that realize a universal gdianti
cation, called small and great divide. The latter is a natu-
ral extension of the classic small divide operator that was
introduced by Codd. The algebraic laws can serve as log-
ical rewrite rules within the optimizer of an RDBMS that
provides an implementation of small or great divide in the
execution engine. To achieve efficiency for universal quan-
tification queries, division operatorsustbe implemented

as first-class operators, as it was recently prove2%h [

Until today, relational division operators have not been
implemented in any commercial RDBMS. However, with
these operators, data-intensive data mining primitivies li
frequent itemset discovery or simple text searches using
conjunctive queries can be formulated intuitively and be
coupled more closely with an RDBMS. Hence, such “for-
all” queries enjoy an optimization according to the current
data characteristics and can be processed efficiently bg the
special-purpose operators. We do not claim that the laws
presented in this paper constitute the only relevant rtilese
Nevertheless, we believe that several of our algebraiarequi
alences are necessary to enable an effective optimization o
gueries that use the small or great divide as a first-class op-
erator.

Clearly, logical query rewriting is only one aspect of the
query optimization problem. The mapping of logical opera-
tors to physical operators is another issue. We have regcentl
implemented a collection of physical great divide opersator
into a Java query execution engine prototype based on the
class library XXL [3]. A description of several great di-
vide algorithms together with cost estimations based on in-

sal quantification problem besides frequent itemset discov
ery.
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All of the operators in this paper, shown in the following
table, havesetsemantics, that is, each input and output re-

lation of an operator is aetof tuples. For a discussion of

the difference between the set and bag/multi-set semantics

of relational operators, see, for examplE3][

join

some relations1, r2, andrs with
schemasR (a, b), Ra2(c,d, e), and
R3(a, b, c,d, e), respectively, where

f

Name Description |

U] Set union riUro={t|[teriVtera}

n Setintersection | r1 Nro ={t|t €ri At €ra}

— Set difference ri—ro={t|teri Atgra}

X Cartesian  pro-| r1 Xrg ={t1ota|t1 Er1 At2 €
duct/ cross| r2}, whereo is the concatenation
product operator.

TA Projection ma(r) = {t.A|t € r}, whereA is
a list of attributes,{ A} is the setof
attributes in thdist A, andt. A is the
concatenation of values from tuple
that appear im.

oy Selection og(r) ={t|t € rANO(t)}, whered
is a condition.

Mg Theta-join 71 Mg T2 = 09 (7’1 X 7‘2) andé is
a condition.

X Natural join ri X ro = ma (og (11 X r2)),
where A is the set of attributeq
in the schemaR;(r1) U Ra(r2),
0 = AL,ri.a; = 7r2.04 and
{a1,...,an} is the set of attributes
appearing in the schenia; N Rs.

X Left semi-join X T2 = T (r1 MT2),
where[r1] denotes the attributes g
Ri(r1).

I3 Left anti-semi- | riXre =71 — (r1 X r2).

join

™ Left outer join rt X r2 = (riXra) U
((rixr2) x (X7 (NULL))),
wheren is the number of attributeg
in schemaR2 (r2) [17].

GVF Grouping G is a list of grouping attributes an
F is a list of aggregation functions
applied to some attribute values.
Example: a,dVsum(b) —total (Tl)
for some relationr; with schema
Ri(a,b,c,d) [13,38].

+ Small divide, | Example:r; +ro = r3 for some re-
Division lationsrq, 72, andrs with schemas

Ri(a,b,c), Ra(b,c), and R3(a),
respectively. Relationr; is called
dividend, ro divisor, andrs quo-
tient.

+* Great divide, | Example: r1 =* ro = r3 for

Generalized some relations1, r2, andrs with
division, Set | schemaski(a,b,c), Ra2(b, ¢, d,e),
containment andR3(a, d, ), respectively.
division

X Set containment| Example: r; Mpc. r2 = 73 for

b andc are set-valued attributes.




B Proofs
B.1 Lemmas

LEMMA 1: Let X, Y, and Z be sets. ThenX — Y =
X—Z&<XNY=XnNnZ.

PrROOF(LEMMA 1): We prove the lemma by deriving im-
plications for both directions of the equivalence. Firsg w
showthatY - Y =X -Z=XNY=XnNZ:

te(XNY)
SteXANteY
SteXNtgX)V(teXNteY)
SteXNAN(t¢gXVEeY)
SteXN-(te XAtEY)
SteXA-(te (X -Y))
<Ste X A-(te (X —Z)) dueto our assumption
sSteXAN-(te XNt ¢ 2)
SteXN(t¢gXVteZ)
SteXNtgX)V(te X Nte2)
SteXNteZ
ste(XNn2)

~ o~~~

Next, we showthaKk N Y = XNZ=X-Y =X - Z:

te(X-Y)
SteXANt¢EY
SteXANteY)V(te XAt ¢X)
SteXviteXAnte X)) A
tgYV(te XNt¢ X))
SteXANteY V(e XAt¢ X))
SteXANEeXVEEY)AN(tEXVLEEY)
SteXN(teEXVtEeY)
steXN-(te XANteY)
SteXA-(te(XNY))
<te X A= (te€ (X NZ)) due to our assumption
SteXN-(teXNteZ)
SteXNt¢eXVt¢ Z)
SteXNtegX)V(te XNt ¢ Z)
SteXNt¢Z
ste (X -2)

~ o~ o~

O

LEMMA 2: Let Xy, X5, Y; andY; besets. IfX1N Xy =0
andX; DY, fori e {1,2}then(X; — Y1) U (X2 —Y3) =
(X1 U X)) — (Y1 UY).
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PROOF (LEMMA 2):

te (X1 —Y1)U(Xy—Ys)
teXiNtgY)V(te XaAt ¢Y)
(teXivieXo)AN(teXiVEEYr)A
tEYhvteXo)ANtEY1VEEYs)
SteXiVvte Xo)A(t ¢ Xy At eYa)A

SteYVINtE Xo) A=(teYIALEYS)
ste (X1 UXo) At ¢ (Ya— X1)A

b (Vi — Xo) At (YiNYa)
Ste (X1 UX)A

te(Yo—X1)Vte (Y1 —Xo)Vie (Y1NYs))
Ste (X1 UXo)A

t¢ (Y2 = X1)U (Y1 — X2) U (Y1 NY2))

-
=

We find that

(Yo — X1) = Yy sinceY; € X, andX, N X, =0
and that

(Y1 — X;) = Y; sinceY; C X; andX; N X, = 0.
Hence, we have

(ng—Xl)U(Yl—Xg)U(Yl ﬂng)
— YUY U (YN YY)
=Y,UY.

Thus, we finally find that

te
t¢
Ste
Ste

X1 UXo)A

(Y2 = X1)U (Y1 — X2) U (Y1NY2))
X1 UXo) At ¢ (Y1UYs)

X1 UXs) — (Y1 UY3).

o~~~ o~

O

LEMMA 3: Set containment divisior}) and great divide
(=3%) are equivalent operators.

PrRoOOF(LEMMA 3): In the following, we will show the
equivalence of the relational algebra expressions of set co
tainment division in Definitio4 and of great divide used
in Definition 6. Letr; be a dividend relation and, a di-
visor relation with schemag; (A U B) and Ry(B U C),
respectively, as defined in Secti@®2 Let {C4,...,Ck}

be the set of (distinct) tuples ing(r2). If the divisor is
non-empty therk > 1. We use the following algebraic law
as a proposition:

(PL) ma (r1Ury) = ma(ma (r1)Uma (r2)) for any re-



lationsr andr, with the same schemB(A U X),
where A is a nonempty set of attributes and attribute
setX may be empty or not.

Let us start with expression the definition of set con-
tainment division:

e=1r1 11
U 1 +78(0c=(r2) x (t)
temc(ra)
We replace the division operator by Definitién
U (@a(m)-
temc(ra)

ma ((ma (r1) x 7 (0=t (12))) —71)) % ()

e =

U mal)x@)] -

tema(ra)

U al(ma(r)x

temc(ra)

m5 (00—t (r2)) = 1) (1)
U

teme (ra)

(ma (r1) x 7o (r2)) — (ma ((ma (r1) x

€0

g (0c=t (12))) —71)) % (1))

=eg— U (ma((ma(r) x
1<i<k
7B (0c=c, (r2))) —11)) X (Ci))
= ey — TAUC U mauc (((ma (1) x
1<i<k
g (0o=c; (r2))) X (Cy)) — (11 % (Cy))))
=eo—mave | |J mave ((ma (r1) x
1<i<k
oc=c; (r2)) — (r1 x (Cy))))
= €9 — TAUC U 7"'AUC(

1<i<k

T AUr,. BUC (TrA (Tl) X oc=c; (TQ)) -

1
€;

maurt.Buc (r1 x (Cy))

2
€
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Next, let us take a look at expressi@nepresenting Todd’s
great divide:

%k
372

(ma (r1) X mc (r2)) —

€0

TAUC ((TFA (7‘1) X 7‘2) — (7‘1 X 7‘2))

7TA(T‘1)>< U 00;@(7‘2) —

1<i<k

= €9 — TAuC

TAUrs.BUC | T1 M B=r8 | oc=c, (12)
1<i<k

= €0 — TAuC U ma (r1) X oc=c, (r2) | —
1<i<k
T AUr,. BUC U 71 Xy B=ry.B 0C=C; (7”2)

1<i<k

Using Lemma2 we get

€ =€y — TAuC U TAUr,. BUC (7TA (Tl) X

1<i<k
oc=c, (r2)) —

T AUrs. BUC (T1 Moy B=ry. B 0C=C; (12)))

Using proposition P1 we get

U TAUC (

1<i<k

€= €9 — TAuC

TAUrs.BUC (T4 (1) X 0c=c, (r2)) —

51
€;

TAUry. BUC (T1 My . B=ry.B 0C=c; (T2))

52
€

We see that expressioaandeé differ only in the subexpres-
sionse? andé?, respectively. We are now going to show that
e; —e? = &} —é2. Then we know that = ¢, that is, set

containment division and great divide are equivalent.

Instead of showing that' — ¢? = ¢! — &2, we prove the
equivalent statement N e? = ¢! N é2. These statements

are equivalent because of LemrhaBased on this lemma,



we can derive the following expressions:

51~ =2
e; Ne;

= T AUr,.BUC \TTA (

2)) N
T AUry.BUC (T1 My B=ry.B OC=C, (T
2)) N
T AUry.BUC (Ory.B=ry.B (11 X 0Cc=C; (T
2))N

T AUry.BUC (07 .B=ry.B (11 X 0c=c, (12)))

1) X oc=c, (r
2))

TAUry.BuC (A (11) X 0c=c; (T

2)))

= TAUry.BUC (Ory . B=ry.B (11 X 0C=C; (2)))
2))
T AUry.BUC (Ory . B=ry.B (11 X 0=, (T
2)) N

r2)))

1) X oc=c; (r2)) N
TAUr,.BuC (11 X 0c=c; (12))
(r1) x oo=c, (r

i)

(
(
(
(
TAUr,.BUC (11 X 0c=C; (7
(
(
T AUrs.BUC (71 Mry.B=ry.B OC=C; (T
(

2)))
TAur,.BUC ((11 X 0c=C; (7
Taur,.BuC (11 X 0c=c; (
T AUry.BUC (A (7
(
TAUr,.BUC \T ( )) n
T AUr;.BUC (7"1 (
e% N ef

O

LEMMA 4: Great divide ¢3) and generalized division
(=3%) are equivalent operators.

PROOF (LEMMA 4): In the following, we will show the

equivalence of the relational algebra expressions of greal

divide used in Definitiorb and of generalized division in
Definition 5. Letr; be a dividend relation and, a divisor
relation with schema®; (A U B) andRz(B U C), respec-
tively, as defined in Sectioh.2. Let us review expressian
the definition of great divide:

—; 9

(ma (1) X 7 (r2)) —

ec=T"

)XTQ)

€1

mauc | (ma (m — (r1 M o)
N——

€2

Now, we compare expressiaerno expressiorg, the defini-
tion of generalized division:

e = 1 2 T2

= (ma (1) X 7 (r2)) —

(7TA (7‘1) X 7”2) — (7‘1 X T (7‘2))

€1 €2

TAUC

We find thate andé differ only in the expression, andé,,
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respectively. If we can show that — es = é; — és, we
have proved that = ¢é,. Because of Lemma, it suffices
to show that; Ney = €1 Néa:

e1Nes
= (ma (r1) X 1r2) N
(r1 X ro)
= (ma (r1) X 1r2)N
T AUry. BUC (Ory . B=ry.B (T1 X T2))
= (ma (r1) X mucT2) N
T AUro.BUC (Ory . B=ry.B (T1 X T2))
= TAUr,.BUC (T1 X T2) N
T AUry. BUC (Ory . B=ry.B (11 X T2))
= TAUry.BUC (07 . B=ry.B (11 X T2))
SINCET,, B—ry. 5 (11 X 12) C (11 X T2)
= TAUr,.BUC (T1 X T2) N TAUM . BuC (11 X T2)
(ma (1) X 12) N (11 X 7 (12))

=é1Ney

B.2 Theorems

ROOF (THEOREM1): Lemma3 shows that set contain-

entdivision ¢7) and great divide{3) are equivalent, and
Lemma4 shows that great divide:(;) and generalized di-
vision (=-3) are equivalent. By transitivity we see that all
three operators are equivalent. |

PROOF (THEOREM2): Let Ry(A;), R1(As2), andRy(As)
be the schemas of relations, 5, andrs in the expression
r1+719 = rg. According to the definition of division, the di-
visor hasn attributes and the dividend has+ n attributes,
wherem > 0 andn > 0. Sincem + n > n, itis impos-
sible to interchange; andr,, that is,r, + r1 is an invalid
expression. |

PROOF(THEOREM 3): We show that if we assume that
valid relation schemas exists for the the three relations we
will arrive at a contradiction. Supposel;, As, and As
are the attributes of the relations, 2, andrs, respec-
tively. If the two expressions are equivalent then the cor-
responding quotient relation schemas are the same. The re-
lation schema of4 + (ro + r3) is defined by expression

= A; — (A2 — A3) and the schema @ +r3) + 73 is
es = (A1 — Ay) — As. We try to show that € e; <« t € e
is a tautology, that is, the expression is true for any vafue o
tuplet. Sincet € e; —t€ea=(t€e; >t E€ex) N(tE



es — 1 € e1), we can analyze each implication separately:

t€Eeys —>tEe
StdeyViEe
St (A —A) —A3) Vit e (Al — (A — A3g))
S (tE (A —Ag) Vit e As)V
(te Ay Nt & (Ay — A3))
S(tdAVEE Ay Vi € A3)V
(te AAN({tE Az Vi e Ay))
S (tg A Vte Ap vt e AVt e AN
(tgAivVite AgVte AsVig AVt € As)
& true A true
& true

Now, we analyze the opposite direction of the equivalence:

tece —tE€en
Stdel VLI E e
St (A — (A2 — A3)) Vit e (A — Ay) — Aj)
Stgd A ViEe (Ay — Az)V

(te (A —A) ANt & A3)
Stg AV (te AN & As)V

(te Ay Nt &€ Ay Nt & A3)
S(tEdAV(EeEANLL A3)ViEE AN

(tgd AV (te Aa Nt € A3) Vi & Ag)A

(tgd AV (teAaNnt g As) Vit & As)
strueN(t g AV (te Ag ANt € Ag) Vi E Ag)A

(tg Ay VigAs)
Stg€AV((EteANtE A) VL AsViEE Aj)
StdAVtEg AoVt & As
StgAiNAsN A;s

Sincet € ey —t€es =t ¢ Ay N Ay N Az # truefor any
value oft (for avaluet € A1 N Ay N Ag itis falsé), we have

found a contradiction to our assumption that the expression

is a tautology. O
B.3 Laws

PrROOF(LAw 1): Let

e=r1 X (ry +71h)
={tlter ANt.Ae (r =1y}
={t|teri ANt.A e {u|Jus:u=mu.AA
up €1 Ay C{yl (u,y) € mi}}}
={t|t€ri AJus : t.A=u. AN
ur € 11 Ay C {y| (LA y) €ri}}
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Sincet € r; already impliesiu; : t.A = u1.A ANuy € rq,
we have

e={tlter Arh C{y|l (t.A,y) €r}}.

Hence,

(r1 X (ry = 15)) +rh
={s|Is1:s=s1.ANs1 €Eenry C{z] (s,2) €Ee}}
= {s|3s1 : s = s1.AN

s1 € {t|t e mA
5 C {yl (t-A,y) € ri}IA
ry C{z| (s,2) € {t|t € 1A
ry C{yl (t.A,y) € ri}}}
={s|3s1:s=51.ANs1 €A
5 C {yl (s1.4,y) € r}}A
ry C{z| (s,2) € A
7 (ol (5,2).Ay) €r)}}
= {s|3s1: s =s1.AN
s1 €11 ATy CH{yl (s,9) €r1}IA
ry C{z| (s,2) € mA
5 C {yl (s,y) € ri}}}
= {s]3s1: s = s1.AN
s1 €11 ATy C{yl (s,9) €r1}IA
ry C{z| (s,2) € r1}A
ry C{z|r5 € {yl (s,y) € mi}}}
= {s]3s1: s = s1.AN
s1 €11 ATy C{yl (s,9) €T1}IA
ry {2 (s,2) € m1}}
={s|3ds1: s =51. AN 51
ertA(ryury) C{yl (s,y) € mi}}
=71+ (ryury)

PrROOF (LAW 2): We prove that if conditior (], 77) is
truethen(rj UrY) = ro = (r] = r2) U (r{ = ra).
We use the following algebraic laws as propositions,

where we assume that relations 2, s1, andss have the
same schema:

(Pl) o’ (7‘1 UTg) = 0g (7‘1) Uop (7‘2) [13]

(P2) ma (r1Urg) = 7a (r1) U ma (r2), where A is any
subset of-;’'s andry’s relation schemas.



are still in the case where = {¢1,t2}. Hence,

(ryury) +re it € S At & Spys At Sy
= () 7alop= (riUr}))  (Definition3) & 3t:t €ma(op=r, (1)) N7Ta (0B=t, (1)) A
ters t & (ma(0B=t, (1)) N7 (5=t (r]))) A
= () 7alos= () Uos= (r}))  (P1) t & (ma(0B=t, (7)) N7a (0=, (r])))
ters Sttty €y Aty erfA
= () ma (o=t (")) Uma (08¢ (1))  (P2) = (tty €7 Aty €7 A
ters S (tty er{ Nttty ery)
= ﬂ ma(0B=¢ (7)) U ﬂ 7a (0B=¢ (17)) = At :ry Crp(0azt (r]) Uoaz (r])) A
e e ~(r2 C g (ga=¢ (1)) A
(see below)

= (re Crp (0a= (17)))

=(rh =r) U (] = Definition 3
(ry+m2) U +12) (Definition 3) < ey (ry,r)) fora = t.

O

ProOF(LAw 3): We use the following algebraic laws
given in [13] as propositions:

To show the missing step in the above transformation, we
restrict ourselves to the case whegecontains two tuples, (P1) ag(r1 —r2) = 09(r1) — 09 (12),
t; andts, only. This can easily be extended to the general

case. Consider (P2) mx(oo(r)) = mx(op(my(r))), whereY contains
X and the attributes mentioned in conditién in
ﬂ A (0=t (M) Uma (0= (7)) particular, o, 4) (ma(r)) = ﬂ'A(ap(A) (ra(r))) =

te{ts ta} ma(opa(r1)), and

= (ma (0=, (r)) Uma (0=, (1)) 0

/

1 . . .
(74 (05, (1)) Uma (05sy (7)) (P3) op(r1 x 1m2) = og(r1) x 7o if 6 restricts attributes of

A

1

r1, only.
= (14 (0p=t, (r1)) Nma (0p=t, (r1))) U

o
(ma (0=t (1)) N7a (0B=t, (1)) U .

o opay(r1 +12)
(ma (05=t, () N7Ta (6B=t, (r})))U - GP(A)(I(DEir(thlic))rTZ;TA )

S,

o = opa) (ma (1)) — op(a) (ma ((ma (r1) X r2) —711))

(ma (0p=t, (r)) N7a (0B=t, (17))) - (A)(PS R

S _

(

To show that this is equal 1), (,, ;,) 7 (0= (r})) U Ta (opa) (ma ((ma (1) X 72) = 71))) (P2)
(
(

Nictr 1o} T4 (0=t (1)) , we need to argue why,,.» =74 (0pcay (1)) —

andS,..,. are subsets of,.,.» U S,,... The basic idea is

thatS,.,.. andS,..,. are sufficiently restricted by precondi- ma (op(a) (ma (T (r1) X 12)) = o) (1))
tion ¢;. In the following we will show with an indirect proof (P1)

thatS,.,..» meets this requirement if preconditionis true. =74 (Up(A) (7‘1)) _

The proof forS,.,. is analogous.
P ’ e (m (o) (4 (1) % 72)) — oy (1))

(P2)
=74 (p(a) (1)) =

ma (74 ((0p(a) (T4 (11)) X 72) = Op(a) (r1)))
Assume thaS,.,.. € S,/.. U S,.,.... Remember that we (P3)
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=ma (p(a) (M) =
ma (74 ((ma (op(a) (r1)) X 72) = oy(a) (r1)))
(P2)

=0pa)(r1) =2 (Definition2)

PROOF (LAW 4):

1+ Op(B) (r2)
= 0p(B)v-p(B) (1) + op(B) (2)
= (Up(B) (r1) U O-p(B) (7"1)) ~ 0p(B) (r2)
= (op(m) (1) + o) (12)) U
(Uﬁp(B) (r1) + op(B) (7’2))
= (op(m) (1) + o) (12)) UD

opB) (1) + 0p(B) (12)

(Law 2)

We can apply Law? to the expression in line 2 because
the law’s preconditiors (o, )y(71), 0-p(B)(r1)) (@nd, of
course, als@,) is obviously fulfilled. O

PrRoOOF (LAw 5): According to Codd’s definition of divi-
sion in tuple relational calculus (Definitidl), we can de-
rive the following equivalences:

(ry =re) N (1) +7a)
={t|t=t1. ANty €r] Ara C{y|(t,y) €ri}}InN
{tIt=ti. ANty er{ Ara C{y|(t,y) er{}}
={t|t=t1. ANty € Nty eriA
1 1
ro C{y [ (t,y) €ri} Ara CH{y | (ty) €r{}}
={t|t=t. ANt €r] Nty €T]A
r2 C{y [ (ty) € ripn{y|(ty) €ri}}
:{tltztl.A/\tl ET‘Il/\tl E’f‘ll//\
ro C{y [ (t,y) €ry A(ty) €r{}}
={t|t=t. ANt €r] Nty €T]A
ro C{y | (t,y) € riNri}}
=(rinry)+mr
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PrROOF (LAW 6): With Codd’s definition we get:

(rp =72) = (rf +12)
={t|t=t1. AN t;1 € "}A
r2 C{y| (t1Ay) € ri}}-
{t|t=t1. ANty €7]N
r2 C{y | (t1.A,y) e r}}
={t|t=t1. ANty €T
re C{y | (t1.A,y) € 1IN
(trgrivre C{y| (t1.A,y) e ri})}
= {t|t=1t1. AN
(trery Ara C{y| (t1.A,y) € 1IN
tigri)Vv
(trer] Ara C{y | (t1.A,y) € 1IN
ro € {y | (t1.Ay) € r{})}
={t|t=1t1. AN
(trer; =1/ Ara C{y| (t1.A,y) ery})V
(treriAr C{y| (. Ay) ery —rih)}

From the precondition we get the following (since the
predicate applies to attributes ihonly):

trer; —r A(t1.Ay) €7
= (tAy)ery —rf 1)

trer At Ay)eri—r =ty er] —r]

(@)

If we use these equivalences in the above equation we
directly get:

={t|t=ti.ANty €r) =N
r2 C{y | (L Ay) €rp —ri}}
=(rf—r{)+re

O

PROOF(LAW 7): Our assumption thatm, (r}) and
wa (r]) are disjointis equivalentto4 (1)) N4 (1) = 0.
Hence,(r; — r{) + ro = r{ + 2. Therefore, we can show
that

(r] =mra) — (r{ +m2)

M 7a (080 (1) = () 7a (75 (1)

ters tery

(Definition 3)



() 7a (0B=t (1)) sincema (r}) Nwa (r]) =0
ters

T/1+7’2

M

temp, (r2)

ma (0B=1 (7))

=r] +7p, (r2) (Definition 3)

PrROOF (LAw 10):

PrRoOF(LAw 8): We use the following algebraic laws as

propositions:

(P1) og(r1 x r2) = r1 X og(re) for relationsr; andry
with schemasR?; (A) and R(B), respectively, and
contains only attributes ifs.

(P2) mpuc(r1 x r2) = wp(r1) x wec(re) for relationsry
andr, with schemas?; (A U B) andRy(C U D), re-
spectively.

(P3) (7‘1 X 7”2) n (7‘1 X 7‘3) =17y X (7‘2 ﬂ?‘3) for relationsry,

ro, andrs with schemas?; (A), Ra2(B), andRs(B),
respectively.

(ry xri™) +rq

= () ma,u4, (08¢ (r} x 7)) (Definition3)
ters
= ﬂ TAIUA (TT X 0B=t (TT*)) (Pl)
ters
= () 7a, (1) x 74, (0B=: (17))  (P2)
ters
=7, (1) x () 7az (0= (17))  (P3)
ters
=7r] x (r™ +r9) (Definition 3)
i
PROOF (LAW 9):
(ry xri®) +ry
= () ma(op=: (r} x17*))  (Definition3)

ters

ﬂ A (OB =t.BiABy=1.B, (1] X 177))
ters

ﬂ T4 (0B =t. By Atrue (TT X TT*))
teErsy

(sinceVt' € ry : t'.By € 17"

ﬂ TA (O'Blzt-Bl (7’1‘ X TT*))
ters

M

temp, (12)

ma (0B =t (r7 xri™))

(r1 +re) X 13
=7 ((r1 = 72) X r3)
=74 (0a=a ((r1 +12) X 13))

(Definition of natural join)

Ta (U oa=t.a ((r1+12) X (ﬂ))
ters
(Definition of Cartesian product)

U gazta(ri+72)

ters
(Remove duplicate attribute sd)

U (Ca=t.a(r1) +12) (Law 3)

ters

= <U TA=t.A (7’1)> +r2 (Law2)
ters

(Definition of semi-join)

(Definition of semi-join)

= (7‘1 l><’f‘3)+7‘2
O

ProOOF(LAW 11): As defined in Sectio.1, the schema
of r1 is R1 (AU B) and the schema of, is R2(B). We will
show the three cases separately.
Case 1:0c—0 (Yeount(B)—ec (12)) # 0, thatis,ry = 0.

It follows from the definition that — ro = 7.

Case 2:0c—1 (Yeount(B)—c (r2)) # 0, thatis,|ra| = 1.
Assume that, w.l.o.grp = {t2}. We have to show
the following:

r1+ro=ma (r1 X o)

ﬂ TA(0B=t (1)) = ma (r1 X 12)

(Definition 3)
A (0B=t, (1)) = 7a (11 X T2)
(Wlth ro = {tz})

Now, let us considet gy, (r):

0p—t, (1) ={t € r1|t.B = t2}
= {t€T1|t.B€T‘2}

=711 X To.
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Hencema (0p=t, (1)) = ma (11 X 72). PrROOF (LAW 13):

Case 3:0:>1 (Yeount(B)—c (12)) # 0, thatis,|ra| > 1. r = (ryUry)

From the construction ofr; as r = = U (r1 g (oo=¢ (Th UTY))) x (t)
AYf(x)—n(ro) we know thatVty,ta € 7

7 temo (réUré’)
t1.A # to.A. From the precondition of Case 3

we also know thait;,to € ry : t; # ty. With (Definition 4)

Definition 3 of the division operator the claim can

be shown by a simple indirect proof. O _ U (r + 75 (oo (ry Ur))) % (8) | U
temc (’I‘é)

PROOF(LAW 12): Lete = ma (r1 X r2) = {t.| Tty €
ro : (ta,tp) € 71 }. We have to show three cases:
U (175 (0o (5 U) x ()

Case 1:le| > 1: temc(ry)

In this case there exigt,,,t,, € e with t,, #
ta,. Hence, there also exist,,t,, € r2 with
ty, # tp, and (to,,tp,) € r1 and (te,,ts,) €
r1.  Considering the precondition of the law
YV (taystoy) s (tagsto,) € 71t tn, # ty, this implies

From our assumptiom¢ (1) N 7o (ry) = 0 it follows
for all t € =g (ry) that oc=, (r4) = ( and hence
o=t (rh Url) = oc= (r}). Similarly,

mo (ry) N (ry) =0

that
=Vtenc(ry): o= (15) =10
@) (ta,,ts,) ¢ r1 and SVt enc(ry) oot (ry Ury) = oo (5) .
(b) Vta, # tay * (ta tn,) & 11 Hence, we have
Hence, there is ng, such thaty C {y| (ta,vy) € r = (rhUry)
r1}. Itdirectly follows thatry +~ ro = {t,| 3ty €
ro: (ta,ty) € 11 Ara C {y| (ta,y) €r1}} = 0.
=| U 1s7moc= (b)) x @) |U
Case 2:le| < 1: tere(ry)
Consider
- U (s (0o (9) x ()
= {ta| Tty € 72 : (ta, ts) € TIA te”c(rfl) } o
ro C {y| (tary) € 1)} =(ri+"ry)U(r =% ry). (Definition 4)
C{ta| T E Ty : (ta,ts) €11} O
=74 (r1 X 1r2)
— PROOF (LAW 14):
Case 3:|e| = 1: 7o) (127 2)
Because of the precondition that the divisor at- = 0p(a) U (r1 + g (0=t (12))) x (t)
tribute setr,. B is a foreign key referencing, we temo(ra)
?taV%Be(Zl) D ro. This impliesVt, € ro 3t : (Definition 4)
aylb 1-
With [e] = [{ta| 3ty € 72 : (ta,ts) € 11} = 1 we = U o ((n =75 (00— (1)) x (1))
conclude thalt, : Vi, € ro (ta,ts) € 1, which teme(r2)
implies that|r; + ro| = [{ta| 3ty € 7o : (ta,ty) € = U (opw) (n) =75 (00=t (r2))) x (1)
ri Are C{y| (ta,y) € 11 }} > 1 teme (ra)

In Case 2 we have shown that < ro C 74 (r1 X 73). = 0pa) (1) =72 (Definition4)

From this it follows that'; ~ o = 74 (11 X 72). O O
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PrROOF (LAW 15):

Op(C) (Tl =% TQ)

= 0p(C) ( U

temc(ra)

(Definition 4)

teo,cy(me(r2))

-y

teo,c)(mo(r2))
TR (oc:t (Up(c) (T2)))) x (1)

U (7‘1+

tEﬂ'C(Up(C)(’I‘z))

78 (0=t (opc) (r2)))) x (t)

(’I”1+

=711 +" opc) (r2) (Definition 4)
PROOF (LAW 16):
op(B) (r1) +" op(p) (72)

U (op(m) (1) +

tETFC(O'p(B)(T‘Q))
5 (0c=t (op(B) (r2)))) * (1)
(Definition 4)
U (UP(B) (r1) +
tGTFC(Up(B)(’I"z))
75 (0p(B) (0c=t (12)))) X ()
- U
tETFC(O'p(B)(T‘Q))
op) (78 (00=1 (12)))) * (1)
U (T1+
tGTFC(Up(B)(’I"z))
op(m) (75 (00=1 (12)))) * (1)
U (7‘1+
tETFC(O'p(B)(T‘Q))
75 (0p(m) (0=t (12)))) * (1)
U (T1+
tGﬂ’C(UP(B)(’I"z))

g (00=t (op(p) (12)))) x (1)
=11 +" oy (r2) (Definition 4)

(op(m) (r1) +

(r1 +7p (0=t (12))) X (f))

U (r1 + 7B (0=t (r2))) x (1)

(Law 4)

22

PrRoOOF(LAW 17): We use the following algebraic laws as
propositions:

(Pl) (7‘1 X 7‘2) Xrg=7r X (7‘2 X 7‘3)

(P2) r1 X (7‘2 U 7”3) = (7‘1 X 7‘2) U (7‘1 X 7”3)

(ri X ri™) =" rq
(Definition 4)
U (5 xri") =+ 75 (0c=i (r2))) x (2)

terc(ra)
- U
terc(ra)
(Law 8)
= U rix (7 = 7s(00= (r2))) x (1))
temc(ra)
(P1)
U 1+ 75 (0c= (12) x (¢)
terc(ra)
(P2)
=7} x (r{* +"r)
(Definition 4)

(ri x (r1* + 7B (00=¢ (r2)))) < (1)

X
=r X
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