Approximately Processing Multi-granularity Aggregate Queries over Data
Streams

Shouke Qin Weining Qian Aoying Zhou
Department of Computer Science and Engineering, Fudan University, Shanghai 200433, China
{skgin,wngian,ayzhou@fudan.edu.cn

Abstract the management of collections of static data, but query-
ing and mining dynamic data streams are still challenges.
Aggregate monitoring over data streams is attracting The constraints imposed on data stream processing include
more and more attention in research community due to its limited memory consumption, sequentially linear scanning,
broad potential applications. Existing methods suffer two and on-line accurate result reporting over evolving data
problems, 1) The aggregate functions which could be mon-streams. One of the most interesting topics is querying and
itored are restricted to be first-order statistic or monotonic monitoring aggregates with a user specified threshold, in-
with respect to the window size. 2) Only a limited number cluding frequent items [12] or itemsets [19, 16] mining,
of granularity and time scales could be monitored over a burst detection [21, 20], change detection [5], and aggre-
stream, thus some interesting patterns might be neglectedgate monitoring over time windows [7].
and users might be misled by the incomplete changing pro- In this paper, we focus on a specific form of query re-
file about current data streams. These two impede the de-quests, say, given a set of given windawsi = 1,2, ..., m,
velopment of online mining techniques over data streams,report current timestamp and the all windows if an ag-
and some kind of breakthrough is urged. In this paper, gregate ovetv,, denoted ad'(w,), is larger than the pre-
we employed the powerful tool of fractal analysis to en- defined threshold’(w,). It has wide applications in mon-
able the monitoring of both monotonic and non-monotonic itoring network traffic data [8], Gamma ray data [21], and
aggregates on time-changing data streams. The monotonyWeb log mining [7].
property of aggregate monitoring is revealed and monotonic  However, existing technigues suffer from two major
search space is built to decrease the time overhead for ac-problems when being applied to real-life applications. First,
cessing the synopsis fro@(m) to O(logm), wherem is they are designed for processing aggregations with distribu-
the number of windows to be monitored. With the help of tive property (e.g., count) but not for algebraic aggregates
a novel inverted histogram, the statistical summary is com- such as average or variance. The significant difference be-
pressed to be fit in limited main memory, so that high aggre- tween algebraic and distributive aggregations lies in that the
gates on windows of any length can be detected accuratelylater is monotonic with respect to the time dimension, while
and efficiently on-line. Theoretical analysis show the spacethe former is not. However, algebraic aggregate functions
and time complexity bound of this method are relatively low, are used widely in analysis of streaming data. For example,
while experimental results prove the applicability and ef- the following four models are frequently used to remove the
ficiency of the proposed algorithm in different application effect of noisy data: Moving Average§-shaped Moving
settings. Average, Exponentially Weighted Moving Average, Non-
Seasonal Holt-Winters [14]. Though some methods are pro-
posed to maintain variance and K-medians over a stream
1. Introduction [3], the cost for finding bursts using these synopsis is still
O(m). Thus, the method cannot support multi-granularity
Query and mining over data streams have been attractingfl\lf.ggreg":m.a queries efficiently, especially when the number of
indows is large.

much attention in database community recently because o S d t existing techni desianed f
the motivation from real-life applications. As well-known, . econd, most existing techniques are desighed for query=
jng over a single window or a small number of windows.

the conventional database technologies were invented for_, ; .
Since users often do not know the most appropriate win-

*This work is partially finished when the author is visiting Computer JOW Size theY need to_monitora they tend to monitor a |a.rge
Science Division of University of California at Berkeley. number of windows simultaneously. Although processing




multiple queries separately is a trivial solution, and aggre-
gate window of continuous queries can be shared [2], it in-
evitably results in redundant storage and computation, and
finally bad performance.

To address these two problems, and considering the ba-
sic requirements of data stream processing, in this paper, we
propose a novel approximate method for continuously mon-
itoring a set of aggregate queries with different window size
parameters over a data stream.

1.1 Related Work

Monitoring and mining data stream has received consid-
erable attention recently [13, 21, 8, 14, 5, 7, 20]. Klein-

e The monotonic property of the synopsis search space

is described. To construct such a monotonic search
space for multi-granularity aggregate query process-
ing, a novel approach is presented, which could de-
creases the time overhead of query processing from
O(m) to O(logm), wherem is the number of win-
dows being monitored.

An efficient synopsis, called Inverted Histogram (IH),
is employed, and the algorithm for query processing is
given. We analyze the storage and computation cost,
and prove the error bound of our algorithm. We also
complement our analytical results with an extensive
experimental study. The results demonstrate that the

berg focuses on modelling and extracting structure from text
stream in [13]. Our work is different in that we focus on dis-
tributive and algebraic aggregates on different sliding win-
:Z\tgsét-rreh:r;e[grelzlsé Sxm]%ygr:ﬁ;?%%ﬁggg;gg gsgg%iﬁi.”}“’” 2 is for the preliminary knowledge of fractal and scal-
cation backgro’und’s a.re different. one common feature theying relationship. Then the problem statement is presented in

) . ' : this section. Section 3 introduces the concept of monotonic
all bear is that they can monitor the bursty behavior on only search space and presents the method for building such a
one granularity. The method in [21] uses a Shifted Wavelet search space. The details of aggregates monitoring algo-
Tree (SWT) to detect bursts on multiple windows. In 2005, )

e o . rithm, including the maintenance of IH and the extension of
amore efficient aggregate monitoring method is put forward . ; L . . ;
. : . basic algorithm, is introduced in Section 4. Section 5 shows
in [7], which uses a novel index schema to detect bursty

. the results and then analyzes the experiments. Finall -
behaviors. However, these two methods can only detect € reslts and then analyzes the experiments ally, Sec

; . : . tion 6 is for concluding remarks.

monotonic aggregates, and the maximum window size and
the number of monitored windows are both limited. Since
they are both based on the assumption that for two windows
with different size, ifw; is contained inw;, there must be
F(w;) > F(w;). Actually, it holds only forF which is
monotonic with respect to the window size, suchsas:
or count. For non-monotonid’ such asuwverage, the as-
sumption does not hold. An adaptive burst detecting methoddata streams. _ o
based on Inverted Histogram is proposed in [20]; however, Plecgs of a fractal object when enlarged are S|m|.lar to
no any overall bound for the error of burst detection is given 'arger pieces or to that of the whole [15]. If these pieces
there. are identical re-scaled replicas of the others, the fractal is

Fractal geometry was known to be suitable to describe exact. Wher_1 the sim_ilgrity is presented only in gstatistical
the essence in the complex shapes and forms of natur&€nSe and it is statlst_lcally observet_j on the_gwen feature
[15]. As a tool, fractal techniques have been success-With different granularity, the fractal is statistical. Deter-

fully applied to the modelling and compression of data sets Mined fractals such as the von Koch curve and Cantor set
[18, 11, 17, 4]. However, existing fractal techniques are dif- '€ both exact; however, most natural objects are statistical

proposed method can monitor multi-granularity aggre-
gate queries accurately with high efficiency.

The remainder of this paper is organized as follows. Sec-

2 Preliminaries and Problem Statement

Fractal analysis is a powerful tool for analyzing time se-
ries data and data streams. Power-law scaling relationship,
a basic characteristic of fractals, could be adopted to handle

ficult to be employed directly in the data stream scenario, fractals. o _ _
for the building of a fractal model is of polynomial time When a quantitative property, is measured on a time

complexity, and multiple scans of the whole data set is nec-Sc@les, its value depends on according to the following
essary. scaling relationship [15]:

q=ps’ 1)

This is called power law scaling relationshipgWwith s. p
is a factor of proportionality and is the scaling exponent.
The value ofd can be easily determined as the slope of the

ability for processing not qnly the distributive aggre- linear least squares fitting to the data pairs on the plot of
gates but also the algebraic ones. We also propose a}qu versusiog s:

method for processing data which does not obey the
scaling relationship of exact fractal models.

Our contributions can be summarized as follows:

e We incorporate the tool of fractal analysis into aggre-
gate query processing. Then our method provides the

logg =logp+ dlogs (2)



Data points for exact fractals are lined up along the re- \ \ \
gression slope, whereas those of statistical fractals scatter ] d=log(F(wi)¥log(w)
around it since the two sides of equation (2) are equal only
in distribution.

For discrete time series data, equation (1) can be trans-
formed tog(st) = s?p(t) wheret is the basic time unit and
s(s € R) is scaling measurement [6]. Simply,can be
determined byl = '0&(alst)/p(t)

log(F(w;))

_-®
| togtwidloa(T0al). = (togw) log(T(w) |
. e

logF(N T

gs/p(t)). The power-law scaling ‘ ‘ ‘
relationship is also obeyed whaeris an aggregate function log(wi
or some second order statistic values. The details will not

be discussed here due to the space limitation.
A data streamX can be considered as a sequence of

points z4, ..., x,, with subscript in ascending order. Each 3 Construction of a Monotonic Search Space
element in the stream can be a value in the rdfig&)]. F

can be not only monotonic aggregates with respect to thez 1 Monotonic Search Spaces over Exact Fractals
window size (e.g.sumandcoun) but also non-monotonic

Figure 1. Sketch map for power law scaling of
aggregate function F.

ones such aaverage Thereafter, it can be seen thiatcan Here, it is assumed that the monitored data stréais
be extended to some even more complicated statistic valuesexact fractal. The extensions of the basic method for han-
such ayariance dling statistical fractals and non-fractal data will be given

To monitor aggregations on evolving data streams is in next.
fact to answer aggregate queries continuously on subse- The aggregate result on unit time scale is denoted
quences (windows) with different lengthes. The formal def- by F(1) (F(1) > 0). A line with slope d =
inition of a monitoring task over a data stream can be de-log(F(w;)/F(1))/log(w;) can be obtained on streai.
scribed as follows. The line can be drawn on a sketch map as Fig.1 shows.
Here,d is the scaling exponent df. Different F' has dif-
ferentd.

Assuming thatl is known in advancel’(w;) andT (w,)
are two user-given thresholds on windewandw; respec-
tively. We plot the two pointglog(w;),log(T(w;))) and
(log(w;),log(T'(w;))) on the sketch map. Provided that the
point (log(w; ), log(T(w;))) is over the linad and the point
(log(w;),log(T'(w,))) is below the lined, that is to say, the

Here, the definition is similar to the burst defined in [21, following slope inequalities hold:
7]. Compared with previous works, the major differences

Definition 1 Assuming that’ is an aggregate functiony,
is the latest sliding window of a stream with the lengtl; of
1 <1; < n,andT(wy,) is the threshold orF'(w;,) given
by users beforehand. The result is reported on windgw
whenz,, comes and i#'(w;,) > T'(wy,).

of ours lie in: 1)F can be algebraic aggregates, 2) a large log(T(w;)/F (1)) log(F(w;)/F(1))
number of windows can be monitored simultaneously. T log(wg) >d= log(w;)

To reach such a goal, a brute-force approach is to check
the synopsis for each window whenever a new point arrives. log(T'(w;)/F(1)) log(F(w;)/F(1))
However, with this approach the cost of answering a query log(w;) <d= log(w;)

is O(m), wherem is the number of windows. Though some
previous effort tried to reduce the cost for maintaining the then, when we have a detection for changes on str&am
synopsis, it is argued that reporting query result from synop- there must be a result reported on windewand no result
sis also need substantial cost. The cost is extremely expenon windoww;. The reason behind is thadg(T'(w;)) >
sive, especially when monitoring large number of windows. log(F'(w;)) is always holds sincéog(T(w;)/F(1)) <
We propose an alternative method which organize all thelog(F(wi)/F(D) is guaranteed on the overaII_ (_jata stream.
windows into a monotonic search space. Hersearch ~ FOr extending to a more complex condition, assum-
spaceis a permutation of all the windows. Our basic ideais INg that d is not known a priori, and m thresholds
to sort the windows, so that when a result is reported on aZ (w1), T'(w2), ..., T(wy,,) on m different windows are
window, all its predecessors should be reported as results9iven by users beforehand. To monitor the aggregates on
We call such search space asnanotonic search space those windows, we first sort these_ levels with _th_elr ratios
Thereby, a binary search can be applied on the monotonicd29(T'(w:)/F(1))/log(w;) in ascending order. This implies

search space, and the time complexity for accessing synopthat F(w;)/T (w;) i = 1,2, ..., m are ordered in ascending
sis isO(logm). order. Hence, the property of the search space follows:



Property 1 T'(w1), T(ws),...,T(w,,) are m thresholds
given form different windowsuvy, wa, ..., wy,, and F(1) is

the aggregate result of the unit time scale. Provided that
log(T'(w;)/F(1))/log(w;) is ordered in ascending order,

(1og(w;).1og(T(w;))

log(F(w;))

1 (log(w;)log T(w
B[ T

d

dp 7

(log(w))og(T(w))

Pl

o ™
(log(wi),log(T(wi)))

a windoww; is a result to be reported implies that all its
predecessors are results to be reported.

o

] T
B (log(w;).log(T(w;)))

log(wj)

(b)

Figure 2. (a) Power law scaling relationship on
real life data stream. (b) Piecewise monotonic
search space on real life data stream.

log(w;)

(@)

With this property, we can sort the search space and
decrease the time overhead in great deal when answering
aggregate monitoring queries. It endows the stream moni-
tor with high scalability for the tough monitoring tasks on
fluctuating data streams. However, this property is strictly
abided by exact fractals. For statistical fractals or non-
fractal data, the scaling exponeantn equation (1) is not
a constant on overall data stream. As a result, the order oflater. So, theerrp4 will not be affected by the distance
thresholds is variable from point to point in a data stream. between fractal data and original data but the deviation of a
This brings great challenges for using this monotony prop- given threshold to the expected value of the aggregate result
erty in real life applications. on corresponding window. The distance error to original
data will be considered in our synopsis data structure—IH,
which will be discussed later.

Real-life data may not be exact fractals. For statistic ~ The missorting erroerry,s originates from using in-
fractals in real world applications, this property is abided variant'(1) to sort the thresholds. For exact fractals, the
in distribution. That is to say, the rule is only obeyed by the value of F'(1) is invariant. However, for statistic fractals
statistic variables on the data stream, such as expectatiofthe F'(1) is time-changing. For example, if the monitored
and variance. aggregate functiorf’ is sum, the value ofF'(1) is equal

In this case, we sort the thresholds with Property 1; it to = >_7" , x; which is kept varying, induced by the newly
means that we use exact fractals to approximate statisticcomingz,, of streamX. Thus, constructing a monotonic
fractals. This approximation will induce two kinds of er- search space with an invariafit1) as in exact fractals does
rors. One is the error of fractal approximation, denoted by induce errors consequently.
errp4; the other is the error of missorting the thresholds, Let us consider a simplified case shown in Fig.2.(a),
denoted byrr;s. where two threshold$; and7}; are given by users for two

The fractal approximation erroerry 4 is induced by  different levels of windows. It can be seen that the mono-
transforming real-life data stream to exact fractal which fol- tonic search space achieved @nwill not hold ond,. The
lows the power law scaling relationship. Let the aggregate reason is that the two scaling relationships have different
result onith-level windoww; be F'(w;) and its expectation ~ log(F'(1)). So, the order of monitored windows based on
and standard deviation b&(F(w;)) and D(F(w;)). We log(T(w;)/F(1))/log(w;) is variable on different scaling

assume thaf. (wi)(E(F()wi)) ~ Norm(0,1). The thresh-  relationships. It will be explained in details as follows.

D(F(w;) . . ..
old given by users ot (w;) is denoted byT’(w;). Because The value of poinB on the yert|c_al axis iog(F'(1)) of
dy. Because the slope of the lid&T; is smaller than that of

the fractal transformation usds(F(w;)) to approximate 3 ,
BT}, the monotonic search space(is;, w;). It means that

F(w;) for scaling in power law relationship, this will not o X ) !
induce any error whei (w;) < T(w;). However, when when the aggregate monitoring query is submitted, we first
F(w;) > T(w;), the change of aggregate on windaw _detect the_tlme scale;. If the_ result of agg_regate monitor-
may be neglectec:rr x4 is the probability of such kind of ~ "9 query is found onw;, the time scalev; will be detected
error is occurring onv;. in the second step. OthenN|§e, the query processing will halt
and no result reported. In this walyy;, w;) can support the

queries ond;. However, when a new point,,,; comes,
the current power-law scaling relationship is obtained.

> ) The value of pointd on the vertical axis idog(F(1)) of
D(F (w;)) D(F (w;)) d». Since the slope of linelT; is larger than that ofAT;,
Therefore, therr g 4 is limited whenT (w;) is given. the monotonic search spacedfis (w;,w;). Apparently,

Having different purpose in comparison with other ap- it conflicts with the monotonic search spacelef

proximation techniques, such as histogram, wavelet and From the analysis above, a rule ensuring the invariant
FFT(Fast Fourier Transformation), the fractal approxima- monotonic search space could be observed and summarized
tion is not used to compress data and reconstruct themas follows. Assuming that the ling;7; intersects the ver-

3.2 Approximating Real-life Data with Fractals

errpa = P(F(w;) > T(w;))
Fw) = B(F(wi)) _ T(wi) = B(F(w;))

= P(



T T ([T Algorithm 1 buildMonotonicSearchSpac&(w; ), w; )
— ' ' > 1: create a new poiri;;
0 A B c log(F(wi) 2. T; — (log(w;), log(T(w;)));
3: if m > 1then
for j =1tom do

. . . ) . line T; andT; intersects vertical axis dP;;
tical axis at pointD. If the pointlog(F(1)) of any d; is if w; < w, then

4
5
6
above pointD on the vertical axis, thé; has a same mono- 7. add (w;, w;) to the leftwards intervals ab;;
8
9

Figure 3. Building monotonic search space.

tonic search spac@wv;, w;) as that ofd;. Similarly, if the add(w;, w;) to the rightwards intervals db;;

point log(F(1)) of any d; is below pointD on the ver- else

tical axis, thed; has an inverted monotonic search space 10: add(w;, w;) to the leftwards intervals ab;;

(wj,w;), compared with that of; . 11: ad_d (wj, w;) to the rightwards intervals db;;
12: end if

Property 2 Given two thresholdsT'(w;) and T'(w;). 13:  end for

Suppose the level ofy; is smaller than that ofw;, 14: end if

and the line through pointglog(w;), log(T(w;))) and 15 increasen by 1,
(log(w;),log(T(w;))) intersects the vertical axis ab.
Then, iflog(F'(1)) is aboveD, the monotonic search space ) . o i
is (w;, w;); otherwise, iflog(F(1)) is belowD, (w;,w;) is Binary monotony relationships is gene'rated firstand then
a monotonic search space. merged finally. If alog(F' (1)) falls in the interval(A4, B],
and the< is given to the divide conditions of all the left-

The simple rule observed hereinabove is only adaptableward divide points of intervalA, B], the binary monotony
to double thresholds. Here, it is extended to a more com-relationship(w;,w;) can be obtained. When given the
plex case with three thresholds. For the cases with moreto the divide conditions of all the rightward divide points of
than three thresholds, the extension is a easy and trivial jobinterval (A, B], the binary monotony relationshifuy,, w;)
As shown in Fig.2.(b), the three thresholds are plottéfias ~ and (wg, w;) can be obtained. Then, all the three binary
T, andT},. Pairwise connecting the three points, lifeg}, monotony relationships could be merged, &ng, w;, w;)
T,T), andT;T}, can be obtained. They intersect the verti- is formed, which is the monotonic search space for the in-
cal axis at pointsd, B and C, respectively. The vertical terval(A, B].
axis can be upwards divided into four disjointed intervals ~ The procedure described here can be performed off-line,
(—o0, A], (A, B], (B, C] and(C, +oc0). For thelog(F (1)) for the order of thresholds are always determined before on-
falling in (A, B], (w;, w;), (wg,w;) and (wg,w;) can be line monitoring aggregates. It can also be executed online
obtained based on Property 2. These binary monotonic refor inserting some new thresholds instantly given by users.
lationships can be merged intay, w;, w;) which is the Therefore, Algorithm 1 is in fact an incremental algorithm.
monotonic search space of the inter¢al B]. Algorithm 1 has two input parametef¥w; ), w; and no

Proposition 1 Given m thresholds{T'(w;)}™, and cor-  output. Given a new thresholfi(w;), it obtains a new point

responding pointg (log(w; ), log(T'(w;)))}™,. Draw the T; in Line 2. _Thep, atLine 5, it dra\_/vs a I|r_|e through points

lines connecting any pair of points, then the vertical axis is i @hdT}; which intersects the vertical axis at poibt. In

divided into several intervals. Each interval has a unique the process of updating the monotonic search space of each

monotonic search space. interval, from Line 4 to 13, the algorithm adds the newly
No matter what the value dbg(F(1)) on scaling re- generated binary monotonic relationship into each entry.

lationshipd; is, it can be located at one of the intervals. . The time cost of Algorithm 1 for adding a new window

Then, the monotonic search space of the corresponding in-Into existing search spacesi&), wherem is the number

terval can be used to support aggregate monitoring queriesmc monitored windows at present. The space cost of Algo-

A novel method to build the intervals and their monotonic rithm 1 is_ very small. This is becau;e t.he e.”t”es are stored

search spaces will be presented in next subsection. in hard disk and need not to be maintained in memory. Fur-
thermore, the distribution dég(F'(1)) can be obtained, we

3.3 Building the Search Space need only to store the entries covering the possible value of

Considering the case of three thresholds in Fig.2.(b) aslog(F(l))'
an example. The vertical axis is plotted as Fig.3. Suppose4  Aggregate Monitoring
the line T;T; connecting the pai(T;,T;) intersects with
the axislog(F(w;)) at pointA, wherew; < w;. The pair In this section, an efficient monitoring algorithm is pro-
(T3, T;) is called the divide condition of divide poit. For posed to monitor both monotonic and non-monotonic ag-
the other two point#3 andC, it could be deduced similarly. gregates over time-changing data streams. This algorithm




Algorithm 2 monitorAggregatesFalsePositively

1: locatex,, at intervally;

. A < retrieve monotonic search spacelpf

s low — 0, high «— A.size() — 1;

: while low < high do

mid «— (low + high)/2;

if T(A[mid]) <ComputeAGGA[mid]) then
low +— mid + 1;

else
if T(A[mid]) >ComputeAGGA[mid]) then

high «— mid — 1,

end if

end if

. end while

. returnhigh;

©ONDRNRA®N

R o el
EE I e ]

can be obtained from IH. In practicé(w;) = fss(i),
and fss(i) = X7, 7;, that is to say, it is the sum of
the last: values of streamX, called suffix sum. Due to

the limited space available for computing aggregates over a
data stream, two alternative approaches, namely, false posi-
tive oriented and false negative oriented, could be employed
to approximate aggregate computing. The former answers
aggregate query ow; with a value not less than the real
F(w;), whereas the latter answers aggregate query,on
with a value not exceeding the re(w;). In real world, it
depends on application which one of the false positive ori-
ented and false negative oriented algorithm is preferred.

It can be seen that Algorithm 2 is a framework for mon-
itoring both distributive and algebraic aggregates. The kind
of aggregate which can be monitored by Algorithm 2 is de-
termined by the kind of aggregate which can be computed

can monitor the changes of aggregate results on multipleby IH. Thus, in the following, IH is introduced first, and

granularity with sub-linear search space. To our knowledge,
the existing research works have to monitor those windows
with linear search space, resulting in the poor scalability for
the stream monitoring. Furthermore, the algorithm could be

extended to monitor algebraic aggregates such as variance,
The proposed algorithm can be used as a framework to of-

fer efficient solutions for other kinds of monitoring tasks as
well.

When a new pointz,, is arriving and being inserted
into the histogram, the Algorithm 2 is invoked for an-
swering aggregate monitoring query over current stream.
The algorithm has no input parameter. The output is the
alarm information if any. Here, we turn to the windows
which is experiencing changes. The algorithm perform

binary search on the monotonic search space from Line

4 to Line 13 for answering aggregate monitoring queries.

ComputeAGGHA[mid)) is the process for retrieving (w;)

(w; = Almid]) from IH false positively or false negatively.
Algorithm 2 can explore the search space of the overall

stream inO(log m) time, wherem is the number of moni-

tored windows. If the concern is only about whether or not

some querying result occurs whety comes, rather than

on which window the change occurs or how many changes
are induced on the overall stream, the time cost could be

O(1). We can claim the following theorem when assuming
the space cost of a B-bucket histogramHAswithout loss
any generality.

Theorem 1 Algorithm 2 can monitor aggregates in real
time onm granularity over a data stream i®(n logm)
time andO(B) space.

This algorithm can be implemented upon any synopsis
structure provided that it is for computing aggregate results.

then the aggregate monitoring tasks are analyzed.
4.1 Aggregate Estimation Using IH

Now, we are at the point to introduce a novel synopsis,
called Inverted Histogram (abbrev. IH). It is used to ap-
proximately calculate the aggregation value when given a
window. Though existing approximate V-optimal histogram
[10] can also do this job, it suffers a lot of workload to mon-
itor aggregate. The reason is that the absolute error and size
of the bucket constructed afterwards are getting larger and
larger as the stream proceeds. Thus, the errors induced by
using the newly created buckets are also increasing. How-
ever, for our purpose, what we expect is that the recent
bucket is of high precision, in other words, the width of the
recent buckets should be smaller than that of old ones.

Our basic idea is to invert the order of buckets, and
then the smaller bucket is used to store the newly coming
points. Fig.4.(b) illustrates the idea [20]. The oldest point
) and the latest point/, of streamz’ are inb; andbg, re-
spectively. In Fig.4.(a) which is also duplicated from [20],
;= fps(i), fps(i) is the prefix sum, i.efs (i) = X4 z;.

In Fig.4.(b),z; = fss(7), and f4s(3) is the suffix sum, i.e.,
fss(i) = ¥%_,, ;125 Fig.4.(a) is a bucket series of ap-
proximate V-optimal histograms; therefore, the size and the
absolute error of the last bucket is getting larger and larger
with passage of time.

As in the approximate V-optimal histogram, the goals
for IH are also the minimal number of buckets and the
guaranteed relative error in each bucket. The only differ-
ence is that the stream could be regarded’/as- f,(¢).

The streanx’ can be partitioned intd intervals(buckets),
(b3,8%), ..., (b%,bY%), whereb;(1 < i < B) is the i-th

IH is one of these synopses. It is actually a novel histogrambucket; b¢ and 6% are the minimum and maximum value
we proposed for detecting aggregation bursts. Some de-within bucketb;, respectively. In some cases, it's possible
tails will be presented in next subsection. The aggregatethatb¢ = b?. Here, we analyze the bound of the relative
result F'(w;) on the latest-length window(1l < i < n) erroré in each bucket. The maximum relative erromins



by by by bg As mentioned previously, ComputeAG&) is invoked
to retrieveF'(w;) from IH with false positive guaranteed or

X p |23 || X X3 e |7 e X a2, X 1 X false negative guaranteed when needed. The relative error
o of its return value is bounded Wy The precision of the ap-
Tncreasing time o proximate aggregate computation can be improved by con-
(a) Normal Buckets Order sidering the values within a bucket to be equidistant. To
by b; bpg bg guarantee false positive or false negative detectiomy; D
and minD need to be maintained within each bucket.
KX X 3 e |7 WX 501 |7 XXt || X maxD is the maximum distance between two consecutive
points within the bucketminD is the minimum distance
> between two consecutive points within the bucket. Pro-

Increasing time

(b) Inverted Buckets Order vided that the real value ab; is within bucketb;, the false

positive aggregate value returned by Compute AGGE(s

Figure 4. Buckets Orders of Approximate V- mm(bg, b¢ +mazD(i— S  Wid(by) — 1)), and the false
optimal Histogram and IH negative aggregate value returned by Compute AGYiS
b? + minD(i — X} Wid(by,) — 1).

Algorithm 3 updatelH(z,, ) Up to now, it has been shown that IH can be used to mon-
1: increase bucket numbét by 1; itor distributive aggregates. Here, the monitoring task with
2: j « B; algebraic aggregate, sayriance, will be discussed. The
3: create a new bucket and pty into it; variance in aw-length window is: Y% | (z;—p)?, where
4 fori=B—1toldo p= 13" . ltcanbe transformedt§ >\ 7 — 12,

5. addz, to bothb¢ andb?; As we know,Y " | z; can be obtained from IH. With a new
6 if b < (14 0)b% then variabley; andy; = z?, >"1" | z? can also be computed by
7: b;z — bl using IH with guaranteed error. Consequently, for monitor-
8 add width ofb; to width of b;; ing variance on w;, we need two histograms. One is for
9 deleteb;: computing_?" | z;, the other is for computing_;" | «?.

10: decrease bucket numbBrby 1; Both of them are bounded by maximum relative eror

1 endif 4.2 Error Bound Analysis

12: decreasg by 1;

13: end for This section provides a theoretical analysis for the final

results of aggregate monitoring, and presents some analysis
R on the resulting error for using IH.

6 = b;b . In our approach, each bucket should maintain  Supposew; is a monitored window with a threshold

a pairb?, b’ and the number of values in it, i.e., its width. 7'(w1). The process of answering aggregate monitoring

It is known that the buckets are disjoint and contejnz’, . query on windoww; is to detect whethef'(w, ) is larger

Thereforep$ = andb‘}g =2, andbﬁ? < (1+0)b¢is al- than or equal td@’(w; ) or not. The probability of false alarm

ways tenable in the process of formation. The constructionwith our method can be evaluated B§Err) = 1 — (1 —

of IH is described in Algorithm 3. errys)(l—errpa)(l—errryg), whereerryss, errpa and

The only input parameter of Algorithm 3 is;, and errry are the error probabilities of missorting, fractal ap-
it has no output. When a new valug, comes, all the  proximation and estimated value of IH, respectively. They
O(leentlos Ry by ckets are updated, as illustrated by state- are independent one anotherry;s anderr 4 have been

log(1+6 . . . . :
menfé(flrgr% Line 4 to 13. First, Line 3 creates a new bucket discussed in section 4. Since the accurate monotonic search

for z,, and puts the bucket last. Then, Line 5 updates the SPace can always be maintained, we could havg; s = 0.
maximum and minimum values of all the buckets (from Thus,P(Err) = errpa + errig — errpaerrim, Where
the newly created one to the oldest one) by addipgnto errra IS bounded by the deviation of a given threshold to
them. In the process of updating, from Line 6 to 11, the the expected value of aggregate re${(itv;) on windowuw;.
algorithm merges two consecutive buckétsandb; when ~ Thatistosayerrpa = P(z > A), wherex ~ Norm(0, 1)

bY < (14 6)bY, with b2 = b?. Then, the maximum relative ~ and = %

error in each bucket of IH can be bounded and the space and With the false positive or false negative oriented ap-
time cost are kept low. So, we have the following theorem. proaches, the error bourgr;; for aggregate monitoring
Theorem 2 Algorithm 3 can construct an IH with ~duery answering could be analyzed as follows.

O(log n+10gR) space irO(n(lognJrlog R)) time, and the rel- Assuming thatc; = F(wq) and the estimated value of

log(1+9) log(1+3) . . , . I X
ative error in each bucket is at most F(wq) with IH is 7. With the maximum relative error




bounded by, F'(w;) can be estimated by using IH to be
in[(1 —0)F(w), (14 6)F(w)]. For false positive aggre-
gate monitoring, the error probability is

z1(1+9) — T(wq)
: = ©)

The error probability of false negative oriented approach is

Notice that the parametgrmeasures the occurrence of
burst in a data stream. Smallglimplies that more bursts
occur in the data stream. Accordingly, the false positive
method is suitable for monitoring fluctuant data stream,
while the false negative method is suitable for relatively dor-
mant data streams.

SupposeR (T (w;)) is a set of real results of aggregate
monitoring query, which could be obtained accurately with
thresholdT’(w;) on windoww; over the stream:, and we
do not consider the errotrrr 4 induced by fractal ap-
proximation, forerrgp4 anderryg are independent each
other. Similarly, suppos& P(T (w;)) is a set of results of
aggregate monitoring query, which are computed approx-
imately by using our false positive oriented method with
thresholdT'(w;) on the window of the same length. The
false positive method can provide &+ €)-approximation
(e € (0,1)) aggregate monitoring query processing.
means that given a threshold{w;), the number of query
results detected by the false positive method Withv;) are
at mostl + ¢ times of the query results detected by the accu-
rate method witl'(w;). Such a guarantee can be stated as,
IR(T(w)|| < [FP(T(w))| < (1+ )| R(T(wy))]. If
we set%lfl) = 1+ e. The equation (3) can be transformed

1+6_T(w1)
toerrrg =p r

errig =p

errrg = (1

It

—€

5

=D
Lemma 1 Givene, whend > ¢ the false positive method
can provide &1 + ¢)-approximation aggregate monitoring
guery processing with at most the false alarm probability
p5gs .

Lemma 2 Givene, whené < ¢ the false positive method
can provide &1 + €)-approximation aggregate monitoring
querying processing with no false alarm.

Theorem 3 Given ¢, A and §, the error probability of
the proposed method for answering aggregate monitoring
query on windoww; can be bounded by (z > \) +
max(p‘sge,O) —Plx>))- maw(pégE,O) with false pos-
itive oriented IH, where: ~ Norm(0, 1).

The similar conclusions can be achieved for the false
negative oriented method.

5. Performance Evaluation

are conducted on a Windows 2000 platform with 2.4GHz
CPU and 512MB main memory. The algorithms are run
with a variety of data sets. Due to the limitation of space,
only the results for two representative data sets are reported
here. The two data sets are:

e Network Traffic (Real): The data set BC-Oct89Ext4,
called D1 here, is a network traffic tracing data set ob-
tained from the Internet Traffic Archive [1].

e Network Traffic (Synthetic): This synthetic data set is
for testing the scalability of our method. It is gener-
ated by setting the burst arrival of a data stream with
a pareto[9] distribution, as used in simulating network
traffic where packets are sent according to ON OFF
periods. The density function of pareto distribution is
P(z) = ;Lfl whereb > x anda is the shape pa-
rameter. The expected burst countz), is -%2-. The
tuple arrival rate\; is driven by an exponential distri-
bution, and the interval, between signals is also gen-
erated with exponential distribution. In this data set,
the expected valu&'(\,) = 400tuples/s, E(A2) =
500tuples, a = 1.5,b = 1. The size of this time series
data set i3s = 100,000, 000s. The whole data set is
called D2 here.

In the experiments, two accuracy metrics are used, recall
and precision. Recall is the ratio of true alarms raised to the
total true alarms which should be raised. Precision is the
ratio of true alarms raised to the total alarms raised.

To set the threshold foF'(w;) on i-length window, we
compute moving”'(w; ) over some training data. The train-
ing data is the foremodi0% part of each data set. It forms
another time series data set, calledThe absolute thresh-
olds are set to b&(w;) = p,, + Aoy, wherep, ando, are
the mean and standard deviation, respectively. The thresh-
old can be tuned by varying the prefactoof standard de-
viation. The length of windows are 4, 8, 4.x NW time
units, whereNW is the number of windowsNW varies
from 50 to 1000. For no latency, the time unit is one data
point in the data sets.

5.1. Experimental results

We evaluate the precision and the recall of our aggre-
gate monitoring method. It is supposed ttdty;) is com-
puted false positively by IH, and’ is the distributive ag-
gregatesum. The experiments are conducted on both the
aforementioned two data sets. First, the relationship be-
tween accuracy and maximum relative error of IH is stud-
ied. In this experiment, we set number of monitored win-
dows NW = 100 and prefactoi = 7. It can be seen from
Fig.5 that under all the setting 6fthe precision and recall

The algorithms proposed in this paper are implementedof our method are at leag89%. With the decreasing of rela-

with Microsoft Visual C++ Version 6.0. All experiments

tive error, IH can provide better approximation. Therefore,



4936 4936 4936 4936 4936 £2139859130851398: 130801398

1.0000 1.0000 1.000
— — . [1.000

0.9996 0.9996 0.998
c » 5 0999
2 0.9992 0.9992 & 2 0.996 2
8 s 3 0998 =
o o o -

0.9988 —a—Precision 0.9988 0.994 —a— Precision

—e—Recall —e—Recall
0.9984 NumberofAlarms 0.9984 0.992 NumberofAlarms [ 0-997
0.1 0.05 0.01 0.005 0.001 0.1 0.05 0.01 0.005 0.001
5 5

(a) On D1(Real) (b) On D2(Synthetic)

Figure 5. Precision and recall on varying max-
imum relative error § of IH, with NW = 100

AST 4398 o0 anER a6ES, (0El 5ot
52" A 62 5% AT A 1% 1.0000

0.9998
0.9996

3722 4936 8745 17732 24563 3323340580 1.000

—o—Precision
0.9999 0.999 |+ Recall
NumberofAlarms

0.9999

- 0.998

ion

0.9998 09994 2
2

o 6
099988 2 0.997
g 2 09992 =

Precisi

o
—o—Precision 0.996

—e—Recall
NumberofAlarms[ 0-9997

50 100 200 400 600 800 1000
Number of windows

(a) On D1(Real)

0.9990

0.9997 0.995

.9988

0.
50 100 200 400 600 800 1000

(b) On D2(Synthetic)

Figure 7. Precision and recall on varying num-
ber of windows, with A =7 and ¢ = 0.01

and A =17

1 2 \]
3824 3824 3824 3824 3824 1,000 226 e e

0.9996 0.9996

18T, 2g2E08410E0
Ao 0.9995

0.999 0.9990
0.9992
SMER 3678 1308 11774 10185 14909 0.998

c
(=}

11688 8326 4936 2844 1053 731 0.9985

1.0000 1.0000 1.000 1.0000 ;g - 0.9988 g.f :§ 0.997 0.9980 g
:g 0.9997 0-9998 ga % 0.996 09992 8 } NumberofAlarms} 0.9980 0.995 Number of Alarms| 0-9970
T 09996 +Procision 09997 — & 0008 L oracision 09988 0.1 005 0,21 0.005 0.001 50 11(:]3;4;(3,&?3:01000

0.9995 T Neemerofalarms| 09996 0.992 T R borofAlarms|0.9984

3 5 7 9 11 13 3 5 7 9 11 13
A A

(a) On D1(Real) (b) On D2(Synthetic)

(a) varyingd on D1 (b) varying NW on D2

Figure 8. Precision and recall on monitoring
algebraic aggregate wvariance
Figure 6. Precision and recall on varying pref-

actor A, with NW = 100 and § = 0.01 seen from Fig.8.(a) that the precision and recall are always

above99% under any setting af. The second experiment
our method can give highly accurate answers for aggregates conducted with the settiny W = 100 andé = 0.01. It
monitoring queries based on IH over data streams. could be observed from Fig.8.(b) that the increasa oén
Second, the relationship between accuracy and thresholdeduce the fractal approximation error correspondingly. So,
of aggregation is studied. In this experiment, we set numberthe accuracy of monitoringariance is getting better. In
of monitored windowsVIW = 100 and maximum relative  the third experiment, the settings axe= 7 andé = 0.01.
errord = 0.01 of IH. It can be seen from Fig.6.(a) and The accuracy are getting better with the increas&a¥,
Fig.6.(b) that under any setting afthe precision and recall as shown in Fig.8.(b). It can be concluded again that our
of our method are always abo98%. With the increasing  method can monitor large amounts of windows over data
of A\, our method can guarantee better accuracy, for fractalstream with high accuracy; moreover, both the distributive
approximation erroerrg 4 is decreasing. and algebraic aggregates can be monitored using the pro-
Third, the relationship between accuracy and number of posed method.
monitored windows is studied. In this experiment, we set Here, some experiments are designed to compare our
A = T7and§ = 0.01. It can be seen from Fig.7 that with method with the most recently appeared w8thardus7]
NW increasing, the precision and recall of our method are in the aspects of space and time overhead. Although the
still above99%. The accuracy are getting better and bet- Stardustcan monitor aggregate exactly, while our method
ter with the increasing ofVIW. That is because the av- just do it approximately, our method need only very little
erage size of monitored windows is getting larger with the memory and time to answer aggregate monitoring queries
increasing ofVIW. The fractal approximation is more accu- if a very small and acceptable error, day%, is allowed,
rate on large time scales. So, the eworr 4 is decreasing  which is general in real applications. In comparison with
with the increasing ofVIV. It can be concluded that our the accurate method, our method could run more than tens
method can monitor large amounts of windows with high of times fast, and it makes sense in real-time monitoring.
accuracy over data streams. Thanks to the generous help from the author of [7], we
Now, we evaluate the precision and recall when apply- got the original code package 8tardust Then, it makes
ing the proposed method in algebraic aggregateance. our comprehensive comparison wiardustpossible. Be-
Because of the limitation of space, only a part of results are causeStardustis written in JAVA, for the sake of fairness,
presented here. As shown by the first experiment, the accu-all our algorithms are re-implemented in JAVA. Neverthe-
racy of monitoringuariance is also very high when based less, all parameters setting is kept the same as introduced
on IH. The settings ar&/ W = 100 and\ = 7. It can be hereinbefore. That is to say, we set basic window length



1E7

BEEESS o]~ s ~ Acknowledgement
—e— Stardust -
;@00&000 g o000 L The authors would like to thank Dr. Ahmet Bulut for pro-
H TrfrcaBased]  ERO) viding the code of Stardust. This work is partially supported
g 100000 § 20000 by the NSFC under grant No.60503034, 60496325, and
& o : Saooof 60496327 and Shanghai Rising-Star Program under grant
' 50 100 200 400 600 800 1000 0 50 100 200 400 600 800 1000 N004QMX1404
Number of windows Number of windows
_ _ , References
(a) Space comparing On D1 (b) Time comparing On D1
. . . [1] Internet traffic archive. http://ita.ee.lbl.gov/.
Figure 9. Space and Time cost comparing [2] A. Arasu and J. Widom. Resource sharing in continuous
with Stardust. sliding-window aggregates. Proc. of VLDB 2004.
[3] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan.
W = 1, smallest monitored window lengtl§ = 4, and the Maintaining variance and k-medians over data stream win-
range of the number of monitored windows is varying in dows. InProc. of ACM PODS2003.

{50, 100, 200, 400, 600, 800, 1000} for Stardust. The other [4] M. Barnsley. Fractals Everywhere Academic Press, New

. . ) - ; . York, 1988.
setting,F"is sum, A = 7, andd = 0.01. A special setting [5] S.Ben-David, J. Gehrke, and D. Kifer. Detecting change in

for Stardust is the box capacity= 2. data streams. IRroc. of VLDB 2004.

From Fig.9.(a), it could be seen that the proposed method [6] P. Borgnat, P. Flandrin, and P. O. Amblard. Stochastic
is space efficient. The space cost of the method is the same  discrete scale invariancd EEE Signal Processing Letters
as that of IH, which is only depends on the stream length 9(6):181 — 184, June 2002.
but bears no relationship with the number of monitored [7] tA- _Bullét ?nth- K. S_inguh.I tA unh;i;d fra?wltévl\soErszggsmoni-

: P oring data streams in real time. Rvoc. o .
Wmdows' HO\.Never’ Stardu;t has. to maintain all the mon- [8] G. C%rmode and S. Muthukrishnan. What's new: Finding
itored data points and associated index structure at the same

. . - significant differences in network data streams.Pmc. of
time. It can be seen that the space saved by IH is getting INFOCOM, 2004.

larger and larger a& W and stream length increase. Thus, [9] M. E. Crovella, M. S. Tagqu, and A. Bestavros. Heavy-tailed

the proposed method is more adaptable to monitor multi- probability distributions in the world wide webA practi-
granularity windows over data streams, compared with pre- cal guide to heavy tails: STATISTICAL TECHNIQUES AND
vious ones. Also, it is time efficient. This is shown in APPLICATIONSpages 3-26, 1998.

Fig.9.(b). With search space enlarging, the processing time[10] S. Guha, N. Koudas, and K. Shim. Datastreams and his-

saved by using monotonic search space is getting larger. tograms. InProc. of STOC2001. .
y 9 P 9 glarg [11] J. C. Hart. Fractal image compression and recurrent iterated

6 Discussion and Conclusions function systems.IEEE Computer Graphics and Applica-
tions, 16(4):25-33, July 1996.

We present a novel method for monitoring aggregates [12] C.Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamically
with multi-granularity windows over a data stream. Fractal gl?(lrl\]/ltag](l)r(])% frequent items over a data streamPtac. of
anglygls IS employed to tran's;form the original dgta §tream [13] J. KIe’inberg. Bursty and hierarchical structure in streams.
to its intermediate form. It is because the application of In Proc. of SIGKDD 2002.

fractal techniques that we can not only process algebraic[14] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-
aggregates but also build a monotonic search space, with based change detection: Methods, evaluation, and applica-

which the access to the synopsis is dramatically optimized. tions. InProc. of IMC, 2003.
Inverted histogram is adopted as the core synopsis for the[15] B. B. Mandlebrot.The fractal geometry of naturéreeman,
monitoring tasks. It expends limited storage space and com- __ New York, 1982.

[16] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. Pmoc. of VLDB 2002.
[17] D. S. Mazel and M. H. Hayes. Using iterated function sys-

putation cost for providing enough accurate monitoring re-
sult. Both theoretical and empirical result show the accu-

racy and efficiency of the proposed method. ) tems to model discrete sequencd&EE Transactions on
The future research could be focused on the following Signal Processingd0(7):1724—1734, July 1992.

three points. First, the proposed method could be extended[18] X. Wu and D. Barbara. Using fractals to compress real data

to automatically determine the most appropriate windows sets: Is it feasible? IRroc. of SIGKDD 2003.

to be monitored. Second, the method could be generalized,[19] J. X. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or
so that it can handle not only the absolute thresholds but ~ false negative: Mining frequent itemsets from high speed

the relative ones. The last but not the least, some extensioqzo] tArarZI?]%cutloSnaé?ﬁtiﬁérsslm&éim%do;%bgs sgtoettin g aggre-

could be done to this method, the goal is to make it pos- gation bursts in data streams. Rmoc. of DASFAA2005.
sible to process more complicated queries, such as iceberg21] v. zhu and D. Shasha. Efficient elastic burst detection in
queries. data streams. IRroc. of SIGKDD 2003.



