
Approximately Processing Multi-granularity Aggregate Queries over Data
Streams

Shouke Qin Weining Qian Aoying Zhou∗

Department of Computer Science and Engineering, Fudan University, Shanghai 200433, China
{skqin,wnqian,ayzhou}@fudan.edu.cn

Abstract

Aggregate monitoring over data streams is attracting
more and more attention in research community due to its
broad potential applications. Existing methods suffer two
problems, 1) The aggregate functions which could be mon-
itored are restricted to be first-order statistic or monotonic
with respect to the window size. 2) Only a limited number
of granularity and time scales could be monitored over a
stream, thus some interesting patterns might be neglected,
and users might be misled by the incomplete changing pro-
file about current data streams. These two impede the de-
velopment of online mining techniques over data streams,
and some kind of breakthrough is urged. In this paper,
we employed the powerful tool of fractal analysis to en-
able the monitoring of both monotonic and non-monotonic
aggregates on time-changing data streams. The monotony
property of aggregate monitoring is revealed and monotonic
search space is built to decrease the time overhead for ac-
cessing the synopsis fromO(m) to O(log m), wherem is
the number of windows to be monitored. With the help of
a novel inverted histogram, the statistical summary is com-
pressed to be fit in limited main memory, so that high aggre-
gates on windows of any length can be detected accurately
and efficiently on-line. Theoretical analysis show the space
and time complexity bound of this method are relatively low,
while experimental results prove the applicability and ef-
ficiency of the proposed algorithm in different application
settings.

1. Introduction

Query and mining over data streams have been attracting
much attention in database community recently because of
the motivation from real-life applications. As well-known,
the conventional database technologies were invented for

∗This work is partially finished when the author is visiting Computer
Science Division of University of California at Berkeley.

the management of collections of static data, but query-
ing and mining dynamic data streams are still challenges.
The constraints imposed on data stream processing include
limited memory consumption, sequentially linear scanning,
and on-line accurate result reporting over evolving data
streams. One of the most interesting topics is querying and
monitoring aggregates with a user specified threshold, in-
cluding frequent items [12] or itemsets [19, 16] mining,
burst detection [21, 20], change detection [5], and aggre-
gate monitoring over time windows [7].

In this paper, we focus on a specific form of query re-
quests, say, given a set of given windowswi, i = 1, 2, ..., m,
report current timestamp and the all windowswp if an ag-
gregate overwp, denoted asF (wp), is larger than the pre-
defined thresholdT (wp). It has wide applications in mon-
itoring network traffic data [8], Gamma ray data [21], and
Web log mining [7].

However, existing techniques suffer from two major
problems when being applied to real-life applications. First,
they are designed for processing aggregations with distribu-
tive property (e.g., count) but not for algebraic aggregates
such as average or variance. The significant difference be-
tween algebraic and distributive aggregations lies in that the
later is monotonic with respect to the time dimension, while
the former is not. However, algebraic aggregate functions
are used widely in analysis of streaming data. For example,
the following four models are frequently used to remove the
effect of noisy data: Moving Average,S-shaped Moving
Average, Exponentially Weighted Moving Average, Non-
Seasonal Holt-Winters [14]. Though some methods are pro-
posed to maintain variance and K-medians over a stream
[3], the cost for finding bursts using these synopsis is still
O(m). Thus, the method cannot support multi-granularity
aggregate queries efficiently, especially when the number of
windows is large.

Second, most existing techniques are designed for query-
ing over a single window or a small number of windows.
Since users often do not know the most appropriate win-
dow size they need to monitor, they tend to monitor a large
number of windows simultaneously. Although processing

multiple queries separately is a trivial solution, and aggre-
gate window of continuous queries can be shared [2], it in-
evitably results in redundant storage and computation, and
finally bad performance.

To address these two problems, and considering the ba-
sic requirements of data stream processing, in this paper, we
propose a novel approximate method for continuously mon-
itoring a set of aggregate queries with different window size
parameters over a data stream.

1.1 Related Work

Monitoring and mining data stream has received consid-
erable attention recently [13, 21, 8, 14, 5, 7, 20]. Klein-
berg focuses on modelling and extracting structure from text
stream in [13]. Our work is different in that we focus on dis-
tributive and algebraic aggregates on different sliding win-
dows. There are also some works about finding changes in
data stream [8, 14, 5]. Although their objectives and appli-
cation backgrounds are different, one common feature they
all bear is that they can monitor the bursty behavior on only
one granularity. The method in [21] uses a Shifted Wavelet
Tree (SWT) to detect bursts on multiple windows. In 2005,
a more efficient aggregate monitoring method is put forward
in [7], which uses a novel index schema to detect bursty
behaviors. However, these two methods can only detect
monotonic aggregates, and the maximum window size and
the number of monitored windows are both limited. Since
they are both based on the assumption that for two windows
with different size, ifwj is contained inwj , there must be
F (wi) > F (wj). Actually, it holds only forF which is
monotonic with respect to the window size, such assum
or count. For non-monotonicF such asaverage, the as-
sumption does not hold. An adaptive burst detecting method
based on Inverted Histogram is proposed in [20]; however,
no any overall bound for the error of burst detection is given
there.

Fractal geometry was known to be suitable to describe
the essence in the complex shapes and forms of nature
[15]. As a tool, fractal techniques have been success-
fully applied to the modelling and compression of data sets
[18, 11, 17, 4]. However, existing fractal techniques are dif-
ficult to be employed directly in the data stream scenario,
for the building of a fractal model is of polynomial time
complexity, and multiple scans of the whole data set is nec-
essary.

Our contributions can be summarized as follows:

• We incorporate the tool of fractal analysis into aggre-
gate query processing. Then our method provides the
ability for processing not only the distributive aggre-
gates but also the algebraic ones. We also propose a
method for processing data which does not obey the
scaling relationship of exact fractal models.

• The monotonic property of the synopsis search space
is described. To construct such a monotonic search
space for multi-granularity aggregate query process-
ing, a novel approach is presented, which could de-
creases the time overhead of query processing from
O(m) to O(log m), wherem is the number of win-
dows being monitored.

• An efficient synopsis, called Inverted Histogram (IH),
is employed, and the algorithm for query processing is
given. We analyze the storage and computation cost,
and prove the error bound of our algorithm. We also
complement our analytical results with an extensive
experimental study. The results demonstrate that the
proposed method can monitor multi-granularity aggre-
gate queries accurately with high efficiency.

The remainder of this paper is organized as follows. Sec-
tion 2 is for the preliminary knowledge of fractal and scal-
ing relationship. Then the problem statement is presented in
this section. Section 3 introduces the concept of monotonic
search space and presents the method for building such a
search space. The details of aggregates monitoring algo-
rithm, including the maintenance of IH and the extension of
basic algorithm, is introduced in Section 4. Section 5 shows
the results and then analyzes the experiments. Finally, Sec-
tion 6 is for concluding remarks.

2 Preliminaries and Problem Statement

Fractal analysis is a powerful tool for analyzing time se-
ries data and data streams. Power-law scaling relationship,
a basic characteristic of fractals, could be adopted to handle
data streams.

Pieces of a fractal object when enlarged are similar to
larger pieces or to that of the whole [15]. If these pieces
are identical re-scaled replicas of the others, the fractal is
exact. When the similarity is presented only in a statistical
sense, and it is statistically observed on the given feature
with different granularity, the fractal is statistical. Deter-
mined fractals such as the von Koch curve and Cantor set
are both exact; however, most natural objects are statistical
fractals.

When a quantitative property,q, is measured on a time
scales, its value depends ons according to the following
scaling relationship [15]:

q = psd (1)

This is called power law scaling relationship ofq with s. p
is a factor of proportionality andd is the scaling exponent.
The value ofd can be easily determined as the slope of the
linear least squares fitting to the data pairs on the plot of
log q versuslog s:

log q = log p + d log s (2)

Data points for exact fractals are lined up along the re-
gression slope, whereas those of statistical fractals scatter
around it since the two sides of equation (2) are equal only
in distribution.

For discrete time series data, equation (1) can be trans-
formed toq(st) = sdp(t) wheret is the basic time unit and
s(s ∈ R) is scaling measurement [6]. Simply,d can be
determined byd = log(q(st)/p(t))

log s . The power-law scaling
relationship is also obeyed whenq is an aggregate function
or some second order statistic values. The details will not
be discussed here due to the space limitation.

A data streamX can be considered as a sequence of
pointsx1, ..., xn with subscript in ascending order. Each
element in the stream can be a value in the range[0..R]. F
can be not only monotonic aggregates with respect to the
window size (e.g.,sumandcount) but also non-monotonic
ones such asaverage. Thereafter, it can be seen thatF can
be extended to some even more complicated statistic values,
such asvariance.

To monitor aggregations on evolving data streams is in
fact to answer aggregate queries continuously on subse-
quences (windows) with different lengthes. The formal def-
inition of a monitoring task over a data stream can be de-
scribed as follows.

Definition 1 Assuming thatF is an aggregate function,wli

is the latest sliding window of a stream with the length ofli,
1 ≤ li ≤ n, andT (wli) is the threshold onF (wli) given
by users beforehand. The result is reported on windowwli

whenxn comes and ifF (wli) ≥ T (wli).

Here, the definition is similar to the burst defined in [21,
7]. Compared with previous works, the major differences
of ours lie in: 1)F can be algebraic aggregates, 2) a large
number of windows can be monitored simultaneously.

To reach such a goal, a brute-force approach is to check
the synopsis for each window whenever a new point arrives.
However, with this approach the cost of answering a query
is O(m), wherem is the number of windows. Though some
previous effort tried to reduce the cost for maintaining the
synopsis, it is argued that reporting query result from synop-
sis also need substantial cost. The cost is extremely expen-
sive, especially when monitoring large number of windows.

We propose an alternative method which organize all the
windows into a monotonic search space. Here, asearch
spaceis a permutation of all the windows. Our basic idea is
to sort the windows, so that when a result is reported on a
window, all its predecessors should be reported as results.
We call such search space as amonotonic search space.
Thereby, a binary search can be applied on the monotonic
search space, and the time complexity for accessing synop-
sis isO(log m).

Figure 1. Sketch map for power law scaling of
aggregate function F .

3 Construction of a Monotonic Search Space

3.1 Monotonic Search Spaces over Exact Fractals

Here, it is assumed that the monitored data streamX is
exact fractal. The extensions of the basic method for han-
dling statistical fractals and non-fractal data will be given
next.

The aggregate result on unit time scale is denoted
by F (1) (F (1) > 0). A line with slope d =
log(F (wi)/F (1))/ log(wi) can be obtained on streamX.
The line can be drawn on a sketch map as Fig.1 shows.
Here,d is the scaling exponent ofF . Different F has dif-
ferentd.

Assuming thatd is known in advance.T (wi) andT (wj)
are two user-given thresholds on windowwi andwj respec-
tively. We plot the two points(log(wi), log(T (wi))) and
(log(wj), log(T (wj))) on the sketch map. Provided that the
point (log(wi), log(T (wi))) is over the lined and the point
(log(wj), log(T (wj))) is below the lined, that is to say, the
following slope inequalities hold:

log(T (wi)/F (1))
log(wi)

> d =
log(F (wi)/F (1))

log(wi)

log(T (wj)/F (1))
log(wj)

< d =
log(F (wj)/F (1))

log(wj)

then, when we have a detection for changes on streamX,
there must be a result reported on windowwj and no result
on windowwi. The reason behind is thatlog(T (wi)) >
log(F (wi)) is always holds sincelog(T (wj)/F (1)) <
log(F (wj)/F (1)) is guaranteed on the overall data stream.

For extending to a more complex condition, assum-
ing that d is not known a priori, and m thresholds
T (w1), T (w2), ..., T (wm) on m different windows are
given by users beforehand. To monitor the aggregates on
those windows, we first sort these levels with their ratios
log(T (wi)/F (1))/log(wi) in ascending order. This implies
thatF (wi)/T (wi) i = 1, 2, ..., m are ordered in ascending
order. Hence, the property of the search space follows:

Property 1 T (w1), T (w2), ..., T (wm) are m thresholds
given form different windowsw1, w2, ..., wm, andF (1) is
the aggregate result of the unit time scale. Provided that
log(T (wi)/F (1))/ log(wi) is ordered in ascending order,
a windowwi is a result to be reported implies that all its
predecessors are results to be reported.

With this property, we can sort the search space and
decrease the time overhead in great deal when answering
aggregate monitoring queries. It endows the stream moni-
tor with high scalability for the tough monitoring tasks on
fluctuating data streams. However, this property is strictly
abided by exact fractals. For statistical fractals or non-
fractal data, the scaling exponentd in equation (1) is not
a constant on overall data stream. As a result, the order of
thresholds is variable from point to point in a data stream.
This brings great challenges for using this monotony prop-
erty in real life applications.

3.2 Approximating Real-life Data with Fractals

Real-life data may not be exact fractals. For statistic
fractals in real world applications, this property is abided
in distribution. That is to say, the rule is only obeyed by the
statistic variables on the data stream, such as expectation
and variance.

In this case, we sort the thresholds with Property 1; it
means that we use exact fractals to approximate statistic
fractals. This approximation will induce two kinds of er-
rors. One is the error of fractal approximation, denoted by
errFA; the other is the error of missorting the thresholds,
denoted byerrMS .

The fractal approximation errorerrFA is induced by
transforming real-life data stream to exact fractal which fol-
lows the power law scaling relationship. Let the aggregate
result onith-level windowwi beF (wi) and its expectation
and standard deviation beE(F (wi)) andD(F (wi)). We
assume thatF (wi)−E(F (wi))

D(F (wi))
∼ Norm(0, 1). The thresh-

old given by users onF (wi) is denoted byT (wi). Because
the fractal transformation usesE(F (wi)) to approximate
F (wi) for scaling in power law relationship, this will not
induce any error whenF (wi) < T (wi). However, when
F (wi) ≥ T (wi), the change of aggregate on windowwi

may be neglected.errFA is the probability of such kind of
error is occurring onwi.

errFA = P (F (wi) ≥ T (wi))

= P (
F (wi)− E(F (wi))

D(F (wi))
≥ T (wi)− E(F (wi))

D(F (wi))
)

Therefore, theerrFA is limited whenT (wi) is given.
Having different purpose in comparison with other ap-

proximation techniques, such as histogram, wavelet and
FFT(Fast Fourier Transformation), the fractal approxima-
tion is not used to compress data and reconstruct them

(a) (b)

Figure 2. (a) Power law scaling relationship on
real life data stream. (b) Piecewise monotonic
search space on real life data stream.

later. So, theerrFA will not be affected by the distance
between fractal data and original data but the deviation of a
given threshold to the expected value of the aggregate result
on corresponding window. The distance error to original
data will be considered in our synopsis data structure—IH,
which will be discussed later.

The missorting errorerrMS originates from using in-
variantF (1) to sort the thresholds. For exact fractals, the
value ofF (1) is invariant. However, for statistic fractals
the F (1) is time-changing. For example, if the monitored
aggregate functionF is sum, the value ofF (1) is equal
to 1

n

∑n
i=1 xi which is kept varying, induced by the newly

comingxn of streamX. Thus, constructing a monotonic
search space with an invariantF (1) as in exact fractals does
induce errors consequently.

Let us consider a simplified case shown in Fig.2.(a),
where two thresholdsTi andTj are given by users for two
different levels of windows. It can be seen that the mono-
tonic search space achieved ond1 will not hold ond2. The
reason is that the two scaling relationships have different
log(F (1)). So, the order of monitored windows based on
log(T (wi)/F (1))/log(wi) is variable on different scaling
relationships. It will be explained in details as follows.

The value of pointB on the vertical axis islog(F (1)) of
d1. Because the slope of the lineBTi is smaller than that of
BTj , the monotonic search space is〈wi, wj〉. It means that
when the aggregate monitoring query is submitted, we first
detect the time scalewi. If the result of aggregate monitor-
ing query is found onwi, the time scalewj will be detected
in the second step. Otherwise, the query processing will halt
and no result reported. In this way,〈wi, wj〉 can support the
queries ond1. However, when a new pointxn+1 comes,
the current power-law scaling relationshipd2 is obtained.
The value of pointA on the vertical axis islog(F (1)) of
d2. Since the slope of lineATi is larger than that ofATj ,
the monotonic search space ofd2 is 〈wj , wi〉. Apparently,
it conflicts with the monotonic search space ofd1.

From the analysis above, a rule ensuring the invariant
monotonic search space could be observed and summarized
as follows. Assuming that the lineTjTi intersects the ver-

Figure 3. Building monotonic search space.

tical axis at pointD. If the point log(F (1)) of any di is
above pointD on the vertical axis, thedi has a same mono-
tonic search space〈wi, wj〉 as that ofd1. Similarly, if the
point log(F (1)) of any di is below pointD on the ver-
tical axis, thedi has an inverted monotonic search space
〈wj , wi〉, compared with that ofd1.

Property 2 Given two thresholdsT (wi) and T (wj).
Suppose the level ofwi is smaller than that ofwj ,
and the line through points(log(wi), log(T (wi))) and
(log(wj), log(T (wj))) intersects the vertical axis atD.
Then, iflog(F (1)) is aboveD, the monotonic search space
is 〈wi, wj〉; otherwise, iflog(F (1)) is belowD, 〈wj , wi〉 is
a monotonic search space.

The simple rule observed hereinabove is only adaptable
to double thresholds. Here, it is extended to a more com-
plex case with three thresholds. For the cases with more
than three thresholds, the extension is a easy and trivial job.
As shown in Fig.2.(b), the three thresholds are plotted asTi,
Tj andTk. Pairwise connecting the three points, linesTiTj ,
TiTk andTjTk can be obtained. They intersect the verti-
cal axis at pointsA, B andC, respectively. The vertical
axis can be upwards divided into four disjointed intervals
(−∞, A], (A,B], (B,C] and(C, +∞). For thelog(F (1))
falling in (A,B], 〈wi, wj〉, 〈wk, wi〉 and 〈wk, wj〉 can be
obtained based on Property 2. These binary monotonic re-
lationships can be merged into〈wk, wi, wj〉 which is the
monotonic search space of the interval(A,B].
Proposition 1 Given m thresholds{T (wi)}m

i=1 and cor-
responding points{(log(wi), log(T (wi)))}m

i=1. Draw the
lines connecting any pair of points, then the vertical axis is
divided into several intervals. Each interval has a unique
monotonic search space.

No matter what the value oflog(F (1)) on scaling re-
lationshipdi is, it can be located at one of the intervals.
Then, the monotonic search space of the corresponding in-
terval can be used to support aggregate monitoring queries.
A novel method to build the intervals and their monotonic
search spaces will be presented in next subsection.

3.3 Building the Search Space

Considering the case of three thresholds in Fig.2.(b) as
an example. The vertical axis is plotted as Fig.3. Suppose
the line TiTj connecting the pair(Ti, Tj) intersects with
the axislog(F (wi)) at pointA, wherewi < wj . The pair
(Ti, Tj) is called the divide condition of divide pointA. For
the other two pointsB andC, it could be deduced similarly.

Algorithm 1 buildMonotonicSearchSpace(T (wi), wi)
1: create a new pointTi;
2: Ti ← (log(wi), log(T (wi)));
3: if m ≥ 1 then
4: for j = 1 tom do
5: line Ti andTj intersects vertical axis atDi;
6: if wi < wj then
7: add〈wj , wi〉 to the leftwards intervals ofDi;
8: add〈wi, wj〉 to the rightwards intervals ofDi;
9: else

10: add〈wi, wj〉 to the leftwards intervals ofDi;
11: add〈wj , wi〉 to the rightwards intervals ofDi;
12: end if
13: end for
14: end if
15: increasem by 1;

Binary monotony relationships is generated first and then
merged finally. If alog(F (1)) falls in the interval(A,B],
and the< is given to the divide conditions of all the left-
ward divide points of interval(A,B], the binary monotony
relationship〈wi, wj〉 can be obtained. When given the>
to the divide conditions of all the rightward divide points of
interval (A,B], the binary monotony relationship〈wk, wi〉
and 〈wk, wj〉 can be obtained. Then, all the three binary
monotony relationships could be merged, and〈wk, wi, wj〉
is formed, which is the monotonic search space for the in-
terval(A,B].

The procedure described here can be performed off-line,
for the order of thresholds are always determined before on-
line monitoring aggregates. It can also be executed online
for inserting some new thresholds instantly given by users.
Therefore, Algorithm 1 is in fact an incremental algorithm.

Algorithm 1 has two input parametersT (wi), wi and no
output. Given a new thresholdT (wi), it obtains a new point
Ti in Line 2. Then, at Line 5, it draws a line through points
Ti andTj which intersects the vertical axis at pointDi. In
the process of updating the monotonic search space of each
interval, from Line 4 to 13, the algorithm adds the newly
generated binary monotonic relationship into each entry.

The time cost of Algorithm 1 for adding a new window
into existing search spaces isO(m), wherem is the number
of monitored windows at present. The space cost of Algo-
rithm 1 is very small. This is because the entries are stored
in hard disk and need not to be maintained in memory. Fur-
thermore, the distribution oflog(F (1)) can be obtained, we
need only to store the entries covering the possible value of
log(F (1)).

4 Aggregate Monitoring

In this section, an efficient monitoring algorithm is pro-
posed to monitor both monotonic and non-monotonic ag-
gregates over time-changing data streams. This algorithm

Algorithm 2 monitorAggregatesFalsePositively
1: locatexn at intervalIk;
2: A ← retrieve monotonic search space ofIk;
3: low ← 0, high ← A.size()− 1;
4: while low ≤ high do
5: mid ← (low + high)/2;
6: if T (A[mid]) ≤ComputeAGG(A[mid]) then
7: low ← mid + 1;
8: else
9: if T (A[mid]) >ComputeAGG(A[mid]) then

10: high ← mid− 1;
11: end if
12: end if
13: end while
14: returnhigh;

can monitor the changes of aggregate results on multiple
granularity with sub-linear search space. To our knowledge,
the existing research works have to monitor those windows
with linear search space, resulting in the poor scalability for
the stream monitoring. Furthermore, the algorithm could be
extended to monitor algebraic aggregates such as variance.
The proposed algorithm can be used as a framework to of-
fer efficient solutions for other kinds of monitoring tasks as
well.

When a new pointxn is arriving and being inserted
into the histogram, the Algorithm 2 is invoked for an-
swering aggregate monitoring query over current stream.
The algorithm has no input parameter. The output is the
alarm information if any. Here, we turn to the windows
which is experiencing changes. The algorithm perform
binary search on the monotonic search space from Line
4 to Line 13 for answering aggregate monitoring queries.
ComputeAGG(A[mid]) is the process for retrievingF (wi)
(wi = A[mid]) from IH false positively or false negatively.

Algorithm 2 can explore the search space of the overall
stream inO(log m) time, wherem is the number of moni-
tored windows. If the concern is only about whether or not
some querying result occurs whenxn comes, rather than
on which window the change occurs or how many changes
are induced on the overall stream, the time cost could be
O(1). We can claim the following theorem when assuming
the space cost of a B-bucket histogram isB without loss
any generality.

Theorem 1 Algorithm 2 can monitor aggregates in real
time onm granularity over a data stream inO(n log m)
time andO(B) space.

This algorithm can be implemented upon any synopsis
structure provided that it is for computing aggregate results.
IH is one of these synopses. It is actually a novel histogram
we proposed for detecting aggregation bursts. Some de-
tails will be presented in next subsection. The aggregate
resultF (wi) on the latesti-length window(1 ≤ i ≤ n)

can be obtained from IH. In practice,F (wi) = fss(i),
andfss(i) = Σn

j=n−i+1xj , that is to say, it is the sum of
the lasti values of streamX, called suffix sum. Due to
the limited space available for computing aggregates over a
data stream, two alternative approaches, namely, false posi-
tive oriented and false negative oriented, could be employed
to approximate aggregate computing. The former answers
aggregate query onwi with a value not less than the real
F (wi), whereas the latter answers aggregate query onwi

with a value not exceeding the realF (wi). In real world, it
depends on application which one of the false positive ori-
ented and false negative oriented algorithm is preferred.

It can be seen that Algorithm 2 is a framework for mon-
itoring both distributive and algebraic aggregates. The kind
of aggregate which can be monitored by Algorithm 2 is de-
termined by the kind of aggregate which can be computed
by IH. Thus, in the following, IH is introduced first, and
then the aggregate monitoring tasks are analyzed.

4.1 Aggregate Estimation Using IH

Now, we are at the point to introduce a novel synopsis,
called Inverted Histogram (abbrev. IH). It is used to ap-
proximately calculate the aggregation value when given a
window. Though existing approximate V-optimal histogram
[10] can also do this job, it suffers a lot of workload to mon-
itor aggregate. The reason is that the absolute error and size
of the bucket constructed afterwards are getting larger and
larger as the stream proceeds. Thus, the errors induced by
using the newly created buckets are also increasing. How-
ever, for our purpose, what we expect is that the recent
bucket is of high precision, in other words, the width of the
recent buckets should be smaller than that of old ones.

Our basic idea is to invert the order of buckets, and
then the smaller bucket is used to store the newly coming
points. Fig.4.(b) illustrates the idea [20]. The oldest point
x′1 and the latest pointx′n of streamx′ are inb1 andbB , re-
spectively. In Fig.4.(a) which is also duplicated from [20],
x′i = fps(i), fps(i) is the prefix sum, i.e.,fps(i) = Σi

j=1xj .
In Fig.4.(b),x′i = fss(i), andfss(i) is the suffix sum, i.e.,
fss(i) = Σn

j=n−i+1xj . Fig.4.(a) is a bucket series of ap-
proximate V-optimal histograms; therefore, the size and the
absolute error of the last bucket is getting larger and larger
with passage of time.

As in the approximate V-optimal histogram, the goals
for IH are also the minimal number of buckets and the
guaranteed relative error in each bucket. The only differ-
ence is that the stream could be regarded asx′i = fss(i).
The streamx′ can be partitioned intoB intervals(buckets),
(ba

1 , bb
1), ..., (b

a
B , bb

B), where bi(1 ≤ i ≤ B) is the i-th
bucket; ba

i and bb
i are the minimum and maximum value

within bucketbi, respectively. In some cases, it’s possible
that ba

i = bb
i . Here, we analyze the bound of the relative

errorδ in each bucket. The maximum relative error inbi is

(a) Normal Buckets Order

(b) Inverted Buckets Order

Figure 4. Buckets Orders of Approximate V-
optimal Histogram and IH

Algorithm 3 updateIH(xn)
1: increase bucket numberB by 1;
2: j ← B;
3: create a new bucket and putxn into it;
4: for i = B − 1 to 1do
5: addxn to bothba

i andbb
i ;

6: if bb
i ≤ (1 + δ)ba

j then
7: bb

j ← bb
i ;

8: add width ofbi to width of bj ;
9: deletebi;

10: decrease bucket numberB by 1;
11: end if
12: decreasej by 1;
13: end for

δ = bb
i−ba

i

ba
i

. In our approach, each bucket should maintain

a pairba
i , bb

i and the number of values in it, i.e., its width.
It is known that the buckets are disjoint and containx′1..x

′
n.

Therefore,ba
1 = x′1 andbb

B = x′n, andbb
i ≤ (1 + δ)ba

i is al-
ways tenable in the process of formation. The construction
of IH is described in Algorithm 3.

The only input parameter of Algorithm 3 isxi, and
it has no output. When a new valuexn comes, all the
O(log n+log R

log(1+δ)) buckets are updated, as illustrated by state-
ments from Line 4 to 13. First, Line 3 creates a new bucket
for xn and puts the bucket last. Then, Line 5 updates the
maximum and minimum values of all the buckets (from
the newly created one to the oldest one) by addingxn into
them. In the process of updating, from Line 6 to 11, the
algorithm merges two consecutive bucketsbi andbj when
bb
i ≤ (1 + δ)ba

j , with bb
j = bb

i . Then, the maximum relative
error in each bucket of IH can be bounded and the space and
time cost are kept low. So, we have the following theorem.

Theorem 2 Algorithm 3 can construct an IH with
O(log n+log R

log(1+δ)) space inO(n(log n+log R)
log(1+δ)) time, and the rel-

ative error in each bucket is at mostδ.

As mentioned previously, ComputeAGG(wi) is invoked
to retrieveF (wi) from IH with false positive guaranteed or
false negative guaranteed when needed. The relative error
of its return value is bounded byδ. The precision of the ap-
proximate aggregate computation can be improved by con-
sidering the values within a bucket to be equidistant. To
guarantee false positive or false negative detection,maxD
and minD need to be maintained within each bucket.
maxD is the maximum distance between two consecutive
points within the bucket;minD is the minimum distance
between two consecutive points within the bucket. Pro-
vided that the real value ofwi is within bucketbj , the false
positive aggregate value returned by ComputeAGG(wi) is
min(bb

j , b
a
j +maxD(i−Σi−1

k=1Wid(bk)−1)), and the false
negative aggregate value returned by ComputeAGG(wi) is
ba
j + minD(i− Σi−1

k=1Wid(bk)− 1).
Up to now, it has been shown that IH can be used to mon-

itor distributive aggregates. Here, the monitoring task with
algebraic aggregate, say,variance, will be discussed. The
variance in aw-length window is1

w

∑w
i=1(xi−µ)2, where

µ = 1
w

∑w
i=1 xi. It can be transformed to1w

∑w
i=1 x2

i −µ2.
As we know,

∑w
i=1 xi can be obtained from IH. With a new

variableyi andyi = x2
i ,

∑w
i=1 x2

i can also be computed by
using IH with guaranteed error. Consequently, for monitor-
ing variance on wi, we need two histograms. One is for
computing

∑w
i=1 xi, the other is for computing

∑w
i=1 x2

i .
Both of them are bounded by maximum relative errorδ.

4.2 Error Bound Analysis

This section provides a theoretical analysis for the final
results of aggregate monitoring, and presents some analysis
on the resulting error for using IH.

Supposew1 is a monitored window with a threshold
T (w1). The process of answering aggregate monitoring
query on windoww1 is to detect whetherF (w1) is larger
than or equal toT (wi) or not. The probability of false alarm
with our method can be evaluated asP (Err) = 1 − (1 −
errMS)(1−errFA)(1−errIH), whereerrMS , errFA and
errIH are the error probabilities of missorting, fractal ap-
proximation and estimated value of IH, respectively. They
are independent one another.errMS anderrFA have been
discussed in section 4. Since the accurate monotonic search
space can always be maintained, we could haveerrMS = 0.
Thus,P (Err) = errFA + errIH − errFAerrIH , where
errFA is bounded by the deviation of a given threshold to
the expected value of aggregate resultF (wi) on windowwi.
That is to say,errFA = P (x ≥ λ), wherex ∼ Norm(0, 1)
andλ = T (wi)−E(F (wi))

D(F (wi))
.

With the false positive or false negative oriented ap-
proaches, the error bounderrIH for aggregate monitoring
query answering could be analyzed as follows.

Assuming thatx1 = F (w1) and the estimated value of
F (w1) with IH is x′1. With the maximum relative error

bounded byδ, F (w1) can be estimated by using IH to be
in [(1− δ)F (w1), (1 + δ)F (w1)]. For false positive aggre-
gate monitoring, the error probability is

errIH = p · x1(1 + δ)− T (w1)
x1δ

(3)

The error probability of false negative oriented approach is

errIH = (1− p) · T (w1)− x1(1− δ)
x1δ

(4)

Notice that the parameterp measures the occurrence of
burst in a data stream. Smallerp implies that more bursts
occur in the data stream. Accordingly, the false positive
method is suitable for monitoring fluctuant data stream,
while the false negative method is suitable for relatively dor-
mant data streams.

SupposeR(T (wi)) is a set of real results of aggregate
monitoring query, which could be obtained accurately with
thresholdT (wi) on windowwi over the streamx, and we
do not consider the errorerrFA induced by fractal ap-
proximation, forerrFA and errIH are independent each
other. Similarly, supposeFP (T (wi)) is a set of results of
aggregate monitoring query, which are computed approx-
imately by using our false positive oriented method with
thresholdT (wi) on the window of the same length. The
false positive method can provide a(1 + ε)-approximation
(ε ∈ (0, 1)) aggregate monitoring query processing. It
means that given a thresholdT (wi), the number of query
results detected by the false positive method withT (wi) are
at most1+ε times of the query results detected by the accu-
rate method withT (wi). Such a guarantee can be stated as,
‖R(T (wi))‖ ≤ ‖FP (T (wi))‖ ≤ (1 + ε)‖R(T (wi))‖. If
we setT (w1)

x1
= 1 + ε. The equation (3) can be transformed

to errIH = p
1+δ−T (w1)

x1
δ = p δ−ε

δ .

Lemma 1 Givenε, whenδ > ε the false positive method
can provide a(1 + ε)-approximation aggregate monitoring
query processing with at most the false alarm probability
p δ−ε

δ .

Lemma 2 Givenε, whenδ ≤ ε the false positive method
can provide a(1 + ε)-approximation aggregate monitoring
querying processing with no false alarm.

Theorem 3 Given ε, λ and δ, the error probability of
the proposed method for answering aggregate monitoring
query on windowwi can be bounded byP (x ≥ λ) +
max(p δ−ε

δ , 0)− P (x ≥ λ) ·max(p δ−ε
δ , 0) with false pos-

itive oriented IH, wherex ∼ Norm(0, 1).
The similar conclusions can be achieved for the false

negative oriented method.

5. Performance Evaluation

The algorithms proposed in this paper are implemented
with Microsoft Visual C++ Version 6.0. All experiments

are conducted on a Windows 2000 platform with 2.4GHz
CPU and 512MB main memory. The algorithms are run
with a variety of data sets. Due to the limitation of space,
only the results for two representative data sets are reported
here. The two data sets are:

• Network Traffic (Real): The data set BC-Oct89Ext4,
called D1 here, is a network traffic tracing data set ob-
tained from the Internet Traffic Archive [1].

• Network Traffic (Synthetic): This synthetic data set is
for testing the scalability of our method. It is gener-
ated by setting the burst arrival of a data stream with
a pareto[9] distribution, as used in simulating network
traffic where packets are sent according to ON OFF
periods. The density function of pareto distribution is
P (x) = aba

xa+1 , whereb ≥ x anda is the shape pa-
rameter. The expected burst count,E(x), is ab

a−1 . The
tuple arrival rateλ1 is driven by an exponential distri-
bution, and the intervalλ2 between signals is also gen-
erated with exponential distribution. In this data set,
the expected valueE(λ1) = 400tuples/s, E(λ2) =
500tuples, a = 1.5, b = 1. The size of this time series
data set isn = 100, 000, 000s. The whole data set is
called D2 here.

In the experiments, two accuracy metrics are used, recall
and precision. Recall is the ratio of true alarms raised to the
total true alarms which should be raised. Precision is the
ratio of true alarms raised to the total alarms raised.

To set the threshold forF (wi) on i-length window, we
compute movingF (wi) over some training data. The train-
ing data is the foremost10% part of each data set. It forms
another time series data set, calledy. The absolute thresh-
olds are set to beT (wi) = µy + λσy, whereµy andσy are
the mean and standard deviation, respectively. The thresh-
old can be tuned by varying the prefactorλ of standard de-
viation. The length of windows are 4, 8, ...,4 ∗ NW time
units, whereNW is the number of windows.NW varies
from 50 to 1000. For no latency, the time unit is one data
point in the data sets.

5.1. Experimental results

We evaluate the precision and the recall of our aggre-
gate monitoring method. It is supposed thatF (wi) is com-
puted false positively by IH, andF is the distributive ag-
gregatesum. The experiments are conducted on both the
aforementioned two data sets. First, the relationship be-
tween accuracy and maximum relative error of IH is stud-
ied. In this experiment, we set number of monitored win-
dowsNW = 100 and prefactorλ = 7. It can be seen from
Fig.5 that under all the setting ofδ the precision and recall
of our method are at least99%. With the decreasing of rela-
tive error, IH can provide better approximation. Therefore,

δ δ

(a) On D1(Real) (b) On D2(Synthetic)

Figure 5. Precision and recall on varying max-
imum relative error δ of IH, with NW = 100
and λ = 7

λ λ

(a) On D1(Real) (b) On D2(Synthetic)

Figure 6. Precision and recall on varying pref-
actor λ, with NW = 100 and δ = 0.01

our method can give highly accurate answers for aggregate
monitoring queries based on IH over data streams.

Second, the relationship between accuracy and threshold
of aggregation is studied. In this experiment, we set number
of monitored windowsNW = 100 and maximum relative
error δ = 0.01 of IH. It can be seen from Fig.6.(a) and
Fig.6.(b) that under any setting ofλ the precision and recall
of our method are always above99%. With the increasing
of λ, our method can guarantee better accuracy, for fractal
approximation errorerrFA is decreasing.

Third, the relationship between accuracy and number of
monitored windows is studied. In this experiment, we set
λ = 7 andδ = 0.01. It can be seen from Fig.7 that with
NW increasing, the precision and recall of our method are
still above99%. The accuracy are getting better and bet-
ter with the increasing ofNW . That is because the av-
erage size of monitored windows is getting larger with the
increasing ofNW . The fractal approximation is more accu-
rate on large time scales. So, the errorerrFA is decreasing
with the increasing ofNW . It can be concluded that our
method can monitor large amounts of windows with high
accuracy over data streams.

Now, we evaluate the precision and recall when apply-
ing the proposed method in algebraic aggregatevariance.
Because of the limitation of space, only a part of results are
presented here. As shown by the first experiment, the accu-
racy of monitoringvariance is also very high when based
on IH. The settings areNW = 100 andλ = 7. It can be

(a) On D1(Real) (b) On D2(Synthetic)

Figure 7. Precision and recall on varying num-
ber of windows, with λ = 7 and δ = 0.01

δ

(a) varyingδ on D1 (b) varying NW on D2

Figure 8. Precision and recall on monitoring
algebraic aggregate variance

seen from Fig.8.(a) that the precision and recall are always
above99% under any setting ofδ. The second experiment
is conducted with the settingNW = 100 andδ = 0.01. It
could be observed from Fig.8.(b) that the increase ofλ can
reduce the fractal approximation error correspondingly. So,
the accuracy of monitoringvariance is getting better. In
the third experiment, the settings areλ = 7 andδ = 0.01.
The accuracy are getting better with the increase ofNW ,
as shown in Fig.8.(b). It can be concluded again that our
method can monitor large amounts of windows over data
stream with high accuracy; moreover, both the distributive
and algebraic aggregates can be monitored using the pro-
posed method.

Here, some experiments are designed to compare our
method with the most recently appeared workStardust[7]
in the aspects of space and time overhead. Although the
Stardustcan monitor aggregate exactly, while our method
just do it approximately, our method need only very little
memory and time to answer aggregate monitoring queries
if a very small and acceptable error, say0.1%, is allowed,
which is general in real applications. In comparison with
the accurate method, our method could run more than tens
of times fast, and it makes sense in real-time monitoring.
Thanks to the generous help from the author of [7], we
got the original code package ofStardust. Then, it makes
our comprehensive comparison withStardustpossible. Be-
causeStardustis written in JAVA, for the sake of fairness,
all our algorithms are re-implemented in JAVA. Neverthe-
less, all parameters setting is kept the same as introduced
hereinbefore. That is to say, we set basic window length

(a) Space comparing On D1 (b) Time comparing On D1

Figure 9. Space and Time cost comparing
with Stardust.

W = 1, smallest monitored window lengthK = 4, and the
range of the number of monitored windows is varying in
{50, 100, 200, 400, 600, 800, 1000} for Stardust. The other
setting,F is sum, λ = 7, andδ = 0.01. A special setting
for Stardust is the box capacityc = 2.

From Fig.9.(a), it could be seen that the proposed method
is space efficient. The space cost of the method is the same
as that of IH, which is only depends on the stream length
but bears no relationship with the number of monitored
windows. However, Stardust has to maintain all the mon-
itored data points and associated index structure at the same
time. It can be seen that the space saved by IH is getting
larger and larger asNW and stream length increase. Thus,
the proposed method is more adaptable to monitor multi-
granularity windows over data streams, compared with pre-
vious ones. Also, it is time efficient. This is shown in
Fig.9.(b). With search space enlarging, the processing time
saved by using monotonic search space is getting larger.

6 Discussion and Conclusions

We present a novel method for monitoring aggregates
with multi-granularity windows over a data stream. Fractal
analysis is employed to transform the original data stream
to its intermediate form. It is because the application of
fractal techniques that we can not only process algebraic
aggregates but also build a monotonic search space, with
which the access to the synopsis is dramatically optimized.
Inverted histogram is adopted as the core synopsis for the
monitoring tasks. It expends limited storage space and com-
putation cost for providing enough accurate monitoring re-
sult. Both theoretical and empirical result show the accu-
racy and efficiency of the proposed method.

The future research could be focused on the following
three points. First, the proposed method could be extended
to automatically determine the most appropriate windows
to be monitored. Second, the method could be generalized,
so that it can handle not only the absolute thresholds but
the relative ones. The last but not the least, some extension
could be done to this method, the goal is to make it pos-
sible to process more complicated queries, such as iceberg
queries.

Acknowledgement
The authors would like to thank Dr. Ahmet Bulut for pro-

viding the code of Stardust. This work is partially supported
by the NSFC under grant No.60503034, 60496325, and
60496327 and Shanghai Rising-Star Program under grant
No.04QMX1404.

References

[1] Internet traffic archive. http://ita.ee.lbl.gov/.
[2] A. Arasu and J. Widom. Resource sharing in continuous

sliding-window aggregates. InProc. of VLDB, 2004.
[3] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan.

Maintaining variance and k-medians over data stream win-
dows. InProc. of ACM PODS, 2003.

[4] M. Barnsley. Fractals Everywhere. Academic Press, New
York, 1988.

[5] S. Ben-David, J. Gehrke, and D. Kifer. Detecting change in
data streams. InProc. of VLDB, 2004.

[6] P. Borgnat, P. Flandrin, and P. O. Amblard. Stochastic
discrete scale invariance.IEEE Signal Processing Letters,
9(6):181 – 184, June 2002.

[7] A. Bulut and A. K. Singh. A unified framework for moni-
toring data streams in real time. InProc. of ICDE, 2005.

[8] G. Cormode and S. Muthukrishnan. What’s new: Finding
significant differences in network data streams. InProc. of
INFOCOM, 2004.

[9] M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed
probability distributions in the world wide web.A practi-
cal guide to heavy tails: STATISTICAL TECHNIQUES AND
APPLICATIONS, pages 3–26, 1998.

[10] S. Guha, N. Koudas, and K. Shim. Datastreams and his-
tograms. InProc. of STOC, 2001.

[11] J. C. Hart. Fractal image compression and recurrent iterated
function systems.IEEE Computer Graphics and Applica-
tions, 16(4):25–33, July 1996.

[12] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamically
maintaining frequent items over a data stream. InProc. of
CIKM, 2003.

[13] J. Kleinberg. Bursty and hierarchical structure in streams.
In Proc. of SIGKDD, 2002.

[14] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-
based change detection: Methods, evaluation, and applica-
tions. InProc. of IMC, 2003.

[15] B. B. Mandlebrot.The fractal geometry of nature. Freeman,
New York, 1982.

[16] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. InProc. of VLDB, 2002.

[17] D. S. Mazel and M. H. Hayes. Using iterated function sys-
tems to model discrete sequences.IEEE Transactions on
Signal Processing, 40(7):1724–1734, July 1992.

[18] X. Wu and D. Barbara. Using fractals to compress real data
sets: Is it feasible? InProc. of SIGKDD, 2003.

[19] J. X. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or
false negative: Mining frequent itemsets from high speed
transactional data streams. InProc. of VLDB, 2004.

[20] A. Zhou, S. Qin, and W. Qian. Adaptively detecting aggre-
gation bursts in data streams. InProc. of DASFAA, 2005.

[21] Y. Zhu and D. Shasha. Efficient elastic burst detection in
data streams. InProc. of SIGKDD, 2003.

