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Abstract

We introduce a new domain-independent framework for
formulating and efficiently evaluating similarity queries
over historical data, where given a history as a sequence
of timestamped observations and the pair-wise similarity
of observations, we want to find similar histories. For in-
stance, given a database of customer transactions and a
time period, we can find customers with similar purchas-
ing behaviors over this period. Our work is different from
the work on retrieving similar time series; it addresses the
general problem in which a history cannot be modeled as
a time series, hence the relevant conventional approaches
are not applicable. We derive a similarity measure for his-
tories, based on an aggregation of the similarities between
the observations of the two histories, and propose efficient
algorithms for finding an optimal alignment between two
histories. Given the non-metric nature of our measure, we
develop some upper bounds and an algorithm that makes
use of those bounds to prune histories that are guaranteed
not to be in the answer set. Our experimental results on
real and synthetic data confirm the effectiveness and effi-
ciency of our approach. For instance, when the minimum
length of a match is provided, our algorithm achieves up to
an order of magnitude speed-up over alternative methods.

1 Introduction

Traditional databases store a single, often recent, snap-
shot of a modeled real world. With recent developments in
the areas of data warehousing and data mining, there has
been an increasing interest in querying multiple snapshots
of data, often stored in temporal databases [22, 24], semi-
structured document collections [8, 7, 9], and OLAP appli-
cations [15]. The focus has been mainly on detecting and
representing changes in order to provide a better support

for selection and projection queries over multiple versions
of data. Support for similarity queries on histories enables
various forms of analysis on time evolving data. There has
been an increasing interest in efficiently retrieving similar
histories where a history is described as a time series [1, 18].
However, there are many real-life scenarios in which the
history cannot be modeled as a time series. The Internet
Archive [12], for instance, stores a snapshot of the Web ap-
proximately every six months. An interesting query over
this collection is: find Web pages with change histories sim-
ilar to the change history of a given page. Naturally it is
quite possible to find Web pages that are similar in content
at one or more points in time but have different change his-
tories. It is also possible to find rather dissimilar Web pages
with similar change histories; this can happen for two rela-
tively static pages, perhaps maintained by the same author-
ity, where small fractions of both pages change similarly,
but the two pages are otherwise different.

1.1 Motivating Examples

Example 1. In a hospital, routine observations are made
about patients. These observations can be made by doctors
or nurses and may include general symptoms such as “high
fever,” “rash,” “high blood cholesterol,” “bleeding,” the
medications used, responses to the medications, and the
medical advice given. If each sign, symptom, or medication
is assigned a symbol, then an observation simply becomes
a set of symbols, and the medical history of a patient can be
described as a sequence of sets. The example in Table 1.1
shows this scenario for three histories over a period of 4
days. An interesting query is “find medical histories similar
to h2.” Suppose the query returns the medical histories h1
and h3. We expect to find some common patterns between
similar histories so the next interesting query can be “in
what respect are histories h2 and h1 similar?” For day 1,
the symbol b is observed in both h1 and h2. There is no
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Table 1. An example showing three histories
over a period of three days

h1 h2 h3
Day 1 {a, b} {b, c, d} {b, c, d}
Day 2 {c, d} {f, g} {a}
Day 3 {f, g} {g, h, i} {i}
Day 4 {h, i, j} {h, k} {g, h, i}

common symbol for day 2, but the two histories also share
a symbol for days 3 and 4. We can find a larger overlap
between the two histories if we compare days 2, 3 and 4
of h1 respectively with days 1, 2, and 3 of h2 where the
common pattern will be 〈{c, d}, {f, g}, {h, i}〉. Similarly,
the common pattern with the largest overlap between h2
and h3 is 〈{b, c, d}, {g, h, i}〉. We might be also interested
in a common pattern that covers at least three days of h2
and h3 (i.e. 〈{b, c, d}, {i}, {h}〉).

Example 2. In retail, customer transactions are often
recorded in a data warehouse for further querying and anal-
ysis. The purchase history of a customer, in particular,
may show changes of the needs and the preferences over
time. To provide personal recommendations to customers,
we may want to find customers that have a purchase history
similar to a given customer. Another interesting query is an
all-pair query, which can be used to cluster customers based
on their purchase history. Each cluster might be further an-
alyzed in order to find patterns specific to each group.

1.2 Problem Statement and Our Contributions

The problem to be addressed in this paper is to formal-
ize the notion of a similarity search over historical market
basket data, where each history is encoded as a sequence
of timestamped observations, and to develop efficient algo-
rithms for evaluating our queries. Our contributions are as
follows:

• We introduce a measure of similarity which general-
izes the idea of an edit distance to histories and which
is useful in many practical settings (including those re-
ported in our introduction and experiments).

• We develop a notion of an optimal alignment between
two histories and an efficient dynamic programming
algorithm that finds the score of an optimal alignment
of any given length.

• Given the length and the score of an optimal alignment
for two histories, our enumeration algorithm efficiently
finds a set of common signatures that can give rise to
such an optimal alignment. These signatures show the

common patterns that are observed in the same order
in two histories, hence generalizing the concept of the
longest common subsequence to histories.

• To efficiently evaluate our similarity queries over large
collections of histories, we develop a few upper bounds
that help in our pruning of non-qualifying histories. In
particular, one of our upper bounds targets the cases
in which only a small fraction of items from the set
of all possible items appear in each observation; such
cases are common in many datasets that we have been
experimenting with.

• We have conducted extensive experiments to evaluate
both the effectiveness of our similarity measure and the
efficiency of our algorithms using both real and syn-
thetic data.

The rest of the paper is organized as follows. In Sec-
tion 2 we present some preliminary definitions and nota-
tions. In Section 3, we present our similarity model for
histories. Section 4 presents our approach to process sim-
ilarity queries over large collections of histories. Perfor-
mance evaluation and experimental results are reported in
Section 5. Related work is surveyed in Section 6, followed
by conclusions and directions for future work in Section 7.

2 Background

In this section, we introduce our notation and provide
the background for the rest of the paper.

Definition 1 (Observation) Let I = {t1, . . . , tn} be a set
of items. An observation is a set of pairs (ti, wi) such that
ti ∈ I is an item and wi, a real number, is the weight of the
item in the observation. Given an ordering of the items in
I , an observation can be represented as a vector:

[w1, w2, . . . , wn]T .

We assume that the weight of an item which is not in the
observation is zero. An observation x may be associated
with a timestamp in which case we use ts(x) to refer to
this timestamp. The similarity between two observations x
and y can be quantified using a similarity function, denoted
by σ(x, y), which can be, for instance, the cosine mea-
sure [19], or the Jaccard coefficient, or its extensions [23].

Definition 2 (History) A history is a chronologically-
ordered sequence of observations denoted as:

X = 〈x1, x2, . . . , xm〉
such that ts(xi) ≤ ts(xj) iff i < j. The length of the
history, denoted by |X|, is the number of observations in
the history.
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Alternatively, if we are interested in changes rather than
the content of observations, we may consider the history of
changes, instead of contents. For a Web page, an observa-
tion can be either the content or the updates to a previous
version and a timestamp can be the time the page is crawled
or the changes are observed. For a customer, an observation
can be the set of items purchased within a transaction and
the weight of an item may indicate the importance of the
item (e.g. quantity, price, profit) to the transaction.

Since a history is modeled as a sequence of observations,
alignment techniques can be used to measure the similarity
between two histories. An alignment is a way to line up
subsequences of two histories where each observation of a
history is matched with either an observation in the other
history or a gap.

Definition 3 (Alignment) An alignment of two histories is
a sequence of the following edit operations:

• (α→ ε) denotes the deletion of observation α,

• (ε→ β) denotes the insertion of observation β, and

• (α→ β) denotes the matching of α with β

where α is an observation in one history, β is an observation
in the other history and ε denotes a null observation. An
alignment may be assigned a score and this score may be
used to compare two alignments.

Definition 4 (Alignment Score) Let σ(α → β) denote the
score of matching two observations, with the constraint that
at most one observation can be null. The score of an align-
ment is defined as an aggregate score of the matches in the
alignment.

If the aggregation function is fixed to sum, which is com-
monly used to compare strings [11], the alignment score of
an alignment 〈α1 → β1, . . . , αr → βr〉 is defined as:

r∑
i=1

σ(αi → βi) (1)

Next, we discuss the limitations of existing solutions for
aligning two histories and our proposed solutions to avoid
these limitations.

3 Optimal Alignments of Histories

In general, it is possible to find multiple alignments be-
tween two histories, but we are often interested in an align-
ment with some desired properties. For instance, we may
want to find an alignment with the highest score or the
longest possible alignment. Such properties of an alignment
may be specified in a query in the form of some conditions
on the length and/or the score of an alignment.

3.1 Limitations of the Existing Solutions

A related problem is string alignment which has been ex-
tensively studied in bioinformatics [20], approximate string
matching, speech processing, etc. The Smith-Waterman
(SW) algorithm [21] is commonly used to find an align-
ment with the highest score. This algorithm, when applied
to two histories of lengths m and n, can find an optimal
alignment in O(mn) time using a dynamic programming
approach, assuming that two observations can be compared
in constant time. However, there are two problems when
the SW algorithm is applied to histories. First, it may not
be realistic to assume that two observations can be com-
pared in constant time, in particular when the observations
are long or the similarity function σ is not trivial. The
number of possible observations is also typically huge, and
it is not an option to pre-compute the pair-wise similarity
between all observations. Second, we may not be inter-
ested in an alignment with the highest score. Instead, we
might be interested in an alignment of a specific length with
the highest score or the longest alignment(s) with a score
greater than a threshold. In both cases, the desired align-
ment is not necessarily an extension of an alignment found
by the SW algorithm. Consider, for instance, the histories
h2 and h3 in Table 1.1. Given σ as the fraction of items
common to two observations, an alignment that maximizes
the score in Equation 1 and can be found by the SW algo-
rithm is 〈{b, c, d} → {b, c, d}, {g, h, i} → {g, h, i}〉. How-
ever, if we are interested in an optimal alignment of length
three, i.e. 〈{b, c, d} → {b, c, d}, {g, h, i} → {i}, {h, k} →
{g, h, i}〉, the result of the SW algorithm cannot be ex-
tended to find this alignment.

Sequence alignment has been an active research in bioin-
formatics and there are a number of improvements over the
SW algorithm. FASTA [17] and BLAST [3], in particu-
lar, rely on the so-called hit-and-extend heuristic to speed
up the search for an optimal alignment. The idea here is
to construct a deterministic finite automaton (DFA) for one
sequence and run this automaton on the other sequence to
find every substring of a fixed length which is similar to a
substring in the former sequence. Unfortunately, the size of
the DFA grows exponentially with the size of the alphabet.
For historical market basket data, for instance, the alphabet
is the power set of the set of items. Even when the num-
ber of items is as small as 1, 000, the alphabet size is �
1.07e+301, compared with 4 and 20 for DNA and protein
sequences respectively. Therefore, this approach cannot be
used to speed up the dynamic programming scheme in our
problem. For the same reason, approaches that use a suffix
tree to speed up the search (e.g. [6]) are not also applicable.
Next, we discuss our algorithm for finding the score of an
optimal alignment of a given length l, here referred to as
l-alignment.

3



3.2 Finding the Score of an Optimal l-Alignment

Given two histories, we want to find the score of an opti-
mal alignment of a given length l. We can relate the problem
of finding the score of an optimal l-alignment to the prob-
lem of finding the score of a shorter optimal alignment if
the alignment scoring function satisfies the principle of op-
timality [4]. Let h1 and h2 be two histories and denote an
optimal alignment of the two histories with A∗. An align-
ment scoring function f(·) satisfies the principle of optimal-
ity if for any pair of non-overlapping prefixes and suffixes
of h1 and h2:

f(A∗) ≥ f(A∗
p ⊕A∗

s) (2)

where A∗
p is an optimal alignment between the two pre-

fixes, A∗
s is an optimal alignment between the two suffixes

and ⊕ denotes the concatenation operator. A large class of
functions, including Eq. 1, satisfy the principle of optimal-
ity; a detailed discussion of these functions can be found
in [4]. For the sake of presentation clarity, from now on
we will use Eq. 1 as our scoring function, but the algo-
rithm discussed here should be applicable to any function
that satisfies the principle of optimality. Next, we propose a
divide-and-conquer approach to find the score of an optimal
l-alignment.

Lemma 1 Let Gl
i,j be the score of an optimal l-alignment

of two suffixes 〈xi, . . . , xm〉 and 〈yj , . . . , yn〉:

Gl
i,j = max

⎧⎪⎪⎨
⎪⎪⎩

σ(xi → ε) + Gl
i+1,j

σ(ε→ yj) + Gl
i,j+1

σ(xi → yj) + Gl−1
i+1,j+1

(3)

where 1 ≤ l ≤ min(m,n), i ≤ m− l+1 and j ≤ n− l+1.
Gl

i,j is zero for i > m− l + 1 or j > n− l + 1.

Proof: One of the following constructions gives the score
of an optimal l-alignment of 〈xi, . . . , xm〉 and 〈yj , . . . , yn〉:
• Leave xi unmatched and find the score of an optimal

l-alignment of 〈xi+1, . . . , xm〉 and 〈yj , . . . , yn〉. The
score of this alignment is Gl

i+1,j plus the penalty of
leaving xi unmatched, i.e. σ(xi → ε). A similar argu-
ment applies when yj is left unmatched and we omit
here for brevity.

• Match xi with yj and find the score of an optimal (l−
1)-alignment of 〈xi+1, . . . , xm〉 and 〈yj+1, . . . , yn〉.
The score of this alignment is Gl−1

i+1,j+1 plus the score
of matching xi with yj .

Note that Gl
1,1 gives the score of an optimal alignment of

length l, which can be found using a dynamic program-
ming algorithm in O(mnl) time and O(mn) space. This

approach, however, will become expensive for long histo-
ries. Therefore, we identify some special cases in which
these time and space complexities can be reduced.

There are often scenarios in which the two observations
cannot be matched if they are recorded far apart. For in-
stance, when aligning the histories of two customers, it may
not be reasonable to match purchase transactions that are
recorded more than a month apart. Therefore, to preserve
a temporal locality among matched observations, we may
enforce a constraint similar to the Sakoe-Chiba band used
to restrict the warping window in dynamic time warping [5]:

Definition 5 (r-neighborhood constraint) An alignment
satisfies the r-neighborhood constraint if for all matches
(xi → yj) in the alignment, yj is in r-neighborhood of xi,
i.e. |ts(xi)− ts(yj)| ≤ r.

When r = 0, only observations that are recorded at the same
time could be considered for a match. Increasing r adds
some flexibility in matching observations that are recorded
within a time frame.

Our first improvement takes advantage of an r-
neighborhood constraint, when it is present. Let X and
Y be two histories of lengths m and n respectively and let
m ≥ n (the role of X and Y can be interchanged other-
wise). For r > 0, let m2r denote the maximum number
of observations in X that are recorded in a time frame of
length 2r. Since each observation of Y can be matched to
one of at most m2r observations in X , the time complex-
ity and the space requirement of computing Gl

1,1 reduce to
O(m2rnl) and O(m2rn), respectively. The improvement is
significant when X is long and m2r 	 m.

Our next improvement is useful if a minimum thresh-
old is specified for the score of matches of an alignment.
The idea is to remove observations that cannot participate
in an alignment before running a dynamic programming al-
gorithm. More specifically, given two histories X and Y , X
is transformed into possibly a shorter history by removing
all observations xi in X such that σ(xi → yj) is less than
the given threshold for all observations yj in Y ; a similar
transformation can be applied to Y . The transformations
can be applied to X and Y in O(mn) time.

3.3 Finding Common Patterns of Two Histories

Further to fining a degree of similarity between two his-
tories, it is interesting to find out in what respect two his-
tories are similar. More specifically, we want to identify
the common patterns that arise in two histories and may
give rise to a similarity. Finding such patterns for histo-
ries is related to the problem of finding the longest common
subsequence (LCS) for strings. However, the idea of only
matching identical observations in LCS is too restrictive;
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we can hardly find any identical observation in two histo-
ries. Therefore, we generalize LCS by relaxing the condi-
tion that the matched observations must be identical. We do
this in two phases: first, we find an alignment of a desired
length and score; this is discussed in the next subsection.
Then, we can identify the common items in the matched
observations and construct a common pattern, referred to
here as a common signature.

In our setting, an observation is a set. Therefore, given an
alignment, a common signature can be a sequence of sets,
each being the intersection of two observations matched in
the alignment. The common signature for histories is a gen-
eralization of the LCS for strings. However, unlike the LCS,
we are interested in finding optimal alignments that contain
a desired number of matches since the alignment score de-
pends on the number of matches in the alignment.

3.4 Enumerating Optimal Alignments

Given two histories X and Y , we want to enumerate all
optimal l-alignments whose score is greater than a desired
threshold s.

Lemma 2 Let X and Y be two histories with m and n
observations each. For any 1 ≤ r ≤ l, if 〈xi1 →
yj1 , . . . , xir

→ yjr
, . . . , xil

→ yjl
〉 is an optimal l-

alignment of X and Y , then

• 〈xi1 → yj1 , . . . , xir−1 → yjr−1〉 is an optimal
(r − 1)-alignment of two prefixes of X and Y , i.e.
〈x1, . . . , xir−1〉 and 〈y1, . . . , yjr−1〉.

• 〈xir+1 → yjr+1 , . . . , xil
→ yjl

〉 is an optimal
(l − r)-alignment of two suffixes of X and Y , i.e.
〈xir+1, . . . , xm〉 and 〈yjr+1, . . . , yn〉.

This lemma is a direct result of the principal of optimal-
ity. To find an optimal l-alignment of two histories, we can
first locate a match (xir

→ yjr
) as a pivot. An optimal

alignment then can be formed by concatenating the optimal
(r − 1)-alignment of the prefixes, the pivot, and the opti-
mal (l− r)-alignment of the suffixes. Since Lemma 2 holds
for any 1 ≤ r ≤ l, we assume r = 1, i.e. the pivot is the
first match of an alignment to be constructed. To construct
an l-alignment of score equal or greater than s, a match
xi → yj can be a pivot if σ(xi → yj) + Gl

i+1,j+1 ≥ s.
Algorithm 1 conducts a branch-and-bound search to enu-
merate those alignments. In each step, the algorithm iden-
tifies possible pivots, provided that Gl

i,j is computed ahead
using Eq. 3, and effectively prunes all alignments of suf-
fixes 〈xp+1, . . . , xm〉 and 〈yq+1, . . . , yn〉 that cannot con-
tribute to form a desired alignment. Algorithm 1 can be
parametrized to find the following alignments:

1. All alignments of length l1: call Enum(a, b, l1, 0, 〈〉).

Algorithm 1: Enumerate

Input : X = 〈x1, . . . , xm〉, Y = 〈y1, . . . , yn〉, l, s, A
Output: Enumerates desired alignments.

l: length of desired alignment

s: minimum score of desired alignment

A: empty (〈 〉) or 〈xi1 → yj1 , . . . , xir → yjr 〉
Procedure Enum( X , Y , l, s, A )
if l = 0 then

if s ≤ 0 then print A ;
return ;

if A = 〈 〉 then
R1 ← {1, . . . , m− l + 1} ;
R2 ← {1, . . . , n− l + 1} ;

else
R1 ← {ir + 1, . . . , m− l + 1} ;
R2 ← {jr + 1, . . . , n− l + 1} ;

foreach (p,q) ∈ R1 ×R2 do
if (xp → yq) is a pivot then

A′ = concat(A, xp → yq) ;
Enum( X , Y , l − 1, s− σ(xp → yq) , A′ );

2. k alignments of length at least l1 with the highest
scores: call Algorithm 1 with the top k scores of Gl

i,j

such that l ≥ l1, i ≤ m− l + 1 and j ≤ n− l + 1.

3. k longest alignments with a score more than a thresh-
old: call Algorithm 1 for k pairs of length and score,
where the length varies from min(m,n) to 1 and the
score is the desired threshold.

Modifying Algorithm 1 to accommodate a gap constraint
is straightforward and we omit it here for brevity. In the
next section, we show how to process similarity queries ef-
ficiently over a large database of histories.

4 Queries over Large Database of Histories

Consider the problem of efficiently evaluating similar-
ity queries over a large collection of histories. A query is
stated as a history with two parameters r and l. A history
in the database is a candidate if it can form an alignment
with the query history such that the alignment satisfies the
r-neighborhood constraint and contains at least l matches.
Ideally, we want to construct an index on histories, but this
require having a metric distance function between histories.
In an attempt to form a distance function from our align-
ment score in Eq. 1, we first define the similarity of two
histories as a normalized score of their optimal alignments.
Let A denote an optimal l-alignment of two histories X and
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Y ,

siml(X,Y ) =
f(A)

min(|X|, |Y |) .

Clearly 0 ≤ siml(X,Y ) ≤ 1, and a distance function be-
tween X and Y can be defined as

dissl(X,Y ) = 1− siml(X,Y ).

Proposition 1 dissl(X,Y ) does not satisfy the triangle in-
equality.

Proof: As a counter example, let h1 = 〈{a}, {b}, {x}〉,
h2 = 〈{b}, {x}〉, and h3 = 〈{b}, {c}, {x}〉. If we measure
the similarity of observations using the Jaccard coefficient,
and for l = 2:

dissl(h1, h3) > dissl(h1, h2) + dissl(h2, h3)

As a consequence of this proposition, any spatial access
method for indexing histories may lose some qualifying
candidates from the result set of queries. A straightforward
alternative is to do a sequential scanning; but this is not ef-
ficient due to the large number of I/Os and the complexity
of comparing two histories. A B+tree index on the length
can filter those histories of length less than l which cannot
be candidates. This will save a fraction of I/Os and com-
putations; however, the similarity is still computed for non-
qualifying histories. To prune some of those similarity com-
putations, we propose two upper bounds for siml(X,Y ).
The first upper bound is quick to compute but requires read-
ing the histories. The second upper bound can be evaluated
efficiently for a subset of the database using an index struc-
ture. In what follows, we assume that X is the query history
and Y is a data history in the database, with m and n obser-
vations each.

4.1 A General Upper Bound

For each observation yi of Y , let xi∗ be an observation
with the highest similarity to yi among all observations of
X that are recorded in the r-neighborhood of yi. In case no
such observation exists, we assume that xi∗ is a null obser-
vation and σ(xi∗ → yi) = 0. Let Sl be a set that contains
l observations of Y , such that for every pair of observations
yi and yj , if yi ∈ Sl and yj /∈ Sl:

σ(xi∗ → yi) ≥ σ(xj∗ → yj)

Lemma 3 For two histories X and Y , usiml(X,Y ) de-
fined as

usiml(X,Y ) =

∑
yi∈Sl

σ(xi∗ → yi)
min(m,n)

(4)

provides an upper bound for siml(X,Y ).

Informally, usiml(X,Y ) can be seen as the score of an op-
timal relaxed l-alignment. Each observation in X could be
potentially matched with more than one observation of Y .
The order of observations in individual histories may not
be preserved completely in the alignment, i.e. there could
be two observations xi1 and xi2 in X that are respectively
matched with yj2 and yj1 of Y .
Compared to siml(X,Y ), usiml(X,Y ) can be computed
in less time. Let m2r be the maximum number of observa-
tions recorded for X in a time interval of length 2r. The
upper bound can be computed in O(n(m2r + log l) + l)
time, compared to O(m2rnl) which is required to compute
the actual similarity. The upper bound can be used to prune
non-qualifying histories before a similarity computation.

In the case of a k nearest neighbor (k-NN) query X , a
data history Y can be filtered out safely when the upper
bound usiml(X,Y ) is less than the score of the k-th best
candidate found so far. Otherwise, the similarity of the his-
tory and the query is computed and the list of k best candi-
dates is updated if the similarity is more than the score of
the k-th best candidate. After processing all histories, the
result of the query is the list of k best candidates.

In the case of a range query X , a data history Y can be
filtered out safely if its upper bound usiml(X,Y ) is less
than the threshold of the range query. Otherwise, the simi-
larity of the history and the query is computed and the data
history is included in the result of the query if the similarity
is greater than the threshold.

For both queries, every history must be read before we
can decide if a history can be pruned. In fact, the upper
bound is computed even for histories that have no observa-
tion similar to any observation of the query. An interest-
ing question is if it is possible to filter some histories prior
to computing the upper bound. We believe that an exact
answer to this question depends on functions σ and f . In
the next subsection, we provide an affirmative answer to
this question when σ is either the cosine measure or the ex-
tended Jaccard coefficient.

4.2 An Index-based Upper Bound for Sparse Ob-
servations

Our proposed upper bound in this section is aimed at
sparse observations which are common, for instance, in
market basket data where a transaction typically consists
of a few items (out of the set of all possible items). Sup-
pose the items are ordered, and an observation is described
as a vector where the ith element of the vector gives the
weight of item i; let’s use the notation �x to denote an obser-
vation. We propose an upper bound for siml(·) that takes
advantage of the sparsity of the observations to reduce the
number of histories that need to be scanned or compared to
the query. Unlike usiml(·), this new upper bound can be ef-
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ficiently computed using an inverted index on observations.
In many real-life applications where only a small subset of
the histories in the database are similar to a query, our ap-
proach turns out to be more efficient than a sequential scan
(as shown in our experiments).

Lemma 4 Let IX denote the set of every item with a non-
zero weight in at least one observation of X . σ∗(�xi∗ → �yi),
defined as

∑
t∈IX

�yi[t] ·maxj

{
�xj [t]

∣∣∣ |ts(�yi)− ts(�xj)| ≤ r
}

overestimates σ(�xi∗ → �yi), where �yi[t] and �xj [t] denote the
weights of an item t in �yi and �xj , respectively.

Proof: Appears in the appendix.

Lemma 5 For two histories X and Y , if |Y | ≥ l,

Usim(X,Y ) =
∑|Y |

i=1 σ∗(�xi∗ → �yi)
min(m,n)

(5)

provides an upper bound for siml(X,Y ).

Proof: While usiml(X,Y ) considers the score of l best
matches for the optimal relaxed l-alignment, Usim(X,Y )
considers |Y | ≥ l best matches. Furthermore, for
each match, an upper bound of the score is considered.
Therefore, Usim(X,Y ) ≥ usiml(X,Y ) ≥ siml(X,Y ).

Intuitively, this upper bound is the score of an opti-
mal relaxed alignment that matches each observation �yi

with the best observation that can be constructed from all
observations of X in an r-neighborhood of �yi. Indeed,
Usim(X,Y ) can be computed efficiently using an inverted
index that maps each item t in the domain to a list of
(hid, ts, w) triplets. Each such triplet indicates that for a
history hid, item t has a non-zero weight w in an observa-
tion recorded at timestamp ts. For each query X , the set
of items IX is extracted and Usim(X,Y ) is initially set
to zero for all histories Y in the database. For each item
t in IX , the list associated with t is scanned from the in-
verted index. For each triplet (Y, ts(�yi), �yi[t]) in this list,
the maximum weight of t in any observation of the query in
the r-neighborhood of �yi is identified and Usim(X,Y ) is
updated accordingly.

To use this upper bound for a range query, it is neces-
sary to retrieve a history Y only if Usim(X,Y ) is greater
than the threshold of the range query where X is a query
history. Similarly, for a k-NN query, it is necessary to re-
trieve a history Y only if Usim(X,Y ) is greater than the
similarity of the query and the k-th best candidate found so
far. In both cases, Usim(X,Y ) can be computed using an
inverted index on observations only. Both queries can also
use usiml to further prune some histories not already fil-
tered by Usim, since Usim overestimates usiml and there
can be still false positives.

5 Experimental Evaluation

In this section, we present the result of an experimen-
tal study of our approach on both real and synthetic data
sets. We also examine some of the solutions developed for
time series data and show why they are not applicable to
the general problem discussed in this paper. We run experi-
ments to show both the effectiveness of our scheme and the
efficiency of our approach to process queries. The results
confirm that our similarity measure is effective to retrieve
histories with similar patterns and that our algorithms are
efficient and scalable with the number of histories and the
number of items. The experiments are performed on a ma-
chine with a single AMD/XP2600 CPU running Red Hat
Linux, and all algorithms are implemented in C.

5.1 Datasets

We used three data sets in our experiments: a real dataset
(the DBLP collection) and two synthetic datasets. A syn-
thetic dataset was generated using a simplified model for
changes between consecutive observations of a history and
another dataset was generated using a modified version of
the data generator for sequential market basket data [2].

In the DBLP collection [10], each journal or conference
is treated as a sequence of observations. Each observation
contains the set of terms in the table of contents of a jour-
nal issue or a conference proceeding (except author names).
Terms are assigned weights using the tf.idf scheme. The
timestamp of each observation is the year that the journal
is published or the conference is held. The history for the
VLDB conference, for instance, has 29 observations(as of
March 20, 2004). From this dataset, we could extract 2, 784
histories which we will use to provide anecdotal examples
of the naturalness of our similarity measure.

Synth1: is a synthetic dataset that contains histories of
documents. We model each document as a set of terms,
which in turn, can be represented using a bit string of length
n with a one in position i indicating that term i is present
and a zero indicating the absence of the corresponding term
in the document. We further assume that the number of
changes between two consecutive versions of a document
(i.e. the insertion of new terms or the removal of some ex-
isting terms) follows a Poisson distribution [16], in that the
numbers of changes in non-overlapping intervals are inde-
pendent for all intervals. To make the next version of a doc-
ument predictable from the current version, we assume that
changes follow the gray code order, although other orders
could also be considered. In other words, if the number of
changes between version vi and vi+1 is k, the bit string rep-
resentation for vi+1 corresponds to the k-th bit string that
follows vi in gray code order. The dataset contains 20, 000
histories, n = 8, and the first observation of each history is
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selected uniformly at random from the first 16 gray codes.
For each history, the parameter for the Poisson distribution
that generates the number of changes is selected uniformly
from [1, 10]. The number of observations in each history
is uniformly distributed in the range [32, 64]. We use this
dataset to evaluate the effectiveness of our similarity mea-
sure in retrieving histories that are generated using nearly
the same parameter.

Synth2: This dataset simulates a collection of customer
purchase histories. We used the synthetic data generator in-
troduced in [2], but also assigned a hypothetical timestamp
to each transaction and a weight to each item in a transac-
tion. This dataset contains 8, 000 histories. The number of
distinct items is 1, 000. The average number of observations
in each history and the average number of items in each
observation is 10, which is the default setting used in data
mining experiments. For each history, the timestamp for the
first transaction, as well as the difference in timestamps for
two consecutive transactions, is a uniformly distributed dis-
crete random number in [1, 5]. The weight for each item in
a transaction is a uniformly distributed random number in
[0, 1]. Each observation is normalized so have a unit norm,
so that we could use the upper bound we proposed in Sec-
tion 4.2. We use this dataset to measure the performance
and scalability of our algorithms.

5.2 Limitation of Techniques Developed for Time
series

The large number of methods developed for indexing
time series databases motivated us to model our problem
as an equivalent similarity search problem in the time se-
ries domain. We treat each history as a trajectory in
d-dimensional space, where d is the number of distinct
items. The number of items we encountered in our ex-
periments (98, 451 for DBLP collection) was far beyond
the number of dimensions that could be handled efficiently
by methods developed to index multidimensional time se-
ries (e.g. [26, 25, 13]). Even considering dimensional-
ity reduction cannot mitigate the problem completely. The
Johnson-Lindenstrauss lemma [14] states that for any set of
n points, there is a mapping from d-dimensional space to
k-dimensional space such that the distances between points
are not distorted by more than a factor of (1± ε) with prob-
ability O(n−2) provided that k ≥ 4(ε2/2 − ε3/3)−1ln(n).
We used this lemma since it provides a bound for the
amount of distortion in terms of distance. From the DBLP
dataset, we removed frequent terms and stopwords. We
applied the Johnson-Lindenstrauss lemma and reduced the
number of dimensions from 42, 173 to 515. The amount
of distortion introduced in the dissimilarity of observations
was close to 50%. Moreover, the dimensionality of the
data was still too high for the algorithms that index multi-

Table 2. Mean and Stand. Dev. of MD(λq, n)
for 1-NN and 10-NN queries

MD(λq, 1) MD(λq, 10)
Mean Stand. Dev. Mean Stand. Dev.

siml 0.30 0.49 0.30 0.29
UnionAll 1.81 1.69 1.90 1.14
LAST 3.05 2.36 3.12 1.03

dimensional time series.

5.3 Effectiveness of siml

In this experiment, we wanted to investigate how siml

compared to other alternatives in retrieving similar histo-
ries. We generated 2, 000 queries using the same mecha-
nism used to generate Synth1. Using a k-NN query with
k = 10, we retrieved 3 ranked lists, based on siml and
two alternative similarity measures: LAST , which measured
the similarity between the last observations of two histories,
and UnionAll , which measured the similarity between two
observations each formed by performing a union of all ob-
servations in the corresponding history. We used the Jac-
card coefficient to measure the similarity between observa-
tions and l, the desired length of an alignment, is selected
randomly from [32, 64]. Let λq be the parameter used to
generate the query and λri

be the parameter used to gener-
ate the history that is ranked i-th in the answer set. Since λq

and λri
are responsible for the change pattern of the corre-

sponding histories, the difference between λq and λri
must

be small for two histories that have a similar change pattern.
Therefore, we evaluated the mean deviation of λri

from λq,
defined as

MD(λq, n) =
∑n

i=1 |λri
− λq|

n

to assess the effectiveness of the similarity measures.
Table 2 shows the average and standard deviation of
MD(λq, n) for the best and top 10 results. According to the
results, λri

is expected to be closer to λq for siml. Since
LAST only considers the last observation of each history,
there is a high chance that two histories with different ini-
tial observations and generating parameters have exactly the
same last observations. The major drawback of UnionAll is
that the union of observations may include all the terms,
which makes a history pretty much similar to any other his-
tory independent of the generating parameter. Moreover,
LAST is not sensitive to the order of observations, i.e. all
the permutations of a given history will be treated as if they
are identical.

We conducted some experiments to examine the effec-
tiveness of our similarity measure on real data (the DBLP
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Table 3. Result of 10-NN query for the VLDB,
the KDD, and the AAAI conferences

VLDB KDD AAAI
VLDB KDD AAAI
ICDE PKDD IJCAI
SIGMOD DaWak ECAI
DEXA ICML AAAI/IAAI
IDEAS CIKM FLAIRS
IEEE TKDE FLAIRS PRICAI
DASFAA IEEE TKDE Artificial Intelligence
CIKM ICTAI ICTAI
EDBT ICDE IEA/AIE
DEXA Workshop ISMIS GECCO

collection). We posed publications, either conferences or
journals, as queries and retrieved a ranked list of similar
publications as reported by our similarity measure. Simi-
lar publications share one or several topics of interest that
change in time. Also, new approaches and ideas are mostly
introduced and developed in similar publications. There-
fore it is likely that similar change trends are observed in
publications that belong to the same or related communi-
ties. Table 3 lists the result of 10-NN query for the VLDB,
the KDD, and the AAAI conferences. The publications are
focused on topics related to databases for the VLDB, top-
ics related to data mining for the KDD, and topics related
to artificial intelligence for the AAAI.

5.4 Pruning Power and Efficiency

In this section, we evaluate the performance of process-
ing similarity queries over Synth2 dataset. Each query is a
history which is selected randomly from the dataset. The
parameters for each query (either k-NN or range query) are
r and l, which specify an r-neighborhood constraint and the
minimum number of desired matches in an alignment be-
tween a query and a data history, respectively. We compared
a naive scan with three pruning schemes. Lp uses a B+tree
and evaluates similarity for histories that have more than l
observations. LUBp uses usiml defined in Eq 4, in addition
to the number of observations, to prune unnecessary com-
putations. LINDp uses Usim, as defined in Eq 5, and the
length of histories to read and evaluate the similarity only
for a fraction of the histories of the dataset. Since our pro-
posed approaches guaranty the returning of all qualifying
histories (our upper bounds overestimate siml), we mea-
sure only pruning power (the fraction of dataset for which
actual similarity is evaluated) and query response time. In
each case, we report the average of preforming each experi-
ment for 200 queries. For brevity, we report only the results
when the cosine measure was used to quantify the similarity
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Figure 1. Pruning power (a) query processing
time (b) for k-NN query.

of observations, but we obtained very similar results when
we also used the the Jaccard measure instead.

In the first experiment, we selected r and l randomly
from [1, 4] and [1, 20], respectively. Figure 1(a) compares
the pruning power for k-NN queries when k varies from
1 (i.e. nearest neighbor) to 1, 024 (which returns approxi-
mately 12% of the dataset). Using the length of the history
results in pruning about 45% of the histories safely. Us-
ing the proposed upper bounds in addition to length results
in a remarkable pruning. The pruning decreases as k in-
creases since the similarity needs to be evaluated for a larger
fraction of the database. The pruning reduces the response
time for k-NN queries (Figure 1(b)). Note that although we
observe a better pruning for LUBp when k < 64, LINDp
has a better response time showing up to an order of mag-
nitude speed-up over the naive scan for nearest-neighbor
queries. This speedup occurs because LINDp avoids read-
ing some of the non-qualifying histories. However, the
speedup comes with the extra cost of performing random
disk access, which dominates the cost of performing a se-
quential scan by LUBp when k > 82.

Figure 2(a) compares the pruning power for a range
query when the threshold of the query is increased from
0.005 to 0.2. Note that LUBp shows a better pruning power
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Figure 2. Pruning power (a) query processing
time (b) for range query.

compared to LINDp since LINDp uses an over-estimation
of the upper bound used by LUBp. However, LINDp reads
a smaller fraction of the database, and shows a better re-
sponse time as the number of histories to be scanned de-
creases (Figure 2(b)), making it more efficient than LUBp
when the threshold is greater than 0.05.

We next investigate how the parameters r and l could af-
fect the performance of our proposed methods. We report
only the results for nearest-neighbor queries; however, we
obtained very similar results for k-NN and ranges queries.
First we varied r from 0 to 16 and for each r, we selected
l randomly from [1, 20] and picked (randomly) a history
that had more than l observations as a query. According to
Figure 3(a), increasing r increases response time for both
LUBp and LINDp. However, LINDp slows down more
quickly. Note that both methods overestimate siml using
the score of a relaxed alignment. The chance of matching
an observation of a data history with more than one obser-
vation of a query increases with r, making the upper bound
less tight and consequently increasing the response time for
both approaches. However, LINDp is more influenced since
Usim(X,Y ) ≥ usiml(X,Y ).

Next we changed l from 1 to 20 and selected r ran-
domly from [0, 4]. For each l, we randomly selected a his-
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Figure 3. Time per query varying (a) the size of
the r-neighborhood constraint (b) the desired
minimum number of matches in an alignment.

tory (from the database) with at least l observations as a
query. Figure 3(b) compares the running time of a nearest
neighbor query using LUBp and LINDp for pruning. The
upper bounds employed in both methods are close to ac-
tual similarity when l is small. However, the number of
histories with more than l observations decreases as l in-
creases, which helps LUBp to reduce the number of sequen-
tial disk accesses and redundant computations. For LINDp,
the number of random disk accesses (due to using an in-
dex) does not change, but the time required for computing
similarity increases, which justifies the observed trend.

5.5 Scalability Test

To compare the scalability of LUBp and LINDp com-
pared to a naive scan, we increased the number of histories
in the database from 8, 000 to 64, 000 and measured the av-
erage response time for a nearest neighbor query. Both r
and l were selected randomly from ranges [1, 4] and [1, 20]
respectively. As shown in Figure 4(a), both LUBp and
LINDp scale up linearly, and the performance gap between
these methods and the naive scan increases with the num-
ber of histories in the database. In another experiment, we
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Figure 4. Time per query varying (a) the num-
ber of histories (b) the number of distinct
items in database.

kept the number of histories fixed to 8, 000 but varied the
number of items from 256 to 4, 096. Figure 4(b) depicts the
average response time of a nearest neighbor query over this
collection. Although LUBp is not significantly affected by
this increase, we observe a response time for LINDp that
decreases when the number of items increases from 256 to
1, 024 and remains unaffected after that. This is mainly be-
cause the dataset becomes sparse as the number of items
increases. For instance, the probability that two observa-
tions, each with 10 random items, have a non-zero similar-
ity is 1 −∏10

i=1
247−i
256 ≈ 0.4422 for 256 items and 0.1329

for 1, 024 items; LINDp takes advantage of this sparsity to
reduce the query response time.

6 Related Work

Related research includes the work on detecting, rep-
resenting, and querying changes. Chawathe et al. [7]
propose a framework to represent changes by annotating
the changed data using tags. A tag contains the type of
change, a timestamp, and a reference to the modified values.
The queries supported in this framework have the familiar
select-from-where syntax over the annotated-graph that rep-

resents historical semistructured data. Chien et al. [9] rep-
resent the history of an evolving XML document using an-
other XML document. Temporal and content-based queries
are supported on the versions or changes of XML docu-
ments. Our work differs from the aforementioned work in
that we focus on similarity queries on historical data, where
the query itself is a history.

Similarity-based sequence matching has been an ac-
tive research area in bioinformatics. There are sev-
eral algorithms for solving sequence alignment problems.
BLAST [3] and FASTA [17] are commonly used algorithms
that employ heuristics to speed up similarity search on bi-
ological sequences. These algorithms are applicable to do-
mains where the size of alphabet is small. Also, several al-
gorithms, e.g. [6] have been proposed that use suffix trees to
speedup the search. Constructing a suffix tree is not feasible
for sequences of large alphabets.

For sequences of events, Wang et al. [27] study the prob-
lem of retrieving sequences that match a query sequence in
terms of both the events and the timestamp of the events.
Unlike our work, only identical events could be matched.

The idea of the longest common subsequence (LCS) has
been used to measure the similarity between time series.
Agrawal et al.[1] model time series as a sequence of equal
length segments, and use the normalized length of the LCS
of the resulting sequences of segments to measure the sim-
ilarity. Vlachos et al.[25] use the normalized length of the
LCS of time series to measure the similarity of multidimen-
sional trajectories. In another work [26] they use the LCS of
the minimum bounding envelope of trajectories to filter out
a fraction of unnecessary LCS computations. Our work dif-
fers in that we measure the similarity when a history cannot
be modeled as a time series.

7 Conclusions and Future Work

We have introduced a new domain-independent frame-
work to both formulate and efficiently evaluate similarity
queries over historical data. Our work generalizes a few
concepts including the edit distance and the longest com-
mon subsequence to histories. This generalization is help-
ful; for instance, it enables us to find a common signa-
ture between histories based on their optimal alignments.
We have developed some upper bounds for our similarity
queries and one of our upper bounds has this interesting
property that it makes use of an index even though it is
not metric. Finding similar histories over order preserv-
ing data has many potential applications, of which we have
considered historical market basket data and multi-version
documents in our experiments. Our experiments on real
and synthetic data confirm the effectiveness of our proposed
scheme and the efficiency of our algorithms.

Many approaches to indexing time series use the GEM-
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INI framework proposed by Faloutsos et al. In this frame-
work, a high level representation of data (e.g. Minimum
Bounding Regions for time series) and a metric measure,
that underestimates the distances, are defined to prune the
search. We are investigating the feasibility of applying one
such framework to histories to possibly improve the perfor-
mance of our similarity queries. Developing a metric mea-
sure to compare histories can also be useful for a possible
clustering of the data.
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Appendix: Proof of Lemma 4

For two vectors �x and �y, the cosines measure and the
extended Jaccard coefficient are defined as:

scosine(�x, �y) =
�xT �y

‖�x‖2‖�y‖2
sJaccard(�x, �y) =

�xT �y

�xT �x + �yT �y − �xT �y

Where ‖�x‖2 denote the L2-norm of �x. For vectors �yi and
�xi∗ of unit norm:

sJaccard( �xi∗ , �yi) ≤ scosine( �xi∗ , �yi)

=
∑
t∈I

�xi∗ [t]�yi[t] (6)

For any observation �xi∗ :

�xi∗ [t] ≤ maxj

{
�xj [t]

∣∣∣ |ts(�yi)− ts(�xj)| ≤ r
}

(7)

Replacing �xi∗ [t] in Eq. 6 with the right hand side of Eq. 7
will establish the proof.
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