Making Designer Schemas with Colors

Nuwee Wiwatwattana H. V. Jagadish*
U of Michigan U of Michigan
nuwee @eecs.umich.edu jag@eecs.umich.edu

Abstract

XML schema design has two opposing goals: elimina-
tion of update anomalies requires that the schema be as
normalized as possible; yet higher query performance and
simpler query expression are often obtained through the
use of schemas that permit redundancy. In this paper, we
show that the recently proposed MCT data model, which ex-
tends XML by adding colors, can be used to address this di-
chotomy effectively. Specifically, we formalize the intuition
of anomaly avoidance in MCT using notions of node nor-
mal and edge normal forms, and the goal of efficient query
processing using notions of association recoverability and
direct recoverability. We develop algorithms for transform-
ing design specifications given as ER diagrams into MCT
schemas that are in a node or edge normal form and satisfy
association or direct recoverability. Experimental results
using a wide variety of ER diagrams validate the benefits of
our design methodology.

1 Motivation

As XML has evolved from a document markup language
to a widely-used format for exchange of structured and
semistructured data, managing large amounts of XML data
has become increasingly important. Since schema gives
meaning to data, and determines the validity of queries and
updates against the data, recently XML schema design is-
sues have been investigated [2, 3, 15]. Fundamentally, XML
schema design has two opposing goals: elimination of up-
date anomalies requires that the schema be as normalized as
possible; yet simpler query specification and higher query
performance may both usually be obtained through the use
of schemas that permit redundancy. '

Consider, for example, the ER diagram of the TPC-W

*Supported in part by NSF under Grants No. 1IS-0219513 and IIS-
0438909.

'Ideally, schema design should be completely divorced from physical
implementation and hence should be separated from performance con-
cerns. Realistically, physical implementation mimics the given schema,
but seeks higher performance only through adding indices, materialized
views, and other such auxiliary structures. So the choice of schema has a
huge impact on performance.

Laks V. S. Lakshmanan
U of British Columbia
laks@cs.ubc.ca

Divesh Srivastava
AT&T Labs—Research
divesh @research.att.com

customer .

Figure 1. ER diagram of TPC-W benchmark. Attributes
suppressed for brevity.

benchmark in Figure 1, where attributes are suppressed but
can be readily imagined. There is a straightforward way
of transforming such an ER diagram to an XML schema
(see Figure 2), where entity types from the ER diagram
(see Figure 1) are made children of the schema root, rela-
tionship types are made children of one of their participat-
ing entity types, and all remaining associations are captured
through id/idrefs attribute values (indicated in the figure us-
ing directed edges). In such a normalized XML schema,
update anomalies are avoided at the expense of poor query
performance. Queries like “Q1: list the orders placed by
customers having addresses in Japan” require an XQuery
expression involving multiple (id/idrefs) value-based joins,
and can be expensive to evaluate. One might argue that
this schema design is needlessly shallow, as it fails to lever-
age the nested (tree) structure permitted by XML. Does the
tradeoff between opposing design goals still exist when we
exploit XML’s nesting?

To appreciate this issue, consider, the XML schema of
Figure 3. In an XML database that conforms to this schema,
an order element would be nested under the customer
element who made the order, which would be nested under
the customer’s address element, which would be nested
under the corresponding count ry element. Given the 1:n
relationships inherent between relevant entity types in the

root

customer _,

author

uu\h()riidrcf\"-\v

write

country_idréf™ 4
occur_in

S idref-

customer

make

1
order

order_line

Figure 3. Anomaly-free XML schema from TPC-W.

ER diagram of Figure 1, no data would be duplicated in
this XML database, and hence update anomalies would be
avoided. Further, our previous query Q1 has both a simple
expression:?

/country|[@name = ’Japan’]//order

and an efficient evaluation strategy using structural joins,
which have been shown to be much more efficient than
value-based joins [1, 7].

The single-tree structure of XML, however, imposes
many limitations. For example, in the XML schema of
Figure 3, the billing association between order and
address is encoded as attribute values (indicated using a
directed edge in the figure) in corresponding elements. This
makes many other queries more cumbersome to express and
expensive to evaluate. Consider “Q2: list the orders placed
with billing addresses in Japan™:

for $o in //order,

$a in /country[@name=’Japan’]//address
where $0/billing/Q@bill_address_idref=$a/@id
return $o

A different XML schema design to the one in Fig-
ure 3, also without update anomalies, could have nested an
order under the address based on the billing address

2We use XPath and XQuery for stating XML queries.

order_line
1

item
in credit_card_transaction 1

1 write
1 occur_in ! h
country author

Figure 4. Deep XML schema from TPC-W with data re-
dundancy. The XML tree will be obtained by traversing this
graph from the root, and permitting multiple occurrences of
elements.

address

association. This would have simplified the expression of
Q2, but at the expense of Q1.

It is, of course, feasible to design XML schemas that al-
low easy expression, using XPath and XQuery, of a large
variety of queries, as well as their efficient evaluation, but
this is at the expense of extreme data redundancy. Figure 4
is an example of such a schema: many queries are cap-
tured using XPath, but there can be a great deal of redun-
dancy in the representation of various types of address,
country, item, and author elements. These exam-
ples suggest the desirable goal of a schema that is beneficial
for both updates and queries might be elusive for the XML
model. It is clear that the single-tree structure of XML does
not suffice for meeting this goal. But what about XML-like
models, such as the recently proposed MCT (multi-colored
trees) logical model for XML databases [13], which extends
the XML model by supporting multiple tree structures (each
in a different color) overlaid on the same set of XML data
elements? In this paper, we investigate the following foun-
dational question for XML/MCT databases:

Given an ER diagram, is it possible to design
MCT schemas where (i) update anomalies can
be avoided, and (ii) all associations explicitly en-
coded in the ER diagram can be expressed using
structural (XPath-like) expressions?

We show, surprisingly, that this is indeed possible, and
we propose a novel schema design methodology for achiev-
ing the twin goals of update anomaly avoidance and ease
of query expression plus evaluation efficiency, making use
of the MCT data model. Our starting point is the design
specification, expressed in the form of an ER diagram. In
particular, for the TPC-W ER diagram of Figure 1, Figure 5
shows an MCT schema that achieves this goal. We make
the following contributions in this paper:

e We formally define the types of associations between

(BLUE) (RED)

1
customer
g order
make 1

order_line
associate \ billing O shipping
credit%ard_transaction occur_in

1

occur in

customer
make
order_line
shipping

credit_card |transaction

(PURPLE) (GREEN) (ORANGE)

country country

in in

address address

has

1 9 1
customer
* order * P <
Z make O 2SSO iate .
o order N
associate billing 2%
%

credit_card_transaction o

1 ?}>‘° billing _shipping
&
2

(o)
.
%

occur_in

Figure 5. An MCT Schema for the ER Graph of the TPC-W schema in Figure 1. Nodes/edges shown repeated per color for clarity,

but are represented/stored once.

data items encoded in an ER diagram that need to be ex-
pressed using structural (XPath-like) expressions.

e We define a number of desirable properties for the target
logical MCT schema to satisfy:

— association recoverability: no explicit value-based
comparisons should be needed to recover any associa-
tions between data items encoded in the ER diagram,
and direct recoverability: an “aggressive” version of
association recoverability, which says that certain bi-
nary associations need to be captured by a single XPath
axis step; these formalize the goal of expression ease
and efficient evaluation of queries.

— node normalization: no entity or relationship should
be present more than once in any colored tree in an
MCT/XML database, and edge normalization: no as-
sociation should be present in more than one color;
these formalize the goal of update anomaly-avoidance.

— instance independence: the number of colors should
be independent of the database instance, and color fru-
gality: this reduces the cost/overhead that comes with
maintaining multiple colors.

e We develop algorithms for translating an ER diagram into
an MCT schema satisfying the various desirable proper-
ties. Not all combinations of properties are achievable
at once. We formally show which combinations are fea-
sible, and show that our algorithms achieve those goals.

e Experimental results using a wide variety of ER diagrams
validate the benefits of our design methodology.

2 Preliminaries
2.1 ER Diagram and ER Graph

The entity-relationship (ER) model, first introduced by
Chen [9], is widely used for conceptual modeling in

database design. Over time, many different flavors of ER
have emerged. For concreteness, the version we reference
in this paper is from Elmasri and Navathe [10].

Specifically, we consider simplified ER diagrams, that
contain only entity types, binary relationship types between
distinct entity or relationship types, and atomic attributes.
Arbitrary ER diagrams can be translated into such simpli-
fied ER diagrams by applying simple transformations [20].

For our translation purposes, we will find it convenient
to regard a simplified ER Diagram as an undirected graph,
called the ER graph, with one node corresponding to each
entity and each relationship type, and an edge between a
pair of nodes whenever they are adjacent in the ER dia-
gram. Node labels and edge labels in the ER graph carry
the desired semantic information from the ER diagram.

2.2 MCT: Data Model and Query Language

The multi-colored trees (MCT) logical data model [13]
is an evolutionary extension of the XML data model of [11],

and enhances it in two significant ways:
e Each data node has an additional property, referred to as

a color, and nodes can have one or more colors from a
finite set of colors.

e An MCT database consists of one or more colored trees

Ti, 1 < i < ¢, where ¢ is the number of colors.
Essentially, a single colored tree is just like an XML tree.

Allowing for multiple colored trees permits richer seman-
tic structure to be added over the individual nodes in the
database. In an MCT database, a node belongs to exactly
one rooted tree for each of its colors.

MCT databases can be naturally queried using exten-
sions of XPath [5] and XQuery [6]. In particular, each
axis step in a path expression needs to be augmented with
a color, identifying the colored tree in which the navigation
is desired. We refer to this as the multi-colored version of
XPath. This suffices for the purpose of this paper. For more
details, see [13].

country .
o= has.address.in
o B = make.order.orderline
customer item

Figure 6. An Example Association Graph.

2.3 MCT: Schema

Informally, a multi-colored XML schema is a set of
XML schemas, one for each color, along with possible
inter-color integrity constraints (ICICs). Formally, an MCT
schema is a tuple (N, Ey,. .., E.,C), where:

e N is a set of labeled nodes as in an XML schema,

e ¢ is the number of colors,

e cach F; is a set of edges that define an ordered labeled
graph on N, and

e (is aset of ICICs, where each ICIC is a tuple of k edges
of the form (e;,, €4, - - -, €5,), Where k < ¢ (the number
of colors), i, # iq, Whenever p # q, where each edge e;;
is between the same pair of nodes, say u,v € N, but in
distinct colors.

Intuitively, an ICIC (e;,, ..., e;,) says that in any valid
database instance either the edge between the nodes u and v
must be present in all colors 41, . . ., ¢, or it must be absent
in all colors. For example, in Figure 5, there is an edge be-
tween nodes order and shipping in each of the colors
blue, red, purple, and green. An ICIC on the correspond-
ing tuple of edges signifies that the association between an
order element and a corresponding shipping element
should either be reflected in all four colors or in none at
all. Otherwise, there would be an inconsistency between
the information encoded in these colored trees. In contrast,
there is just one edge between the nodes make and order,
which is present in blue. Accordingly, for this edge there is
no associated inter-color integrity constraint.

3 MCT: Desirable Properties, Problem
3.1 Associations, Association Recoverability

A key goal in good schema design is ease of query ex-
pression and efficiency of evaluation. But this raises the
question: which queries should be expressible easily and
evaluated efficiently? In this section, we make this precise,
based on the notions of associations, association recover-
ability, and direct recoverability.

Since we are interested in good MCT database schema
design, we need to start with an initial design specifica-
tion, for which we use the time-tested ER model. In the
ER model, a pair of entity or relationship types is said to be
associated, if there is a path between them in the ER graph.
More generally, an association is any connected sub-graph

of the transitive closure of the ER graph. Intuitively, an as-
sociation graph defines a semantically meaningful tuple of
entity/relationship types, with association graph edge labels
capturing the path traversed in the ER graph. For example,
Figure 6 shows an association graph from (the ER graph as-
sociated with) Figure 1. The edge (customer, country) is
labeled has.address. in, identifying the ER graph path
corresponding to this edge.

When translating an ER graph into an XML or MCT
schema, a crucial consideration is the cost to query for asso-
ciations present in the ER graph. In the XML/MCT model,
if associations between elements are captured via values
(i.e., id/idrefs), then recovering these associations will use
expensive value-based joins. On the other hand, if asso-
ciations are captured via structural links, then we can re-
cover them via structural joins, which have been shown to
be much more efficient [1, 7], and are also easier to express.

Thus, a key desirable property of a (XML or MCT)
schema 1is that every association between data items en-
coded in the ER graph should be expressible as structural
navigation using XPath, possibly extended with colors, as
in [13]; no value-based comparisons should be needed! We
refer to this property as association recoverability.

A major expressive (and computational) benefit of XPath
is the use of an ancestor-descendant structural relationship
without specification (or retrieval) of any intervening ele-
ments. To obtain the full benefit of exploiting XML struc-
ture to capture semantic associations, we propose an “ag-
gressive” version of association recoverability. We call di-
rect recoverability, the property that an association in the
ER diagram can be specified as a single parent-child or
ancestor-descendant axis step (in some single color) in the
multi-colored version of XPath [13]. Not every association
is eligible for direct recoverability. We define an eligible
association between node types v and v as one that is:

1. Binary — By its very definition, direct recoverability
is impossible for non-binary associations: they cannot be
expressed in a single XPath axis step.

2. 1:n — It is easy to observe that an m:n relationship
can only be directly recoverable if the schema permits ex-
plicit node redundancy, which would risk update anomalies.
Note that m:n relationships can arise in many ways, includ-
ing a single m:n path between v and v, or by a composition
of multiple 1:n paths between u and v.

3.2 Node and Edge Normal Forms

A second key goal in good schema design is avoidance
of update anomalies. In this section, we make this precise,
based on the notions of node and edge normal forms.

Intuitively, we avoid update anomalies in a single color
if no entity or relationship can be present more than once in
that color. In the absence of any (semantic) integrity con-
straints on the data instance, this requires that the schema

in that color be represented as a tree. The reason is that if
an element is shared by more than one parent element in
the schema in any one color, we cannot ensure that in the
instance the same node will not be represented more than
once in a color. If an MCT schema, confined to each of the
single colors present in it, is representable as a tree, then
the MCT schema is said to be in node normal form. Some-
times, we may have integrity constraints requiring certain
associations to be disjoint. E.g., suppose name is shared
by the parents author and publisher in a schema in
one color. If we have the integrity constraint that author
names and publisher names are disjoint, then even though
this schema is not a tree in one color, in any valid instance
that satisfies this integrity constraint, we are guaranteed to
have node normal form satisfied. We do not explore such in-
tegrity constraints further in this paper. Node normal form
guarantees that information in XML elements is not stored
redundantly.

Similarly, we avoid update anomalies across colors if no
edge in the ER graph (i.e., binary association) is present
in more than one color. If this is the case for all edges in
the ER graph, then the MCT schema is said to be in edge
normal form. If an edge appears in multiple colored MCT
trees, then an inter-color integrity constraint (ICIC) is re-
quired to manage this edge redundancy. An edge normal
MCT schema has an empty set of ICICs.

Note that the node and edge normal forms are indepen-
dent, in that being in one form does not imply being in the
other. For example, the MCT schema in Figure 5 is in node
normal form (no node is represented more than once in any
color) but not in edge normal form (some edges do appear
in multiple colors). Similarly, the XML schema in Figure 4
is in edge normal form (since it has only one color), but not
in node normal form (in fact, there is a lot of redundancy).

3.3 Problem Statement

We have introduced desirable properties for XML or
MCT schemas: association recoverability (AR), direct re-
coverability (DR), node normal form (NN), and edge nor-
mal form (EN), the first two related to the schema design
goal of ease of query expression and efficiency of evalua-
tion, and the last two to the avoidance of update anomalies.

In this paper, we characterize which combinations of
these desirable properties are achievable and under what
conditions, for both single color XML and multi-colored
MCT schemas. Further, we develop algorithms for trans-
lating ER graphs into MCT schemas with various feasi-
ble combinations of desirable properties, while reducing the
number of colors used.

In any implementation of MCT, there will be some cost
associated with each color. In our own implementation, this
cost is low, but non-zero. Therefore, color frugality is de-
sirable, while satisfying other properties.

4 Translation from ER to Single Color XML
4.1 Mapping Entity and Relationship Types

Recall that we consider simplified ER diagrams, which
have only entity types, binary relationship types, and atomic
attributes. In translating such an ER diagram to an XML
schema, it is natural to map ER entity and relationship types
to XML elements, and ER atomic attributes to XML at-
tributes.

To determine the structural relationships between the el-
ements, the main idea is to construct a schema by traversing
the ER graph, covering all nodes. We first preprocess the
ER graph and orient the directionality of edges incident on
relationship nodes, based on the cardinality of participation
of the entity nodes:?

e If an entity of type E can participate in multiple relation-
ships of type R, then the edge (E, R) is oriented from

node E to node R.

o If an entity of type E can participate in only one relation-
ship of type R, then the edge between E and R can go in
either direction.

Any valid instance of the XML schema generated is re-

quired to be a tree. The way edges are oriented above helps

us ensure that in an instance of the schema, each element
will have at most one parent. If an edge were oriented the
other way, a single element e of type E could have multiple

parent elements r of type R.

Our first observation is that within the framework of (sin-
gle color) XML, it is not always possible to achieve both
node normal form and association recoverability. As an ex-
ample, consider the TPC-W ER diagram in Figure 1, and
focus on the two entity types order and item with a
many-many relationship order_line. It is clear that, if
we design any XML schema that captures these associations
using structure, it is forced to represent either the order
nodes or the item nodes multiple times.

4.2 Mapping Constraints

We consider three main types of constraints in the ER
diagram. Key constraints are orthogonal to the translation.
They merely contribute to keys of the appropriate element
types in XML.

ER diagrams have cardinality constraints, which dictate
what is the min/max number of occurrences of an entity in
a relationship. XML schema also permits constraints that
require a min/max number of child elements of a given type
for a parent element of a given type. However, in the op-
posite direction, it has just one implicit “cardinality” con-
straint — every element other than the root must have one
parent element. To the extent possible, the XML schema

3Note that a higher-order relationship type treats lower-order relation-
ship types as its “entities”, so the above procedure suffices even in the
presence of higher-order relationship types in the ER graph.

cardinality constraint can be aligned with the cardinality
constraints specified in the ER diagram. However, there
may be mismatches, both in terms of too many and in terms
of too few cardinality constraints, given that they are sys-
tematic in XML and completely arbitrary in the ER dia-
gram.

ER diagrams also have participation constraints, which
dictate whether or not all entities must participate in rela-
tionships. If the ER diagram has a participation constraint
from a parent to a child in XML, this merely says that the
parent node has at least one child node of the specified type,
which is easily captured in XML schema using a minimum
cardinality constraint on (child) element occurrence. If such
a participation constraint does not exist, the parent node
may have no child, which is easy to capture.

If the ER diagram does not have a participation con-
straint between a node in XML and its parent, this means
that the node could occur without its parent. We must ex-
plicitly allow for this, expecting instances not just rooted at
A say, but also allowing instances rooted at B, which typi-
cally is a child of A. Manipulating such heterogeneous sets
of instances is precisely what XML systems do, so we do
not have any additional issues to resolve.

4.3 NN and AR

The following theorem gives necessary and sufficient
conditions for an ER graph to be translatable into a single
color XML schema while achieving the twin goals of node
normal form (NN) and association recoverability (AR).

Note that apart from key constraints, cardinality, and par-
ticipation constraints, no other constraints are assumed to be
available for the purpose of this result.

Theorem 4.1 (NN and AR for XML) : Ler G be an ar-
bitrary ER graph. Then G can be translated into an equiv-
alent single color XML schema satisfying both AR and NN
iff G satisfies the following conditions: (i) G is a forest;
(ii) G does not contain any many-many relationship types
or any k-ary relationship types, k > 2; and (iii) No entity
type in G is on the “many” side of more than one one-many
relationship type.

The key intuitions for the “only if” direction of the proof
are as follows. If G is not a forest, then some entity or
relationship type has multiple parents, and an instance can
be created that would either violate the requirement of the
XML database being a tree/forest (if we want to retain AR)
or be forced to represent some associations as values (if we
want to retain NN). If G contains a many-many relationship
then, as discussed previously, a similar choice manifests it-
self. Suppose G contains a 3-ary relationship type R be-
tween entity types Fy, F» and E3. Even if this is a 1:1:1
relationship type, it still poses a problem for a single color
XML schema. The issue is that, while R is one-one from

each of (Ey, E») into E3, (E2, E3) into E; and (E1, E3)
into Fs, the cardinality constraints from F; to Es, for ex-
ample, could still be many-many, reducing the problem to
the previous case. Finally, even when all relationship types
are binary and (at most) one-many, if some entity type is on
the many side of more than one one-many relationship, it
would need to have multiple parents (if we want to retain
AR), or at least one of the associations would have to be
represented using values (to preserve NN).

For the “if” direction of the proof, it is straightforward
to find an orientation of all of G’s edges in such a way
that all the one-many and one-one relationships are always
traversed correctly, i.e., from the “one” side to the “many”
side, thus achieving AR. Because of the implicit functional
dependency from the “many” side to the “one” side, no in-
stance of any node type will be redundantly represented in
a database instance, thus achieving NN.

The theorem shows that the class of ER graphs which can
be mapped to a single color XML schema while preserving
both AR and NN is rather limited. NN, without AR, can
be achieved by covering all nodes of the ER graph with a
forest of trees with no overlapping edges. Associations not
captured in structure would need to be modeled using ex-
plicit id/idref values. Note that edge normal form is not an
issue for a single color.

5 Translation from ER to Multi-Color MCT

A key result is that, unlike for single color XML, an
MCT schema can indeed concurrently satisfy the desirable
properties of NN and AR for arbitrary ER graphs. But not
all properties are simultaneously achievable. In particular,
there is a fundamental tension between edge normal form
(EN) and complete direct recoverability (DR).

5.1 Satisfying NN, EN and AR

Consider the TPC-W ER diagram of Figure 1. It is
easy to see that this cannot be translated to single color
XML, while preserving AR and NN. The reasons are many,
including the many-many relationship type order_line
between order and item, and the fact that entity type
order is on the many side of multiple one-many relation-
ship types, billing, shipping, make. However, it is
possible to “cover” this ER graph using multiple colored
trees in a database independent way, such that each colored
tree satisfies node normal form (NN). One such covering
(and resulting MCT schema) is shown in Figure 5, which
uses five colors. Since each edge in the ER graph is present
in at least one color, arbitrary association graphs can be tra-
versed using the multi-colored version of XPath. Not all
such coverings are in edge normal form (EN); in particular,
the MCT schema of Figure 5 is not. To obtain a covering
which is also in EN, care needs to be taken not to traverse
the same edge of the ER graph in multiple colors.

Algorithm MC (G)

1.

2.

If an entity of type E in G can participate in multiple relationships of type R, then the edge (E, R) is oriented from node E
to node R. Leave the remaining edges in G undirected. Mark all nodes unprocessed.

Choose an unprocessed node from a strongly connected component (SCC) of G with no incoming directed edges from other
SCCs, and apply a new color to it. If no such node exists, stop. The selected node is called the current start node, and the
color applied is called the current color. The set of current roots (of the colored forest under construction) is the singleton set
comprising the current start node.

Construct a tree of the current color rooted at the start node by performing a depth-first traversal, following colorable directed
edges in the correct (from the one side to the many side) direction, and choosing the orientation for colorable undirected edges
when traversed. All nodes and edges traversed have the current color applied (in addition to any colors they may already
have). An edge is said to be colorable, if it is not colored, and either (i) the node at the other end does not already have the
current color, or, (ii) if it has the current color, it is a current root but not the current start node. A node is marked processed
when it has no outgoing or undirected uncolored edges incident, and the edge is either directed or not incident on the current
start node.

Find another unprocessed node, if any, from an SCC of G with no incoming directed edges from other SCCs, and if there are
other incident edges at least one of them colorable. Call it the start node, add it to the set of current roots and repeat from

5. Repeat from step 2.

step 3. If a colorable edge is traversed to reach a current root node u, remove u from the set of current roots.

Figure 7. Algorithm MC.

If such a covering is done in a careless way, one can end
up with a huge number of colors, and pay the cost/overhead
of dealing with them. We now provide an algorithm, MC,
in Figure 7, that takes a simplified ER graph (as described
in Section 2.1), and produces a multi-colored MCT schema
that is normalized (both NN and EN) and is fully association
recoverable (AR).

Intuitively, Algorithm MC works by choosing as a start
node (in step 2) a candidate for a root of a new color (since
a color may create a forest, multiple roots are possible in
a color). It then traverses the ER graph (in step 3) look-
ing to add colorable edges in the correct (from the one side
to the many side) direction to the current colored tree, pos-
sibly orienting any one-one edges encountered. If no new
colorable edges can be added to the current tree, a new root
is picked (in step 4), if possible, in the same color. If this is
not possible, a root is picked in a different color (step 5). In
the presence of one-one edges (which are initially not ori-
ented), it is possible that a “root” of a color is encountered
during a traversal from a different “root” of the same color.
In this case (step 4), the trees are merged.

Since the input graph is finite, no edge is colored twice,
and a node is marked processed once all (outgoing and undi-
rected) edges incident on it are colored, the algorithm will
eventually terminate. When the algorithm terminates, it is
easy to establish that every edge has been colored. In each
color, we have a forest of trees, so it is an MCT schema.
Each entity/relationship type appears exactly once in the ER
Graph, and hence at most once in any color of the MCT
schema, so we have a node normal form. By construction,
each edge is colored exactly once, so we have edge normal
form. Every direct association in the ER diagram is cap-
tured as an edge in some color in the MCT schema, so we

have association recoverability. As a consequence, we have
the following result:

Theorem 5.1 (NN, EN, and AR for MCT) : Let G be a
simplified ER graph. Then Algorithm MC translates G into
an equivalent MCT schema satisfying NN, EN and AR.

5.2 Satisfying NN, AR, DR

The MCT schema produced by Algorithm MC satisfies
many desirable properties, but the resulting MCT schema
does not necessarily satisfy the aggressive version of AR,
namely, direct recoverability (DR). Recall that DR is the
ability to use a single ancestor-descendant axis step in a sin-
gle color to retrieve eligible associations.

As a toy example, consider an ER graph with seven
nodes F1,Ro, Es, R4, E5, Rg, E7, where Ry (resp., Ry,
Rg) is a one-many relationship type from entity type
E; to E3 (resp.,, from E5 to E3, and from FEj3 to
E;). On this ER graph, Algorithm MC would pro-
duce an MCT schema with two colors. There are
many choices of MCT schemas, depending on the
first start node that Algorithm MC chooses, two of
which are: (1) {{El, RZ, E3, RG) E7}, {E5, R4, E3}}, or
(11) {{El, Rg, E3}, {E5, R4, E3, R@, E7}} But no matter
which MCT schema is picked, the EN property guarantees
that some eligible binary association will not be directly re-
coverable: in case (i), this is (E5, E7), while in case (ii),
this is (E1, E7).

A desirable objective would be to identify MCT
schemas where every eligible association is directly re-
coverable, possibly at the expense of edge normal form,
and uses few colors. In the above toy example, such
an MCT schema does exist in two colors, namely,
{{El, RQ, E37 RG, E7}, {E5, R4, E3, RG, E7}} This can

be obtained by starting from an MCT schema produced by
Algorithm MC, and adding as many edges as possible to
each colored tree, thereby giving up the edge normal form.
This approach, which we refer to as MCMR (mini-
mal color, maximal recoverable), is a useful heuristic.
But it does not always provide complete direct recov-
erability. To illustrate this, consider a second toy ER
graph (also with seven nodes) F1, Rz, E3, R4, E5, Rg, Er,
where Ry (resp., Rg) is a one-many relationship type
from entity type E3 to E; (resp., Es to E;), and Ry
is a one-one relationship type between E3 and Es. In
this case, an MCT schema produced by Algorithm MC
has a single color tree, possibly rooted at E3 with two
branches {{Es, Rs, E1},{Es, R4, E5, R, E7}}. How-
ever, this MCT schema does not support direct recoverabil-
ity, in particular, of the eligible association (Es, Ey). It is
easy to verify that an MCT schema needs to have two colors
to support complete direct recoverability on this ER graph,
which cannot be obtained by any MCMR-style approach.
One way of obtaining an MCT schema with complete
direct recoverability is to directly leverage Algorithm MC.
Essentially, there are many different MCT schemas that can
be produced by Algorithm MC, depending on the choices of
start node and colorable edges chosen at each step. We use
Algorithm DUMC to denote the approach of taking the dis-
Jjoint union of these MCT schemas. By reasoning over the
structure of eligible associations in ER graphs, we can es-
tablish that the MCT schema produced by Algorithm DUMC
satisfies NN, AR and DR. However, the number of colors is
not necessarily minimized, among all such MCT schemas.

Theorem 5.2 (NN, AR, DR for MCT) : Let G be a sim-
plified ER graph. Then Algorithm DUMC translates G into
an equivalent MCT schema satisfying NN, AR, and DR.

6 Experimental Evaluation

We would like to understand how the techniques pre-
sented in this paper perform in practice. An immediate is-
sue we face with experimental evaluation is that there is no
standard benchmark through which to measure the quality
of database design. We adopted a two-pronged strategy: 4

1. ER Collection: We collected ER diagrams from
database textbooks, CASE tools examples, and online sites.
One of them is a real-world schema from the Database
Derby Contest [17]. For each diagram in this collection, we
generated multiple schemas, one for each strategy discussed
in this paper. To compare these schemas, we need a bench-
mark query set whose performance we can measure (except
for the Database Derby schema which came with a query
set). Since most ER diagram sources do not come with as-
sociated query workloads, these query dependent metrics

4Due to space constraints, interested readers are invited to our web sup-
plement [20] for details about ER diagrams and queries used.

are hard to obtain. To obtain a suggestion of what these may
be — we generated a query workload for each ER diagram,
based on emulating the XMark [16] set of queries through
identifying correspondences between schema elements. We
obtained the XMark update query workload from the Upda-
teX project at the University of Florida [19].

None of these ER diagrams come with associated data
sets. So we cannot actually load a data set and run the
queries defined above. Rather than manufacture synthetic
data sets for this purpose, we restrict our study to an anal-
ysis of complexity metrics such as numbers of value joins,
color crossings, groupings by value, and duplicate elimina-
tions. The expectation is that these expensive operations
predict the overall query performance.

We recognize that the nature of workload may be quite
different in various application contexts, and further that our
emulation is subjective. However, given the absence of an
available workload, we felt this was a better approach than
using a workload designed to our liking. We supplement
this extensive strategy with the other more intensive strategy
described next.

2. TPC-W: The TPC-W benchmark is well accepted,
and has a fairly complex schema. For this benchmark, we
have both a data set and a query workload, and so are able to
conduct more in-depth investigation. We derived an ER di-
agram (Figure 1) to describe the TPC-W schema, and auto-
matically generated multiple schemas from this ER diagram
following the techniques developed in this paper. We im-
plemented each of these on the native XML database TIM-
BER [12]. We present not just the absolute performance
numbers for the TPC-W queries, but also the query com-
plexity surrogates used in the ER diagram analysis. The
two subsections that follow describe experiments with each
of the above data sets in reverse order.

In each case, we compared several different schemas,
both single color and multi-colored.

DEEP: Single color association recoverable but not node
normalized (see Figure 4).

SHALLOW: Single color node normalized but not associ-
ation recoverable (see Figure 2).

AF: Single color node normalized but attempts to maxi-
mize both direct and indirect association recoverability
(see Figure 3).

The multi-colored schemas we designed are all (except

UNDR) both node normalized and association recoverable,

but differ as follows:

EN: Edge normalized, but does poorly on direct associa-
tion recoverability (according to Algorithm MC).

DR: Maximizes direct association recoverability, but is not
edge normalized (see Figure 5).

MCMR: Minimal color maximal recoverable is local color
minimal, and tries to maximize direct recoverability
subject to this color minimality. It is not edge normal.

o = N W A OO N

Q1 Q2 Q6 Q7 Q8 Q@9 Q10 Q11 Q12 Ut U2 U3

| DDEEP mAF O SHALLOW mEN OMCMR @mDR mUNDR |

Figure 8. Number of structural joins for TPC-W queries

Q1 Q2 Q6 Q7 Q8 Q9 Q10 Q11 Q12 U1 U2 U3

||:|DEEP BAF OSHALLOW mEN QOMCMR @DR IUNDRl

Figure 9. Number of value joins/color crossings for TPC-
W queries

UNDR: Un-normalized direct recoverable is a multi-
colored schema in which direct recoverability, without
color crossings, has been selectively increased at the
cost of node normalization.

6.1 TPC-W Experiments

From each XML schema, we obtained an XML data file
using the ToXgene [4] data generator, orchestrated to con-
tain equivalent content to produce equivalent query results.
The experiments were performed on a single processor Pen-
tium IIT 866MHz equipped with 512 MBytes of main mem-
ory, 30 GBytes of disk storage and Windows 2000, run-
ning the TIMBER XML database [12]. TIMBER’s buffer
pool size was set to 256 MBytes. The data page size was 8
KBytes.

The top portion of Table 1 presents the storage require-
ments of 7 schemas. All node normalized MCT schemas
have the same number of elements, attributes and content
nodes. EN and MCMR, which have only 2 colors require
only slightly more storage than SHALLOW and AF. Stor-
age requirements are higher as more direct associations are
covered, by DR, UNDR, and DEEP, respectively. Violating
node normalization costs a great deal more in storage than
violating edge normalization.

We have 16 queries in the workload (Q1-Q13 and Ul-
U3), 3 of which are update queries. 4 of these 16 queries

1.2

0.8 1
0.6 1
0.4 -
0.2 |

Q1 Q2 Q6 Q7 Q8 Q9 Q10 Q11 Q12 U1 U2 U3

|[DDEEP mAF OSHALLOW BEN OMCMR DR mUNDR |

Figure 10. Number of duplicate eliminations/duplicate
updates/group by values/ for TPC-W queries

701y
2052

N—
S
%
g

6.00
4.00
2,00
0.00

Q1 Q@2 Q6 Q7 Q8 Q9 Q10 @11 @12 U1 U2 U3

‘DDEEP EAF DOSHALLOW ®EN OMCMR @BDR ILNDR‘

Figure 11. Performance in seconds for TPC-W queries

were indifferent to choice of schema. Results for the re-
maining 12 queries are presented here. For each of these
queries, we measured the query performance and also sev-
eral metrics with respect to query expression.

Execution time in seconds of 7 schemas are listed in Ta-
ble 1. The parentheses in number of results column indi-
cates the duplicate results returned by DEEP (and UNDR, if
applicable). SHALLOW requires value joins to recover as-
sociations, and hence its performance suffers. DEEP, which
is direct association recoverable, always has an outstanding
performance, but only if the data redundancy is not an issue,
as in Q6, Q7, Q10, Ul-U3. With multiple colors, wher-
ever we have direct association recoverability, performance
is similar to that of DEEP. Thus, DR and UNDR perform
much closer to DEEP than EN and MCMR. Q12 is a query
that makes use of the un-normalized structure in UNDR to
win over DR. In Q11, DR and UNDR do even better than
DEEP due to smaller database size.

In update queries, multi-colored schemas may internally
pay the price for color integrity preservation if they are not
edge normalized even if they are node normalized. How-
ever, this cost is lower than that of a value join or un-
normalized constraint maintenance. For example, for U3
involving a single element update, MCMR and DR are less
costly than AF, SHALLOW, and EN, in which value joins
or color crossings are needed. DEEP and UNDR are expen-
sive here because of the data redundancy. MCMR is faster

Query | Num. Results DEEP AF SHALLOW EN MCMR DR UNDR

Num.Elements 6,084,002 | 2,642,111 2,642,111 | 2,642,111 | 2,642,111 | 2,642,111 | 4,732,855
Num. Attributes 2,177,280 958,148 958,148 958,148 958,148 958,148 | 1,087,748
Num. Content Nodes 1,729,440 725,806 725,806 725,806 725,806 725,806 829,486
Data Mbytes 1337.99 583.25 583.49 609.94 642.03 747.49 820.57
Num. Colors 1 1 1 2 2 5 5
Q1 1 0.05 0.04 0.30 0.04 0.04 0.04 0.05
Q2 378 0.87 1.05 8.86 0.83 0.83 0.82 0.82
Q6 315(9825) 14.97 0.05 0.05 0.05 0.05 0.04 0.04
Q7 2004(2536) 1.66 2.99 3.41 0.48 0.59 0.59 0.59
Q8 36 0.58 2.10 20.58 12.50 1.94 1.73 1.72
Q9 18 0.16 5.85 5.49 1.18 1.16 0.21 0.21
Q10 1(3) 0.99 0.09 0.08 0.10 0.10 0.10 0.10
Ql1 1 0.36 1.21 1.18 0.68 0.50 0.21 0.20
Q12 1 0.04 1.25 2.77 0.73 0.70 0.74 0.32
Ul 10(67) 0.85 0.10 0.10 0.10 0.10 0.10 0.12
U2 2(4,6) 0.20 0.08 0.04 0.09 0.08 0.08 0.27
U3 1(6,6) 20.52 0.63 0.62 0.49 0.28 0.48 70.11

Table 1. TPC-W Data Statistics and Query Processing Time in Seconds. The first letter of the query label indicates query type:
Q=Read-only, U=Update. The results column indicates the number of results produced for a read-only query, and the number of
elements updated for an update query. In parentheses are number of duplicate results for DEEP (and UNDR, if applicable).

Geometric Mean

ER1 ER2 ER3 ER4 ERS ER6 ER7 ER8 ERY

ER10 Derby TPC-W

B AF OSHALLOW BEN O MCMR ODR l

Figure 12. Number of structural joins for ER collection

than DR because it has fewer colors.

Figures 8-10 show 3 query characteristics gathered from
the XQuery expressions corresponding to the query run.
(We actually gathered many more statistics, but report only
these as the most interesting.) The time taken to evaluate
a query appears to be almost proportional to the number of
value joins or color crossings, with an added amount if there
is grouping or duplicate elimination required. There is lit-
tle correlation between the time to evaluate a query and the
number of structural joins. Beyond this, there is little sur-
prise in these figures: schemes with direct association re-
coverability minimize the number of value joins and color
crossings, thus explaining their good performance.

6.2 Collections of ER Diagrams

We took our collection of 11 distinct ER diagrams, rang-
ing in size from 10-30 (entity and relationship type) nodes.
For each of these, we generated the six different schemas
described above (we excluded UNDR since there were
too many subjective ways in which to unnormalize each
schema), for a total of 66 different schemas. The maximum
number of colors used was 7. The Database Derby came

0.20

0.15

WL el 0 dd o gl

2 ER3 ER4 ER! ER8 ER9 ER10 Derby TPC-W
[@DEEP DR |

Geometric Mean

BAF OSHALLOW BEN OMCMR

Figure 13. Number of value joins/color crossings for ER
collection

0.04

Geometric Mean

0.03

0.03

0.02

0.02

Ll

0 N
5 ER6 ER7 ER8

ER1 ER2 ER3 ER4 ER ER9 ER10 Derby TPC-W

[ODEEP ®mAF OSHALLOW ®EN OMCMR DR |

Figure 14. Number of duplicate eliminations/duplicate
updates/group by values/ for ER collection

with 20 queries, 8 of which are update queries. For each of
28 queries from the XMark [16] benchmark, 8 of which are
update queries, we wrote an equivalent query against each
of the 66 different schemas. We computed several metrics
for each of these (28 x 60 420 x 6 =) 1800 queries. In Fig-
ures 12-14 we report values for the three primary metrics
identified in the context of the TPC-W study.

The number of structural joins appears, in most cases, to
be traded off against the number of value joins and color
crossings. However, there are cases, such as ER10, where

SHALLOW uses more structural joins and more value joins
than other techniques, because it breaks down what is a sin-
gle ancestor-descendant relationship in other schemas into
two such relationships with an intervening value join.

Looking at the crucial metrics of value joins and color
crossings, we find that SHALLOW requires the most, and
DEEP the least. EN requires many more than MCMR and
DR. In short, schemas with direct recoverability do much
better on this metric. However, un-normalized schemas,
such as DEEP, suffer from the cost of duplicate elimina-
tion. On balance, MCMR and DR appear to be comparable,
and to have the least cost. Since MCMR requires less space
than DR, we recommend MCMR for most situations.

While the actual performance numbers quoted are spe-
cific to our particular implementation, some general conclu-
sions, applicable to most implementations of MCT, can be
drawn. Association recoverability and direct recoverability
permit important queries to be evaluated without requiring
value joins. As long as such joins are more expensive than
other operations (which is true even in relational implemen-
tations of XML (or MCT) with a node labeling scheme to
enable fast structural joins), the schema design techniques
proposed in this paper are of value.

7 Related Work

There has recently been interest in XML schema de-
sign. Arenas and Libkin [2, 3] were the first to propose
a notion of normal form for XML, i.e., XNF, and provide
an information theoretic rationalization for their definition.
Schewe [15] studied normal forms for XML taking order
into account, using counter-free functional dependencies.
Pigazzo and Quintarelli [14] have recently developed an al-
gorithm for designing a normalized XML schema starting
from an ER diagram. It is worth noting that the schema
produced by their algorithm suffers from the same kinds of
limitations as those illustrated in the introduction (Figures 3
and 4). There is also consideration of keys and functional
dependencies in the XML context (see, e.g., [8]), but this is
orthogonal to our work.

8 Conclusions

We investigate the schema design tradeoff between the
goal of query expression ease and evaluation efficiency,
and the goal of update anomaly avoidance, for XML-like
schemas. We demonstrate that the recently proposed MCT
data model, which extends XML by adding colors, can be
used to address this problem effectively. We develop
algorithms for transforming design specifications given as
ER diagrams into MCT schemas that satisfy the twin goals
of update anomaly avoidance and query expression ease +
evaluation efficiency. Experimental results using a wide va-
riety of ER diagrams on the TIMBER system validate the
benefits of our design methodology.

There are many avenues for future work. Often we will
be aware of constraints that apply at the instance level, and
knowledge of these constraints can be used to obtain bet-
ter MCT schema designs. Examples include knowledge of
tree instances in recursive ER diagrams (such as the section
hierarchy in documents). Another interesting direction of
future work is to understand how MCT models can be de-
rived from analysis of XML data, in particular the id/idref
values that need to encode associations in the XML model.

References

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava,
and Y. Wu. Structural joins: A primitive for efficient XML query
pattern matching. In Proc. ICDE, 2002.

[2] M. Arenas and L. Libkin. A normal form for XML documents. In
Proc. PODS, 2002.

[3] M. Arenas and L. Libkin. An information-theoretic approach to nor-
mal forms for relational and XML data. In Proc. PODS, 2003.

[4] D. Barbosa, A. Mendelzon, J. Keenleyside and K. Lyons. ToXgene:
A template-based data generator for XML. In Proc. WebDB, 2002.

[5] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay,
J. Robie, and J. Simeon. XML path language (XPath) 2.0. W3C
Working Draft. Available from http://www.w3.org/TR/xpath20/.

[6] S.Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and
J. Simeon. XQuery 1.0: An XML query language. W3C Working
Draft. Available from http://www.w3.org/TR/xquery.

[7]1 N.Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal
XML pattern matching. In Proc. SIGMOD, 2002.

[8] P.Buneman, S. B. Davidson, W. Fan, C. S. Hara, W. C. Tan. Reason-
ing about keys for XML. In Proc. DBPL, 2001.

[9] P.P. Chen. The entity-relationship model: Toward a unified view of
data. In ACM TODS, 1976.

[10] R. Elmasri, and S. B. Navathe. Fundamentals of database systems.
Addison Wesley, 4th ed., 2003.

[11] M. E Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh.
XQuery 1.0 and XPath 2.0 data model. W3C Working Draft. Avail-
able from http://www.w3.org/TR/query-datamodel/.

[12] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan,
A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwat-
tana, Y. Wu, and C. Yu. TIMBER: A native XML database. The
VLDB Journal, 11(4):274-291, 2002.

[13] H. V.Jagadish, L. V. S. Lakshmanan, M. Scannapieco, D. Srivastava,
and N. Wiwatwattana. Colorful XML: One hierarchy isn’t enough.
Proc. SIGMOD, 2004.

[14] P. Pigazzo and E. Quintarelli. An algorithm for generating XML
schema from ER schemas (Extended Abstract). In Proc. SEBD,
2005.

[15] K.-D. Schewe. Redundancies, dependencies, and normal forms for
XML databases. In Proc. Australian DB Conference, 2005.

[16] A. R. Schmidt, F. Waas, M. L. Kerste, D. Florescu, I. Manolescu,
M. J. Carey, and R. Busse. The XML benchmark project. Technical
Report INS-R0103, April 2001.

[17] The Database Derby. 4th E.R. Conference, Chicago, IL., USA. Oc-
tober 29, 1985.

[18] TPC-W, A Transactional Web E-Commerce Benchmark. Available
at http://www.tpc.org/tpcw/.

[19] UpdateX, the XQuery Updates Project (GALAX). Available at
http://www.cise.ufl.edu/research/mobility/.

[20] N. Wiwatwattana, H. V. Jagadish, L. V. S. Lakshmanan, and D. Sri-
vastava. Making designer schemas with colors: web supplement.
Available at http://www.eecs.umich.edu/db/timber/mct/index.html.

