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Abstract

We propose a framework, called MIC, which adopts an
information-theoretic approach to address the problem of
quantitative association rule mining. In our MIC frame-
work, we first discretize the quantitative attributes. Then,
we compute the normalized mutual information between
the attributes to construct a graph that indicates the strong
informative-relationship between the attributes. We utilize
the cliques in the graph to prune the unpromising attribute
sets and hence the joined intervals between these attributes.
Our experimental results show that the MIC framework sig-
nificantly improves the mining speed. Importantly, we are
able to obtain most of the high-confidence rules and the
missing rules are shown to be less interesting.

1. Introduction

Quantitative association rules(QARs) have served as a
useful tool to discover association relationships among a set
of attributes in business and scientific domains. In a QAR,
attributes are not limited to being boolean but can be quan-
titative (e.g. age, salary) or categorical (e.g. sex, brand).
Each quantitative attribute is associated with an intervalof
numeric values, while each categorical attribute is associ-
ated with a category. Thus, QARs are more expressive
and informative thanBoolean Association Rules(BARs) [2],
which only consider the presence of the attributes. An ex-
ample of a QAR in an employee database is:{age[25,
40], sex[female]} ⇒ {salary[2000, 2500]}
(sup = 3%, conf = 80%). This QAR states that
“3% (support) of the employees are females aged between
25 and 40 and earning a salary of between$2, 000 and
$2, 500”, while “80% (confidence) of females aged between
25 and 40 are earning a salary of between$2, 000 and
$2, 500”.

Given a database, aminimum support thresholdand a
minimum confidence threshold, the problem ofQAR mining
[7] is to find all QARs with support and confidence no less
than the given thresholds.

A general approach to the QAR mining problem is to
map it into the problem of conventional BAR mining [2, 3].
The idea is that, for each distinctvalueof a quantitative or
categorical attribute, the pair〈attribute, value〉 is mapped to
a boolean attribute. However, in many cases, the domain of
a quantitative attribute can be very large. In [7], Srinkant
and Agrawal propose to discretize the domain of a quanti-
tative attribute into intervals and combine consecutive base
intervals to gain sufficient support. Then, each〈attribute,
interval〉 pair of the quantitative attribute is mapped to a
boolean attribute. Finally, an Apriori-like algorithm is em-
ployed to compute the frequent itemsets. Hereafter, we de-
note their mining approach asSAand use it as a baseline
to evaluate the performance of our approach. We note that
other existing studies [10, 8] have also discussed the dis-
cretization techniques.

However, QAR mining on a discretized database is still
expensive due to the following two combinatorial explo-
sion problems of QAR mining. The same as BAR mining,
QAR mining also suffers from the problem of combinato-
rial explosion of attribute sets; that is, givenN unique at-
tributes, the number of non-empty attribute sets is2N − 1.
Although in practice, the number of distinct attributes in
a QAR mining problem may not be large, combining the
consecutive intervals of a quantitative attribute leads toan-
other combinatorial explosion problem: if the domain of a
quantitative attribute is partitioned inton intervals, the to-
tal number of intervals of that attribute after combining the
consecutive intervals isO(n2). When we further join the
attributes in the mining process, the number of itemsets (i.e.
a set of〈attribute, interval〉 pairs) can become prohibitively
large due to the large number of intervals associated with
an attribute. For example, it is common for a quantitative



attribute to have more than 200 intervals in a QAR min-
ing problem; however, there are(200 ∗ (200 + 1)/2)2 =
404, 010, 000 different combinations of intervals for only
two such attributes, which is equivalent to 404,010,000 can-
didate attribute sets in a BAR mining problem. This number
further grows when more than two attributes are joined.

In this paper, we adopt an information-theoretic ap-
proach and propose a framework, called MIC, to mine
QARs. MIC prunes the original prohibitively large search
space of QAR mining by removing the parts of the search
space that reflect the insignificant informative-relationships
between the attributes, thereby greatly improving the min-
ing efficiency. Our extensive experiments show that com-
pared with SA, MIC improves the mining speed by up to
two orders of magnitude. Moreover, MIC is able to obtain
most of the rules that have high confidence and we justify
that the missing rules are of less interestingness.

2. The MIC Framework

The MIC framework seamlessly incorporates themutual
information concept from information theory [5] into the
context of QAR mining. There are three main phases in the
MIC framework, as shown in Figure 1.
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Figure 1. Three Phases of the MIC Framework

Phase I: Discretization. The domain of each quantita-
tive attribute is partitioned into a set ofbase intervalsby ap-
plying anunsuperviseddiscretization technique. The base
intervals are then labelled with a set of consecutive integers
such that the order of the base intervals is preserved. Dur-
ing the mining process, each base interval is considered as
an indivisible unit while consecutive base intervals may be
combined into larger intervals. We also label the values of
a categorical attribute with a set of consecutive integers.

Phase II: MI Graph Construction. Based on the dis-
cretized database derived from Phase I, MIC computes the
normalized mutual informationbetween each pair of at-
tributes.

The normalized mutual information between two at-
tributesx andy, denoted as̃I(x; y), is defined by

Ĩ(x; y) =
I(x; y)

I(x; x)
,

whereI(x; y) is the mutual information betweenx andy.
The semantics of the normalized mutual information is the

percentage of reduction in uncertainty aboutx due to the
knowledge ofy. Thus, the value of the normalized mutual
information falls within the unit interval[0, 1]. To compute
the normalized mutual information between each pair of at-
tributes, we only need to scan the database once.

Given a predefinedminimal mutual information thresh-
old µ, we then construct amutual information graph (MI
graph), which is a directed graph,GMI = (V, E), where
the set of verticesV is the set of all attributes and the set
of directed edgesE = {(xi, xj) : Ĩ(xi; xj) ≥ µ}. We say
that a pair of attributes,xi andxj , has astrong informative-
relationshipif Ĩ(xi; xj) ≥ µ.

Phase III: Clique Computation and QAR Genera-
tion. We find all the cliques in the MI graphGMI and si-
multaneously compute the set of frequent itemsets based on
the cliques using a prefix tree structure. We use the tech-
nique of diffset [9] on the prefix tree to compute the fre-
quency of the itemsets, so that we only scan the database
twice: one for computing the normalized mutual informa-
tion and the frequent items, and the other for computing
the initial diffsets (i.e. sets of transaction IDs). All other
frequent itemsets are then computed using the diffsets. We
then generate the QARs from the frequent itemsets using
the rule generation technique for BARs [3].

Note that we capture the relationship between the at-
tributes which form a QAR using the normalized mutual in-
formation. Since the MI graph is built by discarding the in-
significant informative-relationships between the attributes,
a clique in the MI graph corresponds to the set of attributes,
which potentially form a QAR and hence a frequent itemset.
Therefore, by finding all the cliques in the MI graph, we are
able to obtain all or most of the frequent itemsets and then
the QARs.

We can view the QAR mining problem at two conceptual
levels: theattribute levelthat consists of the attributes and
theinterval levelthat consists of the corresponding intervals
of the attributes. SA directly operates on the interval level
throughout the whole mining process because its pruning
is performed on the intervals of the attributes. In contrast,
MIC performs pruning first at the attribute level. All pairs of
attributes that do not have a strong informative-relationship
are not chosen to form an itemset and consequently all their
intervals are also pruned. Meanwhile, MIC also performs
pruning at the interval level by the apriori property as does
SA. Thus, the search space of MIC is significantly smaller
than that of SA. Although the pruning at the attribute level
may lose some QARs in the final result, we emphasize that
our method is not an approximation technique that improves
the efficiency at the expense of accuracy. Instead, we show
that MIC not only significantly outperforms SA, but the set
of rules it obtained is also of higher quality than that ob-
tained by SA, since the attributes appearing in the same



rule are informatively dependent on each other. More im-
portantly, the missing QARs of MIC are less interesting as
shown by our experiments.

3. Experimental Results

We evaluate the performance of our MIC framework on
both synthetic and real datasets, using SA as the baseline
for comparison. The synthetic datasets are generated by
the IBM Quest Synthetic Data Generation Code [1], and
the real datasets are chosen from the commonly used UCI
machine learning repository [6]. In order to make a fair
comparison, we applyequidepth, which is also used in SA,
to discretize the database. Equidepth partitions the domain
of a quantitative attribute inton base intervals so that the
frequency (i.e. the number of transactions) of each base
interval is roughly the same. We also employ another well-
established measure,interest[4], for the interestingness of
an association rule to assess the quality of the QARs ob-
tained and missed. Due to the limited space, we only
present the results for synthetic datasets.
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Figure 2. Running Time, Rule Number Ratio,
Mean and Variance of Synthetic Datasets

Figure 2(a) reports the running time for generating fre-
quent itemsets. MIC runs significantly faster than SA and
the improvement in speed increases linearly as the size of
the dataset increases. Figure 2(b) shows the ratio of the
number of rules obtained by MIC to that obtained by SA.
On average, MIC obtains 80% of rules that have a confi-
dence over0.7, while it obtains almost all rules that have a
confidence of1. However, we justify in Figures 2(c-d) that
the mean of the interest of the missing rules is almost1 in

all cases, with an extremely small variance of at most 0.04.
According to Brin et al. [4], if theinterestof a ruleX ⇒ Y
is 1, thenX andY are independent. Therefore, we can con-
clude that the rules missed in MIC are of little significance
by theinterestmeasure.

4. Conclusions

In this paper, we present the MIC framework that adopts
an information-theoretic approach to mine the QARs. We
propose a normalization to the mutual information concept
and then apply it to model the informative-relationships be-
tween the attributes in a QAR mining problem. Based on
the normalized mutual information, we construct an MI
graph that captures the strong informative-relationshipsbe-
tween the attributes. We find that the cliques in the MI graph
correspond to the potential frequent itemsets in the mining
problem. We incorporate the enumeration of the cliques
seamlessly into the mining process to compute the frequent
itemsets. The clique enumeration limits the mining process
to a much smaller but more relevant search space, thereby
significantly improving the mining efficiency. Our experi-
mental results show that MIC greatly speeds up the mining
process for a wide variety of datasets. Moreover, MIC ob-
tains most of the high-confidence rules and we show that
the missing rules are of little significance using theinterest
measure.
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