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Abstract

Similarity search usually encounters a serious problem

in the high dimensional space, known as the “curse of

dimensionality”. In order to speed up the retrieval effi-

ciency, previous approaches usually reduce the dimension-

ality of the entire data set to a fixed lower value before

building indexes (referred to as global dimensionality re-

duction (GDR)). More recent works focus on locally reduc-

ing the dimensionality of data to different values (called the

local dimensionality reduction (LDR)). However, so far lit-

tle work has formally evaluated the effectiveness and effi-

ciency of both GDR and LDR for range queries. Motivated

by this, in this paper, we propose a general cost model for

both GDR and LDR, in light of which we introduce a novel

LDR method, PRANS. It can achieve high retrieval effi-

ciency with the guarantee of optimality given by the formal

model. Finally, a B+-tree index is constructed over the re-

duced partitions for fast similarity search. Extensive exper-

iments validate the correctness of our cost model on both

real and synthetic data sets, and demonstrate the efficiency

and effectiveness of the proposed PRANS method.

1 Introduction
Similarity search in high dimensional space has many

applications such as information retrieval [19], image data

analysis [11], time-series matching [1, 9], and the like. One

serious problem in achieving efficient and effective similar-

ity search is well-known as the “curse of dimensionality”.

That is, if we build an index on high dimensional data ob-

jects directly, the similarity query with the index might have

worse performance than that of a linear scan (i.e., without

the index). One way to tackle this problem is to design

an efficient index that can break the “dimensionality curse”

[3, 17, 21, 6]. However, the proposed indexes can only work

well in the low or medium (≤ 15 [13]) dimensional space,

and their query performance usually dramatically degrades

with the increasing dimensionality [4].

Another approach is to reduce the dimensionality of

data objects before indexing them. There are two cate-

gories of proposals, global dimensionality reduction (GDR)

[1, 9, 28, 18, 5] and local dimensionality reduction (LDR)

[7, 14]. For GDR, the dimensionality of all data objects are

reduced to a fixed lower value, whereas for LDR the reduc-

tion is made to different values. In particular, in GDR, data

objects are first transformed to a reasonably lower dimen-

sional space and then inserted into a multidimensional in-

dex, such as M-tree [8] or R-tree [10], which can efficiently

handle queries in the reduced space. There are many dimen-

sionality reduction techniques in literature [1, 9, 28, 18, 5].

These techniques can guarantee no false dismissals for the

similarity search, however, the search result may contain

false positives which have to be further refined in a post-

processing step. In LDR [7, 14], the entire data set is di-

vided into several partitions, each of which reduces the di-

mensionality of data to a best value locally, according to the

partition characteristics.

Previous work on both GDR and LDR are heuristic-

based. In particular, GDR requires users to select the value

of the reduced dimension, whereas in LDR users have to

give some data-dependent thresholds. Since both methods

are heuristic-based, no guarantee of optimality is provided

on the reduction, which may affect the search performance.

To the best of our knowledge, no existing work has formally

evaluated the effectiveness and efficiency of GDR and LDR

approaches. Motivated by this, we make the following con-

tributions in this paper:

1. We propose a general cost model for both GDR and

LDR approaches, taking into consideration the prun-

ing power and computation cost, which we give the

definitions later, of range queries1.

2. The cost model derived for GDR gives a hint of se-

lecting the best value of the reduced dimension, where

users can flexibly make the balance between the prun-

ing power and computation cost.

1The result can be easily extended to k nearest neighbor queries [25].
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3. In light of the cost model for LDR, we present a

partitioning-based LDR approach, PRANS, to divide

the data set into several disjoined partitions, each of

which locally reduces the dimensionality of data ob-

jects2.

The rest of the paper is organized as follows. Section 2

gives a brief review of high dimensional indexes, followed

by previous work on GDR and LDR techniques. Section

3 presents the formal problem definition. Section 4 intro-

duces our general cost model for range queries. Section

5 illustrates the partitioning-based LDR method, PRANS,

using the proposed cost model. Section 6 discusses de-

tails of the index construction. Section 7 verifies the cor-

rectness of our cost model and compares the effectiveness

and efficiency of our approach PRANS to the existing LDR

method, MMDR, with extensive experiments. Finally, Sec-

tion 8 concludes this paper.

2 Related Work
In order to perform an efficient similarity search in the

high dimensional space, many works focus on designing

high dimensional indexes, such as X-tree [3], SR-tree [17],

TV-tree [21], Hybrid-tree [6], and so on. Some tree indexes,

however, are effective on specific data types. For example,

TV-tree [21] works well when feature vectors have coor-

dinates with small diversity, such as categorical or string

data. Furthermore, although these indexes work very well

in low or medium dimensional spaces, their query perfor-

mance always degrades rapidly when the dimensionality in-

creases (e.g. up to 100). This is a well-known problem

called the “curse of dimensionality” [4]. In the high dimen-

sional space, the distance from a query object to its nearest

neighbor is nearly the same as that to its farthest neighbor,

which makes it difficult to prune the search space through

indexes. Thus, for most indexes over high dimensional ob-

jects, the overhead of a range query can be even greater than

that of a linear scan. The high dimensional indexing prob-

lem also motivates previous work on improving the retrieval

efficiency of the linear scan, for example, VA-file [26].

There are many studies on various dimensionality re-

duction techniques to be used as GDR, such as Singular

Value Decomposition (SVD) [16], Discrete Fourier Trans-

form (DFT) [1, 9], Discrete Wavelet Transform (DWT) [23],

Piecewise Aggregate Approximation (PAA) [28], Adap-

tive Piecewise Constant Approximation (APCA) [18], and

Chebyshev Polynomial [5]. In order to guarantee no false

dismissals (actual answers that are absent in the final re-

sult) during a query, any dimensionality reduction tech-

nique must follow a lower bounding lemma, that is, the

2Throughout this paper, we assume that all partitions are applied the

same reduction technique. However, the proposed approach can be eas-

ily extended to the case where different reduction techniques are used for

different partitions.

Euclidean distance between any two transformed objects is

never greater than that in the original space. For any given

query object, we first transform it to a point in the lower

dimensional space over which we have already build an in-

dex, and then search over the index. Since the resulting can-

didate set may contain false positives (objects that do not

belong in the actual answer set), the final post-processing

step refines all the candidates. Other GDR approaches map

all the high dimensional objects into a 1-dimensional space,

such as pyramid [2], Hilbert curve [15], iMinMax [29], and

use usual 1-dimensional indexes to search on this space.

LDR converts data objects into different dimensional

spaces according to data characteristics. Chakrabarti and

Mehrotra [7] explored local correlations in the data set us-

ing the existing clustering algorithm and apply Principal

Component Analysis (PCA) on each correlated cluster in-

dividually. In this work, one important clustering criterion

is that the reconstruction distance of any data object must

be never greater than a user-specified bound. However, it

allows a small fraction of objects to violate this condition,

which are added to an outlier set. Each cluster is indexed

independently with a multidimensional tree whose root is

collected in a directory. The resulting hybrid structure is

not guaranteed to be balanced and, thus, may incur high

I/O cost for clusters with skewed sizes. Jin et al. [14]

proposed another LDR method, MMDR, which can iden-

tify ellipse shaped clusters in the subspace using the Ma-

halanobis distance. Moreover, one of the clustering criteria

requires that the average representation error in clusters not

exceed a user-specified threshold. After all clusters are ob-

tained, each data object in the reduced subspace is hashed

to a unique 1-dimensional key and then inserted into a B+

tree following the framework of iDistance [13].

All known techniques following both GDR and LDR are

heuristic-based. In particular, GDR globally reduces di-

mensionality of data to a specific dimension value, however,

no methodology has been proposed to select this value. Fur-

thermore, although previous LDR approaches aim at mini-

mizing the lossy information caused by the dimensionality

reduction, the clustering results highly depend on the user-

specified parameters. To the best of our knowledge, no ex-

isting work has provided a concrete cost model to formal-

ize the analysis of the query performance of both GDR and

LDR. Therefore, in this paper, we give a general cost model

to estimate the query cost, based on which a novel LDR

approach is proposed.

3 Problem Definition
Given a very large database D containing N data objects

of high dimension d (e.g. d = 100), GDR reduces the di-

mensionality of all data objects from d to a fixed lower one,

dG � d. On the other hand, since data objects in D may

be correlated in different subspaces, LDR divides D into m
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disjoint partitions P1, P2, ..., and Pm, and locally reduces

the dimensionality from d to di (1 ≤ di � d) for each

partition Pi.

In order to facilitate the similarity search, a number of

pivots are selected in the transformed data set. Without

loss of generality, we assume that GDR randomly selects

one pivot p ∈ D, whereas LDR randomly selects one pivot

pi ∈ Pi for each partition Pi, where 1 ≤ i ≤ m. We will

discuss later how the case of selecting one pivot within each

partition can be easily extended to that of choosing multiple

ones. By pre-computing the distance dist(pi, oj) between

any object oj in a partition Pi and its corresponding pivot

pi, the triangle inequality can help prune the search space

of queries. In particular, given a query q, the triangle in-

equality holds that dist(q, oj) ≥ |dist(q, pi)−dist(pi, oj)|,
where dist is a distance function. For a range query with a

radius rq , as long as |dist(q, pi) − dist(pi, oj)| > rq , ob-

ject oj can be safely pruned, since dist(q, oj) ≥ rq by the

inequality transition. Similarly, the solution can be easily

extended to handle kNN queries [25]. In the sequel, we

mainly focus on the range query q with a fixed radius rq . To

address the general cases, we later extend it to range queries

that have radii with any distribution.

Given a query q, we define two measures to character-

ize the performance of the dimensionality reduction tech-

niques, the pruning power (PP ) and computation cost

(CC). Specifically, PP is given by the number of data ob-

jects that can be pruned by the triangle inequality without

introducing false dismissals, whereas CC is measured by

the number of real distance computations (i.e. in terms of

the distance computation between two d-dimensional ob-

jects) during query processing. With these two measures,

we formally present two problems of deriving a general cost

model for both GDR and LDR.

Problem 3.1 (Cost Model for GDR) Given a database D
with d-dimensional data objects, we reduce the dimension-

ality of all data objects to a fixed value dG (� d). The

problem is to derive a cost model for GDR in terms of PP

and CC, such that the best value of dG is selected to either

maximize PP or minimize CC.

Problem 3.2 (Cost Model for LDR) Given a database D
with d-dimensional data objects, we divide D into m dis-

joint partitions P1, P2, ..., and Pm, and reduce the dimen-

sionality of each data object in partition Pi from d to di

(1 ≤ di � d). The problem is to design a cost model for

LDR in terms of PP and CC, in light of which partitions of

D are obtained such that either PP is maximized or CC is

minimized.

According to the two problems above, our fundamental

goal is to formalize PP and CC for query processing with

either GDR or LDR. Note however, that the cost model for

LDR in Problem 3.1 is more general and can be reduced to

that of GDR in Problem 3.2, by letting m = 1. Therefore,

Symbol Description

D a data set of size N
Pi the i-th partition of the data set D
| · | the data size in ·
m the number of partitions

d the original high dimension of data objects

dG the reduced dimension of GDR

di the reduced dimension of partition Pi

pi a pivot in the partition Pi

q a query point

rq the radius of a range query centered at q
φ(z) the cumulative distribution function (CDF) following a normal

distribution

Figure 1. Meanings of Symbols Used

in the sequel, we first derive a cost model for LDR, and then

extend it to the GDR. Furthermore, in LDR, since the con-

verted data in each partition Pi are of different dimensions

di, we are also interested in building up an index structure

for these partitions to achieve an efficient similarity search.

Figure 1 summarizes the commonly-used symbols in this

paper.

4 Cost Model for Range Queries

4.1 Cost Model for LDR
We first focus on the definition of the pruning power

PPLDR(q, rq) for LDR. From the probabilistic point of

view, PPLDR(q, rq) can be obtained by summing up the

probability, with which each data object is pruned by the

triangle inequality. That is,

PPLDR(q, rq)

=

mX
i=1

(the number of pruned objects in Pi)

=
mX

i=1

|Pi|X
j=1

Pr{oj can be pruned, for oj ∈ Pi}

=

mX
i=1

|Pi|X
j=1

Pr{|dist
(di)(q, pi) − dist

(di)(pi, oj)| > rq}

=
mX

i=1

|Pi|X
j=1

(1 − Pr{|dist
(di)(q, pi) − dist

(di)(pi, oj)| ≤ rq}).(1)

where dist(di)(x, y) is the distance between objects x and

y in their reduced di-dimensional space.

Let Pr{|dist(di)(q, pi) − dist(di)(pi, oj)| ≤ rq} be

Probi, that is, the probability that any object oj ∈ Pi can-

not be pruned by pivot pi. We have

PPLDR(q, rq) =
mX

i=1

(|Pi| − |Pi| · Probi)

= |D| −
mX

i=1

(|Pi| · Probi) (2)

Based on Equation (2), the pruning power of range

queries largely depends on the partitioning strategy, which

is related to the data size of each partition Pi and the prob-

ability Probi of that partition that we discuss later.

As a second step, we consider the computation cost

of range queries with LDR. Obviously, for each partition
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Pi, as long as the data size of partition Pi is not zero,

we have to compute the distance dist(di)(q, pi) between

query q and pivot pi in the di-dimensional space, whose

computation cost is O(di). Then, for each partition Pi,

we sequentially scan |Pi| data objects. If an object oj in

Pi cannot be pruned by the triangle inequality, the real

distance dist(d)(q, oj) between query q and object oj is

computed, which has the computation cost O(d). Note

that, the probability that a data object in Pi cannot be

pruned is exactly Probi. Therefore, the computation cost

CCLDR(q, rq) is given as follows:

CCLDR(q, rq)

=
mX

i=1

(di · sign(|Pi|) + d ·
|Pi|X
j=1

Probi)

=

mX
i=1

(di · sign(|Pi|) + d · |Pi| · Probi) (3)

where sign(|x|) = 1, if |x| �= 0; 0, otherwise.

In the above equations, although we assume only one

random pivot selected from each partition, it can be easily

extended to the case of n randomly chosen pivots by replac-

ing Probi with Probi
n, and di with ndi. Since we have

derived the cost model for LDR in terms of the pruning

power PPLDR and computation cost CCLDR, we can

partition the data set based on this model to either maximize

PPLDR or minimize CCLDR. In other words, we can

partition the data set such that either
∑m

i=1(|Pi| · Probi) or∑m
i=1(di · sign(|Pi|) + d · |Pi| · Probi) is minimized.

In the cost model of LDR, one remaining issue

that needs to be addressed is the probability Probi (=

Pr{|dist(di)(q, pi) − dist(di)(pi, oj)| ≤ rq}). We formally

rewrite the formula of Probi as follows.

∀pi, oj ∈ Pi, ∀q ∈ D
Probi = Pr{|dist

(di)(q, pi) − dist
(di)(pi, oj)| ≤ rq}

= Pr{−rq ≤ dist
(di)(q, pi) − dist

(di)(pi, oj) ≤ rq} (4)

Here, we obtain Probi by utilizing the Central Limit

Theorem [27]. In Equation (4), dist(di)(q, pi) and

dist(di)(pi, oj) can be viewed as two independently gener-

ated values from random variables XPi
and YPi

with means

µXPi
and µYPi

, and variances σXPi
and σYPi

, respectively.

According to the Central Limit Theorem, if a random vari-

able v is drawn from V = X − Y , then
v−(µXPi

−µYPi
)q

σ2
XPi

+σ2
YPi

=

dist(di)(q,pi)−dist(di)(pi,oj)−(µXPi
−µYPi

)q
σ2

XPi
+σ2

YPi

follows the cumu-

lative distribution function φ(z) of a normal distribution.

Thus, we have:

Probi

= Pr{
−rq−(µXPi

−µYPi
)r

σ2
XPi

+σ2
YPi

≤

dist(di)(q,pi)−dist(di)(pi,oj)−(µXPi
−µYPi

)r
σ2

XPi
+σ2

YPi

≤
rq−(µXPi

−µYPi
)r

σ2
XPi

+σ2
YPi

}

= φ(
rq − (µXPi

− µYPi
)q

σ2
XPi

+ σ2
YPi

) − φ(
−rq − (µXPi

− µYPi
)q

σ2
XPi

+ σ2
YPi

). (5)

4.2 Cost Model for GDR

After obtaining the cost model for LDR (Problem 3.2),

we discuss its special case, Problem 3.1, in detail. Recall

that, in Problem 3.1, we reduce the dimension of all data

objects to a fixed value dG. We can obtain the formulas of

PPGDR and CCGDR for GDR by letting |Pj | = |D| for

dj = dG and |Pi| = 0 for all i �= j in equations of PPLDR

and CCLDR.

PPGDR(q, rq) = |D| · (1 − Probj), and (6)

CCGDR(q, rq) = (dG + |D| · d · Probj). (7)

In order to make the trade-off between PPGDR and

CCGDR, users can specify a weight w ∈ [0, 1] such that

the overall cost TotalCostGDR(dG, q, rq) of a query can

be scored as:

TotalCostGDR(dG, q, rq)

= w · Probj + (1 − w) · dG + |D| · d · Probj

d · (|D| + 1)
. (8)

Therefore, the best dimension value dG for Problem 3.1

is the one that minimizes TotalCostGDR(dG, q, rq), for

1 ≤ dG ≤ d. From Equation (8), we can see that the

total cost of GDR mainly depends on two terms dG and

Probj . In order to minimize this cost, we can either mini-

mize dG or Probj . In particular, dG is related to the value

of Probj in Equation (8), that is, the probability that an

object can be pruned using dG reduced dimensions. So an

appropriate selection of dG leads to small Probj and thus

low total cost. Note that the reduced dimension dG is usu-

ally restricted by the performance of the index, therefore it

cannot be too large in practice. Furthermore, according to

the definition, Probj also depends on the underlying data

characteristics, which is fixed once the data set is given and

pivots selected. In this paper, we choose only one pivot in

the entire data set. The problem of choosing multiple pivots

in a data set that can potentially decrease Equation (8) is left

as future work. Furthermore, the overall cost by weighting

PP and CC can be also introduced to the case of LDR,

which is omitted due to the space limit.

4.3 Range Queries with Radius Distribu-
tion

In the above cost models, we always assume that the radii

rq of range queries are fixed. However, there are circum-

stances where this is not the case. That is, users may issue

range queries with different radii. In the sequel, we discuss

incorporating the radius distribution of range queries into

our cost model such that, given a set of queries with the ra-

dius distribution, we can still estimate the cost accurately

in terms of the pruning power and computation cost. Note

that, in practical applications, this radius distribution can be

determined from a workload of queries [24]. Without loss
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of generality, suppose the radius rq of range query q follows

the distribution of a random variable R, with the mean µR

and variance σR.

We consider the cost model for local dimensionality re-

duction, LDR, taking into account the distribution of the

query radius. Recall that, both PPLDR and CCLDR of

LDR involve Probi. Thus, we only need to obtain a re-

vised equation of Probi which considers the query radius

distribution. In particular, we rewrite Probi as:
Probi = Pr{(dist

(di)(q, pi) − dist
(di)(pi, oj) ≥ −rq)

∩(dist
(di)(q, pi) − dist

(di)(pi, oj) ≤ rq)}. (9)

which is simplified as:

Probi = Pr{A
[

B} (10)

where A = dist(di)(q, pi) − dist(di)(pi, oj) + rq ≥ 0 and

B = dist(di)(q, pi) − dist(di)(pi, oj) − rq ≤ 0.

Since it holds that Pr{A∪B} = Pr{A} + Pr{B} - Pr{A∩
B}, we have Pr{A ∩ B} = (Pr{A} + Pr{B} - Pr{A ∪ B}).

Moreover, the probability Pr{A∪B} in our case is 1. Thus,

we can obtain:

Probi = Pr{A ∩ B} = Pr{A} + Pr{B} − 1. (11)

Substituting Probi in the formula of the pruning power

PPLDR(q, rq, R) for LDR, we obtain:

PPLDR(q, rq, R) = |D| −
mX

i=1

(|Pi| · (Pr{A} + Pr{B} − 1)). (12)

Similarly, the computation cost CCLDR(q, rq, R) of

LDR is given by:

CCLDR(q, rq, R)

=

mX
i=1

(di · sign(|Pi|) + d · |Pi| · (Pr{A} + Pr{B} − 1)). (13)

The remaining problem is to calculate Pr{A} and

Pr{B}. Similar to the assumption in Section 4.1, suppose

that dist(di)(q, pi) and dist(di)(pi, oj) follow two random

variables XPi and YPi , respectively. In particular, vari-
able XPi (YPi) has the mean µXPi

(µYPi
) and variance

σXPi
(σYPi

). Based on the Central Limit Theorem, both

(dist(di)(q,pi)−dist(di)(pi,oj)+rq)−(µXPi
−µYPi

+µR)q
σ2

XPi
+σ2

YPi
+σ2

R

and

(dist(di)(q,pi)−dist(di)(pi,oj)−rq)−(µXPi
−µYPi

−µR)q
σ2

XPi
+σ2

YPi
+σ2

R

follow

the normal distribution φ(z). Therefore, we obtain Pr{A}
and Pr{B} as follows:

Pr{A} = 1 − φ(
−(µXPi

− µYPi
+ µR)q

σ2
XPi

+ σ2
YPi

+ σ2
R

), and (14)

Pr{B} = φ(
−(µXPi

− µYPi
− µR)q

σ2
XPi

+ σ2
YPi

+ σ2
R

). (15)

Substituting Equations (14) and (15) into Equations (12)

and (13), we have

PPLDR(q, rq, R) = |D| −
mX

i=1

(|Pi| · (φ(
−(µXPi

− µYPi
− µR)q

σ2
XPi

+ σ2
YPi

+ σ2
R

)

−φ(
−(µXPi

− µYPi
+ µR)q

σ2
XPi

+ σ2
YPi

+ σ2
R

))), and (16)

CCLDR(q, rq, R) =

mX
i=1

(di · sign(|Pi|) + d · |Pi|

·(φ(
−(µXPi

− µYPi
− µR)q

σ2
XPi

+ σ2
YPi

+ σ2
R

) − φ(
−(µXPi

− µYPi
+ µR)q

σ2
XPi

+ σ2
YPi

+ σ2
R

))).

(17)

Statistics Extraction. Finally, we discuss some imple-

mentation details of our cost model. In particular, ei-

ther the pruning power or the computation cost for range

queries involves the distance distribution between two ob-

jects, that is, statistics of the data characteristics. More

specifically, in order to estimate Probi, we need to ob-

tain means and variances of the distance distributions XPi

and YPi for dist(di)(q, pi) and dist(di)(pi, oj), respectively,

where query object q can follow any location distribution

Q, pivot pi is an object selected in partition Pi, and data

object oj is any object in Pi. Let the mean and variance of

XPi
(YPi

) be µXPi
and σXPi

(µYPi
and σYPi

), respectively.

We first consider dist(di)(q, pi) following the distribu-

tion XPi
. Note that, here the query point q follows the lo-

cation distribution Q in the space, which is either known

in advance or observed based on query history. Since our

estimation is performed offline, we can compute the pair-

wise distances between the pivot pi and a number of (ei-

ther artificially generated or historical) query points fol-

lowing the distribution Q in the reduced di-dimensional

space. Then, we average these pairwise distances to obtain

the mean value µXPi
, together with the (squared) variance

σ2
XPi

, the summation of squared errors between distances

and the mean value.

Similarly, for distance dist(di)(pi, oj) with distribution

YPi
. For a selected pivot pi ∈ Pi, we obtain all the dis-

tances from pi to any data object oj in Pi considering di

dimensions, average them and obtain the mean µYPi
as well

as their (squared) variance σ2
YPi

.

5 A Partitioning-Based LDR Approach
As mentioned in Section 1, previous approaches of GDR

and LDR are based on heuristics, which cannot guarantee

optimal partitions for search operations later on. In this sec-

tion, we propose a novel partitioning-based LDR approach,

PRANS (Partitioning based on RANdomized Search), in

light of the proposed cost model. In particular, PRANS di-

vides the data set into several partitions and within each par-

tition, locally performs the dimensionality reduction. The

resulting partitions can achieve high pruning power, as in-

dicated by our cost model, and adapt to the inherent data

characteristics.

5.1 PRANS
Given a data set D, PRANS divides D into m parti-

tions, each with its own reduced dimension di, such that

the cost of range queries is as low as possible. The entire

partitioning procedure is monitored by our cost model dis-

cussed in previous sections. Note that, although the cost
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model involves two parts, the pruning power and compu-

tation cost, we focus on maximizing the pruning power of

LDR for range queries. This assumption, however, does not

conflict with our goal of minimizing the computation cost,

since the computation cost is the summation of two terms,∑m
i=1(di · sign(|Pi|)) and

∑m
i=1(d · |Pi| · Probi). Maxi-

mizing the pruning power exactly minimizes the latter term,

while the former term is usually much less significant and,

thus, can be ignored. Therefore, in the sequel, when we

mention the total cost TotalCostLDR of a range query, we

always mean the pruning power.

PRANS (Partitioning based on RANdomized Search)

follows the framework of a popular clustering algorithm

CLARANS (Clustering Large Applications based on RAN-

domized Search) [22]. In order to obtain effective parti-

tions, the effectiveness evaluation of partitions in PRANS
is based on the cost model in Section 4. In particular, given

two parameters num iter and max neighbor, procedure

PRANS aims at finding “good” partitions and choosing

their best reduced dimensions, such that the pruning power

of range queries can be maximized. Specifically, the ran-

domized search can be treated as a transition between ver-

tices in a graph [22], and the parameter max neighbor
is the maximum number of transitions from a vertex dur-

ing the search. In order to avoid the local optimum, the

procedure runs for num iter passes and finally selects the

one with the highest pruning power as the best partition

strategy. Note that, the value selection of num iter and

max neighbor in PRANS follows the same settings as that

in CLARANS [22].

As illustrated in Figure 2, for each pass (lines 2-13),

PRANS first chooses m random objects p1, p2, ..., and

pm from data set D, which form the initial representative

set (line 4). Then, it incrementally obtains good partitions

by swapping representative objects with non-representative

ones (lines 6-11), so that higher pruning power can be

achieved. In particular, each time a random object p ∈
D\{p1, p2, ..., pm} is selected and swapped with one ran-

dom object pi ∈ {p1, p2, ..., pm} (lines 6-7). The result-

ing representative set divides the space into m partitions,

P1,P2, ..., and Pm, by assigning any object o ∈ D to parti-

tion Pi only if object o is closest to pi other than pj ( �= pi)
(line 8). Next (line 9), we estimate the total cost of queries

on new partitions for all possible values of the reduced di-

mensions, and choose dimension di for each partition Pi

that minimizes TotalCostLDR. If TotalCostLDR is lower

than the minimum cost local min cost encountered so far

(lines 10-11), we set local min cost to TotalCostLDR,

and record the new partition set {P1,P2, ...,Pm} as the

current best strategy local P , together with their selected

dimension set local DIM . The decreasing value of

local min cost each time bounds random searches to a

maximum max neighbor . In other words, if the swap-

ping process between a representative object and a non-

representative one repeats for max neighbor times, during

which the costs of new partitions are always higher than

local min cost, then the search terminates and the parti-

tioning strategy associated with local min cost is one of

the local optima with the partition set local P and its corre-

sponding dimension set local DIM .

As a second step, we invoke the procedure MergeParti-
tions which tries to merge any two partitions into one such

that the resulting new partition has a lower cost than the

summed cost of the original two partitions and moreover

the cost difference is the most significant (line 12). The

procedure terminates when no partitions can be merged.

Thus, parameters local P , local DIM , local min cost,
and m are updated correspondingly. Let P and DIM corre-

spond to the partition and dimension sets, respectively, with

the lowest cost local min cost among all the local optima

(lines 13-14). Finally, we output P and DIM as the result.

Procedure PRANS {
Input: parameters num iter and max neighbor
Output: m partitions P1, P2, . . ., and Pm

as well as their selected best dimensions d1, d2, . . ., and dm, respectively

(1) global min cost = +∞;P = ∅; DIM = ∅; // initialization

(2) for i = 1 to num iter // multiple iterations to avoid local optimum

(3) local min cost = +∞; local P = ∅; local DIM = ∅
(4) randomly select m objects pi ∈ D where i ∈ [1, m]
(5) for j = 1 to max neighbor
(6) randomly select an object p ∈ (D − {p1, p2, ..., pm})
(7) replace a random object pi ∈ {p1, p2, ..., pm} with p
(8) assign any object o ∈ D that has object pi as it NN to partition Pi

(9) obtain the minimum total cost TotalCostLDR for partitions {P1,
P2, ...,Pm} as well as their corresponding {d1, d2, ..., dm}, for all

possible dimensions in each partition // based on the cost model

(10) if TotalCostLDR < local min cost
(11) set local min cost = TotalCostLDR, local P = {P1,

P2, ...,Pm}, local DIM = {d1, d2, ..., dm} and j = 1
(12) MergePartitions(local P , local DIM , local min cost, m);

(13) if global min cost > local min cost
(14) global min cost = local min cost; P = local P;

DIM = local DIM ;

(15) return P and DIM .

}

Figure 2. Partitioning Based on Randomized Search

Selection of m. The number of partitions m highly de-

pends on data characteristics. Specifically, we want to ob-

tain partitions that have the lowest cost. One natural way is

to check all possible cases by invoking procedure PRANS
with different parameters m ∈ [1, |D|]. However, this ap-

proach is not efficient in terms of the computation cost. To

avoid invoking procedure PRANS several times, we can

choose a sufficiently large value of m. In line 12 of pro-

cedure PRANS, we can combine any two partitions if the

estimated pruning power can be decreased after the merge.

Therefore, the value of m can be adjusted automatically ac-

cording to data characteristics.

Since the estimation accuracy of each partition is related

to statistics extracted from data, we require that the size

of each partition be large enough to obtain useful statis-

tics. Assuming this required minimum size of partitions is
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Card, we set the initial value of m to |D|/Card and only

need to invoke procedure PRANS once, during which the

|D|/Card partitions are further merged based on our cost

model. In this way, we can obtain m (≤ |D|/Card) parti-

tions with the lowest cost among all random searches.

5.2 Discussion on Partitioning Cost
Similar to the CLARANS [22], we view each possible

representative set containing distinct m representatives as

a vertex gi in a graph G. So in total there are H =
(
N
m

)

vertices in G. Any edge connects two vertices in G only if

the representative sets denoted by the two vertices differ for

only one object. Thus, each vertex has m(N − m) neigh-

bors. Let L be the max neighbor in procedure PRANS
(L ≤ m(N −m)). Intuitively, the swapping between a rep-

resentative object and a non-representative one is a traverse

from one vertex to one of its neighbors. Assume each ver-

tex gi is associated with a total cost tci, whose computation

cost is considered as a unit O(1). Without loss of generality,

suppose tci ≤ tcj for i < j.

First, given the current vertex gi, we consider the

expected times to swap a representative and a non-

representative one before traversing to one of its neighbors.

We assume that neighbors of gi are uniformly extracted

from the set {g1, ..., gi−1, gi+1, ..., gH}. That is, the proba-

bility that a randomly selected neighbor gj of gi has lower

cost than gi is i−1
H−1 . Therefore, the expected number Si

of neighbors for gi to check before it traverses to another

vertex is:

Si =

LX
j=1

(j Pr{the number of neighbors checked =j})

+L (Pr{all neighbors have higher cost than gi})

=
LX

j=1

„
j

„
H − i

H − 1

«j−1 „
i − 1

H − 1

««
+ L

„
H − i

H − 1

«L

=

„
H − 1

i − 1

«
1 −

„
H − i

H − 1

«L
!

. (18)

where S1 = L( H−i
H−1 )L.

Therefore, the expected number E(Si) of Si for any ran-

domly selected vertex gi in G is:

E(Si) =
1

H

HX
i=1

Si

=
HX

i=2

1

i − 1
− 1

i − 1

„
H − i

H − 1

«L
!

+
L

H

„
H − i

H − 1

«L

(19)

As a second step, we consider the average length Ti of
the traversal path starting from vertex gi. Without loss of
generality, assume gi1 , gi2 , ..., gij

is the maximum traversal

path, where i = i1 > i2 > ... > ij and thus tci = tci1 >
tci2 > ... > tcij

. Hence, the probability F (j) that the

length of the traversal path is no greater than j is given by:

F (j) = 1 −
jY

l=1

1 −
„

H − il

H − 1

«L
!

. (20)

Let G(il) = 1 − (H−il

H−1 )L, where all G(il) are indepen-

dently generated random number from the same G(i).

Then, the probability f(j) that the path length is exactly

j is:
f(j) = F (j) − F (j − 1). (21)

Therefore, the expected path length Ti starting from ver-

tex gi is denoted as:

Ti =
∞X

j=1

jf(j) =
∞X

j=1

(jF (j) − jF (j − 1)). (22)

Considering the expectation E(Ti) of Ti for all possible

i, Equation (22) can be simplified and rewritten by substi-

tuting Equation (20) as follows:

E(Ti) =
2

E(G(i))2L
− 3

E(G(i))L
, (23)

where E(G(i)) is given by

E(G(i)) =
1

H

HX
i=1

1 −
„

H − i

H − 1

«L
!

. (24)

In summary, the computation cost of PRANS can be ap-

proximately measured by E(Si) · E(Ti), which is the aver-

age number of neighbors checked at each vertex times the

expected number of the traversal path length.

6 Indexing PRANS Partitions for Range
Queries

Up to now, we have obtained m partitions P1,P2, ...,
and Pm, as well as their reduced dimensions d1, d2, ..., and

dm, respectively, which can achieve high pruning power for

range queries based on the cost model. Without loss of gen-

erality, assume that |Pi| �= 0 and 1 ≤ di ≤ dj ≤ d for all

i, j ∈ [1,m] where i �= j. All partitions apply the same

type of the dimensionality reduction technique. One natural

way to index these m partitions is to construct m separate

trees for each of them [7]. However, the resulting partitions

might have skewed sizes, so trees with large data sizes are

of great height, leading to high I/O cost. Furthermore, for m
trees, we have to descend from the root to leaf for at most m
times before accessing data. Therefore, it is not an efficient

way to construct m separate trees. Instead, for scalability,

we index all data objects in a single B+-tree similar to the

framework of iDistance [13, 14].
In particular, for each partition Pi, we pre-compute the

distance dist(di)(pi, oj) between the selected pivot pi and

any data object oj in Pi, along the reduced di dimensions.

Then, each data object oj in the partition Pi is hashed to a

1-dimensional key key(oj). That is,

key(oj) = i · MAX + dist
(di)(pi, oj) (25)

where pi ∈ Pi is the pivot determined by procedure

PRANS, oj is any data object in Pi, and MAX is a large

positive number that can guarantee key ranges of different

partitions do not overlap with each other. Without loss of

generality, if the domain of the data space is [0, 1]d, we

can set MAX to
√

d. Therefore, the key range of the i-th
partition is from i · √d to (i + 1) · √d. As a second step,

we insert each data object oj ∈ D into a B+-tree index,

with its hashed key key(oj). Thus, the range query in the
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high dimensional space is reduced to the existing problem

of searching a B+-tree with several key ranges. Since the

B+-tree has higher fanout, compared to high dimensional

indexes [10, 8] , it is space-efficient and can incur lower I/O

cost during queries.

Given a range query q with a radius rq , for partition Pi,

we first reduce the dimensionality of q to di, and compute

the distance distdi(q, pi) between q and pivot pi ∈ Pi,

using di reduced dimensions. According to triangle in-

equality, for any data object oj ∈ Pi, as long as it holds

that |dist(di)(q, pi) − dist(di)(pi, oj)| > rq , the data ob-

ject oj can be safely pruned. In other words, we only

need to search those data objects oj in the B+-tree with

keys ranging from (i · MAX + dist(di)(q, pi) − rq) to

(i · MAX + dist(di)(q, pi) + rq). After that, the retrieved

candidates are further refined by calculating their real Eu-

clidean distance from the query in the d-dimensional space.

7 Experimental Evaluation
In this section, we first verify our cost model for both

LDR and GDR, and then demonstrate the effectiveness and

efficiency of the proposed LDR approach, with extensive

experiments. Specifically, in the first set of experiments, we

aim to confirm the correctness of our cost model by com-

paring the estimated pruning power and computation cost

of range queries with the actual values in LDR and GDR.

We use both real and synthetic data sets during the exper-

iments. In particular, the real data set mixed is extracted

from 11609 Corel images in 113 categories [12], which are

widely used in the area of the content-based image retrieval.

It contains 64-dimensional features, including 44 correlo-

gram, 6 color moment, and 14 texture moment. For the

synthetic data sets, we generate three common types, uni-

form, Zipf and Gaussian. That is, each dimension of data

objects is generated by picking up a random value within [0,

1] that follows the uniform, Zipf or Gaussian distribution.

For the Zipf distribution, we produce 5 data sets, Zipf 0.1,

Zipf 0.2, Zipf 0.5, Zipf 0.8 and Zipf 1, with the skewness 0.1,

0.2, 0.5, 0.8 and 1, respectively, whereas for Gaussian data

set with the mean 0.5 and variance 0.2. In the second set of

experiments, we evaluate the pruning power and I/O cost of

the proposed LDR method, PRANS, compared to the state-

of-art LDR technique, MMDR [14]. The tested data sets

include the real data set mixed and the correlated synthetic

data set, CD [14].

In the sequel, we only present the experimental result ap-

plying the Singular Value Decomposition (SVD) [20]. Note

however, that our cost model is applicable to arbitrary di-

mensionality reduction techniques. Moreover, we limit the

maximum reduced dimension of either LDR or GDR to 16.

7.1 Verification of Cost Model
First, we verify the correctness of our cost model for

LDR and GDR on synthetic data sets. Specifically, for each

(a) PP vs. data sets (b) CC vs. data sets

Figure 3. LDR Cost Model on Synthetic Data Sets
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Figure 4. Effects of the Query Radius

data set, we divide it into m partitions. Then, for data ob-

jects in each partition Pi, we reduce their dimensionality

d to either di locally (LDR) or dG globally (GDR). Within

each partition, we randomly choose one data object as the

pivot. In order to evaluate the estimation of the model,

we generate 2000 range queries, half of which are used for

statistics extraction and the other half for the performance

test. In particular, we randomly pick up data objects in the

data set as query centers and produce radii with the mean

µR and variance σR. When a range query q arrives, we

consider two measures, the pruning power and computa-

tion cost, during the similarity search. Meanwhile, we also

compare them with values estimated by the cost model.

Figure 3 illustrates the pruning power and computation

cost of LDR with synthetic data sets, uniform, Zipf0.1,

Zipf0.2, Zipf0.5, Zipf0.8, Zipf1, and Gaussian, comparing

the estimated with actual ones, where the total data size N
= 64K, the dimensionality of data objects d = 100, the num-

ber of partitions m = 10, µR = 0.025 and σR = 0.005. For

all data sets, our cost model can closely estimate the real

values of both the pruning power and computation cost.

Figure 4 illustrates the effect of the query radius on cost

model evaluation. Specifically, we compare the estimated

with the actual pruning power and computation cost on data

sets mixed, uniform, skew0.5 and Gaussian. In particular,

Figures 4(a) and 4(b) fix the radius variance σR of range

queries to 0.005 and test the radius mean µR with values
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Figure 5. Cost Model Evaluation on Synthetic Data Sets

0.005, 0.01, 0.025, 0.04 and 0.05, whereas Figures 4(c) and

4(d) set the radius mean to 0.025 varying the radius vari-

ance σR = 0.001, 0.002, 0.005, 0.01, 0.02. When the mean

of the query radii increases, the number of pruned objects

(i.e. pruning power) decreases and the computation cost

increases, since more candidates are included. When the

radius variance changes, the estimation from the cost model

is always close to the real values. In summary, the esti-

mated values based on our cost model can always mimic

the actual ones closely under different µR. Therefore, in

the subsequent experiments, we fix parameters µR = 0.025
and σR = 0.005.

Next, we study the effectiveness of our cost model by

varying different parameters N , d and m, over three syn-

thetic data sets, uniform, Zipf0.5, and Gaussian. In par-

ticular, Figures 5(a) and 5(b) demonstrate the experimental

result of LDR with different data size N = 16K, 32K, 64K,

128K and 256K, where d = 100 and m = 10. Figures 5(c)

and 5(d) vary the dimensionality d of the data from 25 to

400, where N = 64K and m = 10. Similarly, Figures 5(e)

and 5(f) present the result of LDR with the number of par-

tition m = 1, 5, 10, 15 and 20, where N = 64K and d = 100.

Furthermore, Figures 5(g) and 5(h) also study the effective-

ness of our cost model using GDR method with the reduced
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Figure 6. Cost Model Evaluation on the Real Data Set

dimension dG = 2, 4, 8, 12, and 16, where N = 64K, d =

100, and m = 10. Note that, since we randomly select piv-

ots in the data set, the resulting pruning power or computa-

tion cost in figures may not be the optimal ones. Therefore,

curves in these figures cannot show the real trend by vary-

ing parameters. However, this does not matter, since our

major concern is to verify whether our cost model can in-

deed estimate the real pruning power and computation cost.

From the complete set of experiments, we can see that the

proposed model can mimic the actual values very well, for

both LDR and GDR.

Figure 6 illustrates the same set of experiments on the

real data set mixed, where similar results to the synthetic

data sets are obtained. Specifically, Figures 6(a) and 6(b)

test the effect of the number m of partitions in LDR,

whereas Figures 6(c) and 6(d) that of the reduced dimen-

sion dG in GDR. In summary, our cost model can correctly

estimate the actual cost on both real and synthetic data sets.

7.2 Query Performance of PRANS vs.
MMDR

As a second step, we evaluate the pruning power and

I/O cost by comparing two LDR approaches, MMDR and

PRANS. Specifically, MMDR is a state-of-art LDR ap-

proach, which detects clusters of ellipse shapes with the

help of Mahalanobis distance, whereas PRANS divides the

data set into several partitions according to the cost model

estimation, which can achieve high pruning power. Both

MMDR and PRANS hash each data object to a unique key,

and then index it in a B+-tree using the iDistance method.

We do our experiments on the real data set mixed, as well

as the synthetic data set, CD. In particular, CD is a local

correlated data set used in [14], which contains 64K 100-

dimensional data objects. Figure 7 illustrates the pruning

power and I/O cost on the MMDR and PRANS partitions,

the number m of which is set to 5, 10, 15 and 20. Specifi-

cally, Figures 7(a) and 7(b) show the result with the real data

set mixed, whereas Figures 7(c) and 7(d) demonstrate that
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Figure 7. MMDR vs. PRANS on Real and Synthetic

Data Sets

for the synthetic data set CD. For all the figures, PRANS
outperforms MMDR in terms of the pruning power and I/O

cost, since our PRANS is based on the cost model, such that

the cost is close to optimal. In summary, by indexing par-

titions after the procedure PRANS, it can achieve efficient

query performance, compared to MMDR.

8 Conclusions
Similarity search, for example, range queries, has a se-

rious problem with query performance degradation in high

dimensional space. Previous work to solve this problem in-

clude the global and local dimensionality reduction tech-

niques (i.e. GDR and LDR), which reduce the dimensional-

ity of data objects to one fixed lower value and various dif-

ferent lower ones, respectively. However, the proposed ap-

proaches are heuristic-based, requiring the specification of

some data-dependent parameters. In particular, it is neces-

sary to set the reduced dimension for GDR and some thresh-

olds in LDR. Motivated by this, in this paper, we propose

a formal cost model to evaluate the effectiveness and ef-

ficiency of both GDR and LDR for range queries. Further-

more, we present a novel partitioning-based LDR approach,

PRANS, which is based on our cost model and can achieve

good query performance in terms of the pruning power. Fi-

nally, the resulting data objects after the dimensionality re-

duction are indexed in a B+-tree following the iDistance
framework for efficient similarity search. Extensive ex-

periments have verified the correctness of our cost model

and indicated that, compared to the existing LDR method,

MMDR, PRANS can result in partitions with low query

cost.
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