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Abstract Among the early work on XQuery buffer managementis
the staticprojectiontechnique implemented in Galax [13],
Effective buffer management is crucial for efficient in- and refined in [3, 4], where only the parts of the input rel-
memory and streaming XQuery processing. We propose aevant to query evaluation are loaded into memory. Yet as
buffer management scheme which combines static and dythe projected document is computed before query evalua-
namic analysis to keep main memory consumption low. Ourtion can start, buffer management during query evaluation
approach relies on a technigue that we call active garbage is not an issue.

collection and which aCtively purges buffers at runtime While Galax is an in-memory XQuery engine’ other sys-
based on the current status of query evaluation. We havetems have been specifically designed to operate on XML
built a prototype system for a practical fragment of XQuery streams [11,12]. These works evaluate parts of the query
which employs our buffer management scheme. The experon-the-fly with no or only little buffering, using static dna
imental results demonstrate the significant impact of com- ysjs of data dependencies and schema information [11], if
bined static and dynamic analysis on reducing main mem- avajlable. However, for many practical queries involving

ory consumption and running time. blocking operators or descendant axes and wildcardg littl
_ can be evaluated on-the-fly [1,5,11,12].
1 Introduction In the above systems, the decision when buffers are

Over the past years, XQuery has evolved into a powerful Purged is made at compile-time. In the case of the FluX-
and widely accepted query language for XML processing. Query engine [11] and similarly in [12], the lifetime of a
Various in-memory XQuery engines have been developedbuffer is associated with the scope of an XQuery variable.
[3,6,11,13,19] and it has been repeatedly observed that/Vhile buffers can be conveniently deleted once the scope
main memory consumption remains a crucial bottleneck in Of the associated variable ends, it becomes difficult tocavoi
XQuery evaluation. In particular when XQuery is evaluated that data |s_buffered twice. Such situations can arise if an
on streams, the input cannot be completely buffered prior to XML node is bound by different variables, e.g. as is re-
query evaluation. Here, good buffer management becomediuired for checking a condition and for producing output. In

thekey prerequisite to performance. particular for queries with descendant axes and wildcards,
gine will (1) only put data that is relevant for query evalu- We argue that in order to come closer to satisfying

ation into the buffer, (2) not keep data buffered longer than desiderata (1) through ()pth static and dynamianalysis
necessary, and (3) not keep multiple copies of the data inare required: Based @tatic query analysisve can incre-
buffers. These goals are conflicting, for instance, a systemmentally compute @rojectionof the input document, thus
optimal for (1) would have to be able to check satisfiabil- buffering only data that is relevant to query evaluation {13
ity of XQuery expressions, an undecidable problem (this is In addition, we can statically infer the moments during
implicit e.g. in [2]). query evaluation when buffered nodes haeeoméirrele-

We claim that in order to come closer to meeting these vant” for the remaining query evaluation, namely each time
three desiderata, a combination of static analysis and dy-that a query subexpression has been evaluated. Yet to delete
namic buffer minimization techniques is needed. In vir- nodes from the buffer early on during query evaluatityz,
tually all current systems, the decisions regarding what namic analysiss required which takes into account the cur-
to buffer and when to delete from buffers are made at rent buffer contents, the state of query evaluation, and the
compile-time only, based on pure$atic query analysis  progress made in reading the input. Obviously, we may ex-
[3,6,11,12,16]. Let us review the buffer management strate pect the impact ofombined static and dynamic analysis
gies of some existing XQuery engines. main memory consumption to be greater than what can be
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Garbage collection [20] is a well-understood technique title{"> "7} authot"®

for automatic memory management in programming lan- | © | (/booK bib{r2} (book
guages. The basic principle of any garbage collector is to Praorsre) (title/)
determine which data objects in a program will not be ac- book \ (authorl)
cessed in the future, and consequently, to reclaim the stor- tittle 77} authal™s) (/book
age used by these objects. A simple yet effective garbage [~ 7 bibtr2}

collection strategy iseference countinwhere every object |

counts the number of references to it. When a reference booktms}

is created to an object, its reference count is incremented.

Likewise, the reference count is decremented when a refer- title {77}

ence is removed. Once the count reaches zero, the object is
deleted and its memory is reclaimed. A major advantage of
this approach is that the memory overhead is small.

~ Our approach is strongly related to reference counting Example. The following XQuery expression first outputs
insofar as each node in the buffer keeps track whether it isa|| children of the bib node for which no price exists. Next,

still relevant to the remaining XQuery evaluation. Instead ook titles contained in the document are output.
of counting references, we employ the conceptralés
which are assigned to nodes. Intuitively, a role serves as., ¢
a metaphor for the future relevance of a given node. While for $bib in /bib return
iti i el ((for $x in $bib/ * return
a _tra_dltlonal garbage coIIecto_r [g@ssivein the sense that if (otlexists Sxiprice) then $x else Q).
it is invoked whenever there is no more space to allocate for $b in Sbib/book return $bititle)
new objects, our approach differs in that itastive That } <ir>
is, we purge buffers from irrelevant nodes early on. In fact,
garbage collection is invoked whenever the scope of a vari-We refer to the for-loop introducing variablgbib by
able ends. Thus, both the high watermark and the averagdory,;,, and likewise uséorg, andfory,.
main memory consumption remain low. In static analysis, we derive thgrojection treewith

The basic idea behinaktive garbage collectiois clean ~ N0desny, ..., n7 shown in Figure 1. In the following we
and simple: From the path expressions in the XQuery we US€ the abbreviatiordbs’ for descendant-or-selfrhe pro-
statically derive a set of roles. While reading the input J€ction tree defm_es the parts of the m_putthat are coplce_nl int
stream, the tokens are matched against the set of possiblg€ buffer. For instance node, (which refers to the if-
roles. A node can be assigned several roles when it is use@ondition in the query) defines that only the first price node
in the query in several different contexts. Moreover, a role — Without descendants — needs to be buffered. However,
can be assigned to a node several times; this can happen ffue tons, we are forced to buffer all children of the bib
queries involve XPath expressions with descendant-axes. node with their complete subtrees.

I , . Each projection tree node; is assigned the role;.
At compile-time, we determine the moments during ; . .
. . While parsing the input stream, the nodes of the document
guery evaluation when nodes lose roles. At runtime, the

buffer manager is then notified that all nodes reachable viaWIII be incrementally projected into the buffer and marked

a path w.r.t. the current variable binding lose a certaia.rol with roles on-the-fly. FurthesignOff-statements are stati-

. : cally inserted into the query. At runtime, these statements
Once a node has lost all of its roles, it can be safely deletednothcy the buffer manager that certain nodes lose theistole
if none of its descendants is assigned any roles. 9 )

Figure 2. Active garbage collection.



<r> {
for $bib in /bib return
((for $x in $bib/ * return
(if (not(exists $x/price)) then $x else (),
signOff($x,  73), signOff($x/price[1],
signOff($x/dos::node(), 5)),
(for $b in $bib/book return
($brtitle,
signOff($b,  7¢),
signOff($bititle/dos::node(),
signOff($bib, 79))
} <ir>

T4),

7)),

The query is sequentially evaluated on the buffer until tnpu
is required that has not been buffered (yet). In this case,
the query evaluatdrlocksand requests further input, upon
which the input stream is read until a token is found that is
matched by the projection tree (or the stream is exhausted)
As soon as a matching tokeris found, we assign for each
matched projection tree nodg the roler; to tokent. Next,

the token is loaded into the buffer and query evaluation is
resumed. In contrast to projection as implemented in Galax
[13], where the whole document is projected into the buffer
before starting evaluation, in ogull-basedapproach the
buffer is filled incrementally during evaluation, as needed

by the evaluator. Whenever the query evaluator encounters

asignOff-statement, it notifies the buffer that certain nodes
lose their roles. The buffer then performs the role updates
and invokes active garbage collection.

Let us consider the evaluation of the query on the input
stream (bib) (book (title/) (author) (/book . ... Figure 2
shows for several steps what has been read from the inpu
stream, the current buffer contents, and the output pratiuce
so far. In step 1, the opening tdg) is output. Next, the
query evaluator tries to evaluaterg,;,, but has to block
as the required input is not yet available in the buffer. In
step 2,(bib) is read. As it is matched by projection tree
nodens, this document node is copied into the buffer and
assigned role,. The query evaluator evaluat&sg,;, and
binds variablebbib to the buffered node. Next, it tries to
evaluateforg,, but has to block as relevant data is missing.

In step 3,(book is matched by several projection tree
nodes, and hence is buffered and assigned the rgles,
and rg. Now variable $z is bound to the book node,
but the evaluation of the next query subexpression “if
not(exists($x/price)) then $x else ()" has to wait for input
In step 4, the bachelor tagitle/) is read. As matched by
the projection tree, they will be buffered and annotateth wit
rolesrs andr;. The evaluation of the if-expression blocks
again, also after reading the author node.

In step 6,(/book is read. The if-expression can be eval-
uated and the node to whidh: is bound is output. Next,
the sequence dofignOff-statements is evaluated. For in-
stance, execution of “signOff($x3)” causes the buffered
book node to lose roles. The author node loses its single
role r5 in the course of evaluating thegnOff-statements
and, as it has no descendants, can be purged from the buffe
Each of the remaining nodes carries a role which marks it
as relevant for the future evaluation fofry,. Now query

evaluation again returns to evaluatiiogg, and blocks until
the next token has been loaded into the buffer.

Contributions

e This paper proposes the first buffer manager for stream-
ing XQuery engines which employsatic and dynamic
analysis to reduce main memory consumption.

e We introduce the notion of assigninglesto buffered
nodes. Roles serve as a metaphor for the relevance of a
node for query evaluation. We show how roles are as-
signed to nodes, how nodes lose roles during query eval-
uation, and when nodes can be deleted from buffers.

¢ We extend the well-established technique of static docu-
ment projection [3, 13] so that roles are assigned to doc-
ument nodes on-the-fly during projection.

e We proposective garbage collectioas a novel buffer
management technique for streaming XQuery engines.
We explore our technique for the practical fragment of
composition-free XQuery [10].

e Our prototype implementation shows the significant im-
pact of active garbage collection on main memory con-
sumption and query evaluation time. As confirmed by
our experiments with XMark data and queries, combined
static and dynamic analysis outperforms systems which
rely on static analysis alone [11].

Structure. We provide the preliminaries in Section 2 be-
fore introducing our XQuery fragment in Section 3. The
ftatic analysis presented in Section 4 forms the groundwork
or active garbage collection at runtime, which is presénte
in Section 5. Implementation and optimizations in our pro-
totype system are introduced in Section 6. We conclude
with the discussion of experimental results in Section 7.

2 Preliminaries

Let Tagbe a set of node labels (or “tags”) and &ar
be a set of characters. We consider XML without attributes
as our data model. This poses no substantial restriction as
attributes can be handled in the same way as children of
a node. Each XML document has a root node, which we
refer to byroot. We will repeatedly switch between the
dual views of XML documents as unranked, ordered, and
node labeled trees over the two-sorted domain of nodes
(with tagnames fronfag) and values (strings over alphabet
Char), and streams of opening and closing tags, and char-
acter sequences. The depth-first left-to-right travergal o
the tree in document order yields the corresponding XML
stream, while the stream encodes an unranked labeled
tree. For a document treg, let dombe the set of nodes.
When comparing node-sets, i.e. sets over dordaim we
compare node-identifiers onlj’| denotes the size &f.

Definition 1 Let 7' be a document tree and lebm be
the set of nodes ifi". Let S C dombe a node-set with
root € S. Theprojection of " w.r.t. § denotedIs (7)), is
the document tree consisting of the nodeseind with the
ancestor-descendant and following relationships &5 inl
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Figure 3 shows an XML document trdewith node-set
{n1,...,ns} and tag namesaq, b, ¢, d}, and the projected
treesllyy,, n, sy (1) @andlly,, n, ng (T).

The goal in document projection is to preserve only those
parts of the input document that are relevant for query eval-
uation, while discarding the rest. Previous work on preject
ing XML includes [3,4,13] and is based on projection paths
to specify the nodes relevant for query evaluation. In [B,13
all document nodes which are matched by some prefix of a
projection pathand their ancestors are preserved, while in
our approach ancestors of matched nodes need not alway:
be kept. For instance, when projecting for XPath expres-

sion//b on treeT” from Figure 3, we only preserve nodg,
rather than the projected documéht,, ., ,,,1 (7).

Our approach is more effective in reducing the size of the
projected documents when descendant axes are involve
For instance, consider the document tree from Figure 4(a)..

The projected documents for XPath expressitaib and
/allb are shown below.

ni:a ni:a

I PN

ng:b n3:b ng:b
projection for/a/b projection for/a//b

Yet if we simultaneously project foboth XPath expres-

A set of projection paths can be summarized in a pro-
jection tree. For instance, the projection tree in Figuag 5(
contains the XPath expressiofegb and/a//b. Here, non-
leaf nodes reflect the XPath (sub)expressions, while thHe lea
nodes are labeled withdbs' (descendant-or-s¢lind de-
note that, in projecting the document, descendant nodes of
/a/band/a//lb must not be discarded.

Formally, aprojection treeis an unranked, unordered
tree where the root is labeled’“(which denotes that all
paths are absolute) and the inner nodes are labeled with lo-
cation stepsaxis::{p|] whereaxis is an XPath axihild,
descendanbr descendant-or-selndz is either the sym-
bol “x”, a tagname, or the wildcardode() Predicate
[p] is either ‘ftrue)”, in which case it can be omitted, or
[position) = 1]. We will employ the position information
for existence checks in XQuery expressions, where we are
only interested in the first witness of a node. We use com-
mon XPath abbreviations, e.fgbib for /descendant::bip
and shortemescendant-or-selfo dos

V1 - /
/ \
vg :.Ja vs @ .Ja

U3 /b Ve - /b

vy : dos::node() v : dos::node()
@ (b)
Figure 5. Projection with a lazy DFA.

Similar to processing XPath on streams [9], we realize
stream preprojection with a lazily constructed deterntiis
finite automaton (DFA). Due to our restriction to a fragment
of forward XPath [15], the decision whether to discard a
document node can be already made when reading its open-
ing tag from the input stream.

For instance, while projecting the input document from
Eigure 4(a), we compute the DFA in Figure 5(b). There is
a straightforward mapping from DFA states (which reflect
paths in the input document) to multisets of projection tree
nodes. In detail, a DFA statg maps to a projection tree
nodew if the XPath representation of(the path from root
/" to v) matches the input document path described by
he multiplicity of the projection tree node in the multiset
is defined as the number of possible path step assignments
that lead to matches, e.g. XPath expresgiafib matches
path/a/a/bin two variations, either with path stéfa bound
to the first or to the secondin the path.

Example 1 For the projection tree in Figure 5(a) and the
DFA in 5(b), g0 maps to the singleton s¢t; }, ¢; maps to
{vq,v5}, Stateqga maps to the empty set, stajg maps to

sions, e.g. as both occur in an XQuery expression, then we{vs}, and state, maps to{vs, vg}.

need to preserve the complete input tree in this example.

Discarding nodex; would promote node:; to a child of
n1, and the evaluation of XPath expressiarb on the pro-
jected document would produce an incorrect result.

Consider the same DFA and the projection tree in Fig-
ure 4(b). Here, statg¢; maps to the multisefvs, vs }, as the
XPath representatiotta//b of v3 matches patla/a/b of g3
with multiplicity 2. O



The mapping is exploited at runtime. Assume we are
currently in a DFA state and read an opening td¢g). We
identify two cases where XML nodes read in the input doc-

ument must be preserved. (1) There is a transition defined |

from stateg into a statep under labet, where the successor
statep maps to a node in the projection tree. (2) State
maps to nodes andw in the projection tree (which need
not be distinct), where has a child labeledhild::a andw

has a child labeledescendant::dor the same tagname
Intuitively, in case (1) the current node must be preserved

as it matches a projection path, whereas case (2) avoids er-

roneous promotion of descendant nodes.

Example 2 For the documentin Figure 4(a), the projection
tree in 5(a), and the DFA in 5(b), a crucial point is reached
when we are in DFA statg; and read node, with tag-
namea from the document. The first condition for node
preservation does not hold, as the successor gatioes

not map to any node in the projection tree. Yet the second
condition is satisfied, as statg maps tov, anduvs in the
projection tree, which have children labelddand.//b. [

In general, given a projection tréeand an input doc-
umentT’, we denote the set of nodes which are in the pro-
jected documenttree 84¢|(T'). For further examples, con-
sider the projection tre€ in Figure 4 and the document
treesT andT” in Figure 3. HereT” = Ilppyp ) (T) is a
projection of " w.r.t. ¢'.

Finally, we introduce the concept of roles, which forms
the basis of active garbage collection at runtime. roés
be afinite set of elements. Arole-setis a multiset cokas,
defined as a function where : roles — IN maps roles
to their multiplicity in the role-set. Naturally, multipity

Q:= (a)q(/a)
g:= ()] (a)q{/a) | var|var/axis:: v | (q, ... ,0q)
(if condthen{a) else(), q, if condthen(/a) else())
for var in var/axis :: v returnq
if condthenq elseq
cond::= true() | existsvar/axis:: v | var/axis:: v RelOp string
| var/axis:: v RelOp vayaxis:: v
| condandcond| condor cond | notcond
axis::= child | descendant
vi= alx*|text()
RelOp:= < |<|=|>]|>

Figure 6. XQuery fragment XQ.

3 Query language

In this section we define our XQuery fragment XQ,
which comprises arbitrarily nested for-expressions, ¢ond
tions, and joins. As argued in [10], this XQuery fragment
covers most queries without aggregates that arise in prac-
tice. Theabstract syntaof an XQ query@ is shown in
Figure 6 where: € Tag, string denotes a string value, and
varis a set of XQuery variableégr, $y, . .. with the distin-
guished root variabl&root, the unique free variable in any
query. We restrict our discussion to XQuery expressions
in which bothcondexpressions generated by line three are
syntactically equal, in order to assure well-formed XML
output. Our query fragment currently only supports atomic
equality [10] and no aggregations. However, we point out
that many syntactically richer fragments of XQuery can be
rewritten into our fragment, as in many practical queries,
let-expressions can be removed [10] and queries can be nor-

zero means a role is not contained in a role-set. A role setmalized [11,13], thus rewriting where-conditions to ieti

is empty if all roles have multiplicity zero. For syntactic
convenience, we denote the empty role-sef byWe anno-

tate nodes in document trees with role-sets, and introduce

the role-assignment functiop : dom — m which yields
the multisetn of roles assigned to a given node. We further
introduce functions for adding and removing roles, i.e. for
a noden and a roler, let p(n) = m andm(r) = i. Then
after executingadd, (r, n), (p(n))(r) = i + 1. Likewise,
after executingem, (r, n), if « > 0 then(p(n))(r) =i —1,
and ifi = 0, the removal of roles is undefined.

Role assignment is closely coupled to projection trees
and lazy DFAs. As we will show later, each projection tree
nodev defines a role. Assume we last recently processed
document node while entering DFA stat@, with ¢ map-
ping to a non-empty set of projection tree nodés Then
the document node will be buffered, and, for eacke V,
we will assign the corresponding rateto n.

Example 3 Consider the mapping of the DFA from Fig-

else expressions and replacing for-loops with multi-sbgps
nested single-step for-loops (where possible).

Semantics of XQ. The semantics of XQ is the standard
XQuery semantics. However, as we are operating on XML
streams, we will interpret XQ expressiosisictly sequen-
tially. In particular, our role update mechanism gig-
nOff-statements relies on this evaluation order. We define
the evaluation of an XQ expressianwith & free variables
using a functiorfa]; that takes &-tuple of trees as input
(i.e., anenvironmenfor k variables). The symbad de-
notes list concatenatiofy, the i-th element of list, [...] is

the list constructor, and denotes the empty list. A for-loop
is sequentially evaluated to a list of XML tokens as follows,

[for $zx4+1 in $ylaxis:v returnf]x(€) :=

W [81kr1 (€ 1) wherel = [$ylaxis:v].(€)

1<i<|l]

ure 5 to the projection tree in Figure 4(b) (see Example 1). i.e. variable $;. 1 is bound successively to each node in the
Figure 4(c) shows the projected document with role assign-list of nodes obtained from evaluating location step expres
ment for the document tree in 4(a). The multi-relefor sion $/axis::v, and the body of the for-loop is evaluated

the firstb node (in document order) has been assigned dueimmediately for each new variable binding. For a listing of
to the mapping frong; to {vs, vs}. O the complete evaluation strategy of XQ, we refer to [10].



be the node to which variabl®r is currently bound, so
DECOMP x = [$z]r(€). If 1 = ¢, thenS = {z}, otherwiseS is
the set of nodes reachable from nadeia XPath expres-
sionm, i.e. S := P[r](z). Next, we remove role from all

if X thena elses
(if X thena else(), if (not X) theng else())

if X then(ai, ..., an) else() Seo nodess in S.
(if X theney else(), ... , if X thenan, else()) We state two requirements for tisafeevaluation of an
XQuery withsignOff-statements: (1) All node removals at
if X then(a) o (/a) else() NC runtime are defined, and (2) after the query has been evalu-
(if X then(a) else(), if X thena else(), if X then(/a) else()) ated, all roles have been removed. These conditions enforce
that exactly as many instances of roles are assigned to doc-
if X then for$x in $y/axis:nt returna else() ument nodes as are removed during query evaluation.

for $z in $y/axis::nt return if X thena else() . . .
Example 4 Consider the following query and a version ex-

tended withsignOff-statements for the roles andrs.

<g> {for $a in //a

<g> {for $a in //a re<n;r>n

Figure 7. Pushing down if-expressions

Pushing if-Statements. Our approach relies on the as- return « {for $b in Sa/lb
sumption that for each buffered node the number of ini- “ffor $b in sab return, ?$%> o))}
tially assigned roles and the numbersignOffcommands </a>r}etum <b/>} _</a3g, b
received during query evaluation coincide. Role assign- </g> g SONOMSa. )}

ment takes place while projecting the input stream. At this

time, conditions inf-expressions in general can not yet be The evaluation of this query on document tiefrom Fig-

H 1
decided. As a consequence, for the executiosighOff ure 4 is safe, but not of". -
statements inside thbenor elseparts ofif-expressions no
guarantees can be made. We show in Section 4tgaOff Roles and Dependency Paths.For two query expres-
statements always will be inserted at the endoofloops. sionsa and 3, we writear < 3 (resp.,a < () to denote

By pushing allif-expressions down intor-loops, we guar-  thata is a subexpression (resp., proper subexpressioft) of
antee that neignOftcommand will be created inside an Let Vars, denote the set of variables occurring in query
if-expression. Q. For two variables$z, $y € Vargy, we say$y is the
The rewriting rules for pushing-statements are shown parent variable o$z, denotedaarVarQ($x) = $y if there
in Figure 7. In a first step, we apply ruleEBompPto each  exists a for-loop expression “fdz in $y/axis :: v return
if-then-elseexpression in the query. The resulting query, o”in Q. We say$y is an ancestor variable f:, denoted
which contains only emptif-expressions with emptglse $r <q $y, if either (1) $y = parVarQ($:v) or (2) there
parts, is then rewritten by applying rule€@ NC and  exists a variabléz such thasz < $z and$z <¢ $y. We
FoRr in arbitrary order, until a fixpoint is reached. Rule \yite . <o Sy if either$z = $y or $z <¢ $y.
SEQ pushes aif-expression inside the constituents of ase- 1 yariable tree of a query summarizes the parent-child
quence expression, while rule NC, which basically decom- re|ationships between variables. Variable trees are kedn
poses a node construct expressions, puhespressions  anq ynordered, and are defined over the noges, and
inside node constructs. Rul®R completes the setof rules, \,ith the edge relatioparVar,,. The variable tree for the
and pushesf-expressions insidéor-expressions. In prac-  gery from the introduction & shown in Example 5.
tice, we might decide to process only thatexpressions Given two variablessz <o $y, the variable path be-

with afor-loop as a subexpression. tween$y and$x is defined recursively as follows. Fdg =

Introducing signOff-Statements to XQ. In implement- Sy, varpathy ($y, $z) = . Otherwiseyarpath, (3y, $z) =
ing garbage collection, we assign roles to buffered nodes.2Xis :: v/varpath, (3z, $z) where3z is a variable such that
Nodes lose roles when they have become irrelevant for theb* <q $z <q $y with the query expression “foz in
remaining query evaluation. Hence, we need a mechanismpy/axis:: v returna” in Q. S _ .
for signalling the buffer manager at runtime that certain ~ Letrg : XQ — rolesbe an injective function assign-
nodes lose their roles. To this ersignOff-statements are  ing a role to each XQ expression. We define dependencies
inserted into queries at compile-time. dep($x) as sets of tuplegz/m, ) where$z is a variabler

A signOff-statement is an expression of the form IS a path expression, ands a role. Informally, dependen-
signOff($z/m, r) where$z is a variabler is a relative path ~ Cies contain paths relative to the binding of variabte In
expression, and is a role. LetT be a document tree and  Particular, in evaluating existence checks on XML streams,

let p be the role-assignment function. L&tbe an envi-  We are only interested in the first witness, while in output
ronment ofk variables, letSz be a variable irg, and let ~ and comparison expressions, we are interested in the rele-
r be a role, then the semantics [signOff($z/x, )]« (&) vant nodes together with their subtrees.

is the following: First, we define a node-s8t Let x



Definition 2 Let @ be a query in XQ andlx € Varsy. The Rewriting XQ Queries. At runtime, the goal is to issue
set ofdependencies of variable:, denoteddep$x), is de- signOff-statements as early as possible so that the size
fined as follows. Leps < @ with 7 (5) = r, then of the main memory buffer remains small. At the same
time, update commands must never be issued too early,
as this could corrupt the query result. The insertion of
signOff-statements into queries must assure the latter.

Definition 3 Let ) be an XQ query and ldiz € Vars;.
Variable $z is straightif either $z = $root or there is a
query expressio =“for $z in $y/axis:iv returna” such
that (1) $y is straight and (2) there is no for-loop expres-
siony =“for $u in $v/axis::v’ returna’” where $u is no
ancestor variable dfz andg < v < Q. O

o (axis:w[l],r) € de$z) if 0 ="exists@z/axis:v)",

e (axis:v/dos::node()r) € def$z) if g is either an
output expression of the fornf//axis::v” or a condi-
tion expression of the form$#/axis::.v RelOp x” or
“x RelOp$z/axis:v ", and

e (dos::node()r) € dep($x) if B ="3$x". O

4 Static Analysis

In the static analysis phase the projection tree is com-
puted from the query, so that at runtime, a projected version
of the XML input stream can be computed. Each projection
tree node defines a role. As described in Section 2, these def {$x if $z is straight

Definition 4 Let @ be a query and letx € Varsy. The
first straight ancestor variablef $z is defined as

roles are assigned to buffered nodes while preprojectiag th fsa, (Sz) =
document. By statically insertingignOff-statements into

the query, buffered nodes finally can be deleted at runtime,Example 6 Variables$a and$b in the queries from Exam-
once they have become irrelevant to query evaluation. Weple 4 are straight, i.dsa,, ($a) = $a andfsa;,, ($3b) = $b.

fsa, (parVar, (8z)) otherwise. O

can make the following guarantees. In the queries from Figure 9, variab$ is not straight, in
Theorem 1 (Correctness)Let @ be an XQ queryT be  Particularfsa,, ($b) = $root U

the input document tre€)’ be the rewritten query) with We are now in the position to state the rules for inserting
signOff-statements, and |&t’ be the projected document  sjgnOff-statements into queries. Informally, at the end of
tree with assigned roles. Th¢@]: (1) = [Q']+(T"). the scope of each variable, all nodes that depend on

Deriving Projection Trees. Given an XQueryQ in our $2 and for which$z is the first straight ancestor variable
fragment, we now show how to derive the projection tree l0se their assigned roles. Tratatic XQ rewriting rules
that will be used to compute the projected document. Theshown below use algorithsw, (Figure 8). This algorithm
key ideas of our approach are the following. For existence-computes alisignOftcommands for a given variable, i.e.
checks in conditions, it suffices to keep the first witnesgfor (1) for each variablez different from $root the role
path, as any further witnesses are irrelevant for queryueval update for all document nodes variaBtewill be bound to
ation. Whenever a node is output or compared in conditions,is emited, and (2) for each dependency of the variable, a
the node and all of its descendants need to be contained irforrespondingignOff-statement will be created.

the projected document tree. Finally, when for-loops teera B:{a) a(la) 6=0Q)
over node-sets, the nodes to which the variables bind are (a) (o, sug($root)) (la) B
relevant to query evaluation, yet their subtrees are iegie B : {for $z in $y/o returna}

for the variable bindings per se. These considerations are {for $z in $ylo return @, sug(5z))} (8=Q)

captured by the dependencies (see Def. 2). _ i _ .
Given query, we derive the projection treeand a The first rule applies to the que€y itself and inserts the

mapping’, from nodes irt to roles in three steps: First, we ~ correspondingignOff-statements for variablgroot. The

construct the variable tree @f. Next, the variable tree is S€cond rule insertsignOff commands for the remaining
extended by nodes labeled with path expressions: For eacfyariables, always at the end of their introducing for-laops
variable$z and for each($x/m,r) € def$x), we add a  Example 7 Let Q (Q’) denote the query (rewritten query)

noden with label “7”, an edge from$z to n, and we de-  from Example 4. Each buffered document node to which
finer.(n) := r. As afinal step, the root node is relabeled a variable$a or $b is bound loses its role once the scope
“I" and for each variable node labeled$x with the corre-  of the respective variable ends. We denote the result of
sponding for-loops ="for $z in $y/axis:w returna”, we  evaluation query against document tréE with variable
relabeln with “axis::” and definer, (n) = rq (). $root bound to the document root K], (T"). For doc-

y . .
Example 5 Consider the query from the introduction with ument treesl” and 7" from Figure 4, we can verify that

its variable tree and dependencies as shown below. [Q:(T) = [QT.(T"). O
$r(|)ot Example 8 Let Q (Q’) denote the query (rewritten query)
$bib {/dos::node()rs)} from Figure 9. Figure 4 shows the projection trééor @
7N\ ’ and the annotated projection’8f The role updates for the

$x, 5 ) de_%(%) - {(/title/do§::n9de()r7)} b nodes are issued with the end of the scope of variéble
The final projection tree is shown in Figure 1. [ Here,[Q]1(T) = [Q']:(T"). 0

dep, ($z) = {{/price[1], r4),



Algorithm sug (variable $z): Algorithm signOf{$x/x, role r):
begin begin
if (8 # $root) then let z be the node to whicliz is bound;
begin let node-setS be defined as follows:
let $z be defined i3 :“for $z in $y/axis:v returna’; if (t =€) thenS := {z} elseS := P[x](z);
emit “signOff(Sz, ro(8))"; for eachnoden in S
end begin
for eachvariable$z in Vars, such thafsa, ($2) = $x executerem, (r, n); // remove role from nodes ifi
begin while (n # rootand n is irrelevant)/ local search
leto = varPathy ($z, $z); begin
for each (7, r) € dep, ($z) emit “signOff($z/o/r, r)"; let p be the parent node af;
end end if (n is finished)then deleten;
elsemarkn as deleted
Figure 8. Static query rewriting. andultimatelydeleten when its closing tag is read;
ni=p;
<> <q> ({for $a in //a end end end
{for $a in /la return . . .
return (k> Figure 10. Localized garbage collection.
<a> {for $b in //b
{for $b in /b retum <b/>} - - A
return <b/>} <la>), | Buffer 1 @
<la> signOff($a, r1))}h { input stream P rl1 ode lookup
} <lg> signOff($root//b, r2)) v nodes/roles | ?garbage collection getNext(Sx/m) v
/i - - |
R Stream fodefeos | Buffer  [|nodemutt Evaluator
Figure 9. Inserting signOff-statements. Preprojector |nexNode0|  Manager oK

signOff($x/m,r) :
output streamy

5 Active Garbage Collection

Active garbage collection relies on the correct interplay
of (1) the assignment of roles to buffered document nodes
and (2) the timely removal of roles and ultimately, docu-  Our experiments confirm that the overhead imposed by
ment nodes from the buffer. A buffered node is calied  the buffer cleanup algorithm is smallin practice. A key pre-
relevantif neither the node itself nor any of its descendants requisite to this small overhead is that in algoriteignOff
carry a role. In the following discussion we assumes that for each updated node, buffer updates start at the local po-
the buffer contains the projected input document and thatsition of the update and stop as soon as the first irrelevant
buffered nodes for which the closing tag has not yet beennode is detected. The conceptsagfjregate roleandelimi-
read are marked “unfinished”. At runtime, Streaming doc- nation of redundant roleﬂresented in Section 6 will further
ument projection and role assignment are coupled, so thafeduce the computational overhead of buffer cleanup.
document nodes are always copied into the buffer together .
with their corresponding roles. 6 System Implementation _

Normally, traditional garbage collectors start searching ~We have implemented active garbage collection for a
for memory that can be freed whenever there is no morePrototype XQuery engine, the GCX system. GCX is im-
space to allocate new objects. Our approach differs in thatPlemented inC** which, in contrast to garbage collected
garbage collection iactive That is, we purge buffers from Ianguage_s, gives dlr_ect control over memory allocation and
irrelevant nodes every timesignOff-statement is issued by ~ deallocation, a crucial aspect when designing a query en-
the query evaluator. As the garbage collector is invoked 9ine with low memory consumption.
quite often, it is desirable to restrict the search spac@for System Architecture. The architecture of GCX com-
relevant nodes within the buffer. Figure 10 shows how we prises three components, theery evaluatoy the stream
handlesignOff-statements and perform@calizedgarbage  preprojector and thebuffer manageras sketched in Fig-
collection: After a node has lost a role due tsignOff- ure 11. The interaction between the componentsul-
statement, the garbage collector checks whether it can béasedas follows. (1) The query evaluator evaluates the
deleted. If this is possible, the garbage collection prdsee rewritten XQ expression until it has tock either because
bottom-up in the tree. Thus, deletion of nodes from the a new node is required (e.g. when a variable is bound to the
buffer can propagate up to the document root node. Thenext node in its for-loop) or aignOff-statement is encoun-
treatment of “unfinished” nodes in the buffer requires extra tered. In both cases, a request is issued to the buffer man-
care. An unfinished node is not deleted to avoid buffer cor- ager, and query evaluation remains blocked until the buffer
ruption. Instead, it isnarkeddeleted and ultimately purged manager has responded. (2) The buffer manager answers
from the buffer once the corresponding closing tag is readto the requests of the query evaluator. If data is required
from the input stream. that is not resident in the buffer, the buffer manager in turn

Figure 11. System architecture.



if the correspondingignOff-statements are removed from
_ the queries, then both main memory consumption and run-
nz : Ibib time benefit from this optimization.

n1:/

ng : [ x Iprice[l] ns : / x /dos::node() n7 : /book/title/dos::node() 7 Experimental Results
Our implementation GCX was experimentally evaluated
sendsnextNode(requests to the stream preprojector until using a number of XMark [21] queries. Our prototype was
the data is available in the buffer or it has become evidentimplemented exactly as described in this paper. We empha-
that the data does not exist in the input (e.g. as the inputsize that no other optimizations were applied than desgribe
has been exhausted). The receptiosighOff-statements  in the implementation section.
triggers the active garbage collection, as discussed in Sec As the XQ fragment introduced in Section 3 does not
tion 5. (3) Once it has been activated by the buffer manager,cover the full XQuery standard, queries were adapted ac-
the stream projector processes the input stream until atoke cordingly. In detail, for all benchmarks, we converted XML
relevant to query evaluation is detected. This token is thenattributes into subelements, replaced aggregations ssich a
copied directly into the buffer, together with its assoetht  coun{$z) by outputting the value dfx instead and rewrote
roles. Via this chain of commands, the query evaluator in- multi step paths in for-loops to single step patltg20 is
crementally reads the input stream and evaluates the querydentical to Q20 from [7], with paths steps transformed
on-the-fly. In the following, we discuss the design decision to single path step expressions. All systems were bench-
in GCX . marked using the adapted streams and queries.
Buffer Representation. AsS our query fragment is We Considered XMark documentS Of SizeS betWeen

composition-free [10], all XQuery variables bind to nodes 10MB and 200MB, generated with the XMark data gen-
in the document tree. Hence, there isimglebuffer which ~ erator. Benchmarks were carried out on a 3GHz CPU In-
contains the (currently relevant) projected document tree tel Pentium IV with 2GB RAM, running SuSe Linux 10.0.
Our buffer datastructure is simple, with parent-child and All Java-based systems were executed using J2RE v1.4.2.
next-sibling pointers between nodes, thus keeping the mem-As reference implementations we considered a broad spec-
ory overhead for the tree representation small. Moreover,trum of XQuery engines: The most appropriate systems are

we use a symbol table to replace tagnames by integers. ~ Saxonv8.7.1[18], FluXQuery [7], and QizX/openv1.1[17]
(all three Java based), as they are capable of evaluating

Early Updates. In the rewritten query from the introduc- XQuery on large input documents. In particular, the Flux-

tion, “signOff($book/title/dos::node();7)” is issued after : . i
the title node has been output. Yet if a book has more than.Query engine has been designed for XML stream process

one title, garbage collection is only invoked aftdf titles :?I?J.)(guglr” eéﬂ?tﬂr;recsz, c\:,Z)en spizjoevrfg ctjhtgelvlﬁmftg(BD;thteom

have been output. To avoid this suboptimal behaviour, LEWRD Ocoyr'nbined with XQuery-module v0.12.0 [14] v?//hich

rewrite all output expression$#/c” to equivalent expres- I: ) d FY I ) d .h .

sions “for$y in $z /0 return$y” with new variable$y. In ;(tees onsecon grylstor%gGe.S [lg]a Y er used the |r|1-memt0ry
. g . p 7 uery engine Galax v0.6. , a reference implementa-

:gfulr?]tt(eéyca:igehggzgyg;?rwﬁgging )ger|1de?/v l‘rcc>)r|e$y ,'\To%;(/ tion for the XQuery standard. While Galax has not been de-

titles lose roler; immediately after they have been output signed with XML stream processing in mind, it is often con-
7 y y PUL- sulted in XQuery benchmarks and — for this reason — also

Aggregate Roles. Each output expression involving a included here. Note that the static projection of Galax [13]
variable induces a role that will be assigned to complete ¢ould not be made to work.

subtrees rather than a single node, i.e. every node that will  The focus of our experiments is primarily on main mem-
be output as part of the expression is marked with the role.ory consumption, but we also considered query execution
In our implementation, the root node of the subtree is as-{jme. Main memory consumption was measured with the
signed araggregated rolénstead, which implicitly is “in- Linux top command. For each system and query we set a
herited” by its descendants. This optimization reduces thetmeout of 1 hour. Figure 1 shows the results of our exper-
size of the role-set while it requires only minor changes to jments. For each system and size of the input document,
the projection tree and the garbage collection mechanism. \ye measured the high watermark of non-swapped memory
Elimination of Redundant Roles. For many queries, consumption, and the total query evaluation time. “n/a” in-
roles are introduced that actually are redundant. For in-dicates that the query could not be expressed in the language
stance, consider the query from the introduction. If the pro supported by the specific engine, while “-” denotes failure,
jection tree is changed as shown in Figure 12 andsthe e.g. caused by segmentation faults. With the Java-based en-
nOff-statements “signOff($x;)” and “signOff($brs)” are gines, we could observe that due to effects caused by auto-
removed from the rewritten query, then query evaluation matic memory management and the Java Virtual Machine,
and active garbage collection are still executed correctly memory consumption often increased with the document
Redundant roles can be detected by inspecting projectiorsize even though the buffer size remained constant (e.g. for
trees. If they are not assigned during stream projectiath, an FluXQuery).

Figure 12. Projection tree.



Table 1. Benchmark results.

[ Query | GCX | FluXQuery ] Galax | MonetDB | Saxon | QizX |

10MB 0.18s/1.2MB 1.59s / 50MB 5.45s/186MB 0.86s /30MB 1.48s / 80MB 1.20s/ 38MB

XMark 50MB 0.92s/1.2MB 3.96s/111MB | 42.33s/880MB| 3.69s/98MB 4.29s / 292MB 3.74s / 195MB

Q1 100MB 1.87s/1.2MB 6.94s/111MB 02:07/1,8GB 7.19s / 225MB 7.96s / 547MB 6.56s / 285MB
200MB 3.53s/1.2MB | 12.27s/111MB timeout 13.60s/244MB| 14.30s/973MB| 11.82s/480MB

10MB 0.34s/1.2MB n/a 7.66s / 240MB 0.98s/ 29MB 1.73s/82MB 1.56s/33MB

XMark 50MB 1.68s/1.2MB n/a 57.98s/1.2GB| 5.06s/111MB 5.78s/292MB 6.13s/169MB
Q6 100MB 3.33s/1.2MB n/a 5:08/2GB 9.94s/253MB | 10.85s/622MB| 11.74s/484MB
200MB | 6.42s/1.2MB n/a timeout 19.95s/337MB| 20.14s/1.2GB | 20.33s/805MB

10MB | 13.15s/9.8MB| 18.04s/128MB| 01:04/377MB | 02:56/407MB 6.61s / 145MB 9.89s / 148MB

XMark 50MB 05:13/43MB 06:51/169MB 33:08/1.8GB 03:26/1.35GB | 02:02/352MB | 03:38/265MB

Q8 100MB | 22:07/86MB | 27:01/216MB timeout - 08:39/650MB | 14:27 /397MB

200MB timeout timeout timeout - 32:43/1.15GB | 52:05/636MB

10MB 0.17s/1.2MB 1.60s / 52MB 5.92s/182MB 0.80s/31MB 1.53s/48MB 1.26s/28MB

XMark 50MB 0.85s/1.2MB 3.98s/111MB | 43.91s/899MB| 3.64s/98MB 4.45s [ 292MB 3.85s/195MB

Q13 100MB 1.69s/1.2MB 7.00s/111MB 02:04/1.8GB 7.34s | 224MB 8.35s/ 547MB 6.81s / 285MB
200MB 3.24s/1.2MB | 12.33s/111MB timeout 13.52s/271MB| 15.02s/1.05GB| 12.30s/480MB

10MB 0.25s/1.2MB 1.65s/48MB 6.95s/ 215MB 0.85s / 34MB 1.65s/62MB 1.43s/ 39MB

XMark 50MB 1.24s/1.2MB 4.19s/111MB | 53.08s/1,5GB| 4.17s/120MB 4.90s/292MB 4.18s/195MB

Q20 100MB 2.48s/1.2MB 7.37s/111B 03:14 / 2GB 8.47s/ 247TMB 9.13s/622MB 8.71s / 350MB
200MB 4.74s/1.2MB | 13.14s/111MB timeout 16.40s / 296MB| 16.58s/1.15GB| 15.80s/628MB

The experimental results confirm our expectations, [3] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen.
namely the significant impact of combined static and dy-
namic buffer minimization on XQuery evaluation. Regard-

(4]

ing memory usage, even for small stream sizes, GCX out-

performs most competitors by a factor of 10 or more. No-
tably, FluXQuery can evaluate queries Q1 and Q13 with
very little buffering, yet GCX shows an overall good per-

formance for small and large documents.

For queriex)1, Q6, Q13 and@20, memory consump-
tion of our prototype is independent of the input stream
size. Little has to be buffered at a time and we observe that [9]

(5]
(6]

low main memory consumption coincides with low evalu-

“A Fully

http://www-d

“Type-Based XML Projection”. IrProc. VLDB’06 2006.
S. Bressan et al. “Accelerating Queries by Pruning XML
Documents”. TKDE, 54(2):211-240, 2005.
L. Fegaras, R. Dash, and Y. Wang.
XQuery Processor.”. IXIME-P, 2006.
L. Fegaras et al. “Query Processing of Streamed XML Data”
In Proc. CIKM 2002 pages 126-133, 2002.
[7] “The FluXQuery Engine”, 2004.
sb.del scherzin/FluXQuery.html.
[8] “Galax”. http://www.galaxquery.org/.
T. J. Green et al. “Processing XML Streams with Determin-

Pipelined

b.cs.uni-

ation time, also for the FluXQuery system. Note tiat,

which contains descendant axis XPath expressions, is not

supported by FluXQuen@8 involves an XQuery join and

more nodes have to be buffered. However our system man{11]

ages to evaluate this query with low main memory con-
sumption. Similar to the FluXQuery system, joins are im-

plemented as naive nested loop joins, so runtime deterio{12]

rates for larger input documents @)8. While runtime is

vital for practical systems, this is an orthogonal issue and [13]

can be easily improved with standard database techniq

In summary, the experiments confirm that our buffer

management approach via active garbage collection
forms well both w.r.t. main memory consumption and

ues.

per-
ex-

ecution time. For a large class of queries, we can even

outperform query engines which exploit schema informa- [16]

tion [11].
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