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Abstract with high frequency, and be processed with high consumption
of CPU, disk 10, and network resources.

Position updates and query re-evaluations are two predom- The update problem associated with mobile CQ systems has
inant, costly components of processing location-basedtito  received significant attention from the research commurety
ual queries (CQs) in mobile systems. To obtain high-qualitysulting in several spatial index structures for efficiemiggrat-
query results, the query processor usually demands rewpivi ing position updates into the system [17, 8, 10, 20]. Althoug
frequent position updates from the mobile nodes. Howexr, p indexing techniques can speed up the processing of position
cessing frequent updates oftentimes causes the querysgaice dates, they do not solve the fundamental problem of overload
to become overloaded, under which updates must be droppeffhen such overloads happen, the position updates will cleg th
randomly, bringing down the quality of query results, néggt  system buffers and will cause the random dropping of the up-
the benefits of frequent position updates. In this paper, eve d dates, which (as we show in this paper) is a very ineffectiag w
velopLIRA — a lightweight, region-aware load-shedding tech- to handle overload. Surprisingly, none of the previous \work
nique for preventively reducing the position-update lodcdio have addressed the problem of effectiymlate load shedding
query processor, while maintaining high-quality queryuks.  Hence, there is a cogent need for developing intelligenatgd
Instead of having to receive too many updates and then ranload-shedding techniques for mobile CQ systems. By intelli
domly drop some of therh|RA uses aregion-awaregpartition-  gent update load shedding we mean that the load shedding al-
ing mechanism to identify the most benefislaédding regions gorithms should prevent overloads by reducing the number of
to cut down the position updates sent by the mobile nodeswith position updates received by the query processor in suctya wa
those regions. Based on the number of mobile nodes and guerighat will minimally impact the accuracy of the query results

in a region, LIRA judiciously applies different amounts of up- | this paper, we develop a lightweight load-shedding tech-
date reduction for different regions, maintaining betterec nique for reducing the update load in mobile CQ systemsedal
all accuracy of query results. Experimental results shoatth | |ra. The main idea behindika is that, given an update bud-
LIRA is vastly superior to random update dropping and clearly get (which is either calculated automatically byRla or spec-
outperforms other alternatives that do not possess filesc  fieq as a system-levehrottle fraction parameter), LRA cre-
region-aware load-shedding capabilities. Moreover, doét$  gtes g partitioning of the monitoring space into a sethedding
lightweight nature L IRA introduces very little overhead. regionsand associates awpdate throttlerwith each shedding
region, where these update throttlers define the amountdf lo
shedding to be performed for each region in accordance with
the overall update budget. Both the partitioning and the set
The proliferation of mobile devices and advances in wire-tings of the update throttlers are performed with the objeaf
less communications are creating an increasing interestin ~ minimizing the negative impact of update load shedding en th
value-added location-based services, which are expected accuracy of the query results.
form an important part of the future computing environments  The LIRA approach to update load shedding has four unique
that will seamlessly integrate into our lives [16]. A recemt  properties. First, the partitioning scheme employed byaLis
ample from the industry is the Google Ride Finder [5] service region-aware in the sense that contiguous geographical areas
which provides mobile users with the capability to emplopco  that have similar characteristics in terms of the densitynof
tinual queries (CQs) to monitor nearby taxi services. bile nodes and queries are grouped into the same load slgeddin
Mobile CQ systems serve as an enabling technology for loregions. Second, the update throttlers are set accorditigeto
cation monitoring applications. Scalable CQ middlewardde  following principle: the regions in which applying updateesl-
cation monitoring has been an active area of research irette p ding may cut down a large number of updates while maintaining
attested by several recent works, such as SINA [11], SRB [7]a minimal impact on the query-result accuracy are subjected
MAI [4], and others[[3, 1, 12]. In almost all of these systems,larger amounts of load shedding. Third, theh approach pro-
there are two sources of bottleneck in providing high-dquali vides an adjustable bound on the maximum difference between
query results. First, in order to provide fresh results therggs  the update throttlers of different shedding regions, enguhat
have to be re-evaluated frequently, consuming processidg a all mobile nodes are tracked by the system, albeit with vayyi
disk 10 resources. Second, in order to provide accuratdtsesu accuracies. This feature extends the applicability ofA_to
the position updates from mobile nodes have to be collectechobile CQ systems with snapshot and historical query suppor
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Last but not the least, IRA introduces very little overhead and _
can be employed in conjunction with any CQ systems that em% 32
ploy update-efficient index structures, such as the TP&HE]. § 0.7

We evaluate our load shedding approach using realistic los 06 Figure 1: Reduction in the
cation data synthetically generated using existing roagsma "30-5 number of location updates
and real-world traffic volume data. We devise a set of evalu-£ ** received with different in-
ation metrics to assess the effectiveness wfALand empiri-  § accuracy thresholds
cally show that LRA is vastly superior to update dropping and ~ o4
clearly outperforms other alternatives that do not provide 05—~ 30" 30" 40" 50" €0~ 70" 80~ 80 100
scale, region-aware load shedding capabilities. inaccuracy threshold, A (meters)

position updates. Lek be the maximum value that the inaccu-
racy threshold can take, which defines the lowest resolution
In this section we describe the fundamental ConceptS Undebosition updates required to achieve reasonable query BESU
lying the LIRA load shedder, introduce some of the notationscyracy. The inaccuracy threshaldcan be set to a value within
used in the paper, and present the system architecture. [Ar, A] in order to adjust the update expenditure of the sys-
2.1 Design Ideas tem. By increasing\ from A, to A, the number of updates

will decrease even though this reduction is not linear asvaho

There are two primary types of load shedding techniques th% Figur{ﬂ The figure plotsf(A), called theupdate reduction
can be used to reduce the number of position updates receiv?gctor For a given inaccurécy threshaldl € [A-, A-], f(A)
from the mobile nodesse_rver-actuate_d'?md source-actuated gives the number of position updates received relativedcése
In sen/er-actuateq shedding, the position update; arepelcbp_ of A = Ap. As observed from Figure 1, the rate of reduction in
by the C.Q server in order to maFch the updat(_a arr!val rate WltQhe update expenditure is more pronounced wAils increased
the service rate of the server. This has two major disadgasta within the proximity of A, — 5 meters, whereas it reduces to a
First, thg dropped updates are unneceS§afl|y transferoed f o 4 slope (linear decrease in the number of updates) gsts
the mobile nodes to the CQ server, wasting the network bands <ar to its maximum value k. — 100 meters
width of Wireles§ medium. Second, these excessiv_e updiites s A key observation we make in this paper is .that different re-
have to be received by the server (even though will be droppeaionS of the monitoring space exhibit different charastiss in

later), and thus contribute to the processing load. On therot terms of the densities of mobile nodes and aueries and can ben

hand, the source-actuated approach requires some cdiwdina it 1 differi " ¢ fII d sheddi qu_”:. b i

between the server and the mobile nodes, since the load she%f-I rom differing amounts ot foad shedding. 1 nis obsenal
suggests that a uniforh approach is significantly suboptimal.

ding decisions are made by the Server. , . To understand this better, we plot the desirability of lohdds
A commonly used mechanism for actuating the position up-

date reduction at the mobile node side is motion modelirap al ding for regions with differing characteristics in Table 1.

2 Overview

known a;dead reckoningl\_/lo.tion modeling uses approximation i " | low | high Table 1: Region charac-
for Ioca}tlon l_deate prediction. Qoncretely, instead oforep iow = = teristics and preference of
ing their position updates each time they move, mobile nodes - load shedding

only report the parameters of a model approximating their mo high v >

tion when the model parameters change significantly. A sig- Letn be the number of mobile nodes andbe the number
nificant change in the model parameters is decided based @i queries within a region. When is low andm is high for
aninaccuracy threshold\ and the last reported model param- a region, load shedding should be avoided as much as possible
eters. When the predicted position of the mobile node devi{upper right quadrant in Table 1 is marked withto show this).
ates from the actual position of the node by more tharthe  This is because a small number of nodes that generate a small
new motion parameters are reported. A popular motion modehumber of updates are used for answering a large number of
is piece-wise linear approximation of the mobile node move-queries for this region, which implies that increasikdere will
ment [19], whereas more advanced models also exist [2]. Howsignificantly impact the overall query accuracy, while kg
ever, for the purpose of this paper the particular motion@hod only a small reduction in the number of position updates re-
used is not of importance. In the design of the@A load shed-  ceived. In contrast, load shedding is very desirable whés
der, this inaccuracy thresholdl is used as a control knob to high andm is low for a region (lower left quadrant in Table 1 is
adjust the number of position updates received. Without losmarked withv" to show this). This is because a large number of
of generality, we adopt linear motion modeling inRA. Note  nodes that generate a large number of updates are used for an-
that many of the existing mobile CQ systems have built-in- sup swering a small number of queries for this region. It impttest
port for linear motion modeling [15, 17, 4]. In this paper we increasingA will minimally impact the overall query accuracy,
take the source-actuated approach to devele Lwhich pro-  while bringing a large reduction in the number of position up
vides a lightweight method to coordinate the server-itéticout  dates received. Interestingly, the ratig'n does not completely
source-actuated update load shedding. characterize the preference of one region over anothemfor i

A straightforward but rize way of shedding update load is creasing the inaccuracy threshal This is because the over-
to have all mobile nodes to use a single system-controllackin
curacy threshold. Lef\i- be the minimum value that the inac- — 11he experimental setup and default parameters used to getiegagraphs
curacy threshold can take, which defines the ideal resolatio in Figurd 1 are given in Sectién 4.2




all inaccuracy introduced in the mobile node positionseases

linearly with increasing\, whereas the amount of update reduc- pé?trﬁ?gitiig

tions increases non-linearly dsincreases. This is why regions

with smallm andn are less attractive for load shedding com- all shedding 4
pared to the regions with large andn, but comparing to the regions .
scenario of highn and lown both being better choices for load optate Aj. A

shedding (the symbols and> indicate this in Table 1).

This insight leads us to a region-aware approach to update
load shedding. Concretely, inikA we partition the geograph-
ical area of interest intbshedding regions, denoted bly, i €
[1..]]. Furthermore, we associate an inaccuracy threshold with A
each shedding regioA;, denoted byA;. We call A; the up- ctlflrrrggfelipudsfg -
date throttler of the regiod,;. A simple way of determining the AR

. . . . . . 1 1
shedding regions is to partition the entire geographicatemf Tk
interest intol regions evenly. However, such even partitioning ' |~ |+
of the space is unlikely to produce an effective solutiongsi Ap|Ai
the level of heterogeneity (in terms of the number of mobile
nodes and queries) inside two given equally-sized regicengs m
differ significantly. Intuitively, a region where furtheagition-
ing generates sub-regions of similar characteristicsimsgeof  tions are responsible for broadcasting the subset of load-sh
densities of mobile nodes and queries does not provide any gading regions and update throttlers corresponding to thair c
with regard to reducing the number of position updates whileerage area to mobile nodes, when the server reports a change
minimizing the query result inaccuracy. Thus the desigrheft in the partitioning or the update throttler values. The bstse
LIRA load shedder should address the following two challengesions are also responsible for sending the shedding regiods
(1) How to partition the geographical space of interestag@t  update throttlers to a mobile node entering into a new base st
of shedding regions effectively, and (2) How to set the ugdat tion's coverage area during a hand-off.
throttler for each region to minimize the inaccuracy introed

in query results yvhile meeting our update budget constr.aint The mobile nodes are responsible for reporting their possti
In LIRA we introduce the concept of throttle fraction to to the mobile CQ server using dead reckoning. However, the

define the posmon update budget of the system, denoted b|¥1accuracy threshold used by a mobile node is dependenteon th
z € [0,1]. For instancez = 0.75 means that the number of

dat hould be reduced b ‘ d to th reé;ion in which it resides. As a result, the mobile nodesestor
updates should be reduced by a quarter, compared 1o Ihe Cageg,qet of shedding regions and update throttlers comespo
of using a commom\ = Ay. The throttle fraction can be cal-

lated aut tically by th . tion t Isicuch ing to the coverage area of their current base station. As the
culateq automatically Dy the Serverin reaction to overie mobile nodes move from one shedding region to another within

ations by observing the size of the system message queue (sge.. -
A . . {fieir base station’s coverage area, they use the updatdehro
Section 3.4). Alternatively, when the server is not ovedkxh g y P

but the wirel ication load of o dat corresponding to their current shedding region as the iracc

ut Ine wireless communication foad of receiving updates arraxcy threshold. The update throttler to use is determineallip
putting a heavy burden on the network, the throttle fractian When the mobile nodes switch base stations, they change the
be manually set as a system-level parameter. In the nexbsect '

. . . subset of shedding regions and update throttlers they Isted
we discuss the system architecture and describe how we co g reg P y

"8 the information they receive from the new base station.
pute thel shedding regions and how to set the update throttlers y

for the ! regions within a given system-controlled position up- Factors Affecting the Number of Shedding Regions

date budget, represented by the throttle fraction From the description of the system architecture, one may ob-
serve an interesting trade-off in setting the number of dimeg

regionsl/. On the one hand, the larger the number of shedding
Figurel 2 illustrates the system architecture oRA, which  regions is, the more fine grained is the partitioning, legdmn
consists of three layers. The first layer is formed by the heobi more fully exploiting the potential heterogeneity exigtenthe
CQ server. The server has three main responsibilitiest, firs geographical space of interest in terms of different cheras
sets the throttle fraction € [0, 1] to define the position update tics of regions with respect to the number of mobile nodes and
budget of the system. Second, it is responsible for calogiat queries. On the other hand, as the number of shedding regions
the shedding regions and the associated update throttlees f increase, the average number of update throttlers and istgedd
given update budget, that is for a given value of the thrétdle-  regions per base station coverage area grows. This impkgs t
tion z. Third, it is responsible for reporting to each base statiorthe mobile nodes should know about a larger number of shed-
in the second layer, the subset of shedding regions andeipdading regions and update throttlers. This increases the afost
throttlers corresponding to the base station’s coveragge. ar finding the correct update throttler to use at the mobile node
The set of base stations that cover the space of interest forside, as well as the communication cost of disseminating the
the second layer. The base stations are assumed to be @ohneatew set of throttle fractions and shedding regions to theilmob
to the mobile CQ server via the wired network. They providenodes once they are updated by the server. Thus a carefogsett
wireless networking services to the mobile nodes. The hase s of [ is critical for the overall system scalability in terms oftbo

\
Mobile

T = A

Figure 2: System Architecture

The set of mobile nodes form the third layer of our system.

2.2 System Architecture



service quality and wireless communication bandwidth. uniform inaccuracy threshold df;- for all nodes. Note that we
We below describe in detail our design of Lira load sheddethave f(Ar) = 1. The second constraint defines the domain of
in two steps. In Sectidn 3, we discuss how the Lira load sheddeupdate throttlers4;’s).
works to shed loads effectively, including how to set thetthe We now formulate the objective function of the problem we
fraction z, how to partition the geographical space of interestwant to minimize, that is the inaccuracy in query results.tRe
into ! shedding regions, and how to determine the update throttlpurpose of this problem formalization we define the inaccyra
for each of the shedding regions. In Section 4, we discuss iintroduced by using an update throttler value’gffor a given
detail how the LRA system sets to achieve a sufficiently fine regionA; as the number of queries in the regidp denoted by
granularity in partitioning while minimizing the inaccaain =~ m;, times the inaccuracy threshals;, that ism; - A;. When
query results, and yet putting very little load on the mobidees  computingmn;, queries partially intersecting the shedding region

and the wireless network. A; are fractionally counted. The objective function that wentva
3 ThelIra Load Shedder to minimize can be formulated as follows:

In this section we describe the main technical components InAcc({A;}, {A:}) = Z m; - A
of the LIRA load shedder, encompassing the three major server- i€[1..0]

side functionalities: (1) partitioning the geographicphse of
interest intol shedding regions for a givein performed by the  Note thatm; andn; are functions of the partitioning4; }. We
GRIDREDUCE algorithm, (2) determining the update throttler now discuss a number of extensions to this basic problem.
for each of thd_shedding regions_, performed byRGED_YIN- 311 TheFairness Threshold
CREMENT algorithm, and (3) setting the throttle fractianto
adjust the system-wide position update budget, performed pThe first extension to the basic problem formulation is to-pro
THROTLOOPalgorithm. These three algorithms work in coop- Vide a system-level control over the difference in the inmacy
eration to perform the load shedding. In particular, ther®dT=  thresholds used in different regions. We introduce a pateme
LooP a'gorithm monitors the performance of the System un_Ca"ed the fairneSS threshold, denotedﬁb)g. In the Original
der the current workload and resource availability to de¢ie ~ Problem formulation, the shedding regions that do not donta
throttle fractionz. Givenz computed by FiRoTLooPand the  any queries (i.e.{4; : m; = 0}) may be overly penalized by
number! of shedding regions specified as a system-supplied pasétting their update throttlers to maximum inaccuracy eaifi
rameter, the @IDREDUCE algorithm creates a partitioning of A-, since the update reduction for those regions does not impac
the entire geographical space of interest and computestioé s the query results. However, for mobile CQ systems supmprtin
I shedding regions, i.e4; (i € [1..1]). Finally, givenz, I, and historic and ad-hoc queries this may be undesirable, thus
A;’s, the GREEDYINCREMENTalgorithm determines the update c¢an be used to reduce this effect. Formally, we replace tte se
throttlers for the shedding regions, i.e4; (i € [1..1]). ond constraint in the basic problem formulation with thédat

A common thread that is shared by all three algorithms is thdng constraint on the domain of update throttles:
optimization problem of finding a partitioning and the assoc
ated set of update throttlers that defines the near-optioaal | i,jev[l..z] [Ai = Aj| < As
shedding strategy, which sheds the load within the given up-
date budget and yet minimizes the inaccuracy of the results ofOne extreme case @, = A, — A represents the original

queries. Thus, in this section we first formally define our up-formulation, whereas the other extreme caséef = 0 repre-
date load shedding problem, and then we describe the thyee kgents the uniforna\ scenario.

algorithms of the Lira load shedder. 312 The Speed Factor

) . o Different regions may have different average speeds fome
The problem is to find a partitioning of;, i € [1..7], and an  pjle nodes within, and thus may exhibit different behavisith
associated set of update throttléxs i € [1..0], suchthat certain  regpect to the impact of the inaccuracy threshold on the num-
constraints are met (e.g., the update budget is respectd@re.  per of updates received from the mobile nodes. As a result,
objective function is optimized (i.e., inaccuracy in queggults  he update budget constraint should be adjusted using speed
is minimized). We start with formulating the two constrg‘mt to achieve a more accurate modeling of the update cost. Let
Letn; denote the number of mobile nodes within shedding reys genote the average speed of mobile nodes within the shed-

3.1 Problem Formulation

gion A;. The following two constraints should hold: ding regionA; by s; and the overall average speed byj.e.,
~ ! . .
B 4 o 5§ =7 ,_15(ni/n)). Assuming that the number of updates is
Z ni- f(Bi) < zon- f(Ar) linearly proportional to the average speed of mobile nodes,
el modify our update budget constraint as follows:
Vo AR <A <Ay

i€1..]] !

The first constraint, which we call thepdate budget constraint Z ni- s f(A) <z-n-8- f(AL)
=1

states that the number of updates received under the region-
aware load shedding approach should not exed#ttottle frac-

tion) times the number of updates that would have been redeiv
if there were no load shedding applied, i.e., we were to use &he final formulation with the two extensions is as follows:

3.1.3 Final Problem Formulation



argmin  InAcc({A;},{A;}) = Z m; - A
{Ai}{A:} ie[1..1]

st (i) Zni-sfi-f(Ai)Sz-n'f(A%)
i€[1..]] 5
(i4) vj |A; — A < Ag
(iit) vV A <A <Ay

i€[1..1]

We consider the partitioning and the settings of updatetthro
tlers as separate problems. In what follows, we first provid

a heuristic-based partitioning algorithm for construgtithe

shedding regions and then give an optimal (under certai

conditions) algorithm for setting the update throttlers &
given partitioning of the space. It is worth mentioning ttiz

n

of ways. For instance, if the mobile CQ server uses a grieg:dbas
index on mobile node positions [9, [11] the statistics grid ca
be trivially supported as a part of the grid index. Alteruely,

the grid can be explicitly maintained by processing positip-
dates. Note that it takes constant time to process an upaiate f
maintaining the grid. Moreover, all of the updates need m®ot b
processed, since the statistics can easily be approximated
sampling. In an off-line alternative, the average numbemof
bile nodes and average node speeds can be pre-computed for
different times of the day based on historic data, in whickeca
the maintenance cost is close to zero. In all three altemesti
maintenance of the statistics grid is a lightweight operatirhe

epartitioning generated by theRBDREDUCE algorithm using an

a x a grid is called thg a, 1)-partitioning of the space.
3.2.2 Stagel: Building the Region Hierarchy
In the first stage (see linés 1- 9 in Algorithm 1), we build a

problem of setting update throttlers is not a linear programcomplete quad-tree over the grid. Each tree node correspond

since the update reduction functighis not linear and as a
result the update budget constraints are not linear.

3.2 GRrIDREDUCE: Partitioning the Space

The goal of the @ DREDUCE algorithm is to partition the

to a different region in the space, where regions get larger a
we move closer to the root node which represents the whole
space. Each level of the quad-tree is a uniform, non-ovpirthap
partitioning of the entire space. Through a post-orderetrsal
of the tree, we aggregate the statistics associated withrite

geographical space of interest iritshedding regions, such that cejis for each node of the tree, i.e., we compute the number of

this partitioning produces lower query result inaccura&pr

mobile nodes, number of queries, and average speed for each

each shedding regiod; generated, the algorithm also deter- +ree node’s region. The first stage of the algorithm taRés?)

mines the number of nodes, the number of queries:;, and
the average speed for that region. This information is later
used by the GEEDYINCREMENT algorithm to set the update
throttlers.

time and consume®(a?) space, since the number of tree nodes
isa? + (a? — 1)/3, assumingy is a power of2.

3.2.3 Stagell: Drilling Down in the Hierarchy

The GRIDREDUCE algorithm works in two stages and uses In the second stage of the algorithm (see lines 10- 22 in Algo-
astatistics gridas the base data structure to guide its decisionsiithm 1) we start with the root node of the tree, i.e., therenti
The statistics grid serves as a uniform, maximum fine-gchine space. At each step, we pick an explored tree node (initially

partitioning of the space of interest. In the first stage efdh
gorithm, which follows a bottom-up process, we create eomegi

only the root) and replace it with tree nodes by partitioning
the node’s region intd sub-regions corresponding to its child

hierarchy over the statistics grid and aggregate the quedy a nodes in the tree. This process continues until we réante

mobile node statistics for the higher-level regions in thiisr-

nodes (thug shedding regions), assumifgmod 3 = 1. The

archy. This region hierarchy serves as a template from wich crux of this stage lies in how we choose the region to partitio

non-uniform partitioning of the space can be constructdae T during each step. For this purpose we maintain a max-heap of
second stage follows a top-down process and creates the finall explored tree nodes based on the accuracy gain, a medric w
set ofl shedding regions, starting from the highest region in thentroduce below, and at each step we pick the node with the

hierarchy (the whole space). The main idea is to selectpiek/
and drill down on a region using the hierarchy constructetién

highest accuracy gain.
Given a tree node, the accuracy gain is a measure of the ex-

first stage. The region to drill down is determined based en th pected reduction in the query result inaccuracy, achieyqzhb

expected amount of gain in the query result accuracy, ctiled

titioning the node’s region intd sub-regions corresponding to

accuracy gainsee Section 3.2.3), which is computed using theits child nodes. For a tree nodgthe accuracy gaii'[¢] is cal-

aggregated region statistics.
We now describe the details of theR®REDUCE algorithm.
Its pseudo code is given in Algorithm 1.

3.2.1 The Statistics Grid

The statistics grid is an x « evenly spaced grid over the ge-
ographical space, whereis the number of grid cells on each
side of the grid. We describe the relationship betwaeand

[ later in this section. For each grid cell; the statistics grid
stores the average number of mobile nodgs, queriesm; ;,
and average speegl; for that grid cell. The only data structure
maintained by the IRA load shedder is this grid.

culated as follows. LeE/[t] be the average result inaccuracy if
we only had one shedding region thatt's region. Formally,
we haveE|[t] «— mina (m[t]-A), s.t. f(A) < z- f(Ar). Now

let E,[t] be the average result inaccuracy if we Hashedding
regions that correspond to the regiong’sfchild nodest;, i €
[1..4]. Formally, we haveF,[t] « minga,y Sy Ai - mlt;]
subject to the constrairEf:1 nlt;] - f(A;) < z-nft] - f(AR).
Then the differencé&|t] — E, [t] gives us the accuracy gait].

The computation of£[¢] and E,[t], and thus the accuracy

gain V'[t], requires solving the problem of update throttler set-
ting for a fixed! of shedding regions. Concretely, computation
of E[t] requires to solve for nodewith [ = 1 and computa-

The maintenance of the grid can be performed in a numbetion of E,,[t] requires to solve for the four child nodestofith



Algorithm 1: (I, «)-partitioning of the space object distribution query distribution

Input: « is the number of cells on each side of the grid. Itis a power of i
2. 1 is the number of grid areas desired, where we haveod 3 = 1. P ”q.
z is the throttle fraction.
Output: A;, ¢ € [1..]] is theith grid arean; is the number of mobile
nodes under; andm; is the number of queries unddr;.
GRIDREDUCE(«, [, 2)

D

{the following steps tak&(a?) time andO(a?) spacé
1) Construclog, o + 1-level quadrant tree over the x o grid
2) foreach tree node in post-order

3) if t is a leaf node{initialize # objs., # qrys., and spedds A } FEEH

4) ¢;,5: corresponding grid cell of SEEyes
5) nlt] — ni g, mlt] — mqj, s[t] — si; ts 2 e N JF * EaEE s
6) else {t is not a leaf, aggregate # objs., # grys., and speeds e H‘+ H

7) t;: i childeren oft, i € [1..4] v A i A T

8) nlt] — YL nlt], mlt] — L, mti] 7T AT T T i
9) slt] = i (nlti)/mlt]) - sft] . e ‘
{the following steps také&(! - log!) time andO(!) spacé ] | [
10) H: empty max. heap of nodes, basedidifaccuracy gain) values fﬂ I ‘
11) L: empty list of tree nodes; < 0 [ T HH [ ]
12)t « root of the tree,H.INSERT(t) score tree reduced grid

13)while L.Size()+H.SIze() < I {I regions not reachgd
14) ¢+ H.PopMAXx() {region to partitior}

15)  iftis nota leaf{further partitioning possible the heterogeneity of the region in terms of the number of teobi

Figure 3: lllustration of «, [)-partitioning

ig; for 4 f_lct:i{Ei"jggzz(Ti r?'r’Nﬁ‘SER (.0 nodes and queries within. In the casef further partitioning
18) dse{t ig aleaf nodé {no furt;nér pértitioning " of t_he region re_sglts: n gub-regmns of similar characlmssm-
19) L.INSERT(t) {store the region if} plying that partitioning is unnecessary due to low hetenagty.
20)foreach t € L U H {process the regions _ 3.25 TheRelationship Between [ and o
21)  n; < nft], m; — mlt], s; — m]t] {setthe region stats.
22)  A; < Areaoft's quadrant,i < i + 1 {set the arep To find a pragmatic way of configuring the statistics grid pa-
CALCERRGAIN(1) rametera, we first ol?_serye t_he relationship betweeand «.
1) E — mina (mlf] - A), st.f(A) < z- f(AL) A_ssume_that the partltlonl_ng is pe_rforr_neq such that all t_h_ﬁis
2) Ep, — minga,; o0, As - mits), ding regions are evenly sized. This will yield a grid paeiiting

st L nft]- f(A) < z-nft] - f(AL) with v/7 number of cells on each side, which we refer to as the
3) V[t] — E — E, {accuracy gain is the difference in erfor [-partitioning. Our aim is to have a statistics grid that is fine

grained enough to provide us with &n, [)-partitioning whose
non-uniformly sized shedding regions are sufficiently i

in terms of the size of their area compared to the casé of
partitioning in which all regions are equal-sized. The $&tgyth

of the minimum possible shedding region(im, )-partitioning

is proportional tol/« (the shedding region is equal to a cell
of the statistics grid), whereas the side length of a regioh i
partitioning is proportional ta /+/I. To achieve around? times
324 [llustration of the Partitioning difference in the areas of minimum possible shedding region
Figure[ 3 depicts an exampley, )-partitioning. The mobile  ©f I-partitioning and(«, I)-partitioning, we should determine
node distribution (generated from a road map) is shown on thesing the formulay = 2ll°s2(=VD1, Havingz = 10 provides
top left corner, whereas the query distribution is shownhan t aroundl100 times difference in size. In our experimental studies
top right corner. The top three layers of the quad-tree buidr  we have found that this setting gives effective results.

the statistics grid is shown on the bottom left corner andittee
(«, 1)-partitioning is shown on the bottom right corner. Itis im-
portant to note that the regions are not being further pamed The goal of the ®REEDYINCREMENT algorithm is to find
when the further partitioning will not benefit the query riésu the optimal setting of the update throttlers associateti thie
accuracy. Here are the two interesting examples: the shgddi [ shedding regions produced by th&R BREDUCE algorithm,
regions marked with andx in Figure. 3, which we denote by so that the inaccuracy in query results is minimized (while r
A, andA,. We see thatd . is larger than some of the nearby specting the fairness thresholds). We first consider ttablpm
regions. This is because the number of queries is zeralfor  without the fairness threshold constraints. The main idea i
and as a result further partitioning is not neededl, is also increase the update throttlers in order to match the update b
larger than some of the nearby regions, but in contrastto get. The update throttlers that bring a larger reductiorhin t
the number of queries is large fdr,. However, what matters is update expenditure of the system in return for a smalleraedu

I = 4. As we will show in Section 3.2.4, this general problem
can be solved in loglinear time dn As a result, the accuracy
gain is computed in constant time for a tree ned&he second
stage of the @ DREDUCEalgorithm takeg)(l - log ) time and
consumes?(l) space, bringing the combined time complexity
to O(l - log ! + o) and space compexity 10(a?).

3.3 GREEDYINCREMENT: Setting the A;’s



tion in the result accuracy are preferred for increment. Proof. See Appendix A O
3.3.1 TheGreedy Steps

As the name suggests, the algorithm is a greedy one. It starts | "€ time complexity of the GEEDYINCREMENT algorithm

by setting allA;’s to A, the current update expendituieto 1S 9Ven byO(x -1 -logl) or by O(l-logl) if  is constant. The
n-%- f(Ap) and the update budgét; to = - U. Note that the derivation follows from the simple fact that in the worst edis
initial setting is an infeasible solution since the updaggemdi-  Will take # steps to increasa; from Ay to A. There aré
ture is higher than the update budget, thatis- U. Ateach ~number of update throttlers and each greedy step @kes; )
greedy step one of the update throttlers is selected basgwon time due to heap operations. As a result, the overall time-com
update gaina criterion to be defined in the next subsection, and?/exity stated above is achieved. The space complexit}(is.

is increased by, called theincrement(or by a smaller value 334 sypporting the Fairness Threshold

in the case that we undershoot the update budget). \ihes . . .

incremented by, the current update expenditure is decreasedn Order to support the fairness constraints dictated byétre

by n; - si - (f(A;) — f(A; + ca)). This process continues un- N€SS threshold\ ., we make the following changes to the base
til the current update expenditure decreases to match thetep /90rithm. At each greedy step, the update throttler wita th
budget (i.e..U = U-), or all the update throttlers reach their Nighestupdate gain, say;, is incremented byt mosica, mak-
maximum bound (i.eA = A ). The former condition implies N9 sure that it does not go beyond a value that will violate th
that the update expenditure is reduced to a value equalde thr faimess constraint.  Concretely, if the minimum updatethr
tle fraction times the maximum update expenditure assettiat er we have isAy = minjcp g A, thenA; is not increased
with the case of/;c;;; A; = Ar. This means that the update PeyondAe + A... When an update throttlek; reaches the
constraint is satisfied. On the other hand, the latter cimdim- ~ liMit, that is we haveA; = Ap + A, then itis moved to a
plies that the update budget can not be met for the giventirot blocked listand is not considered for the following steps of the

fraction = and the update throttler rangd, , A], leading to algorithm until it is removed from the blocked list. Whenever
the solutionV,c(; A&, = A, the minimum update throttleh is changed, the set of update

. ) throttlers in the blocked list that are no more on the limé ee-
332 Update Gain Calculation moved and are included in the following steps of the algarith
The key point of REEDYINCREMENT is the selection of the The pseudo code of the REEDYINCREMENT algorithm with
update throttler to use at each greedy step. We pick the @pdathe extensions is given in Algorithm 2.
throttler that has the highest update gain. The update gain i . .
defined as the ratio of the decrease in update expenditune to t3'4 THROTLOOP: Setting the Throttle Fraction
additional inaccuracy introduced in the query results. We d  The throttle fractior: can be adaptively adjusted by therla
note the rate of decrease in the update expenditure at afyoint joad shedder, when it is not set as a fixed system-level parame
by r(A), and define it as the negative of the update reductioner to retain only a pre-defined fraction of position updafése

function f’s derivative at pointA. Formally, we have: adjustment of the throttle fraction is performed by theRDT-
d(f(x)) Loop, which observes the position update queue and periodi-
r(A) = — cally decides the fraction of position updates that shoeldes

dv oo tained (throttle fractiorr). The aim is to reduce the system load

Based on this definition, makinga increase in update throttler so that the rate at which the position updates are receNezh@
A; will reduce the update expenditure by- s; - r(A;)-dz,and  the rate at which these updates are procegsearé balanced to
will decrease the query result inaccuracyrby- dz. As aresult, prevent dropping updates from the input queue. Ttilezation
the update gain for th&" update throttler\,, denoted bys;, is: of the system, denoted by is given by\/u. Let us denote the
A A maximum size of the input queue . Assuming an\//M /1

Si(A) = (ni/mqi) - si - r(A) queuing model, we should have the following relationship be
In each step of the BEEDYINCREMENT algorithm, an up- tweenp andB to make sure that the average queue length is no
date throttler A; is selected such that we havg —  more than the maximum queue size [14]=1—1/B. If the
argmazci.y Si(A;). If the update gain fon\; is larger than utilization is larger than — B—1, it represents an overload situa-
the update gain foﬁk, then increasing&]. provides better up- tion and thus the throttle fractionshould be decreased. On the
date reduction compared b for the same amount of increase Other hand, if the utilization is smaller than- B~", it implies
in query result inaccuracy. that the system is not fully utilized and the throttle fractiz
L . should be increased. This understanding leads to the fiolgpw
333 Optimality and Setting of the Increment ca procedure that describes the operation BROTLOOF.
To provide an optimality guarantee and to guide the setting o
ca, We approximate the update reduction functjpby a non- Initially: 7 < 0, S0
increasing, piece-wise linear function sfsegments, each of - ) I
size(A4—Av)/k. This enables us to prove the following result: Periodically: u — p/(1 = B), i —i+1

() (1. Hi=D)
Theorem 3.1. For cp = (A4 — Ar)/k, the GREEDYINCRE- 2 e min(l, 2177 fu)

MENT algorithm is optimal for the non-increasing piece-wise 2Note that in order to maintaith for each step of the algorithm without

linear apprOXimation of the update reduction functinwith « changing the time complexity, a sorted tree of update thrstike maintained
segments of size\ each. and provideD(log !) time insertion and removal operations.




Algorithm 2: Setting the update throttlers a query result is defined as the ratio of the number of missing

Input: z: throttle fractionca: incrementA. : fairness threshold and extra items in the result to the correct result set siz¢QL
Output: A;, 4 € [1..1]: shedding thresholds denote the set of querieR(q) denote the result set for a query
GREEDYINCREMENT(z, ca, As) q € @ under load shedding, arf@*(¢) denote the correct result
1) H:empty, max heap of;'s (update gains) setunder;cpy.j A; = Ar. Then:

2) D: empty, sorted tree af\;'s (update throttlers)

3) L: empty, list of blocked\; (throttlers at fairness limit * *

43 U~ T[L:)){S - f(AR), Uq — z( U {set update budget, ()expeﬁld. ES; = Z () \]Té;) |—;Jf()q|) \E (@)l

5) for i = 1to! {initialize H andD} 7€Q 1

6) A; — Ap, D.INSERT(A;) {update throttlef

7) Si «— (ni/ms) - si - 7(As), H.INSERT(S;) {update gaih Mean Position Erroy denoted byE?, defines the average po-
8) repeat {startincrement loop sition error in query results. Position error for a queryuies

9)  Si < H.PoPMAX() {nextA; to incremen} defined as the average error in the positions of mobile nades i
10) A} — A, AL« D.MIN() {backupAi,Ap =min; A;} the query result compared to the correct positions.ple}f de-
11)  ca = min(ca - [Aifea +1], AL +As) — A note the position of a mobile nodein a query resuly under

12)  ch «— min(ch, (U—U4)/(S; - m;)) {set step sizp

13)  A; «— min(A; + ca, Ay) {increment; }

14) U« U—(A; — A))-(S; - m;) {adjust the update buddet
15)  D.UPDATE(A}, A;), As « D.MIN() {update minA}

load shedding ang* (o) denote the correct position efunder
Viep.) As = Ar. We have:

16) if A; — Ap = A {fairness limit reached EF = Z Z M
17) L.INSERT(A;) {storeA; in the blocked lis} 40 ocq Q| - [R(q)]
18) eseif A; # A {upper bound not reachgd
;g) " A§¢<—(Am/m¢) Z ';(Ai)’H"NSERT(Si){”pdatega'ﬁ‘ Standard Deviation of Containment Erfodenoted byDC,,

) ifAs # Ax {min c anged : and Coefficient of Variance of Containment Erratenoted by
21) foreach A; € L {iterate the blocked\ list} cC fai trics that th iai h
22) if A7~ Ap < A {nomore on the limit ou» are fairness metrics that measure the variation among the
23) S;—(n;/mj) - s; - r(2;) {update gaih query results in terms of their containment error. We have
24) L.REMOVE(A,), H.INSERT(S,) {move taH } CcS = DS /ES.. These two metrics can also be extended to

25)until U < U~ or H.Size() = 0 {budget reached or all maxgd the position error.
4.1.2 Cost of Load Shedding

To evaluate the cost incurred by load shedding, we meagure
the time it takes to execute the adaptation step that ingolve
running the HROTLOOP, GRIDREDUCE, and QREEDYINCRE-
MENT algorithms and¢) the number of shedding regions that
should be known by a mobile node on average. The former
metric measures the cost of load shedding from the perspecti
of the server, whereas the latter measures it from the petigpe

of the mobile node as well as the wireless network.

This completes our discussion of therla load shedder. We
have described howIRA sheds load effectively using &n, [)-
partitioning strategy and the three key algorithms forifiart-
ing the geographical space of interest intshedding regions
for a given! (GRIDREDUCE), for determining the update throt-
tle for each of thd shedding regions (REEDYINCREMENT),
and for setting the throttle fraction(THROTLOOP. In the next
section, we present the experimental evaluation of thelbae
shedder, including a discussion through experimentaltseesn
how to determiné in order to achieve a sufficiently fine gran- 4.2 Experimental Setup

ularity in partitioning and at the same time minimizing tine i The experiments were performed using an hour long car
accuracy in query results, while putting very little load @ mobile node) position tracé generated from real-world road
mobile nodes and the wireless network. networks available from the National Mapping Division oéth
4 Experimental Evaluation United States Geological Survey (USGS) [18] and traffic vol-

. ) ] ume data taken from [6]. We used a map from the Chamblee

In this section we present experimental results on the eﬁecregion of the state of Georgia in the USA (which covers a rich
tiveness of the LRA load shedder in cutting the cost of receiving mixture of expressways, arterial roads, and collector spéal
and processing position updates in mobile CQ systems, whilganerate the trace used in this paper. The map covers a region
minimally affecting the accuracy of the query results. Befo of . 290km2. The trace is generated by simulating the cars
describing the experimental setup, we first discuss the fset Qoing on roads in accordance with the traffic volume data.
evaluation metrics we define to assess the effectivenesgaf L The queries used in the experiments are range CQs. The side
4.1 FEvaluation Metrics length for the range queries are randomly selected fromrthe i
f1erva| [w/2, w] wherew is called theside length parameteie
use three different distributions for the locations of thewdes,
enamerProportional, Inverse and Random When the query
distribution is Proportional, the locations of the querfieow
the mobile node distribution. Similarly, they follow thevarse
4.1.1 Query Result Accuracy of the mobile node distribution when the query distributisn

We define two sets of evaluation metrics. The first set o
evaluation metrics are used to measure the accuracy of érg qu
results under load shedding and the second set of metrits d
with the cost of performing load shedding.

. c i
Mean Containment Errgrdenoted byE( ., defines the aver- SThe trace generator we have developed is available at

rr?

age containment error in query results. Containment eoor f http:/www.prism.gatech.edu/ gtg470c/research/reselatml#kanom



Inverse, and are randomly distributed when the query Histri
tion is Random.

three observations from the figure.
First, the LRA load shedder outperforms all other ap-

In the experiments presented in this paper we compare oysroaches throughout the entire throttle fraction rangend@en

LIRA load shedder with the following alternatives:

Drop performs the worst, followed by UniformA and Lira-

— Random Drop: The excessive position updates are not ad-Grid. At z = 0.75, Random Drop ha800 times the mean po-

mitted to the input FIFO queue and are dropped.

— Uniform A: A uniform inaccuracy threshold\ is used to
retain only throttle fraction times the original number oté-
tion updates. The AROTLOOP algorithm is still used, but the

sition error of LRA, Uniform A has40 times that of LRA,
and Lira-Grid has2 times that of LRA. At z = 0.5, Ran-
dom Drop, UniformA, and Lira-Grid had0, 2, and1.08 times
the EF of LIRA. The results for the mean containment error

approach is not region-aware and thus space partitionidg anEC. are similar. Second, we observe that as the throttle frac-

update throttler setting are not performed.

— Lira-Grid: A downgraded version of thelkA load shed-
der, lacking the ® DREDUCE algorithm which determines the
shedding regions based ¢h «)-partitioning. Instead, it uses
equally-sized shedding regions based on-partitioning, yet
still employs the REEDYINCREMENT algorithm for setting the
update throttlers.

tion z gets smaller, the relative errors approach tavhile at

the same time the absolute errors increase and finally merge.
The increasing errors are the result of decreasing updaigebu
whereas the relative errors decreasé wue to the maximum
inaccuracy bound\. When the update budget gets smaller
than the minimum update expenditure of the system achieved a
Vien..p A = A, all of the three approaches that use inaccu-

Table 2 presents the set of experimental parameters used afgFy thresholds converge at this same solution. For thisrexp
the default values they take when not stated otherwise. As waental setting, this convergence occurs arourd 0.25. Last,

show in this section, the default settihg: 250 of the number of
shedding regions provides sufficient granularity in pianiing
(for a region of sizex 200km?) to improve the query result ac-
curacy significantly, while putting very little load on theotrile
nodes and the wireless network.

Parameter| Description Default Value
l number of shedding regions 250
@ statistics grid side cell count 128
z throttle fraction 0.5
Ar minimum inaccuracy threshold 5 meters
Ay maximum inaccuracy threshold 100 meters
ca increment 1 meter
AV fairness threshold 50 meters
m/n # of queries to # of nodes ratig 0.01
w query side length 1000 meters

Table 2: Experimental parameters

All experiments presented in this paper are performed on a
IBM PC with 512MB main memory and 2.4Ghz Intel Pentium4
processor, using Java with Sun JDK 1.5.

4.3 Experimental Results

We present the set of experimental results in two groups. Thg

first group of results are on the query result accuracy ani-hig
light the superiority of LRA compared to competing approaches

for shedding position update load in mobile CQ systems. Thq

second group of results are on the additional cost brougtitdy
LIRA load shedder, and show that the overhead is minimal.

431 Query Result Accuracy

We study the impact of several system and workload paramete
on the query result accuracy and the relative advantagerof L
over competing approaches.

Impact of the Throttle Fraction: The graphs in Fig-
ures' 4 and 5 plot the mean position erigf. and mean con-
tainment error£¢. as a function of the throttle fraction, for
the proportional query distribution. The lejtaxis is used to
show the relative values (solid lines) with respect to therer
of LIRA and the righty-axis is used to show the absolute errors
(dashed lines). Both-axes are in logarithmic scale. We make

we observe very high (in the order o6>'s) relative errors for
Random Drop and Uniform\ asz gets closer td. This seems
surprising at first, as for the case0f= 1 (not shown in the fig-
ures) all approaches have zero error. However, a slightedser
in the throttle fraction, that is when we hawve= 1 — ¢, intro-
duces some error in the query results for the case of Random
Drop and UniformA, whereas it introduces almost no error in
the case of LRA. This is because IRA cuts the required frac-
tion of position updates from the regions that do not coraain
queries. Close to none error of#A nearz = 1 boosts the
relative error results for Random Drop and Unifofm

The graphs in Figures 6 and 7 plot the mean containment
error EC. (relative and absolute) as a function of the throttle
fraction z, for the inverse and random query distributions, re-
spectively. The errors of competing approaches relativera
are slightly less for the case of Inverse and Random query dis
fyibutions compared to that of Proportional query disttiio.
Otherwise, the results are very similar. In the rest of thmeex
iments, when not stated otherwise, we assume the Propalrtion
query distribution.

Impact of the Number of Shedding Regions. The graphs in
igure 8 plot the relative mean containment eri&jr. of Lira-
Grid with respect to IRA as a function of the number of shed-
ding regionsi, for different query distributions. The throttle
raction is set az = 0.5. We observe that Lira-Grid has up
to 35% higher containment error in query results compared to
LIRA. The improvement provided byiRA is more pronounced
when Inverse query distribution is used and is smallesttfer t
case of Proportional query distribution. Agicreases, the flex-
ibility provided by having a larger number of shedding regio
improves the error incurred bylRA at a better rate than Lira-
Grid, since LRA utilizes an intelligent space partitioning algo-
rithm. However, wheri gets too large the grid partitioning of
Lira-Grid achieves enough granularity to catch Lira in terof
the query result inaccuracy, as observed form the figures Thi
is because after a certain level of granularity is reachemtem
fine-grained partitioning is of no use, since the accurady iga
close to zero for all of the shedding regions. The graphsdn Fi
ure/9 attest to this latter intuition. They plot the mean aomt
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Figure 10: Fairness in query result accuracy fqfjgure 11: Impact of fairness threshold orFigure 12: Impact of query to node ratio on

LIRA and UniformA, z = 0.75

EZF for differentz and! containment erro; = 0.5

ment errorEC. of LIRA as a function of the number of shedding threshold, thus the evaluation metrics stay constant. Titpeis-
regions, for different throttle fractions. We see that theere-  ing observation from the figure is that, with increasingriass
duction rate decreases with increasirand the errors stabilize. threshold the standard deviation in containment erroressas
The reduction in error is more pronounced for largeralues.  for LIRA and at all times stays smaller than th€, of Uniform
Note that the default setting 6= 250 for the number of shed- A. Even though largeA ., values imply less fairness, the re-
ding regions is rather conservative based on Figure 9, géitlit  sulting relaxed constraints in setting the update thnatémable
performs significantly better than the competing appros@se smaller containment errors and thus the standard deviatsan
illustrated by Figures|6 and 7. This conservative settingaido  gets smaller. If we look at the coefficient of variance of con-
results in a very lightweight load shedding solution, as vile w tainment error, which is a better measure of fairness, wéhede

prove later in this section.

increasingA ., increaseg”’S) in LIRA and UniformA is more
fair compared to LRA. To put this into simple terms, we can

Impact of the Fairness Threshold: ~ The graphs in Figure 10 - 5y that on average the difference in errors of two queryitesu
plot the standard deviation of containment etfff, (onthe left il be smaller for LIRA compared to UniformA, yet when
y-axis corresponding to solid lines) and coefficient of vat@  jydged based on the relative average query errorigland

of containment erro€’s,, (on the righty-axis corresponding to yniform A respectively, the error in query results is more fair
dashed lines) for IRA and UniformA as a function of the fair- among different queries in the case of Uniform

ness threshold .. Note that UniformA does not use a fairness

10



The graphs in Figure 11 plot the mean position efigf for  This will enable frequent adaptation, even though for mest a
different throttle fractions, as a function of the fairnéissesh-  plications that involve monitoring cars or pedestriansitn-
old A.. We expect that for both smail close t00.25 (point  likely that the update load will fluctuate with a period lekart
of reduction to UniformA for this setup) and large close to  tens of minutes. Even for an adaptation period @fminutes,

1, fairness threshold will play an insignificant role in dehéan- the configuration of LRA will take only6.6-10~° fraction of the
ing the mean position error. This is because, for smalhe  adaptation period. Note that these values are for a regisizef
solution reduces t¥;c;. )A; = A4, making it independent 200km?. If we have al6 times larger region of siz&200km?

of the fairness threshold. On the other hand, for larghe (= 10 times the size of Atlanta, the capital city of the state of
number of position updates to be cut is small and as a result thGeorgia, USA), then we should hake- 16 - 250 = 4000, and
small increase in some of the update throttler values doegno from o = 201022(10-VD)] we should haver = 512. For this
olate fairness constraints, unless the fairness thresbalbse  setting the configuration of IRA takes500 msecs. This corre-
to zero. Figure 11 confirms this understanding, as we observeponds to8 - 10~* fraction of al0 minute adaptation period.
that forz = 0.3 andz = 0.9 the errorE is marginally sensi-  These numbers show thatra is indeed lightweight and intro-
tive to the fairness threshold ., whereas for throttle fraction duces very little overhead on the server side.

values in-between, the containment error is more sensdtitree

changes im\ ... Messaging Cost:  Table 3 shows the average number of shed-

ding regions that should be known to a base station as a func-
Impact of # of Queries and Query Ranges. The graphs in  tion of the base station coverage area radius. Howeveralityre
Figurel 12 plot the mean containment erigf. of Uniform A base stations have smaller coverage regions at places thieere
relative to LIRA for different number of queries to number of number of users is large (urban areas) and larger coverage re
mobile nodes ratiosnf/n’s) as a function of the number of gions at places where the number of users is small (suburban
shedding regions We observe that the relative”. of Uniform  areas) [13]. This nature of base stations match perfectly wi
A with respect to LIRA is an order of magnitude larger for the LIRA’s space partitioning scheme, since the number of parti-
case ofm/n = 0.01 compared ton/n = 0.1. This is because tions are usually larger for dense areas and the small batsanst
LIRA is more effective when the ratio of number of queries tocoverage areas help decreasing the average number of sheddi
number of nodes is smaller, which implies that there are moreegions known to a mobile node. Following this logic, we have
regions that contain none or a small number of queries argl thwsed a node density dependent base station placement scheme
can be used to shed the update load while minimally impactingnd found that on the average each node and thus each base
the result accuracy. However|rA has around half the contain- station should know arountll shedding regions. Assuming a
ment error of UniformA even when we havei/n = 0.1. shedding region (which is square in shape) is represented by
The graphs in Figure 13 plot the mean position efigr (us-  floats and an update throttler is represented by a sidigte
ing the lefty-axis) and the mean containment erfgf. (using  float, the size of the broadcast data sent by a base statidh to a
the righty-axis) for LIRA as a function of the query side length nodes in its coverage area to install the shedding regiods an
parameterw. The position and containment errors behave dif-update throttlers is aroundll - (3 + 1) - 4 bytes =656 bytes
ferently under changing query side length. As the averageyqu on average. To asses the messaging costrA Lcompare this
areas increase, the queries cover a larger region in the spacumber tol472 bytes, which is the maximum payload available
This makes it harder to reduce the number of updates withoub an UDP packet over Ethernet with a typical MTU 100
increasing the inaccuracy in the positions of the mobileesod bytes. When IRA reconfigures the load shedding parameters,
that are included in the query results. As a result the mean pdhe new information is installed on all mobile nodes by using
sition error increases with increasing On the other hand, the average of one wireless broadcast packet per base station.

cpntginment error isla set—pased metric and since the st Mobile Node Side Cost:  Since the total number of shedding
Siz€ Increases with Increasing the percentage of nodes t_hat regions known to a mobile node at any time is only arodihd
are correctly mclude_dctn the TeS“'t set also increasess i LIRA does not put a major burden on mobile nodes in terms of
plains the decrease i, asw increases. memory consumption or processing load. By employing a tiny
4.3.2 Cost of Load Shedding 5x5 grid index on the mobile node side, the shedding region that
contains the current position of the mobile node can be found
quickly. As a result, LRA will work on computationally weak
mobile nodes without any problem.

The cost of load shedding consistsipEonfiguring the parame-
ters of LIRA on the server side, which includes setting the throt-
tle fraction, shedding regions, and update throttléfsbroad-
casting the subset of shedding regions and update theottlat 5 Related Work
correspond to the coverage area of each base stationz@nd
installing the new set of shedding regions and update thrstt
on the mobile node side.

To the best of our knowledge, this is the first work on po-
sition update load shedding in mobile CQ systems. Several
works have appeared in the literature on handling the joositi
Server Side Cost: The graphs in Figureé 14 plot the time updates efficiently in mobile CQ systems [17, 8, 10, 20] ongsi
it takes to execute the HROTLOOP, GRIDREDUCE, and motion modeling to reduce the number of position updates re-
GREEDYINCREMENT algorithms as a function of the number ceived [19] 2]. The first set of works do not directly addrés t
of shedding regions, for different numbers of cellsaf) for update load shedding problem, but instead aim at decretsing
the statistics grid. For the default parameters ef 250 and 10 and CPU cost of integrating the position updates intoiapat
a = 128, the configuration of IRA takes aroundl0 msecs. index structures. This does not involve suppressing orgngp
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the position updates from the mobile nodes, which is inbléta nificantly superior to random update dropping and uniform in

when the current resources of the system are not sufficient taccuracy threshold schemes. MoreoveRrA.is lightweight by

handle the update load. Our work is complementary in naturelesign and can be used in conjunction with many of the exjstin

to this line of previous work. The second set of previous workupdate indexing and mobile CQ processing techniques.

use motion modeling to cut the update load, and ensure that ﬂheferenceﬁ

resulting position updates do not have inaccuracy beyond-a p

specified threshold. A key difference is that, our work is/elni [1] Y. Cai and K. A. Hua. An adaptive query manage-

by the update budget enforced by the load on the system. We  ment technique for efficient real-time monitoring of spa-

adjust the inaccuracy thresholds to reduce the update dkpen tial regions in mobile database systemsIHEE Interna-

ture of the system to meet the update budget. In other words, tional Performance Computing and Communications Con-

our work utilizes the previous work on motion modeling at the ference 2002.

mobile node side for actuating the position update supprgss [2] A. Civilis, C. S. Jensen, and S. Pakalnis. Techniques for

However, the core of our solution is to find a partitioning and efficient road-network-based tracking of moving objects.

a set of inaccuracy thresholds to associate with each ipartit IEEE Transactions on Knowledge and Data Engineering

so that the position updates received from the mobile nodes c 17(5):698-712, 2005.

answer the queries installed in the system accurately. [3] B. Gedik and L. Liu. Distributed processing of continu-
There have also been a number of distributed solutions to  ously moving queries on moving objects in a mobile sys-

evaluate CQs in mobile systems [1, 7, 3]. In these systeras, th tem. Ininternational Conference on Extending Database

position updates are only received if they affect a querultes Technology2004.

Even though these systems do not provide any load shedding ca[4] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Processing mov-

pability, their update load is expected to be significanthyer
compared to solutions that track all mobile nodes. It is tvoot
note that these solutions cannot support historic quesiasg

the location updates are not received from all objects. The a [5] Google
hoc snapshot queries are also expensive to evaluate. diatere
ingly, LIRA can be configured to mimic the behavior of these [6]

systems by setting the maximum inaccuracy bouxd to a

large value. However, our system has the additional adganta

ing queries over moving objects using motion adaptive in-
dexes. INEEE Transactions on Knowledge and Data En-
gineering volume 18, pages 651-668, 2006.

RideFinder home page.
http://labs.google.com/ridefinder, Febuary 2006.

M. Gruteser and D. Grunwald. @ Anonymous usage
of location-based services through spatial and temporal
cloaking. InACM International Conference on Mobile

of not being tied to any specific query processing techniaquk a Systems, Applications, and Servic2303.

has very little overhead. [7] H. Hu, J. Xu, and D. Lee. A generic framework for mon-

lusi itoring continuous spatial queries over moving objects. In
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<
m; - o fA] —a) = f(A])
Using Equation 2 and|3 we get;, - 3 < m; - a. This proves
the contradiction and thus completes the proof. O

APPENDI X
A Proof of Theorem 3.1

Proof. The proof is by contradiction. Assume that the opti-
mal solution is denoted byA*} and is different than the solu-
tion given by GREEDYINCREMENT, which we denote afA ;[ }.
There must be at least opiec [1..[] such thatAj+ < Aj. Other-
wise we would haveé/i, A;r > A7 which will introduce a con-
tradiction, since it implies that the solution olRGEDYINCRE-
MENT has not consumed its update budget completely (which
is not possible due to algorithm design). Similarly, we dtlou
have at least onk # j € [1..]] such thatA;” > Aj. Otherwise
we would haveyi, Af < A which will introduce a contradic-
tion, since it implies that the solution of KEEDYINCREMENT
has overshot the update budget.

Since we have\;” > Ay, there must be a step inREEDY-
INCREMENT in which Ay is incremented from value to b
such thata < Ay < b. Letwv be the value ofA; when
this step is taken by REEDYINCREMENT. We should have
Sk(a) > S;(v), sinceAy is selected to be incremented but
not A;. Sincef is piece-wise linear and is a brake point of
f (becausen = (A4 — Ap)/k), Sk is constant throughout
l[a,a + cal); and sinceca > b — a, we haveSy(a) = Si(A}).
This leads taS(Aj) > S;(v). Since we have\ < A%, we
must havev < A7 and sinceS; is a decreasing function, we
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