
LIRA: Lightweight, Region-aware Load Shedding in Mobile CQ Systems

Buğra Gedik♦♠ Ling Liu♦ Kun-Lung Wu♠ Philip S. Yu♠

♦ CERCS, College of Computing, Georgia Tech
♠ Thomas J. Watson Research Center, IBM Research
{bgedik,lingliu}@cc.gatech.edu,{klwu,psyu}@us.ibm.com

Abstract

Position updates and query re-evaluations are two predom-
inant, costly components of processing location-based, contin-
ual queries (CQs) in mobile systems. To obtain high-quality
query results, the query processor usually demands receiving
frequent position updates from the mobile nodes. However, pro-
cessing frequent updates oftentimes causes the query processor
to become overloaded, under which updates must be dropped
randomly, bringing down the quality of query results, negating
the benefits of frequent position updates. In this paper, we de-
velopL IRA − a lightweight, region-aware load-shedding tech-
nique for preventively reducing the position-update load of a
query processor, while maintaining high-quality query results.
Instead of having to receive too many updates and then ran-
domly drop some of them,L IRA uses aregion-awarepartition-
ing mechanism to identify the most beneficialshedding regions
to cut down the position updates sent by the mobile nodes within
those regions. Based on the number of mobile nodes and queries
in a region,L IRA judiciously applies different amounts of up-
date reduction for different regions, maintaining better over-
all accuracy of query results. Experimental results show that
L IRA is vastly superior to random update dropping and clearly
outperforms other alternatives that do not possess full-scale,
region-aware load-shedding capabilities. Moreover, due to its
lightweight nature,L IRA introduces very little overhead.

1 Introduction

The proliferation of mobile devices and advances in wire-
less communications are creating an increasing interest inrich,
value-added location-based services, which are expected to
form an important part of the future computing environments
that will seamlessly integrate into our lives [16]. A recentex-
ample from the industry is the Google Ride Finder [5] service,
which provides mobile users with the capability to employ con-
tinual queries (CQs) to monitor nearby taxi services.

Mobile CQ systems serve as an enabling technology for lo-
cation monitoring applications. Scalable CQ middleware for lo-
cation monitoring has been an active area of research in the past,
attested by several recent works, such as SINA [11], SRB [7],
MAI [4], and others [3, 1, 12]. In almost all of these systems,
there are two sources of bottleneck in providing high-quality
query results. First, in order to provide fresh results the queries
have to be re-evaluated frequently, consuming processing and
disk IO resources. Second, in order to provide accurate results
the position updates from mobile nodes have to be collected

with high frequency, and be processed with high consumption
of CPU, disk IO, and network resources.

The update problem associated with mobile CQ systems has
received significant attention from the research community, re-
sulting in several spatial index structures for efficientlyintegrat-
ing position updates into the system [17, 8, 10, 20]. Although
indexing techniques can speed up the processing of positionup-
dates, they do not solve the fundamental problem of overload.
When such overloads happen, the position updates will clog the
system buffers and will cause the random dropping of the up-
dates, which (as we show in this paper) is a very ineffective way
to handle overload. Surprisingly, none of the previous works
have addressed the problem of effectiveupdate load shedding.
Hence, there is a cogent need for developing intelligent update
load-shedding techniques for mobile CQ systems. By intelli-
gent update load shedding we mean that the load shedding al-
gorithms should prevent overloads by reducing the number of
position updates received by the query processor in such a way
that will minimally impact the accuracy of the query results.

In this paper, we develop a lightweight load-shedding tech-
nique for reducing the update load in mobile CQ systems, called
L IRA. The main idea behind LIRA is that, given an update bud-
get (which is either calculated automatically by LIRA or spec-
ified as a system-levelthrottle fraction parameter), LIRA cre-
ates a partitioning of the monitoring space into a set ofshedding
regionsand associates anupdate throttlerwith each shedding
region, where these update throttlers define the amount of load
shedding to be performed for each region in accordance with
the overall update budget. Both the partitioning and the set-
tings of the update throttlers are performed with the objective of
minimizing the negative impact of update load shedding on the
accuracy of the query results.

The LIRA approach to update load shedding has four unique
properties. First, the partitioning scheme employed by LIRA is
region-aware, in the sense that contiguous geographical areas
that have similar characteristics in terms of the density ofmo-
bile nodes and queries are grouped into the same load shedding
regions. Second, the update throttlers are set according tothe
following principle: the regions in which applying update shed-
ding may cut down a large number of updates while maintaining
a minimal impact on the query-result accuracy are subjectedto
larger amounts of load shedding. Third, the LIRA approach pro-
vides an adjustable bound on the maximum difference between
the update throttlers of different shedding regions, ensuring that
all mobile nodes are tracked by the system, albeit with varying
accuracies. This feature extends the applicability of LIRA to
mobile CQ systems with snapshot and historical query support.

1

http://www.cercs.gatech.edu
http://www.cc.gatech.edu
http://www.gatech.edu
http://www.watson.ibm.com
http://www.research.ibm.com
mailto:bgedik@cc.gatech.edu
mailto:lingliu@cc.gatech.edu
mailto:klwu@us.ibm.com
mailto:psyu@us.ibm.com

Last but not the least, LIRA introduces very little overhead and
can be employed in conjunction with any CQ systems that em-
ploy update-efficient index structures, such as the TPR-tree [15].

We evaluate our load shedding approach using realistic lo-
cation data synthetically generated using existing road maps
and real-world traffic volume data. We devise a set of evalu-
ation metrics to assess the effectiveness of LIRA and empiri-
cally show that LIRA is vastly superior to update dropping and
clearly outperforms other alternatives that do not providefull-
scale, region-aware load shedding capabilities.

2 Overview
In this section we describe the fundamental concepts under-

lying the LIRA load shedder, introduce some of the notations
used in the paper, and present the system architecture.

2.1 Design Ideas

There are two primary types of load shedding techniques that
can be used to reduce the number of position updates received
from the mobile nodes:server-actuatedand source-actuated.
In server-actuated shedding, the position updates are dropped
by the CQ server in order to match the update arrival rate with
the service rate of the server. This has two major disadvantages.
First, the dropped updates are unnecessarily transferred from
the mobile nodes to the CQ server, wasting the network band-
width of wireless medium. Second, these excessive updates still
have to be received by the server (even though will be dropped
later), and thus contribute to the processing load. On the other
hand, the source-actuated approach requires some coordination
between the server and the mobile nodes, since the load shed-
ding decisions are made by the server.

A commonly used mechanism for actuating the position up-
date reduction at the mobile node side is motion modeling, also
known asdead reckoning. Motion modeling uses approximation
for location update prediction. Concretely, instead of report-
ing their position updates each time they move, mobile nodes
only report the parameters of a model approximating their mo-
tion when the model parameters change significantly. A sig-
nificant change in the model parameters is decided based on
an inaccuracy threshold∆ and the last reported model param-
eters. When the predicted position of the mobile node devi-
ates from the actual position of the node by more than∆, the
new motion parameters are reported. A popular motion model
is piece-wise linear approximation of the mobile node move-
ment [19], whereas more advanced models also exist [2]. How-
ever, for the purpose of this paper the particular motion model
used is not of importance. In the design of the LIRA load shed-
der, this inaccuracy threshold∆ is used as a control knob to
adjust the number of position updates received. Without loss
of generality, we adopt linear motion modeling in LIRA. Note
that many of the existing mobile CQ systems have built-in sup-
port for linear motion modeling [15, 17, 4]. In this paper we
take the source-actuated approach to develop LIRA, which pro-
vides a lightweight method to coordinate the server-initiated but
source-actuated update load shedding.

A straightforward but näıve way of shedding update load is
to have all mobile nodes to use a single system-controlled inac-
curacy threshold. Let∆` be the minimum value that the inac-
curacy threshold can take, which defines the ideal resolution of

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

inaccuracy threshold, ∆ (meters)

u
p

d
a
te

 r
e
d

u
c
ti

o
n

 f
a
c
to

r,
 f

(∆
)

Figure 1: Reduction in the
number of location updates
received with different in-

accuracy thresholds

position updates. Let∆a be the maximum value that the inaccu-
racy threshold can take, which defines the lowest resolutionof
position updates required to achieve reasonable query result ac-
curacy. The inaccuracy threshold∆ can be set to a value within
[∆`,∆a] in order to adjust the update expenditure of the sys-
tem. By increasing∆ from ∆` to ∆a, the number of updates
will decrease even though this reduction is not linear as shown
in Figure 11. The figure plotsf(∆), called theupdate reduction
factor. For a given inaccuracy threshold∆ ∈ [∆`,∆a], f(∆)
gives the number of position updates received relative to the case
of ∆ = ∆`. As observed from Figure 1, the rate of reduction in
the update expenditure is more pronounced while∆ is increased
within the proximity of∆` = 5 meters, whereas it reduces to a
fixed slope (linear decrease in the number of updates) as∆ gets
closer to its maximum value of∆a = 100 meters.

A key observation we make in this paper is that different re-
gions of the monitoring space exhibit different characteristics in
terms of the densities of mobile nodes and queries and can ben-
efit from differing amounts of load shedding. This observation
suggests that a uniform∆ approach is significantly suboptimal.
To understand this better, we plot the desirability of load shed-
ding for regions with differing characteristics in Table 1.

H
H

H
H

H
n

m
low high

low < ×
high X >

Table 1: Region charac-
teristics and preference of

load shedding

Let n be the number of mobile nodes andm be the number
of queries within a region. Whenn is low andm is high for
a region, load shedding should be avoided as much as possible
(upper right quadrant in Table 1 is marked with× to show this).
This is because a small number of nodes that generate a small
number of updates are used for answering a large number of
queries for this region, which implies that increasing∆ here will
significantly impact the overall query accuracy, while bringing
only a small reduction in the number of position updates re-
ceived. In contrast, load shedding is very desirable whenn is
high andm is low for a region (lower left quadrant in Table 1 is
marked withX to show this). This is because a large number of
nodes that generate a large number of updates are used for an-
swering a small number of queries for this region. It impliesthat
increasing∆ will minimally impact the overall query accuracy,
while bringing a large reduction in the number of position up-
dates received. Interestingly, the ratiom/n does not completely
characterize the preference of one region over another for in-
creasing the inaccuracy threshold∆. This is because the over-

1The experimental setup and default parameters used to generate the graphs
in Figure 1 are given in Section 4.2

2

all inaccuracy introduced in the mobile node positions increases
linearly with increasing∆, whereas the amount of update reduc-
tions increases non-linearly as∆ increases. This is why regions
with small m andn are less attractive for load shedding com-
pared to the regions with largem andn, but comparing to the
scenario of highm and lown both being better choices for load
shedding (the symbols< and> indicate this in Table 1).

This insight leads us to a region-aware approach to update
load shedding. Concretely, in LIRA we partition the geograph-
ical area of interest intol shedding regions, denoted byAi, i ∈
[1..l]. Furthermore, we associate an inaccuracy threshold with
each shedding regionAi, denoted by∆i. We call∆i the up-
date throttler of the regionAi. A simple way of determining the
shedding regions is to partition the entire geographical space of
interest intol regions evenly. However, such even partitioning
of the space is unlikely to produce an effective solution, since
the level of heterogeneity (in terms of the number of mobile
nodes and queries) inside two given equally-sized regions may
differ significantly. Intuitively, a region where further partition-
ing generates sub-regions of similar characteristics in terms of
densities of mobile nodes and queries does not provide any gain
with regard to reducing the number of position updates while
minimizing the query result inaccuracy. Thus the design of the
L IRA load shedder should address the following two challenges:
(1) How to partition the geographical space of interest intoa set
of shedding regions effectively, and (2) How to set the update
throttler for each region to minimize the inaccuracy introduced
in query results while meeting our update budget constraint.

In L IRA we introduce the concept of throttle fraction to
define the position update budget of the system, denoted by
z ∈ [0, 1]. For instance,z = 0.75 means that the number of
updates should be reduced by a quarter, compared to the case
of using a common∆ = ∆`. The throttle fraction can be cal-
culated automatically by the server in reaction to overloadsitu-
ations by observing the size of the system message queue (see
Section 3.4). Alternatively, when the server is not overloaded
but the wireless communication load of receiving updates are
putting a heavy burden on the network, the throttle fractioncan
be manually set as a system-level parameter. In the next section
we discuss the system architecture and describe how we com-
pute thel shedding regions and how to set the update throttlers
for the l regions within a given system-controlled position up-
date budget, represented by the throttle fractionz.

2.2 System Architecture

Figure 2 illustrates the system architecture of LIRA, which
consists of three layers. The first layer is formed by the mobile
CQ server. The server has three main responsibilities. First, it
sets the throttle fractionz ∈ [0, 1] to define the position update
budget of the system. Second, it is responsible for calculating
the shedding regions and the associated update throttlers for a
given update budget, that is for a given value of the throttlefrac-
tion z. Third, it is responsible for reporting to each base station
in the second layer, the subset of shedding regions and update
throttlers corresponding to the base station’s coverage area.

The set of base stations that cover the space of interest form
the second layer. The base stations are assumed to be connected
to the mobile CQ server via the wired network. They provide
wireless networking services to the mobile nodes. The base sta-

A1 AA22

A9

A7 AAA88

A11

AA3 AA4

AAA10

A5 A6

AA121

A1
...

A5
...

A12

∆1
...

∆5
...

∆12

A5 ∆5

current update
throttler used

complete
partitioning

A1... Al

all update
throttlers ∆1... ∆l

all shedding
regions

CQ server

BS

Mobile
node

Figure 2: System Architecture

tions are responsible for broadcasting the subset of load shed-
ding regions and update throttlers corresponding to their cov-
erage area to mobile nodes, when the server reports a change
in the partitioning or the update throttler values. The basesta-
tions are also responsible for sending the shedding regionsand
update throttlers to a mobile node entering into a new base sta-
tion’s coverage area during a hand-off.

The set of mobile nodes form the third layer of our system.
The mobile nodes are responsible for reporting their positions
to the mobile CQ server using dead reckoning. However, the
inaccuracy threshold used by a mobile node is dependent on the
region in which it resides. As a result, the mobile nodes store
a subset of shedding regions and update throttlers correspond-
ing to the coverage area of their current base station. As the
mobile nodes move from one shedding region to another within
their base station’s coverage area, they use the update throttler
corresponding to their current shedding region as the inaccu-
racy threshold. The update throttler to use is determined locally.
When the mobile nodes switch base stations, they change the
subset of shedding regions and update throttlers they storebased
on the information they receive from the new base station.

Factors Affecting the Number of Shedding Regions
From the description of the system architecture, one may ob-
serve an interesting trade-off in setting the number of shedding
regionsl. On the one hand, the larger the number of shedding
regions is, the more fine grained is the partitioning, leading to
more fully exploiting the potential heterogeneity existent in the
geographical space of interest in terms of different characteris-
tics of regions with respect to the number of mobile nodes and
queries. On the other hand, as the number of shedding regions
increase, the average number of update throttlers and shedding
regions per base station coverage area grows. This implies that
the mobile nodes should know about a larger number of shed-
ding regions and update throttlers. This increases the costof
finding the correct update throttler to use at the mobile node
side, as well as the communication cost of disseminating the
new set of throttle fractions and shedding regions to the mobile
nodes once they are updated by the server. Thus a careful setting
of l is critical for the overall system scalability in terms of both

3

service quality and wireless communication bandwidth.
We below describe in detail our design of Lira load shedder

in two steps. In Section 3, we discuss how the Lira load shedder
works to shed loads effectively, including how to set the throttle
fraction z, how to partition the geographical space of interest
into l shedding regions, and how to determine the update throttle
for each of the shedding regions. In Section 4, we discuss in
detail how the LIRA system setsl to achieve a sufficiently fine
granularity in partitioning while minimizing the inaccuracy in
query results, and yet putting very little load on the mobilenodes
and the wireless network.

3 The LIRA Load Shedder
In this section we describe the main technical components

of the LIRA load shedder, encompassing the three major server-
side functionalities: (1) partitioning the geographical space of
interest intol shedding regions for a givenl, performed by the
GRIDREDUCE algorithm, (2) determining the update throttler
for each of thel shedding regions, performed by GREEDYIN-
CREMENT algorithm, and (3) setting the throttle fractionz to
adjust the system-wide position update budget, performed by
THROTLOOPalgorithm. These three algorithms work in coop-
eration to perform the load shedding. In particular, the THROT-
LOOP algorithm monitors the performance of the system un-
der the current workload and resource availability to decide the
throttle fractionz. Givenz computed by THROTLOOP and the
numberl of shedding regions specified as a system-supplied pa-
rameter, the GRIDREDUCE algorithm creates a partitioning of
the entire geographical space of interest and computes the set of
l shedding regions, i.e.,Ai (i ∈ [1..l]). Finally, givenz, l, and
Ai’s, the GREEDYINCREMENTalgorithm determines the update
throttlers for thel shedding regions, i.e.,∆i (i ∈ [1..l]).

A common thread that is shared by all three algorithms is the
optimization problem of finding a partitioning and the associ-
ated set of update throttlers that defines the near-optimal load
shedding strategy, which sheds the load within the given up-
date budgetz and yet minimizes the inaccuracy of the results of
queries. Thus, in this section we first formally define our up-
date load shedding problem, and then we describe the three key
algorithms of the Lira load shedder.

3.1 Problem Formulation

The problem is to find a partitioning ofAi, i ∈ [1..l], and an
associated set of update throttlers∆i, i ∈ [1..l], such that certain
constraints are met (e.g., the update budget is respected) and an
objective function is optimized (i.e., inaccuracy in queryresults
is minimized). We start with formulating the two constraints.
Let ni denote the number of mobile nodes within shedding re-
gionAi. The following two constraints should hold:

∑

i∈[1..l]

ni · f(∆i) ≤ z · n · f(∆`)

∀
i∈[1..l]

∆` ≤ ∆i ≤ ∆a

The first constraint, which we call theupdate budget constraint,
states that the number of updates received under the region-
aware load shedding approach should not exceedz (throttle frac-
tion) times the number of updates that would have been received
if there were no load shedding applied, i.e., we were to use a

uniform inaccuracy threshold of∆` for all nodes. Note that we
havef(∆`) = 1. The second constraint defines the domain of
update throttlers (∆i’s).

We now formulate the objective function of the problem we
want to minimize, that is the inaccuracy in query results. For the
purpose of this problem formalization we define the inaccuracy
introduced by using an update throttler value of∆i for a given
regionAi as the number of queries in the regionAi, denoted by
mi, times the inaccuracy threshold∆i, that ismi · ∆i. When
computingmi, queries partially intersecting the shedding region
Ai are fractionally counted. The objective function that we want
to minimize can be formulated as follows:

InAcc({Ai}, {∆i}) =
∑

i∈[1..l]

mi ·∆i

Note thatmi andni are functions of the partitioning{Ai}. We
now discuss a number of extensions to this basic problem.

3.1.1 The Fairness Threshold

The first extension to the basic problem formulation is to pro-
vide a system-level control over the difference in the inaccuracy
thresholds used in different regions. We introduce a parameter
called the fairness threshold, denoted by∆⇔. In the original
problem formulation, the shedding regions that do not contain
any queries (i.e.,{Ai : mi = 0}) may be overly penalized by
setting their update throttlers to maximum inaccuracy value of
∆a, since the update reduction for those regions does not impact
the query results. However, for mobile CQ systems supporting
historic and ad-hoc queries this may be undesirable, thus∆⇔
can be used to reduce this effect. Formally, we replace the sec-
ond constraint in the basic problem formulation with the follow-
ing constraint on the domain of update throttles:

∀
i,j∈[1..l]

|∆i −∆j | ≤ ∆⇔

One extreme case of∆⇔ = ∆a − ∆` represents the original
formulation, whereas the other extreme case of∆⇔ = 0 repre-
sents the uniform∆ scenario.

3.1.2 The Speed Factor

Different regions may have different average speeds for themo-
bile nodes within, and thus may exhibit different behaviorswith
respect to the impact of the inaccuracy threshold on the num-
ber of updates received from the mobile nodes. As a result,
the update budget constraint should be adjusted using speeds
to achieve a more accurate modeling of the update cost. Let
us denote the average speed of mobile nodes within the shed-
ding regionAi by si and the overall average speed byŝ (i.e.,
ŝ =

∑l

i=1 si · (ni/n)). Assuming that the number of updates is
linearly proportional to the average speed of mobile nodes,we
modify our update budget constraint as follows:

l
∑

i=1

ni · si · f(∆i) ≤ z · n · ŝ · f(∆`)

3.1.3 Final Problem Formulation

The final formulation with the two extensions is as follows:

4

argmin
{Ai},{∆i}

InAcc({Ai}, {∆i}) =
∑

i∈[1..l]

mi ·∆i

s.t. (i)
∑

i∈[1..l]

ni ·
si

ŝ
· f(∆i) ≤ z · n · f(∆`)

(ii) ∀
i,j
|∆i −∆j | ≤ ∆⇔

(iii) ∀
i∈[1..l]

∆` ≤ ∆i ≤ ∆a

We consider the partitioning and the settings of update throt-
tlers as separate problems. In what follows, we first provide
a heuristic-based partitioning algorithm for constructing the
shedding regions and then give an optimal (under certain
conditions) algorithm for setting the update throttlers for a
given partitioning of the space. It is worth mentioning thatthe
problem of setting update throttlers is not a linear program,
since the update reduction functionf is not linear and as a
result the update budget constraints are not linear.

3.2 GRIDREDUCE: Partitioning the Space

The goal of the GRIDREDUCE algorithm is to partition the
geographical space of interest intol shedding regions, such that
this partitioning produces lower query result inaccuracy.For
each shedding regionAi generated, the algorithm also deter-
mines the number of nodesni, the number of queriesmi, and
the average speedsi for that region. This information is later
used by the GREEDYINCREMENT algorithm to set the update
throttlers.

The GRIDREDUCE algorithm works in two stages and uses
a statistics gridas the base data structure to guide its decisions.
The statistics grid serves as a uniform, maximum fine-grained
partitioning of the space of interest. In the first stage of the al-
gorithm, which follows a bottom-up process, we create a region
hierarchy over the statistics grid and aggregate the query and
mobile node statistics for the higher-level regions in thishier-
archy. This region hierarchy serves as a template from whicha
non-uniform partitioning of the space can be constructed. The
second stage follows a top-down process and creates the final
set ofl shedding regions, starting from the highest region in the
hierarchy (the whole space). The main idea is to selectivelypick
and drill down on a region using the hierarchy constructed inthe
first stage. The region to drill down is determined based on the
expected amount of gain in the query result accuracy, calledthe
accuracy gain(see Section 3.2.3), which is computed using the
aggregated region statistics.

We now describe the details of the GRIDREDUCEalgorithm.
Its pseudo code is given in Algorithm 1.

3.2.1 The Statistics Grid

The statistics grid is anα × α evenly spaced grid over the ge-
ographical space, whereα is the number of grid cells on each
side of the grid. We describe the relationship betweenα and
l later in this section. For each grid cellci,j the statistics grid
stores the average number of mobile nodesni,j , queriesmi,j ,
and average speedsi,j for that grid cell. The only data structure
maintained by the LIRA load shedder is this grid.

The maintenance of the grid can be performed in a number

of ways. For instance, if the mobile CQ server uses a grid-based
index on mobile node positions [9, 11] the statistics grid can
be trivially supported as a part of the grid index. Alternatively,
the grid can be explicitly maintained by processing position up-
dates. Note that it takes constant time to process an update for
maintaining the grid. Moreover, all of the updates need not be
processed, since the statistics can easily be approximatedusing
sampling. In an off-line alternative, the average number ofmo-
bile nodes and average node speeds can be pre-computed for
different times of the day based on historic data, in which case
the maintenance cost is close to zero. In all three alternatives,
maintenance of the statistics grid is a lightweight operation. The
partitioning generated by the GRIDREDUCE algorithm using an
α× α grid is called the(α, l)-partitioning of the space.

3.2.2 Stage I: Building the Region Hierarchy

In the first stage (see lines 1- 9 in Algorithm 1), we build a
complete quad-tree over the grid. Each tree node corresponds
to a different region in the space, where regions get larger as
we move closer to the root node which represents the whole
space. Each level of the quad-tree is a uniform, non-overlapping
partitioning of the entire space. Through a post-order traversal
of the tree, we aggregate the statistics associated with thegrid
cells for each node of the tree, i.e., we compute the number of
mobile nodes, number of queries, and average speed for each
tree node’s region. The first stage of the algorithm takesO(α2)
time and consumesO(α2) space, since the number of tree nodes
is α2 + (α2 − 1)/3, assumingα is a power of2.

3.2.3 Stage II: Drilling Down in the Hierarchy

In the second stage of the algorithm (see lines 10- 22 in Algo-
rithm 1) we start with the root node of the tree, i.e., the entire
space. At each step, we pick an explored tree node (initially
only the root) and replace it with4 tree nodes by partitioning
the node’s region into4 sub-regions corresponding to its child
nodes in the tree. This process continues until we reachl tree
nodes (thusl shedding regions), assumingl mod 3 = 1. The
crux of this stage lies in how we choose the region to partition
during each step. For this purpose we maintain a max-heap of
all explored tree nodes based on the accuracy gain, a metric we
introduce below, and at each step we pick the node with the
highest accuracy gain.

Given a tree node, the accuracy gain is a measure of the ex-
pected reduction in the query result inaccuracy, achieved by par-
titioning the node’s region into4 sub-regions corresponding to
its child nodes. For a tree nodet, the accuracy gainV [t] is cal-
culated as follows. LetE[t] be the average result inaccuracy if
we only had one shedding region that ist’s region. Formally,
we haveE[t]← min∆ (m[t] ·∆), s.t.f(∆) ≤ z ·f(∆`). Now
let Ep[t] be the average result inaccuracy if we had4 shedding
regions that correspond to the regions oft’s child nodesti, i ∈
[1..4]. Formally, we haveEp[t] ← min{∆i}

∑4
i=1 ∆i · m[ti]

subject to the constraint
∑4

i=1 n[ti] · f(∆i) ≤ z · n[t] · f(∆`).
Then the differenceE[t]−Ep[t] gives us the accuracy gainV [t].

The computation ofE[t] andEp[t], and thus the accuracy
gainV [t], requires solving the problem of update throttler set-
ting for a fixedl of shedding regions. Concretely, computation
of E[t] requires to solve for nodet with l = 1 and computa-
tion of Ep[t] requires to solve for the four child nodes oft with

5

Algorithm 1: (l, α)-partitioning of the space

Input: α is the number of cells on each side of the grid. It is a power of
2. l is the number of grid areas desired, where we havel mod 3 = 1.
z is the throttle fraction.
Output: Ai, i ∈ [1..l] is theith grid area.ni is the number of mobile
nodes underAi andmi is the number of queries underAi.
GRIDREDUCE(α, l, z)

{the following steps takeO(α2) time andO(α2) space}
1) Constructlog

2
α + 1-level quadrant tree over theα× α grid

2) foreach tree nodet in post-order
3) if t is a leaf node,{initialize # objs., # qrys., and speeds}
4) ci,j : corresponding grid cell oft
5) n[t]← ni,j , m[t]← mi,j , s[t]← si,j

6) else {t is not a leaf, aggregate # objs., # qrys., and speeds}
7) ti: ith childeren oft, i ∈ [1..4]
8) n[t]←

P

4

i=1
n[ti], m[t]←

P

4

i=1
m[ti]

9) s[t]←
P

4

i=1
(n[ti]/n[t]) · s[ti]

{the following steps takeO(l · log l) time andO(l) space}
10)H: empty max. heap of nodes, based onV (accuracy gain) values
11)L: empty list of tree nodes,i← 0
12) t← root of the tree,H.INSERT(t)
13) while L.SIZE()+H.SIZE() < l {l regions not reached}
14) t← H.POPMAX () {region to partition}
15) if t is not a leaf{further partitioning possible}
16) for i = 1 to 4 {partition the region}
17) g ←CALCERRGAIN (ti), H.INSERT(〈ti, g〉)
18) else {t is a leaf node} {no further partitioning}
19) L.INSERT(t) {store the region inL}
20) foreach t ∈ L ∪H {process the regions}
21) ni ← n[t], mi ← m[t], si ← m[t] {set the region stats.}
22) Ai ← Area oft’s quadrant,i← i + 1 {set the area}

CALCERRGAIN (t)
1) E ← min∆ (m[t] ·∆), s.t.f(∆) ≤ z · f(∆`)
2) Ep ← min{∆i}

P

4

i=1
∆i ·m[ti],
s.t.

P

4

i=1
n[ti] · f(∆i) ≤ z · n[t] · f(∆`)

3) V [t]← E − Ep {accuracy gain is the difference in error}

l = 4. As we will show in Section 3.2.4, this general problem
can be solved in loglinear time onl. As a result, the accuracy
gain is computed in constant time for a tree nodet. The second
stage of the GRIDREDUCEalgorithm takesO(l · log l) time and
consumesO(l) space, bringing the combined time complexity
toO(l · log l + α2) and space compexity toO(α2).

3.2.4 Illustration of the Partitioning

Figure 3 depicts an example(α, l)-partitioning. The mobile
node distribution (generated from a road map) is shown on the
top left corner, whereas the query distribution is shown on the
top right corner. The top three layers of the quad-tree builtover
the statistics grid is shown on the bottom left corner and thefinal
(α, l)-partitioning is shown on the bottom right corner. It is im-
portant to note that the regions are not being further partitioned
when the further partitioning will not benefit the query result
accuracy. Here are the two interesting examples: the shedding
regions marked with× and∗ in Figure 3, which we denote by
A× andA∗. We see thatA× is larger than some of the nearby
regions. This is because the number of queries is zero forA×
and as a result further partitioning is not needed.A∗ is also
larger than some of the nearby regions, but in contrast toA×
the number of queries is large forA∗. However, what matters is

object distribution query distribution

score tree reduced grid

x *

Figure 3: Illustration of(α, l)-partitioning

the heterogeneity of the region in terms of the number of mobile
nodes and queries within. In the case ofA∗ further partitioning
of the region results in sub-regions of similar characteristics, im-
plying that partitioning is unnecessary due to low heterogeneity.

3.2.5 The Relationship Between l and α

To find a pragmatic way of configuring the statistics grid pa-
rameterα, we first observe the relationship betweenl andα.
Assume that the partitioning is performed such that all the shed-
ding regions are evenly sized. This will yield a grid partitioning
with

√
l number of cells on each side, which we refer to as the

l-partitioning. Our aim is to have a statistics grid that is fine
grained enough to provide us with an(α, l)-partitioning whose
non-uniformly sized shedding regions are sufficiently flexible
in terms of the size of their area compared to the case ofl-
partitioning in which all regions are equal-sized. The sidelength
of the minimum possible shedding region in(α, l)-partitioning
is proportional to1/α (the shedding region is equal to a cell
of the statistics grid), whereas the side length of a region in l-
partitioning is proportional to1/

√
l. To achieve aroundx2 times

difference in the areas of minimum possible shedding regions
of l-partitioning and(α, l)-partitioning, we should determineα
using the formulaα = 2blog2

(x·
√

l)e. Havingx = 10 provides
around100 times difference in size. In our experimental studies
we have found that this setting gives effective results.

3.3 GREEDYINCREMENT: Setting the ∆i’s

The goal of the GREEDYINCREMENT algorithm is to find
the optimal setting of the update throttlers associated with the
l shedding regions produced by the GRIDREDUCE algorithm,
so that the inaccuracy in query results is minimized (while re-
specting the fairness thresholds). We first consider this problem
without the fairness threshold constraints. The main idea is to
increase the update throttlers in order to match the update bud-
get. The update throttlers that bring a larger reduction in the
update expenditure of the system in return for a smaller reduc-

6

tion in the result accuracy are preferred for increment.

3.3.1 The Greedy Steps

As the name suggests, the algorithm is a greedy one. It starts
by setting all∆i’s to ∆`, the current update expenditureU to
n · ŝ · f(∆`) and the update budgetUa to z · U . Note that the
initial setting is an infeasible solution since the update expendi-
ture is higher than the update budget, that isU > Ua. At each
greedy step one of the update throttlers is selected based onthe
update gain, a criterion to be defined in the next subsection, and
is increased byc∆, called theincrement(or by a smaller value
in the case that we undershoot the update budget). When∆i is
incremented byc∆, the current update expenditure is decreased
by ni · si · (f(∆i) − f(∆i + c∆)). This process continues un-
til the current update expenditure decreases to match the update
budget (i.e.,U = Ua), or all the update throttlers reach their
maximum bound (i.e.,∆ = ∆a). The former condition implies
that the update expenditure is reduced to a value equal to throt-
tle fraction times the maximum update expenditure associated
with the case of∀i∈[1..l] ∆i = ∆`. This means that the update
constraint is satisfied. On the other hand, the latter condition im-
plies that the update budget can not be met for the given throttle
fraction z and the update throttler range[∆`,∆a], leading to
the solution∀l∈[1..l] ∆i = ∆a.

3.3.2 Update Gain Calculation

The key point of GREEDYINCREMENT is the selection of the
update throttler to use at each greedy step. We pick the update
throttler that has the highest update gain. The update gain is
defined as the ratio of the decrease in update expenditure to the
additional inaccuracy introduced in the query results. We de-
note the rate of decrease in the update expenditure at a point∆
by r(∆), and define it as the negative of the update reduction
functionf ’s derivative at point∆. Formally, we have:

r(∆) = −d(f(x))

dx

∣

∣

∣

∣

x=∆

Based on this definition, making adx increase in update throttler
∆i will reduce the update expenditure byni ·si · r(∆i) ·dx, and
will decrease the query result inaccuracy bymi ·dx. As a result,
the update gain for theith update throttler∆i, denoted bySi, is:

Si(∆) = (ni/mi) · si · r(∆)

In each step of the GREEDYINCREMENT algorithm, an up-
date throttler ∆j is selected such that we havej =
argmaxi∈[1..l] Si(∆i). If the update gain for∆j is larger than
the update gain for∆k, then increasing∆j provides better up-
date reduction compared to∆k for the same amount of increase
in query result inaccuracy.

3.3.3 Optimality and Setting of the Increment c∆

To provide an optimality guarantee and to guide the setting of
c∆, we approximate the update reduction functionf by a non-
increasing, piece-wise linear function ofκ segments, each of
size(∆a−∆`)/κ. This enables us to prove the following result:

Theorem 3.1. For c∆ = (∆a − ∆`)/κ, the GREEDYINCRE-
MENT algorithm is optimal for the non-increasing piece-wise
linear approximation of the update reduction functionf with κ
segments of sizec∆ each.

Proof. See Appendix A

The time complexity of the GREEDYINCREMENT algorithm
is given byO(κ · l · log l) or byO(l · log l) if κ is constant. The
derivation follows from the simple fact that in the worst case it
will take κ steps to increase∆i from ∆` to ∆a. There arel
number of update throttlers and each greedy step takesO(log l)
time due to heap operations. As a result, the overall time com-
plexity stated above is achieved. The space complexity isO(l).

3.3.4 Supporting the Fairness Threshold

In order to support the fairness constraints dictated by thefair-
ness threshold∆⇔, we make the following changes to the base
algorithm. At each greedy step, the update throttler with the
highest update gain, say∆i, is incremented byat mostc∆, mak-
ing sure that it does not go beyond a value that will violate the
fairness constraint. Concretely, if the minimum update throt-
tler we have is∆D = minj∈[1..l] ∆j , then∆i is not increased
beyond∆D + ∆⇔. When an update throttler∆i reaches the
limit, that is we have∆i = ∆D + ∆⇔, then it is moved to a
blocked listand is not considered for the following steps of the
algorithm until it is removed from the blocked list. Whenever
the minimum update throttler∆D is changed, the set of update
throttlers in the blocked list that are no more on the limit are re-
moved and are included in the following steps of the algorithm.
The pseudo code of the GREEDYINCREMENT algorithm with
the extensions is given in Algorithm 2.2

3.4 THROTLOOP: Setting the Throttle Fraction

The throttle fractionz can be adaptively adjusted by the LIRA

load shedder, when it is not set as a fixed system-level parame-
ter to retain only a pre-defined fraction of position updates. The
adjustment of the throttle fraction is performed by the THROT-
LOOP, which observes the position update queue and periodi-
cally decides the fraction of position updates that should be re-
tained (throttle fractionz). The aim is to reduce the system load
so that the rate at which the position updates are received (λ) and
the rate at which these updates are processed (µ) are balanced to
prevent dropping updates from the input queue. Theutilization
of the system, denoted byρ, is given byλ/µ. Let us denote the
maximum size of the input queue byB. Assuming anM/M/1
queuing model, we should have the following relationship be-
tweenρ andB to make sure that the average queue length is no
more than the maximum queue size [14]:ρ = 1 − 1/B. If the
utilization is larger than1−B−1, it represents an overload situa-
tion and thus the throttle fractionz should be decreased. On the
other hand, if the utilization is smaller than1−B−1, it implies
that the system is not fully utilized and the throttle fraction z
should be increased. This understanding leads to the following
procedure that describes the operation of THROTLOOP:

Initially: i← 0, z(i) ← 1

Periodically: u← ρ/(1−B−1), i← i + 1

z(i) ← min(1, z(i−1)/u)

2Note that in order to maintain∆D for each step of the algorithm without
changing the time complexity, a sorted tree of update throttlers is maintained
and providesO(log l) time insertion and removal operations.

7

Algorithm 2: Setting the update throttlers

Input: z: throttle fraction,c∆: increment,∆⇔: fairness threshold
Output: ∆i, i ∈ [1..l]: shedding thresholds
GREEDYINCREMENT(z, c∆, ∆⇔)
1) H: empty, max heap ofSi’s (update gains)
2) D: empty, sorted tree of∆i’s (update throttlers)
3) L: empty, list of blocked∆i (throttlers at fairness limit)
4) U ← n · ŝ · f(∆`), Ua ← z · U {set update budget, expend.}
5) for i = 1 to l {initialize H andD}
6) ∆i ← ∆`, D.INSERT(∆i) {update throttler}
7) Si ← (ni/mi) · si · r(∆i), H.INSERT(Si) {update gain}
8) repeat {start increment loop}
9) Si ← H.POPMAX () {next∆i to increment}
10) ∆′

i ← ∆i, ∆′
D← D.M IN() {backup∆i,∆D =minj ∆j}

11) c′∆ ← min(c∆ · b∆i/c∆ + 1c, ∆′
D + ∆⇔)−∆i

12) c′∆ ← min(c′∆, (U−Ua)/(Si ·mi)) {set step size}
13) ∆i ← min(∆i + c′∆, ∆a) {increment∆i}
14) U ← U − (∆i −∆′

i) · (Si ·mi) {adjust the update budget}
15) D.UPDATE(∆′

i, ∆i), ∆D ← D.M IN() {update min∆}
16) if ∆i −∆D = ∆⇔ {fairness limit reached}
17) L.INSERT(∆i) {store∆i in the blocked list}
18) else if ∆i 6= ∆a {upper bound not reached}
19) Si←(ni/mi) · si · r(∆i), H.INSERT(Si){update gain}
20) if ∆′

D 6= ∆D {min ∆ changed}
21) foreach ∆j ∈ L {iterate the blocked∆ list}
22) if ∆′

j −∆D < ∆⇔{no more on the limit}
23) Sj←(nj/mj) · sj · r(∆j) {update gain}
24) L.REMOVE(∆j), H.INSERT(Sj) {move toH}
25)until U ≤ Ua or H.SIZE() = 0 {budget reached or all maxed}

This completes our discussion of the LIRA load shedder. We
have described how LIRA sheds load effectively using an(α, l)-
partitioning strategy and the three key algorithms for partition-
ing the geographical space of interest intol shedding regions
for a givenl (GRIDREDUCE), for determining the update throt-
tle for each of thel shedding regions (GREEDYINCREMENT),
and for setting the throttle fractionz (THROTLOOP). In the next
section, we present the experimental evaluation of the Liraload
shedder, including a discussion through experimental results on
how to determinel in order to achieve a sufficiently fine gran-
ularity in partitioning and at the same time minimizing the in-
accuracy in query results, while putting very little load onthe
mobile nodes and the wireless network.

4 Experimental Evaluation
In this section we present experimental results on the effec-

tiveness of the LIRA load shedder in cutting the cost of receiving
and processing position updates in mobile CQ systems, while
minimally affecting the accuracy of the query results. Before
describing the experimental setup, we first discuss the set of
evaluation metrics we define to assess the effectiveness of LIRA.

4.1 Evaluation Metrics

We define two sets of evaluation metrics. The first set of
evaluation metrics are used to measure the accuracy of the query
results under load shedding and the second set of metrics deal
with the cost of performing load shedding.

4.1.1 Query Result Accuracy

Mean Containment Error, denoted byEC
rr, defines the aver-

age containment error in query results. Containment error for

a query result is defined as the ratio of the number of missing
and extra items in the result to the correct result set size. Let Q
denote the set of queries,R(q) denote the result set for a query
q ∈ Q under load shedding, andR∗(q) denote the correct result
set under∀i∈[1..l] ∆i = ∆`. Then:

EC
rr =

∑

q∈Q

|R∗(q) \R(q)|+ |R(q) \R∗(q)|
|Q| · |R∗(q)|

Mean Position Error, denoted byEP
rr, defines the average po-

sition error in query results. Position error for a query result is
defined as the average error in the positions of mobile nodes in
the query result compared to the correct positions. Letp(o) de-
note the position of a mobile nodeo in a query resultq under
load shedding andp∗(o) denote the correct position ofo under
∀i∈[1..l] ∆i = ∆`. We have:

EP
rr =

∑

q∈Q

∑

o∈q

|p(o)− p∗(o)|
|Q| · |R(q)|

Standard Deviation of Containment Error, denoted byDC
ev,

andCoefficient of Variance of Containment Error, denoted by
CC

ov, are fairness metrics that measure the variation among the
query results in terms of their containment error. We have
CC

ov = DC
ev/EC

rr. These two metrics can also be extended to
the position error.

4.1.2 Cost of Load Shedding

To evaluate the cost incurred by load shedding, we measurei)
the time it takes to execute the adaptation step that involves
running the THROTLOOP, GRIDREDUCE, and GREEDYINCRE-
MENT algorithms andii) the number of shedding regions that
should be known by a mobile node on average. The former
metric measures the cost of load shedding from the perspective
of the server, whereas the latter measures it from the perspective
of the mobile node as well as the wireless network.

4.2 Experimental Setup

The experiments were performed using an hour long car
(mobile node) position trace3 generated from real-world road
networks available from the National Mapping Division of the
United States Geological Survey (USGS) [18] and traffic vol-
ume data taken from [6]. We used a map from the Chamblee
region of the state of Georgia in the USA (which covers a rich
mixture of expressways, arterial roads, and collector roads) to
generate the trace used in this paper. The map covers a region
of ≈ 200km2. The trace is generated by simulating the cars
going on roads in accordance with the traffic volume data.

The queries used in the experiments are range CQs. The side
length for the range queries are randomly selected from the in-
terval[w/2, w] wherew is called theside length parameter. We
use three different distributions for the locations of the queries,
namelyProportional, Inverse, andRandom. When the query
distribution is Proportional, the locations of the queriesfollow
the mobile node distribution. Similarly, they follow the inverse
of the mobile node distribution when the query distributionis

3The trace generator we have developed is available at
http://www.prism.gatech.edu/ gtg470c/research/research.html#kanom

8

Inverse, and are randomly distributed when the query distribu-
tion is Random.

In the experiments presented in this paper we compare our
L IRA load shedder with the following alternatives:
− Random Drop: The excessive position updates are not ad-
mitted to the input FIFO queue and are dropped.
− Uniform ∆: A uniform inaccuracy threshold∆ is used to
retain only throttle fraction times the original number of loca-
tion updates. The THROTLOOP algorithm is still used, but the
approach is not region-aware and thus space partitioning and
update throttler setting are not performed.
− Lira-Grid: A downgraded version of the LIRA load shed-
der, lacking the GRIDREDUCE algorithm which determines the
shedding regions based on(l, α)-partitioning. Instead, it uses
equally-sized shedding regions based on anl-partitioning, yet
still employs the GREEDYINCREMENTalgorithm for setting the
update throttlers.

Table 2 presents the set of experimental parameters used and
the default values they take when not stated otherwise. As we
show in this section, the default settingl = 250 of the number of
shedding regions provides sufficient granularity in partitioning
(for a region of size≈ 200km2) to improve the query result ac-
curacy significantly, while putting very little load on the mobile
nodes and the wireless network.

Parameter Description Default Value
l number of shedding regions 250

α statistics grid side cell count 128

z throttle fraction 0.5

∆` minimum inaccuracy threshold 5 meters
∆a maximum inaccuracy threshold 100 meters
c∆ increment 1 meter
∆⇔ fairness threshold 50 meters
m/n # of queries to # of nodes ratio 0.01

w query side length 1000 meters

Table 2: Experimental parameters

All experiments presented in this paper are performed on an
IBM PC with 512MB main memory and 2.4Ghz Intel Pentium4
processor, using Java with Sun JDK 1.5.

4.3 Experimental Results

We present the set of experimental results in two groups. The
first group of results are on the query result accuracy and high-
light the superiority of LIRA compared to competing approaches
for shedding position update load in mobile CQ systems. The
second group of results are on the additional cost brought bythe
L IRA load shedder, and show that the overhead is minimal.

4.3.1 Query Result Accuracy

We study the impact of several system and workload parameters
on the query result accuracy and the relative advantage of LIRA

over competing approaches.

Impact of the Throttle Fraction: The graphs in Fig-
ures 4 and 5 plot the mean position errorEP

rr and mean con-
tainment errorEC

rr as a function of the throttle fractionz, for
the proportional query distribution. The lefty-axis is used to
show the relative values (solid lines) with respect to the error
of L IRA and the righty-axis is used to show the absolute errors
(dashed lines). Bothy-axes are in logarithmic scale. We make

three observations from the figure.
First, the LIRA load shedder outperforms all other ap-

proaches throughout the entire throttle fraction range. Random
Drop performs the worst, followed by Uniform∆ and Lira-
Grid. At z = 0.75, Random Drop has300 times the mean po-
sition error of LIRA, Uniform ∆ has40 times that of LIRA,
and Lira-Grid has2 times that of LIRA. At z = 0.5, Ran-
dom Drop, Uniform∆, and Lira-Grid has10, 2, and1.08 times
the EP

rr of L IRA. The results for the mean containment error
EC

rr are similar. Second, we observe that as the throttle frac-
tion z gets smaller, the relative errors approach to1, while at
the same time the absolute errors increase and finally merge.
The increasing errors are the result of decreasing update budget,
whereas the relative errors decrease to1 due to the maximum
inaccuracy bound∆a. When the update budget gets smaller
than the minimum update expenditure of the system achieved at
∀i∈[1..l] ∆i = ∆a, all of the three approaches that use inaccu-
racy thresholds converge at this same solution. For this experi-
mental setting, this convergence occurs aroundz = 0.25. Last,
we observe very high (in the order of103’s) relative errors for
Random Drop and Uniform∆ asz gets closer to1. This seems
surprising at first, as for the case ofz = 1 (not shown in the fig-
ures) all approaches have zero error. However, a slight decrease
in the throttle fraction, that is when we havez = 1 − ε, intro-
duces some error in the query results for the case of Random
Drop and Uniform∆, whereas it introduces almost no error in
the case of LIRA. This is because LIRA cuts the required frac-
tion of position updates from the regions that do not containany
queries. Close to none error of LIRA nearz = 1 boosts the
relative error results for Random Drop and Uniform∆.

The graphs in Figures 6 and 7 plot the mean containment
error EC

rr (relative and absolute) as a function of the throttle
fraction z, for the inverse and random query distributions, re-
spectively. The errors of competing approaches relative toL IRA

are slightly less for the case of Inverse and Random query dis-
tributions compared to that of Proportional query distribution.
Otherwise, the results are very similar. In the rest of the exper-
iments, when not stated otherwise, we assume the Proportional
query distribution.

Impact of the Number of Shedding Regions: The graphs in
Figure 8 plot the relative mean containment errorEC

rr of Lira-
Grid with respect to LIRA as a function of the number of shed-
ding regionsl, for different query distributions. The throttle
fraction is set asz = 0.5. We observe that Lira-Grid has up
to 35% higher containment error in query results compared to
L IRA. The improvement provided by LIRA is more pronounced
when Inverse query distribution is used and is smallest for the
case of Proportional query distribution. Asl increases, the flex-
ibility provided by having a larger number of shedding regions
improves the error incurred by LIRA at a better rate than Lira-
Grid, since LIRA utilizes an intelligent space partitioning algo-
rithm. However, whenl gets too large the grid partitioning of
Lira-Grid achieves enough granularity to catch Lira in terms of
the query result inaccuracy, as observed form the figure. This
is because after a certain level of granularity is reached, more
fine-grained partitioning is of no use, since the accuracy gain is
close to zero for all of the shedding regions. The graphs in Fig-
ure 9 attest to this latter intuition. They plot the mean contain-

9

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

10
4

throttle fraction, z

E
rrP

 r
e

la
ti

v
e

 t
o

 L
ir

a

10
0

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

m
e

a
n

 p
o

s
it

io
n

 e
rr

o
r,

 E
P

Lira
Lira-Grid
Variable ∆
Random Drop

rr

Figure 4: Position Error vs. throttle
fraction, Query Dist.: Proportional

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

throttle fraction, z

E
rrC

 r
e

la
ti

v
e

 t
o

 L
ir

a

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

m
e

a
n

 c
o

n
ta

in
m

e
n

t
e

rr
o

r,
 E

rrC

Lira
Lira-Grid
Uniform ∆
Random Drop

Figure 5: Containment Error vs. throttle
fraction, Query Dist.: Proportional

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

throttle fraction, z

E
rrC

 r
e

la
ti

v
e

 t
o

 L
ir

a

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

m
e

a
n

 c
o

n
ta

in
m

e
n

t
e

rr
o

r,
 E

rrC

Lira
Lira-Grid
Uniform ∆
Random Drop

Figure 6: Containment Error vs. throttle
fraction, Query Dist.: Inverse

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

throttle fraction, z

E
rrC

 r
e

la
ti

v
e

 t
o

 L
ir

a

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

m
e

a
n

 c
o

n
ta

in
m

e
n

t
e

rr
o

r,
 E

rrC

Lira
Lira-Grid
Uniform ∆
Random Drop

Figure 7: Containment Error vs. throttle
fraction, Query Dist.: Random

0 200 400 600 800 1000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

number of shedding regions, l

E
rrC

 o
f

L
ir

a
-G

ri
d

 r
e

la
ti

v
e

 t
o

 L
ir

a

Proportional

Random

Inverse−prop.

Query Dist.

Figure 8:EC
rr of Lira-Grid w.r.t. to LIRA vs. #

of shedding regions,z = 0.5

0 100 300 500 700 900
10

−4

10
−3

10
−2

10
−1

10
0

number of shedding regions, l

m
e
a
n

 c
o

n
ta

in
m

e
n

t
e
rr

o
r,

 E
rrC

Lira z = 0.3

Lira z = 0.5

Lira z = 0.7

Lira z = 0.9

Figure 9: Containment Error of LIRA vs.
of shedding regions

0 20 40 60 80 100
10

−3

10
−1

fairness threshold (meters)

10
0

10
1

10
0

10
1

 c
o

n
ta

in
m

e
n

t
e

rr
o

r,
 C

o
v

C

Lira

Uniform ∆

c
o

e
ff

ic
ie

n
t

o
f

v
a

ri
a

n
c

e
 o

f

D
e
v

 c
o

n
ta

in
m

e
n

te
rr

o
r,

C

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f

10
−2

Figure 10: Fairness in query result accuracy for
L IRA and Uniform∆, z = 0.75

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

fairness threshold (meters)

m
e

a
n

 p
o

s
it

io
n

 e
rr

o
r,

 E
rrP

Lira z = 0.3

Lira z = 0.5

Lira z = 0.7

Lira z = 0.9

Figure 11: Impact of fairness threshold on
EP

rr for differentz andl

0 200 400 600 800 1000
10

0

10
1

number of shedding regions, l

E
rrC

 o
f

U
n

if
o

rm
 ∆

 r
e

la
ti

v
e

 t
o

 L
ir

a

m/n = 0.01

m/n = 0.05

m/n = 0.1

Figure 12: Impact of query to node ratio on
containment error,z = 0.5

ment errorEC
rr of L IRA as a function of the number of shedding

regions, for different throttle fractions. We see that the error re-
duction rate decreases with increasingl and the errors stabilize.
The reduction in error is more pronounced for largerz values.
Note that the default setting ofl = 250 for the number of shed-
ding regions is rather conservative based on Figure 9, yet itstill
performs significantly better than the competing approaches as
illustrated by Figures 6 and 7. This conservative setting ofl also
results in a very lightweight load shedding solution, as we will
prove later in this section.

Impact of the Fairness Threshold: The graphs in Figure 10
plot the standard deviation of containment errorDC

ev (on the left
y-axis corresponding to solid lines) and coefficient of variance
of containment errorCC

ov (on the righty-axis corresponding to
dashed lines) for LIRA and Uniform∆ as a function of the fair-
ness threshold∆⇔. Note that Uniform∆ does not use a fairness

threshold, thus the evaluation metrics stay constant. The surpris-
ing observation from the figure is that, with increasing fairness
threshold the standard deviation in containment error decreases
for L IRA and at all times stays smaller than theDC

ev of Uniform
∆. Even though larger∆⇔ values imply less fairness, the re-
sulting relaxed constraints in setting the update throttlers enable
smaller containment errors and thus the standard deviationalso
gets smaller. If we look at the coefficient of variance of con-
tainment error, which is a better measure of fairness, we seethat
increasing∆⇔ increasesCC

ov in L IRA and Uniform∆ is more
fair compared to LIRA. To put this into simple terms, we can
say that on average the difference in errors of two query results
will be smaller for LIRA compared to Uniform∆, yet when
judged based on the relative average query error of LIRA and
Uniform ∆ respectively, the error in query results is more fair
among different queries in the case of Uniform∆.

10

The graphs in Figure 11 plot the mean position errorEP
rr for

different throttle fractions, as a function of the fairnessthresh-
old ∆⇔. We expect that for both smallz close to0.25 (point
of reduction to Uniform∆ for this setup) and largez close to
1, fairness threshold will play an insignificant role in determin-
ing the mean position error. This is because, for smallz the
solution reduces to∀i∈[1..l]∆i = ∆a, making it independent
of the fairness threshold. On the other hand, for largez the
number of position updates to be cut is small and as a result the
small increase in some of the update throttler values does not vi-
olate fairness constraints, unless the fairness thresholdis close
to zero. Figure 11 confirms this understanding, as we observe
that forz = 0.3 andz = 0.9 the errorEP

rr is marginally sensi-
tive to the fairness threshold∆⇔, whereas for throttle fraction
values in-between, the containment error is more sensitiveto the
changes in∆⇔.

Impact of # of Queries and Query Ranges: The graphs in
Figure 12 plot the mean containment errorEC

rr of Uniform ∆
relative to LIRA for different number of queries to number of
mobile nodes ratios (m/n’s) as a function of the number of
shedding regionsl. We observe that the relativeEC

rr of Uniform
∆ with respect to LIRA is an order of magnitude larger for the
case ofm/n = 0.01 compared tom/n = 0.1. This is because
L IRA is more effective when the ratio of number of queries to
number of nodes is smaller, which implies that there are more
regions that contain none or a small number of queries and thus
can be used to shed the update load while minimally impacting
the result accuracy. However, LIRA has around half the contain-
ment error of Uniform∆ even when we havem/n = 0.1.

The graphs in Figure 13 plot the mean position errorEP
rr (us-

ing the lefty-axis) and the mean containment errorEC
rr (using

the righty-axis) for LIRA as a function of the query side length
parameterw. The position and containment errors behave dif-
ferently under changing query side length. As the average query
areas increase, the queries cover a larger region in the space.
This makes it harder to reduce the number of updates without
increasing the inaccuracy in the positions of the mobile nodes
that are included in the query results. As a result the mean po-
sition error increases with increasingw. On the other hand, the
containment error is a set-based metric and since the resultset
size increases with increasingw, the percentage of nodes that
are correctly included in the result set also increases. This ex-
plains the decrease inEC

rr asw increases.

4.3.2 Cost of Load Shedding

The cost of load shedding consists ofi) configuring the parame-
ters of LIRA on the server side, which includes setting the throt-
tle fraction, shedding regions, and update throttlers,ii) broad-
casting the subset of shedding regions and update throttlers that
correspond to the coverage area of each base station, andiii)
installing the new set of shedding regions and update throttlers
on the mobile node side.

Server Side Cost: The graphs in Figure 14 plot the time
it takes to execute the THROTLOOP, GRIDREDUCE, and
GREEDYINCREMENT algorithms as a function of the number
of shedding regionsl, for different numbers of cells (α2) for
the statistics grid. For the default parameters ofl = 250 and
α = 128, the configuration of LIRA takes around40 msecs.

This will enable frequent adaptation, even though for most ap-
plications that involve monitoring cars or pedestrians it is un-
likely that the update load will fluctuate with a period less than
tens of minutes. Even for an adaptation period of10 minutes,
the configuration of LIRA will take only6.6·10−5 fraction of the
adaptation period. Note that these values are for a region ofsize
200km2. If we have a16 times larger region of size3200km2

(≈ 10 times the size of Atlanta, the capital city of the state of
Georgia, USA), then we should havel = 16 · 250 = 4000, and
from α = 2blog2

(10·
√

l)e we should haveα = 512. For this
setting the configuration of LIRA takes500 msecs. This corre-
sponds to8 · 10−4 fraction of a10 minute adaptation period.
These numbers show that LIRA is indeed lightweight and intro-
duces very little overhead on the server side.

Messaging Cost: Table 3 shows the average number of shed-
ding regions that should be known to a base station as a func-
tion of the base station coverage area radius. However, in reality
base stations have smaller coverage regions at places wherethe
number of users is large (urban areas) and larger coverage re-
gions at places where the number of users is small (suburban
areas) [13]. This nature of base stations match perfectly with
L IRA ’s space partitioning scheme, since the number of parti-
tions are usually larger for dense areas and the small base station
coverage areas help decreasing the average number of shedding
regions known to a mobile node. Following this logic, we have
used a node density dependent base station placement scheme
and found that on the average each node and thus each base
station should know around41 shedding regions. Assuming a
shedding region (which is square in shape) is represented by3
floats and an update throttler is represented by a single4 byte
float, the size of the broadcast data sent by a base station to all
nodes in its coverage area to install the shedding regions and
update throttlers is around41 · (3 + 1) · 4 bytes =656 bytes
on average. To asses the messaging cost of LIRA, compare this
number to1472 bytes, which is the maximum payload available
to an UDP packet over Ethernet with a typical MTU of1500
bytes. When LIRA reconfigures the load shedding parameters,
the new information is installed on all mobile nodes by usingan
average of one wireless broadcast packet per base station.

Mobile Node Side Cost: Since the total number of shedding
regions known to a mobile node at any time is only around41,
L IRA does not put a major burden on mobile nodes in terms of
memory consumption or processing load. By employing a tiny
5×5 grid index on the mobile node side, the shedding region that
contains the current position of the mobile node can be found
quickly. As a result, LIRA will work on computationally weak
mobile nodes without any problem.

5 Related Work
To the best of our knowledge, this is the first work on po-

sition update load shedding in mobile CQ systems. Several
works have appeared in the literature on handling the position
updates efficiently in mobile CQ systems [17, 8, 10, 20] or using
motion modeling to reduce the number of position updates re-
ceived [19, 2]. The first set of works do not directly address the
update load shedding problem, but instead aim at decreasingthe
IO and CPU cost of integrating the position updates into spatial
index structures. This does not involve suppressing or dropping

11

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5

4

4.5

5

query side length, w (meters)

m
e
a
n

 p
o

s
it

io
n

 e
rr

o
r,

 E
rrP

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

m
e
a
n

 c
o

n
ta

in
m

e
n

t
e
rr

o
r,

 E
rrC

Figure 13: Impact of query side length
onEP

rr andEC
rr, z = 0.5

128 256 512 1024 2048 4096 8192
0

500

1000

1500

number of shedding regions, l

a
d

a
p

ta
ti

o
n

 t
im

e
 (

m
s
e
c
s
)

Lira α = 128

Lira α = 256

Lira α = 512

Lira α = 1024

Figure 14: Server side cost of configuring
L IRA, z = 0.5

base station
radius (km)

1.0 2.0 3.0 4.0 5.0

of ∆i’s
per node

3.1 12.5 28.2 50.2 78.5

41 ∆i’s on average, which takes41 · (3+1) ·4

bytes =656 bytes. Compare this to1472 bytes,
which is the maximum payload available to an
UDP packet over Ethernet with a typical MTU
of 1500 bytes.

Table 3: Number of shedding regions per base
station

the position updates from the mobile nodes, which is inevitable
when the current resources of the system are not sufficient to
handle the update load. Our work is complementary in nature
to this line of previous work. The second set of previous work
use motion modeling to cut the update load, and ensure that the
resulting position updates do not have inaccuracy beyond a pre-
specified threshold. A key difference is that, our work is driven
by the update budget enforced by the load on the system. We
adjust the inaccuracy thresholds to reduce the update expendi-
ture of the system to meet the update budget. In other words,
our work utilizes the previous work on motion modeling at the
mobile node side for actuating the position update suppressing.
However, the core of our solution is to find a partitioning and
a set of inaccuracy thresholds to associate with each partition,
so that the position updates received from the mobile nodes can
answer the queries installed in the system accurately.

There have also been a number of distributed solutions to
evaluate CQs in mobile systems [1, 7, 3]. In these systems, the
position updates are only received if they affect a query result.
Even though these systems do not provide any load shedding ca-
pability, their update load is expected to be significantly lower
compared to solutions that track all mobile nodes. It is worth to
note that these solutions cannot support historic queries,since
the location updates are not received from all objects. The ad-
hoc snapshot queries are also expensive to evaluate. Interest-
ingly, L IRA can be configured to mimic the behavior of these
systems by setting the maximum inaccuracy bound∆a to a
large value. However, our system has the additional advantage
of not being tied to any specific query processing technique and
has very little overhead.

6 Conclusion
We presented LIRA, a position update load shedder for mo-

bile CQ systems. The primary feature of LIRA is its region-
awareness, which enables it to partition the space into a setof
shedding regions and apply differing amounts of update throt-
tling for different shedding regions. We formalized the update
load shedding problem as an optimization one, where the aim is
to minimize the inaccuracy introduced in the query results and
the constraint is to meet a given or an automatically calculated
update budget. We developed a heuristic algorithm to discover
a partitioning of the space that leads to reduced error in query
results, and an optimal algorithm that sets the update throttlers
associated with each shedding region to minimize the query re-
sult inaccuracy. We showed that the LIRA load shedder is sig-

nificantly superior to random update dropping and uniform in-
accuracy threshold schemes. Moreover, LIRA is lightweight by
design and can be used in conjunction with many of the existing
update indexing and mobile CQ processing techniques.

References
[1] Y. Cai and K. A. Hua. An adaptive query manage-

ment technique for efficient real-time monitoring of spa-
tial regions in mobile database systems. InIEEE Interna-
tional Performance Computing and Communications Con-
ference, 2002.

[2] A. Civilis, C. S. Jensen, and S. Pakalnis. Techniques for
efficient road-network-based tracking of moving objects.
IEEE Transactions on Knowledge and Data Engineering,
17(5):698–712, 2005.

[3] B. Gedik and L. Liu. Distributed processing of continu-
ously moving queries on moving objects in a mobile sys-
tem. In International Conference on Extending Database
Technology, 2004.

[4] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Processing mov-
ing queries over moving objects using motion adaptive in-
dexes. InIEEE Transactions on Knowledge and Data En-
gineering, volume 18, pages 651–668, 2006.

[5] Google RideFinder home page.
http://labs.google.com/ridefinder, Febuary 2006.

[6] M. Gruteser and D. Grunwald. Anonymous usage
of location-based services through spatial and temporal
cloaking. In ACM International Conference on Mobile
Systems, Applications, and Services, 2003.

[7] H. Hu, J. Xu, and D. Lee. A generic framework for mon-
itoring continuous spatial queries over moving objects. In
ACM International Conference on Management of Data,
2005.

[8] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update
efficient B+-tree based indexing of moving objects. InIn-
ternational Conference on Very Large Data Bases, 2004.

[9] D. V. Kalashnikov, S. Prabhakar, S. Hambrusch, and
W. Aref. Efficient evaluation of continuous range queries
on moving objects. InInternational Workshop on
Database and Expert Systems Applications (DEXA), 2002.

[10] M.-L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo.
Supporting frequent updates in r-trees: A bottom-up ap-
proach. InInternational Conference on Very Large Data
Bases, 2003.

[11] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable

12

incremental processing of continuous queries in spatio-
temporal databases. InACM International Conference on
Management of Data, 2004.

[12] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref,
and S. E. Hambrusch. Query indexing and velocity con-
strained indexing: Scalable techniques for continuous
queries on moving objects.IEEE Transactions on Com-
puters, 51(10):1124–1140, 2002.

[13] QualComm. Wireless access solutions using 1xEV-
DO. http://www.qualcomm.com/technology/1xev-
do/webpapers/wpwirelessaccess.pdf, 2005.

[14] S. Ross.A First Course in Probability. Prentice Hall, 2005.
[15] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.

Lopez. Indexing the positions of continuously moving ob-
jects. InACM International Conference on Management
of Data, 2000.

[16] C. Science and T. Board.IT Roadmap to a Geospatial
Future. The National Academics Press, November 2003.

[17] Y. Tao, D. Papadias, and J. Sun. The TPR∗-Tree: An
optimized spatio-temporal access method for predictive
queries. InInternational Conference on Very Large Data
Bases, 2003.

[18] U.S. Department of the Interior. U.S. geological survey
web page. http://www.usgs.gov/, November 2003.

[19] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Up-
dating and querying databases that track mobile units.
Springer Distributed and Parallel Databases, 7(3):257–
387, 1999.

[20] X. Xiong and W. G. Aref. R-trees with update memos.
In IEEE International Conference on Data Engineering,
2006.

APPENDIX

A Proof of Theorem 3.1

Proof. The proof is by contradiction. Assume that the opti-
mal solution is denoted by{∆∗

i } and is different than the solu-
tion given by GREEDYINCREMENT, which we denote as{∆+

i }.
There must be at least onej ∈ [1..l] such that∆+

j < ∆∗
j . Other-

wise we would have∀i,∆+
i ≥ ∆∗

i which will introduce a con-
tradiction, since it implies that the solution of GREEDYINCRE-
MENT has not consumed its update budget completely (which
is not possible due to algorithm design). Similarly, we should
have at least onek 6= j ∈ [1..l] such that∆+

k > ∆∗
k. Otherwise

we would have∀i,∆+
i ≤ ∆∗

i which will introduce a contradic-
tion, since it implies that the solution of GREEDYINCREMENT

has overshot the update budget.

Since we have∆+
k > ∆∗

k, there must be a step in GREEDY-
INCREMENT in which ∆k is incremented from valuea to b
such thata ≤ ∆∗

k < b. Let v be the value of∆j when
this step is taken by GREEDYINCREMENT. We should have
Sk(a) > Sj(v), since∆k is selected to be incremented but
not ∆j . Sincef is piece-wise linear anda is a brake point of
f (becausec∆ = (∆a − ∆`)/κ), Sk is constant throughout
[a, a + c∆]); and sincec∆ ≥ b− a, we haveSk(a) = Sk(∆∗

k).
This leads toSk(∆∗

k) > Sj(v). Since we have∆+
j < ∆∗

j , we
must havev < ∆∗

j and sinceSj is a decreasing function, we

have the following:

Sk(∆∗
k) > Sj(∆

∗
j − ε) ≥ Sj(∆

∗
j), ε ∈ (0,∆∗

j − v] (1)

Pick a sufficiently smallα ∈ (0, ε] such that∆∗
k and∆∗

k + β
are within the same segment off , where we have

f(∆∗
k)− f(∆∗

k + β) = f(∆∗
j − α)− f(∆∗

j) (2)

We now show that the solution({∆∗
i } \ {∆j ,∆k})∪{∆j −

α,∆k + β} has less average query inaccuracy than the opti-
mal solution, thus a contradiction. This can also be stated as
mk · β − mj · α < 0, which is the change in average query
inaccuracy going from the original optimal solution to the one
we have constructed. Since∆∗

k and∆∗
k +β are within the same

segment off , we have:

Sk(∆∗
k) =

f(∆∗
k)− f(∆∗

k + β)

mk · β

Sj(∆
∗
j − α) >

f(∆∗
j − α)− f(∆∗

j)

mj · α

Plugging these values into Equation 1 we have:

Sk(∆∗
k) > Sj(∆

∗
j − α)

mk · β
mj · α

<
f(∆∗

k)− f(∆∗
k + β)

f(∆∗
j − α)− f(∆∗

j)
(3)

Using Equation 2 and 3 we getmk · β < mj · α. This proves
the contradiction and thus completes the proof.

13

	Introduction
	Overview
	Design Ideas
	System Architecture

	The Lira Load Shedder
	Problem Formulation
	The Fairness Threshold
	The Speed Factor
	Final Problem Formulation

	GridReduce: Partitioning the Space
	The Statistics Grid
	Stage I: Building the Region Hierarchy
	Stage II: Drilling Down in the Hierarchy
	Illustration of the Partitioning
	The Relationship Between l and

	GreedyIncrement: Setting the i's
	The Greedy Steps
	Update Gain Calculation
	Optimality and Setting of the Increment c
	Supporting the Fairness Threshold

	ThrotLoop: Setting the Throttle Fraction

	Experimental Evaluation
	Evaluation Metrics
	Query Result Accuracy
	Cost of Load Shedding

	Experimental Setup
	Experimental Results
	Query Result Accuracy
	Cost of Load Shedding

	Related Work
	Conclusion
	Proof of Theorem 3.1

