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ABSTRACT
We introduce the notion of a data topology and the problem of
topology search over databases. A data topology summarizes the
set of all possible relationships that connect a given set of entities.
Topology search enables users to search for data topologies that re-
late entities in a large database, and to effectively summarize and
rank these relationships. Using topology search over a biological
database, users can ask, for example, how transcription factor pro-
teins are related to DNAs in humans. However, detecting topolo-
gies in large databases is a difficult problem because entities can be
connected in multiple ways. In this paper, we formalize the notion
of data topologies, develop efficient algorithms for computing data
topologies based on user queries, and evaluate our algorithms using
a real biological database.

1. INTRODUCTION
The recent decade has seen a growing number of new high-

throughput technologies that have generated massive biological data
sets. These heterogeneous data sets often describe different as-
pects of the same or related biological systems from individual
molecules, through molecular complexes and cellular pathways, to
cells and organisms. Such inter-related data sets can exhibit a com-
plex structure of relationships, and an emerging direction in biolog-
ical data analysis is to detect and understand relationships in these
large-scale data sets [12, 18, 26]. However, effectively querying
and summarizing the rich relationships in large biological database
remains a challenge.

To address the above issue, we introduce the notion of a data
topology (or just topology). Given a specific set of entities, a topol-
ogy defines the complete set of relationships that relate the entities.
Different relationships between entities might imply different bio-
logical meanings and understanding the exact topology is essential
for an accurate and in-depth analysis of the biological system that
is comprised of these entities. For example, consider two types of
entities – proteins sequences and DNA sequences – stored in the
Biozon [3, 8, 9] database (Figure 1). According to this schema, the
two entities can be related in several different ways (some of which
are shown in Figure 2), each one representing a different biological
phenomenon. Each graph is a topology that shows how the rele-
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Figure 1: Partial high-level schema of the Biozon Database.
The Biozon database (http://www.biozon.org) is a unified bi-
ological resource on DNA sequences, proteins, interactions,
cellular pathways, and more. The tightly integrated schema
allows researchers to explore the rich relationships between
biological resources. A snapshot of the actual content is
shown in Figure 3.

vant entities are related. The structure of a given topology relays
its meaning in the biological context and different results for the
same query might have topologies with radically different mean-
ings. When answering the query “how transcription factor (TF)
proteins are related to DNAs in humans”, knowing for example that
a certain TF is linked to a DNA sequence with the third topology
of Figure 2 is a substantial finding that indicates that the TF is en-
coded by the DNA sequence and possibly regulates the same DNA
through an interaction. That is, the TF self-regulates itself. Finding
instances of such or more complex topologies, where the regulation
is mediated through other relations, can reveal very interesting bi-
ological systems (for more such topologies, we refer the reader to
Figure 16 and http://biozon.org/ftp/data/papers/topologies/graphs).

Protein DNA

Interaction

Protein DNA Protein DNA

Interaction

Figure 2: Different topologies over protein and DNA sequences.
The following graphs relate the same two data types, but
have completely different biological meanings. The first in-
dicates that the DNA encodes for the protein. The second
indicates that the protein and the DNA sequence are inter-
acting. The third describes a protein that is encoded by a
DNA sequence and interacts with it as well.

Computing topologies for user queries, however, is a challenging
task because users may not know (or cannot enumerate) all possible
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Figure 3: The example Biozon database. These are partial
tables of the actual tables that reside in Biozon.

topologies for large result sets. Moreover, the query might include
arbitrary constraints. For instance, a user might be interested in
knowing how an “enzyme” protein (i.e., the definition attribute of
relation Protein contains the keyword “enzyme”) and a RNA (the
type attribute of DNA equals to “mRNA”) are related to each other.
This problem becomes even more challenging because topologies
can include intermediate entities that are not explicitly specified in
the query. In our example query above, “interaction” is an inter-
mediate entity type that is not explicitly specified in the query but
appears in two of the three topologies in Figure 2.

Existing query approaches such as traditional SQL or some re-
cently proposed database graph search techniques [6, 5, 7, 15, 20,
28] cannot fully and/or efficiently provide the desired topology re-
sults. As a simple example, consider using SQL for the above user
query where the number of intermediate entities is limited to two.
Based on the schema, there are 88453 possible topologies, which
correspond to every combination (and possible intermixing) of the
ten schema paths of length three or less that connect proteins and
DNAs. A naive implementation based on SQL (or any other struc-
tured or semi-structured query language) will have to issue 88453
queries to check whether the relationships that correspond to the
topologies exist, which is clearly inefficient. Further, each query
corresponding to a topology can itself be quite complex for datasets
with rich relationships, which further degrades performance.

An alternative approach is to use database search systems such as
BANKS [7], DBXPlorer [6] and Discover [19, 20]. However, since
these systems are not designed for topology search, they do not
produce the desired results. For instance, when the user query de-
scribed above is issued over the Biozon database in Figure 3, these
systems return results similar to Figure 4. These results are unsat-
isfactory for two reasons. First, these results only produces “iso-
lated” paths and does not produce entire topologies. Specifically,
in Figure 3, protein 78 (denoted as p78) is related to DNA 215 (de-
noted as d215) in three ways: p78–u103–d215, p78–u150–d215 and
p78–u103–p34–d215. However, they are generated as independent
results (possibly intermixed with other results). Consequently, it is
not apparent to the user that p78 is related to d215 by three different
paths. More importantly, the fact that the paths share a common in-
termediate entity is not explicitly captured (paths L2 and L6 share
the entity u103). Second, existing systems only produce results at
the instance-level. These results can be overwhelming: running the
query on the actual database returns about 250,000 results. With
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Figure 4: Isolated results of query Q1.
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Figure 5: Topology results (except for T5) of query Q1.

that many results it becomes practically impossible to identify all
possible schema-level topologies and get the “big picture”.

To mitigate these problems, we propose methods to organize and
group results based on their topology, as in Figure 5. In addition,
for each topology we report all instance-level results that adhere
to that topology. Given this vision, a large part of the paper is
focused on efficiently computing topology results for a query, in-
cluding producing top-k ranked topology results. We also identify
some of the shortcomings of existing database systems in process-
ing such queries, and propose extensions to a relational database
system to better handle such queries.

We have experimentally evaluated our proposed techniques us-
ing the Biozon database. Our results show that our techniques can
be used to find meaningful topologies efficiently. Our experiments
also demonstrate some subtle issues that arise with large topologies
having long paths (with many intermediate nodes). Specifically,
there are some long paths with length ≥ 4 that represent weak bi-
ological relationships, which “dilute” topologies containing other
stronger relationships. These weak relationships also give rise to
some inefficiencies because they often have many paths relating
the same pair of nodes. In the experimental section, we illustrate
this issue and suggest possible solutions.

In summary, the main contributions of this paper are: (a) intro-
ducing and formalizing the notion of a topology (Section 2), (b) de-
veloping efficient algorithms for quickly computing topologies for
user queries (Section 4), (c) developing efficient algorithms for pro-
ducing top-k topologies (Section 5), and (d) an experimental eval-
uation of the proposed techniques using a real biological database
(Section 6).

2. FORMAL DEFINITION OF TOPOLOGIES
We first present some background on graph databases before for-

mally defining the topology result of queries.

2.1 Background: Graph Databases
We consider a database that has a set V of entities and a set E of

binary relationships such as in the Entity-Relationship (ER) model.
Logically, these are represented as a large (undirected) data graph
G = (V,E) where each entity is represented by a node v and each
relationship by an edge e. In the rest of this paper, we will use the
two concepts ‘database’ and ‘graph’ interchangeably.

The entities can be of different types (entity sets), e.g. DNA
sequences, Protein sequences, Interaction, Pathways, etc. Simi-
larly, the relationships can be of different types (relationship sets),
e.g. encodes, belongs, manifest, similar, etc. Note that each rela-
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Protein DNAEncodes

Protein DNAUnigeneUni_encodes Uni_contains

c1

c2

Protein DNAProteinUnigene EncodesUni_encodesUni_encodesc3

Figure 7: Equivalence classes of graphs in Figure 4

tionship can be reversed and therefore we refer to all of them as
undirected (for example, we could say that a DNA sequence en-
codes a protein sequence or that a protein is encoded by a DNA se-
quence). We use Types(V ) and Types(E) to denote the set of en-
tity types and the set of relationship types, respectively, and assume
that the function type() defines the mappings V → Types(V ) and
E → Types(E). We refer to a graph where every entity v is la-
beled with its type type(v) and every edge e is labeled with its type
type(e) as a labeled graph.

When mapping a relational database to a graph data model, we
identify each object/relationship by the value of the primary key
of the associated table. For example, Figure 1 and Figure 3 show
the schema and a subset of the instance of the Biozon database,
respectively, and Figure 6 shows its graph representation.

We now define some useful notation for reasoning about graph
databases. A path is a sequence of consecutive edges in a graph and
the length of the path is the number of edges traversed. A simple
path is a path such that no node is traversed more than once. All
paths mentioned in this paper are simple paths. A path P in a graph
G can be viewed as a subgraph of G. In a graph G=(V ,E), given a
limit l, a node pair (a, b) (a,b∈V ) determines a l-path set, denoted
as PS(a, b, l), whose elements are paths of G which connect a and
b and are of length ≤ l.

The union of two graphs G = (V,E) and G′ = (V′,E′), de-
noted by G ∪ G′, is the graph (V ∪ V′,E ∪ E′).

A labeled graph G = (V,E) is subgraph isomorphic to a graph
G′ = (V′, E′) if there exists an injection f :V → V′ such that
(1) type(v) = type(f(v)) for every node v ∈ V.
(2) for every edge e ∈ E s.t. e = (u, v) then e′ = (f(u), f(v)) ∈
E′ and type(e) = type(e′).
A labeled graph G is isomorphic to a graph G′ if G and G′ are
subgraph isomorphic to each other, denoted as G � G′. It is easy
to see that isomorphism is an equivalence relation on a set of la-
beled graphs. Given a graph G, we use the notion [G] to refer to
the equivalence class of G. For instance, among the six graphs in
Figure 4, [l2]={l2,l3,l4,l5}, [l1]={l1} and [l6]={l6}. The equiva-
lence class of G is visually represented as a graph preserving the
structure of G but only showing the labels of its nodes and edges.
For example, in Figure 7, c1 represents the class of l1, c2 repre-
sents the class of l2, l3, l4 and l5 and c3 represents the class of l6.
(l1,...,l6 are in Figure 4.)

2.2 Queries and Topologies
We begin this section by defining queries, and then define the

topology results for queries.
A query specifies a list of entity types and the constraints on

them. A constraint may contain multiple predicates, including key-
word search clauses and structured predicates. In a database G, a
query is defined as {(t1, con1), ..., (tn, conn)}, where ti ∈ Types(V )
is a data type that corresponds to an entity set ti and coni is a con-
straint defined on attributes of entities v of type ti. We call such
a query an n-query. For simplicity, we focus on 2-queries in this
paper.

Example 2.1: The query of the example in Section 1 is: Q =
{ (Protein, desc.ct(‘enzyme’)), (DNA, type=‘mRNA’)}. The first
constraint is a keyword search on Protein.desc, and the second is a
predicate on the type attribute of DNA. �

Given a query, existing approaches such as BANKS [7], DBX-
plorer [6] and DISCOVER [19, 20] return the individual paths con-
necting the relevant entities separately. Specifically, consider a
query Q = {(t1,con1), (t2,con2)}, the set A of t1 entities that sat-
isfy con1, and the set B of t2 entities that satisfy con2. The result
of the query is

�
a∈A,b∈B PS(a,b,l), which is the sets of l-results

connecting the entities in A and B (l is a parameter that limits the
size of the paths, as is often needed for practical reasons such as
efficiency and producing interpretable relationships). Below is an
example.

Example 2.2: Consider the query in Example 2.1 and assume that
the set of proteins that satisfy the associated condition is {32, 78, 44},
and the set of DNAs that satisfy the associated condition is {214,
215, 742}. If we are interested in 3-results, the pair (78, 215) de-
termines a 3-path set PS(78, 215, 3) = {l2, l3, l6} and the pair
(44, 742) determines a 3-path set PS(44, 742, 3) = {l4, l5} (see
Figure 4). The union of all such 3-path sets is a set of “isolated”
results. �

As illustrated in Section 1, these isolated results do not provide
the big picture of how satisfied nodes are related, and overwhelm
users with relatively redundant (isomorphic) results. To address
these problems, we (1) first assemble the paths in each path set into
graphs that provide a global view of how result nodes are related;
and (2) only output the topologies of the graphs as results. Thus,
we suggest a novel approach for exploring complex inter-related
data that summarizes the information at the schema-level, by list-
ing the topologies that are detected at the instance-level, each one
corresponds to a different biological phenomena. This is followed
by instance level tuples of concrete examples (biological systems)
of each topology that is detected. Note that exhaustive enumera-
tion of all possible topologies is not practical nor informative, as
the vast majority of possible topologies over a given graph schema
is usually not observed in practice.

A straightforward strategy for (1) is to union all paths in each
path set. However, this can introduce other kinds of redundancy. In
Example 2.2, the paths in PS(44, 742, 3) are isomorphic, which
thus convey similar biological information. As a result, the topol-
ogy T5 hardly provides more valuable information than the simple
topology T2 (see Figure 5). It merely tends to overwhelm users
with both the complexity (the topology could be a huge compo-
nent) and size (different number of isomorphic paths lead to differ-
ent topologies) of topologies.

We thus adopt an alternative strategy that focuses on the biologi-
cal diversity and a comprehensive representation of the information
associated with a given set of entities. Specifically, For each path
set, instead of unioning all paths in a path set, we only union paths
across different equivalence classes within the path set. This elim-
inates redundancy while capturing the important biological char-
acteristics of the path set. We show the formal definitions step by

3



step. We begin by defining the set of equivalence classes between
a given pair of entities.

Definition 1: The l-path equivalence classes that relate two entities
a and b is the set:
l-PathEC(a,b) = { [G] | G ∈ PS(a, b, l)} �

As an illustration, consider the entities with ID 78 and 215 in
Figure 3. The simple paths of length at most 3 that relate 78 and
215 are: PS(78,215,3) = { l2, l3, l6 } (the paths are depicted in Fig-
ure 4). Of these paths, l2 and l3 belong to the same equivalence
class, while l6 belongs to a different equivalence class. Hence, 3-
PathEC(78,215) contains two equivalence classes, one that corre-
sponds to l2 (and l3), and another that corresponds to l6.

As mentioned earlier, we are interested in the complex graphs
that relate these entities using paths from multiple equivalence classes.
Each such complex graph will give rise to a data topology, as de-
fined next. It is important to emphasize that topology is a schema-
level structure but its existence is verified at the instance level.

Definition 2: Consider two entities a and b, and let s be |l −
PathEC(a, b, l)| (s is the number of l-path equivalence classes
relating a and b). The l-topologies that relate a and b is the set:
l-Top(a,b) = { [G] | ∃p1 ∈ PS(a, b, l)...∃ps ∈ PS(a, b, l)(G =
∪s

i=1(pi) ∧ ∀i, j(1 ≤ i, j ≤ s ∧ [pi] = [pj ] ⇒ i = j)) } �
In other words, an l-topology relating two entities a and b is

obtained by creating a graph G that is the union of a path from
each path equivalence class, and then obtaining the equivalence
class of G. Returning to our example of entities 78 and 215, 3-
PathEC(78,215) contains two equivalence classes, one correspond-
ing to l2 and l3, and another corresponding to l6. Hence, 3-Top(78,215)
is obtained by unioning l2 and l6, and also l3 and l6 (paths from dif-
ferent equivalence classes), and then computing the topologies of
the resulting graphs. Thus, 3-Top(78,215) = { T3, T4 } (the topolo-
gies are depicted in Figure 5). Note that T2 is not in 3-Top(78,215)
because it does not depict the full interaction of paths from different
equivalence classes.

We now define the l-topology result of a query.

Definition 3: The l-topology result of a query Q ={(t1, con1),
(t2, con2)} over a database G = (V,E) is the set:
l-Topology(Q,G) = { T | ∃a, b(a ∈ V∧type(a) = t1∧con1(a) =
true∧b ∈ V∧ type(b) = t2∧con2(b) = true∧T ∈ l-Top(a,b)}
�

As an illustration, consider the query Q = { (Protein, desc.ct(‘enzyme’)),
(DNA, type=‘mRNA’) } over the database in Figure 3. The Pro-
teins that satisfy the predicate are { 78,32,44 }, and the DNAs that
satisfy the predicate are { 215, 214, 742 }. As illustrated earlier,
3-Top(78,215) = { T3, T4 }. Similarly, 3-Top(32,214) = {T1} and
3-Top(44,742) = {T2}. Since there are no path relating the other
Protein-DNA pairs, 3-Topology(Q,G) = {T1, T2, T3, T4}.

3. BASIC METHOD
We now turn our attention to the following problem: given a

query Q={(es1,cons1), (es2,cons2)} over a database D with schema
S, find the l-topology results (for some l) of Q. In this section, we
describe some basic methods for solving this problem and discuss
their shortcomings. We then describe our optimized algorithms that
build upon these basic methods in the next section.

3.1 SQL Method
A simple strategy to compute the l-topology results is as fol-

lows. Given the database schema S, we can enumerate all possible
l-topologies that connect entity sets es1 and es2. Then, for each
possible topology T , we can issue an SQL query to check whether

Figure 8: All possible 2-topologies relating Proteins and DNAs

there exists entities e1 ∈ es1 and e2 ∈ es2 that (a) satisfy the query
constraints, and (b) are connected using topology T . As an illus-
tration, if the query Q is issued over the database scheme shown
in Figure 1 and es1 = “Protein” and es2 = “DNA”, then the set
of all possible 2-topologies is shown in Figure 8. Issuing a SQL
query corresponding to each of these topologies will be sufficient
to determine the set of 2-topology results for the query.

This simple strategy, however, results in poor query performance
for the following reasons. First, the number of possible topologies
can be very large. For example, if es1 = ’Protein’ and es2 = ’DNA’
in the Biozon database, the number of possible 3-topologies is over
88453 (due to every combination - and possible intermixing - of
the ten schema paths of length three or less that connect proteins
and DNAs)! Most of these topologies actually do not have any
corresponding entities in the database, but even if we restrict our
queries to topologies that have at least some corresponding entities
(using some priori knowledge), we still have close to 200 topolo-
gies. Clearly, issuing such a large number of SQL queries is likely
to be very expensive. Second, the SQL queries themselves can be
quite complicated for complex topologies; this again leads to bad
performance.

3.2 Full-Top Method
The main drawback of the SQL method is that it performs all

computation at query time. Since topology computations are ex-
pensive, this is expected to lead to poor performance. Full-Top tries
to address this drawback by precomputing all possible information
about topologies. Specifically, Full-Top creates a AllTops table that
stores for every pair of entities in the database, the l-topologies
by which they are related. Figure 9 shows a simple AllTops table
and an associated TopInfo table (that stores additional information
about topologies). From the table, it can be inferred that Protein 32
and DNA 214 are related through topology T1 (whose description
is in the TopInfo table) and so on.

Query processing is very simple in Full-Top. For example, given
the query Q={ (Protein, desc.ct(‘enzyme’)), (DNA, type=“mRNA”)
}, we can just issue the following single SQL query to produce the
l-topology results:

SELECT distinct AT.TID
FROM Protein P, DNA D, AllTops AT
WHERE P.desc.ct(‘enzyme’) and D.type = ‘mRNA’

and P.ID = AT.E1 and D.ID = AT.E2

The main disadvantage of Full-Top is it associated space over-
head: since a large database will contain many entities, and many
entities will be related to other entities, storing all the l-topologies
relating any two entities is likely to be expensive in terms of space.
As an illustration, for the Biozon database that has about 700MB of

4



encodes

DetailsTID

T2

TopInfo

T1

E1

32

78

AllTops

E2

214

215

TID

T1

T3

44 742 T2

Protein Unigene Uni_containsUni_encodes DNA

Protein
EncodesUni_encodes

T3

Protein DNA

Protein Unigene Uni_containsUni_encodes DNA

…
.

…
.

Figure 9: Table AllTops and TopInfo

Base Data
Topology

Computaton

Full-Top

Database System

AllTops LeftTops ExcpTopsTopology
Pruning

Fast-Top

Topology Query Engine

Figure 10: System architecture

queryable data1, the size of the AllTops table is about 15GB. This
large storage overhead often translates to poor query performance
when querying the AllTops table. We note that the update overhead
due to precomputation is not an issue in biological databases such
as Biozon because updates are only done in bulk every few weeks,
and the data can recomputed as necessary.

4. FAST-TOP METHOD
We now propose Fast-Top, an optimized method for computing

l-topologies. The main idea is to partially precompute topology in-
formation so that it avoids the space overhead of Full-Top while still
leveraging the performance benefits of precomputation. However,
this leads to the following interesting challenge: how do we re-
duce the amount of precomputed data and at the same time improve
query performance compared to Full-Top? We present a novel solu-
tion to this apparent dilemma by exploiting some natural properties
of topologies.

Our system architecture is shown in Figure 10. In the offline
(non-query processing) phase, the Topology Computation module
temporarily computes the AllTops table described in Section 3.2
from the Base Data. The Topology Pruning module then dramati-
cally prunes the AllTops table to produce the LeftTops table. In the
online (query processing) phase, the Topology Query Engine effi-
ciently evaluates user queries using the LeftTops table and the Base
Data. We now describe each component in more detail.

4.1 Topology Computation
The Topology Computation module temporarily computes the

AllTops table described in Section 3.2. To do this, it considers each
pair of entity sets (es1,es2) in the database schema and enumerates
all possible paths (not topologies) between the two entity sets of
length l or less. For each of these paths, it issues a single SQL query
to obtain all entities along the path and orders the results based on
the IDs of the first and last entities in the path. It then merges
1The part of the data that cannot be queried, such as DNA se-
quences, actually constitutes the bulk of the data.

Figure 11: Distribution of topology frequency

the SQL results corresponding to all the paths to compute the l-
topology for each pair of entities and stores them in the AllTops
table.

4.2 Topology Pruning
We now describe how the AllTops table can be pruned while at

the same time improving the performance for most queries. Our so-
lution is motivated by some topology statistics that we obtained us-
ing the Biozon database. Since the Biozon database integrates data
from a large number of biological data sources, including GeneBank
[14] and SwissProt [4] and many others, these statistics are rep-
resentative of a large fraction of biological databases. We now
present the results of analyzing topologies.

4.2.1 Topology Data Analysis
We analyzed 3-topologies in the AllTops table for the Biozon

database (we also analyzed other l-topologies, and the results are
similar). Specifically, for each pair of entity sets es1, es2 in the
database schema, we defined the frequency of a topology T , freq
(es1, es2, T ), to be: |{(e1, e2)|e1 ∈ es1 ∧ e2 ∈ es2 ∧ (es1 and
es2 are related by topology T }|. Intuitively, the frequency of a
topology T is the number of entity pairs that are related by T .

Figure 11 shows the distribution of topology frequency for var-
ious entity set pairs: P stands for Protein, D for DNA, I for Inter-
action and U for Unigene. The x axis ranks topologies by their
frequency and the y axis shows the frequency of topologies (curve
PD and DU use the left y axis, while PI and PU use the right axis).
As shown, the distribution of topology frequency is approximately
Zipfian for all entity set pairs (it is also Zipfian for other entity set
pairs not shown here). What this means is that, given a pair of
entity sets, most pairs of entities belonging to those entity sets are
related using very few distinct topologies. It is only a few rare pairs
of entities that are related using uncommon topologies.

To better understand the structure of topologies with large fre-
quency, in Figure 12, we show the details of the top 10 most fre-
quent topologies relating Proteins and DNAs. As shown, all these
topologies have a relatively simple structure; most of them are no
more complicated than a path. This captures the intuition that most
entities are related in simple ways and only a few entities are related
in more complex ways.

4.2.2 Pruning Frequent Topologies
The observations in Section 4.2.1 enable an efficient topology
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Figure 12: Details of 3-topologies relating Proteins and DNAs.
P stands for proteins, F for protein families, D for DNAs, U for
unigenes and I for interactions.
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Figure 13: Table LeftTops and ExcpTops

pruning strategy. By pruning the few most frequent topologies,
we can reduce the size of table AllTops dramatically, thereby im-
proving the performance of queries over the non-pruned topolo-
gies. Further, since the frequent topologies have a relatively simple
structure, it should be efficient to check for the existence of these
topologies during query processing using the base data.

There is one subtlety, however, that arises from pruning frequent
topologies: although a frequent topology has a simple structure and
its existence for a given pair of entities can be checked easily dur-
ing query processing, we also need to ensure that the pair of entities
is not related through a more complex topology (for if the entities
are related through a more complex topology, then that complex
topology – which provides more detailed information about the re-
lationships – should be returned to the user instead of the simple
topology). For instance, consider the example after Definition 2
in Section 2.2: entities 78 and 215 are not related by the simple
topology T2 (even though they are related by the path represented
by T2) because they are related by the more complex topologies T3
and T4.

The above issue gives rise to an interesting question: how do
we efficiently check whether a given pair of entities is related by
a complex topology so that we can infer that it is not related by a
(frequent) simple topology during query processing? In the above
example, how do we efficiently detect that entities 78 and 215 are
related by complex topologies and hence not related by T2? A
simple approach is to issue a complicated SQL query to check for
the absence of every different complex topology. However, this is
likely to be inefficient, and would degenerate to the SQL method
and defeat the main purpose of precomputation.

We thus propose to store an exception table, which stores the
pairs of entities that are related by the simple path (or graph) con-
dition of a frequent pruned topology, but which should not appear
in the query results because they are part of a more complex inter-
action represented by more complex topologies. For the majority of
the pairs of entities, which are only related by the simple topology,
we do not need to store them in the exception table. In Figure 13,
we illustrate how the AllTops table has been pruned to produce the
LeftTops table by removing topology T2. Also, since the entities 78
and 215 satisfy the path condition of T2, but are in fact related by a
more complex topology (T3), they are stored in the exception table
ExcpTops. Note that the pruned entities 44 and 742 are not stored
in the ExcpTops table since they are related by T2.

In Figure 10, the Topology Pruning module prunes the top few

most frequent topologies from the AllTops table and produces the
LeftTops and ExcpTops tables. Based on the expected performance
gains of pruning (using the query evaluation technique described
in the next section), we set an appropriate pruning threshold – all
topologies with frequency greater than the pruning threshold are
pruned.

4.3 Query Evaluation of Fast-Top
We now show how to evaluate a query based on LeftTops, Excp-

Tops and the base data. The query evaluation is similar to that for
Full-Top, except that the pruned topologies need to be evaluated
on-line. As an illustration, consider the the query Q={(Protein,
desc.ct(‘enzyme’)), (DNA, type= ‘mRNA’)} evaluated over the pruned
tables in Figure 13. We issue the following SQL query to evaluate
Q (assuming that the IDs of different biological objects are not
overlapping).
SQL1:
SELECT distinct LT.TID
FROM Protein P, DNA D, LeftTops LT
WHERE P.desc.ct(’enzyme’) and D.type = ’mRNA’

and P.ID = LT.E1 and D.ID = LT.E2
UNION
SELECT distinct T2
FROM Protein P, DNA D,

Uni_encodes JOIN Uni_contains as PUD
WHERE P.desc.ct(‘enzyme’) and D.type = ‘mRNA’

and P.ID = PUD.PID and D.ID = PUD.DID
and not exists (SELECT distinct 1

FROM ExcpTops e
WHERE e.ID1=P.ID and

e.ID2=D.ID and
e.TID = T2)

The top subquery computes the unpruned topology results of Q
as in Full-Top. The lower sub-queries checks to see whether there
is some pair of entities in the database that (a) satisfies the query
conditions, (b) is related using the path corresponding to T2, and (c)
does not appear in the ExcpTops table for T2. In general, we need
to issue as many lower sub-queries as there are pruned topologies.
Note that the sub-queries for the pruned topologies are relatively
simple, and hence, can be evaluated efficiently. Furthermore, the
Zipfian distribution of the topology frequency ensures that only a
small number of topologies are pruned – we pruned 19 topologies
out of 805 when l≤3.

5. TOP-K QUERY EVALUATION
So far, we have focused on computing all the topology results

for a query. However, in large heterogeneous databases such as
Biozon, where a query can return many hundreds of topologies,
users may only wish to see the top few topology results based on
some ranking of topologies (and view the other topology results if
needed). In this section, we extend the FastTop method to effec-
tively handle such top-k topology queries by devising new early-
termination query evaluation and optimization techniques. The pro-
posed techniques can be easily integrated with a relational database
system, and are also applicable to a larger class of SQL queries (in-
cluding non top-k topology queries).

Our proposed techniques can work with any method for scoring
topologies. Hence, for the rest of this section, we simply assume
that the score for each topology is stored as the score attribute
in the TopInfo table. In Section 6, we evaluate the performance
of the proposed algorithms using three different topology scoring
functions, two based on topology frequency and one based on the
assessment of a domain expert.

The rest of this section is organized as follows. We first de-
scribe a simple extension to the Fast-Top method for producing top-
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k topology results, and illustrate why existing relational database
systems cannot always evaluate such queries efficiently. We then
describe new techniques for efficiently evaluating such queries and
show how they can be integrated with a relational database system.

5.1 The Fast-Top-k Method
Consider the query Q={ (Protein, desc.ct (‘enzyme’)), (DNA,

type=‘mRNA’) }. A simple way to produce the top-k topology
results is to extend the Fast-Top query SQL1 (Section 4.3) to also
produce the topology score, and then order by the score to produce
the top-k results. The resulting SQL query for producing the top-10
results is shown below (we use the notation score(T2) to denote the
score of topology T2):

SQL3:
SELECT distinct LT.TID, Top.score AS SCORE
FROM Protein P, DNA D, LeftTops LT, TopoInfo Top
WHERE P.desc.ct(’enzyme’) and D.type = ’mRNA’

and P.ID = LT.E1 and D.ID = LT.E2 and
Top.TID = LT.TID

UNION
SELECT distinct T2, score(T2) AS SCORE
FROM Protein P, DNA D,

Uni_encodes JOIN Uni_contains as PUD
WHERE P.desc.ct(‘enzyme’) and D.type = ‘mRNA’

and P.ID = PUD.PID and D.ID = PUD.DID
and not exists (SELECT distinct 1

FROM ExcpTops e
WHERE e.ID1=P.ID and

e.ID2=D.ID and
e.TID = T2)

ORDER BY SCORE DESC
FETCH FIRST 10 ROWS ONLY

We can also optimize the evaluation of the above query by first
obtaining the top-k results from the top sub-query:

SQL4:
SELECT distinct LT.TID, T.score AS SCORE
FROM Protein P, DNA D, LeftTops LT, TopoInfo Top
WHERE P.desc.ct(’enzyme’) and D.type = ’mRNA’

and P.ID = LT.E1 and D.ID = LT.E2 and
Top.TID = LT.TID

ORDER BY SCORE DESC
FETCH TOP 10 ONLY

If the query produces at least ten results, and the lowest topology
score in the result is higher than the score of the pruned topolo-
gies, then there is no need to evaluate the bottom sub-query (or
sub-queries, in the case of multiple pruned topologies). Otherwise,
the following query is executed for each pruned topology with a
potentially higher score to verify if it is in the top-k results.

SQL5:
SELECT distinct T2, score(T2) AS SCORE
FROM Protein P, DNA D

Uni_encodes JOIN Uni_contains as PUD
WHERE P.desc.ct(‘enzyme’) and D.type = ‘mRNA’

and P.ID = PUD.PID and D.ID = PUD.DID
and not exists (SELECT distinct 1

FROM ExcpTops e
WHERE e.ID1=P.ID and

e.ID2=D.ID and
e.TID = T2)

5.2 Limitations of the Fast-Top-k Method
The Fast-Top-k method is not always efficient because the un-

derlying relational database cannot process some of the queries
efficiently. We illustrate this problem using the query evaluation
plans of two commercial relational database systems: IBM DB2
and Microsoft SQL Server. For the rest of this section, we focus on

the query SQL4; the issues (and proposed solutions) for the other
queries are similar.

Figure 14 shows the query evaluation plan for SQL4 chosen by
DB2 and SQL Server. As shown, the two plans join the LeftTops
table first with the selected tuples in the Protein table, and then join
the result with the selected tuples in the DNA table. These results
are then joined with the TopInfo table and the result is sorted to
produce the top-k topology results.

Sort score

Nested loop join

hash join

idxScan 
DNA

hash join

seqScan 
LeftTops

idxScan 
Protein

idxScan 
TopoInfo

TopoInfo

Fetch score

seqScan 

Sort score

Nested loop join

hash join

idxScan 
Protein

hash join

seqScan 
LeftTops

idxScan
 DNA

idxScan 
TopoInfo

Hash Aggregate

Bookmark Lookup

(a) DB2 (b) SQL Server

Figure 14: Query Execution Plans of Commercial DBMSs
There are two main sources of inefficiency in the above plans.

First, all the topologies are processed, and the top-k results are pro-
duced only in the final step. This results in unnecessary compu-
tation for topologies that are not part of the top-k result. Second,
within each topology, all selected Protein and DNA entities (in their
corresponding tables) are joined with the corresponding pairs in the
LeftTops table – these are produced as a result of the joins. This
is wasteful because we only need to verify whether at least one
Protein-DNA pair corresponding to a topology also appears in the
selected Proteins and DNAs, and we can stop processing that topol-
ogy after identifying one such pair.

Unfortunately, prior solutions proposed in the literature cannot
address the combination of the above two issues. For example,
some techniques have recently been proposed to incorporate rank-
ing into relational databases (e.g., [13, 21, 22, 27]). However, the
focus of the work has mostly been in the context of ranked joins. In
our example, if we view the topology score as the rank, the ranked
join algorithms will produce all selected Protein-DNA pairs of a
topology with a higher score, before producing Protein-DNA pairs
of a topology with a lower score. While this join processing will
avoid processing topologies that do not appear in the top-k result,
it will still process all pairs within each topology, even though only
a single pair is needed to infer the existence of a topology. In other
words, prior work does not focus on distinct top-k queries, which
is at the heart of inferring topologies.

Another related optimization used in many commercial systems
is “early-out” joins [1, 2]. As an illustration, consider R join S,
where we need to produce only tuples of R that join with at least
one tuple of S. Using an early-out join, we do not need to produce
all combinations of an R-tuple that joins with an S-tuple, but we
can stop processing an R-tuple after we find the first joining S-
tuple, and then move on to the next R-tuple. Unfortunately, early-
out joins do not help much in our example either. To see why,
consider the lower-most hash-join in the query plan in Figure 14-
(a). Replacing this join with an early-out join will not help because
each tuple in the LeftTops table will join with at most one tuple
in the Protein table (since each LeftTop tuple contains at most one
ProteinID). Hence, the size of the join result will not be altered
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by the early-out optimization and will incur a similar overhead. A
similar argument holds for the other joins as well.

There are also techniques for pushing “distinct” computation
down in a query plan [25]. However, in our example, we cannot
push down the “distinct” on topologies to above the lower-most
join because that would remove the IDs of the DNAs, and make
it impossible to join with the selected DNAs above. Finally, there
are techniques for optimizing the fetching of the top-k rows of a
relational result [10, 11, 16], but these techniques do not apply to
queries that perform a distinct on the result of joins.

5.3 The Fast-Top-k-ET Method
To address the above limitations of the Fast-Top-k method, we

now propose the Fast-Top-k-ET method (ET stands for Early Ter-
mination). The key idea is to introduce a new family of join oper-
ators called Distinct Group Join (DGJ) operators. DGJ operators
(a) understand the notion of a group of tuples, and preserve the
order of groups in the input and propagate it to the output, and
(b) allow for efficiently skipping from one group of tuples to the
next group of tuples. Property (b) is exposed by means of the ad-
vanceToNextGroup method, which is in addition to the usual get-
Next method supported by regular operators [17].

The intuition behind a DGJ operator is that property (a) preserves
the score ordering of input topologies in the output, and property
(b) allows the join to efficiently skip processing a topology as soon
as a match for that topology is found.

As an illustration, consider the first query plan in Figure 15,
which is an alternative query plan for our running example using
DGJ operators (IDGJ is a specific implementation of a DGJ opera-
tor, which will be described shortly). In this query plan, the lower-
most operator produces topologies in score order. The next IDGJ
operator produces all the LeftTops tuples for the first topology, be-
fore producing all the LeftTops tuple for the second topology, and
so on. Similarly, the next IDGJ operator produces all the proteins
corresponding to the LeftTops tuples for the first topology, before
producing the tuples for the second topology, and so on. The selec-
tion condition only selects the Proteins that satisfy the query condi-
tion, and similarly for the next IDGJ operator that joins with DNAs.
The interesting aspect of this plan is that once a LeftTops tuple that
joins with a Protein-DNA pair that satisfies the query predicate is
identified for a given topology, the processing of the remainder of
the topology can be skipped by calling the advanceToNextGroup
methods on the DGJ operators. Further, once the top-k topology
results are determined, processing can be stopped. In this way, the
DGJ operators address the limitations of the previous approach.

IDGJ

IDGJ

Protein

σprotein

IDGJ

LeftTops

DNA

σDNA

idxScan 
TopoInfo

(score order)

IDGJ
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Figure 15: Alternative query evaluation plans
We now describe how we can implement DGJ operators that sat-

isfy the above properties. One simple implementation of a DGJ
operator is as an (index) nested loops join (IDGJ). IDGJ preserves

property (a) because any nested loops join preserves the order of the
outer relation. IDGJ preserves property (b) by simply discontinu-
ing the current loop and invoking advanceToNextGroup on its input
and starting a new loop. Another implementation of a DGJ opera-
tor is as a hash-join (HDGJ). Since the regular hash-join operator
does not preserve the order of the outer relation, the HDGJ operator
preserves this order by performing the join a group at a time. One
implication of this implementation is that the inner relation may be
evaluated multiple times, once for each group.

The IDGJ and HDGJ joins can be used interchangeably since
they both support the DGJ operator interface. Two query evaluation
plans using IDGJ and HDGJ for our running example are shown
in Figure 15.

5.4 Query Optimization for Fast-Top-k-ET
While the Fast-Top-k-ET method has the potential to improve

performance using the early-termination property of DGJ opera-
tors, it may not always be better than the Fast-Top-k method (with-
out DGJ operators). To see why this is the case, consider the imple-
mentation of the DGJ operators: the IDGJ operator requires (ran-
dom) index lookups and the HDGJ operator requires re-scanning
the inner relation for each group, while a regular hash-join does not
have any of this overhead. So, there can be cases where the benefit
of early-termination does not outweigh the extra cost and complex-
ity of DGJ operators. Such cases are expected to arise where the
size of each group is small (so early termination within a topology
has little benefit) and/or when the value of k is large (so termina-
tion across topologies has little benefit). Another practical issue
to consider is combining DGJ operators with regular operators be-
cause there could be some parts of the query amenable to early-
termination, but we may wish to use regular joins for the remaining
parts of the query.

To address the above issues in a principled manner, we devise a
framework for the cost-based optimization of queries using a mix
of DGJ and regular join operators. Thus, depending on the cost,
the optimizer may choose a plan consisting solely of DGJ opera-
tors, solely of regular join operators, or a mix of the two. We note
that existing rank-aware query optimization techniques [22] are not
directly applicable in our scenario because they only consider reg-
ular ranked joins, and not DGJ joins, which involve skipping tuples
within a group (using advanceNextGroup) – incorporating skipping
tuples within a group requires new cost models and associated tech-
niques, as we shall describe next.

Our optimization algorithm can be tightly integrated with a Sys-
tem R style optimizer [24], and can thus be easily implemented in
a relational database system. Consequently, our optimization tech-
niques are applicable not only to topology queries, but to a broader
class of SQL queries of the following form (with or without the
“order by” and the “fetch top k” clauses):

SQL6:
SELECT distinct (O1.ID), O1.score
FROM Object1 O1,..., Object On
WHERE local_predicate (O1) and ... and

local_predicate (On) and
O1 join O2 join ... join On

ORDER BY O1.score DESC
FETCH FIRST k ROWS ONLY

There are two main tasks in extending the query optimizer to
understand DGJ operators: (1) expanding the search space of the
optimizer to include DGJ operator plans, and (2) developing a cost
model for DGJ operators. We consider each in turn.

5.4.1 Expanding the Search Space
A System R style optimizer [24] performs a bottom-up plan enu-

meration technique based on dynamic programming to explore the
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space of join orderings. At each step, various join operators are
considered, including hash-join, sort-merge join, and nested-loops
join, and the least-cost plan for each “interesting order” is kept
(where an interesting order is an ordering of the output tuples on
a set of attributes). To expand this search space, we only need
to consider DGJ joins in addition to the other join operators. An
important aspect of DGJ joins is that they preserve the interest-
ing order of its (outer) input relation. In addition, we need to add
a new “interesting property” called the early-termination property
for DGJ joins because they support the advanceNextGroup method
that can be exploited by higher operators. Thus, at each stage, the
optimizer retains the least-cost plan for each interesting order and
interesting property.

5.4.2 Cost Estimation
We now describe how to estimate the cost of a stack of DGJ oper-

ators given a value of k, the desired number of results. We note that
the cost computation can be done bottom-up, for one DGJ operator
at a time as in System-R style dynamic programming, but we con-
sider an entire stack of DGJ operators for ease of exposition. For
the purposes of this section, we also make the following assump-
tions. We consider only IDGJ operators; the extension to HDGJ
operators is similar. We assume that we know the values of the
following parameters (we show how to compute these parameters
using database statistics in the next section):

• m, which is the number of groups (topologies) in the input
to the DGJ operators. We refer to the groups as g1,...,gm.

• npi (1 ≤ i ≤ m), which is the probability of the plan not
finding any result from group gi.

• nci (1 ≤ i ≤ m), which is the expected cost of the plan not
finding any result from group gi.

• eci (1 ≤ i ≤ m), which is the expected cost of the plan
finding the first result from group gi.

Given the above parameters, we define a random variable Zk
1:m

that is equal to the cost of the finding the top k results from groups
g1,...,gm. The expected cost of the plan is thus E[Zk

1:m].
THEOREM 1. ∀l. 1 ≤ l < m

E[Zk
l:m] = ecl +(1−npl)×E[Zk−1

l+1:m]+ncl +np1×E[Zk
l+1:m]

PROOF. Assume the plan is currently processing tuples in group
gl. Let Cardl be the number of tuples in group gl, and let X be
a random variable that represents the first tuple in gl that satisfies
all the joins and predicates in the plan. Let Costi be the cost of
processing the first i tuples in gl, when X = i (i≤Cardl). Let Y
be a random variable that represents the last tuple in gl such that it
and no previous tuple in gl satisfy all the joins and predicates in the
plan. Let NCostl be the cost of processing all Cardl tuples of gl

when Y = Cardl (by definiton, we know that P (Y = Cardl) =
npl). Thus, for each 1 ≤ i ≤ Cardl, we have
(1.1) P (Zk

l:m = Costi + Zk−1
l+1:m) = P (X = i)

(1.2) P (Zk
l:m = NCostl + Zk

l+1:m) = P (Y = Cardl)
Here, (1.1) represents the case that the plan can find a result after

processing i tuples in group gl, and (1.2) represents the case that
no result can be found in the group gl. Therefore,

E[Zk
l:m] =

Cardl�

i=1

P (X = i)(Costi + E[Zk−1
l+1:m]))

+ P (Y = Cardl)(NCostl + Zk
l+1:m)

= ecl + (1 − npl)E[Zk−1
l+1:m] + nc1 + npl · E[Zk

l+1:m])

Given that E[Zk
l:h] = 0 when l > h and when k = 0, we can use

dynamic programing to compute E[Zk
1:m] efficiently.

5.4.3 Estimating Parameters Using Statistics
We now show how we can estimate the parameters used in the

previous section using regular database statistics. We consider a
hierarchy of n DGJ join operators, opr1,...,oprn, and assume the
existence of the following statistics in the database system.

1. m, which is the number of groups (topologies) in the input
to the DGJ operators.

2. Cardi (1 ≤ i ≤ m), which is the cardinality of a group gi.
3. Ni (1 ≤ i ≤ n), which is the cardinality of the ith relation

being joined in the stack of DGJ operators.
4. Ii (1 ≤ i ≤ n), which is the cost of an index probe on the

joining attribute of the ith relation being joined in the stack
of DGJ operators.

5. ρi (1 ≤ i ≤ n), which is the selectivity of the ith local
predicate.

6. si (1 ≤ i ≤ n), which is the selectivity of the ith DGJ join.

The value in 1 is usually stored as histograms associated with a
relation, and 2 is the cardinality information stored with a relation.
3 is usually stored as index statistics, and 4 and 5 can be calculated
using selectivity and join estimation techniques. We also assume
the independence of tuple for joins and selections. Using the statis-
tics, we can determine the value of npi, nci and eci (1 ≤ i ≤ m).
Please see Appendix A for the details.

6. EXPERIMENTAL EVALUATION
We now experimentally evaluate the various approaches described

in the previous sections using the Biozon database. We focus on (a)
the relative performance of the different approaches for computing
topologies, (b) the effectiveness of the optimizer in choosing the
more efficient approach, and (c) the cost of retrieving the instances
of a given topology. Our experimental results show that we can
achieve interactive response time for topology queries using the
various optimization techniques proposed in this paper.

Of course, the ultimate goal of topology search over biological
databases is to enable researchers to interactively explore the data
and make new scientific discoveries. While a study that quanti-
fies the role of topology search in scientific discoveries is beyond
the scope of this paper, we present some very preliminary anec-
dotal evidence of how a computational biologist in our research
team used topology search to identify an interesting topology that
appears worthy of further investigation.

6.1 Experimental Setup
We used the Biozon database for our experiments. The database

contains 28 million biological objects (stored in seven tables) and
9.6 million binary relationships between the objects (stored in eight
tables). We only used the query-able data in Biozon for our exper-
iments, whose size is about 700MB (a large fraction of the Biozon
database is DNA sequences, which cannot be queried). We used the
IBM DB2 database, and built indices on all the primary keys and
queried attributes. All experiments were run on a 1.8GHz Pentium
4 processor running Linux 2.4.21-15.EL, which had 1GB of main
memory and 250 GB of disk space.

We evaluated nine methods, five of which have been previously
described in the text: SQL, Full-Top, Fast-Top, Fast-Top-k, Fast-
Top-k-ET. We also implemented Full-Top-k, Full-Top-k-ET (which
are similar to Fast-Top-k and Fast-Top-k-ET, respectively, but with-
out topology pruning), Fast-Top-k-Opt (which uses the proposed
optimization technique to choose between Fast-Top-k and Fast-
Top-k-ET), and Full-Top-k-Opt (which is similar to Fast-Top-k-
Opt, but without topology pruning). Table 1 shows the space re-
quirements for the Full-Top and Fast-Top strategies, where the prun-
ing threshold was set to 2M (based on studying the effect on query
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Object Pair FullTop FastTop
object object AllTopo LeftTopo excpTopo Ratio
Protein DNA 3.36GB 30MB 70M 3%
Protein Interaction 178MB 11MB 1.4M 6.8%
Protein Unigene 222MB 10MB 3.9M 6.5%
DNA Interaction 1.0GB 3.1MB 0.12M 0.3%
DNA Unigene 9.8GB 11.6MB 4.1M 0.1%

Unigene Interaction 4.5MB N/A N/A N/A

Table 1: Space Requirement

encodes

DNA

Protein
Encodes

EncodesProtein

Interactions InteractionInteraction
DNA

Figure 16: A topology of biological significance

performance, as described in Section 4.2). As shown, the pruning
in Fast-Top results in significant space reduction.

All the methods were implemented in C++. Since we could not
modify the code for IBM DB2, we implemented the DGJ opera-
tors outside the database engine by invoking database sub-queries
where necessary. We also implemented our optimizer as an exter-
nal method that invoked the DB2 optimizer to obtain statistics and
sub-plan costs. We used a warm database cache and each query
result presented is the average of multiple runs.

We used 3-topologies for most of our experiments (we vary this
parameter Section 6.2.3). We used three schemes for ranking topolo-
gies. Our first ranking scheme assigned higher scores to topologies
with a higher frequency, thereby emphasizing common topologies.
Our second ranking scheme assigned higher scores to topologies
with a lower frequency, thereby emphasizing rare topologies. Our
third ranking scheme relied on a domain expert (one of the co-
authors) to rank the interesting topologies based on biological sig-
nificance. We refer to these three ranking schemes as Freq, Rare,
and Domain, respectively.

6.2 Experimental Results

6.2.1 A Topology of Biological Significance
The topology search interface is intended to help biologists find

interesting topologies. We list all 3-topologies relating Proteins and
DNAs at http://biozon.org/ftp/data/papers/topologies/graphs/. One
of the more interesting topologies among them was Figure 16. This
topology represents a subgraph of two proteins that are encoded by
the same DNA sequence, and also interact with each other. This
phenomenon is observed for long DNA sequences (such as com-
plete genomes or chromosomes) that encode for multiple proteins.
However, the more interesting cases are of shorter DNA sequences,
that encode for operons or viral genomes that encode a small num-
ber of proteins where the proximity of the proteins on the DNA
sequence suggests that they are regulated by the same mechanism.

6.2.2 Query Performance
Table 2 compares the performance of the different methods for

queries involving Protein and Interaction. The labels selective,
medium, and unselective on the left column indicate the selectivity
(15%, 50%, and 85%, respectively) of the predicates on the Pro-
tein table, and the labels on the top row indicate the selectivity of
predicates on the Interaction table. For each combination of se-
lectivity, we evaluate the performance of all 9 methods for every
ranking scheme (Freq, Domain, and Rare). For these experiments,
we produced only the top-10 results for the methods that performed
top-k optimization.

We first compare the performance of the non top-k methods (SQL,
Full-Top, and Fast-Top). The SQL method, unsurprisingly, per-

forms very poorly because of the overhead of issuing many com-
plex SQL queries. Fast-Top outperforms Full-Top as expected for
most medium and unselective queries, because the effect of pruning
in Fast-Top. Surprisingly, however, Full-Top outperforms Fast-Top
for selective and some medium selective queries. The reason for
this phenomenon is that, for selective queries, the overhead of is-
suing queries to check for pruned topologies outweighs the benefit
of using a smaller topology table (since the selective predicates en-
able Full-Top to scan only a small part of the AllTops table). Nev-
ertheless, Fast-Top offers a more stable performance than Full-Top
across different selectivities.

We now compare the performance of the top-k methods (Full-
Top-k, Fast-Top-k, Full-Top-ET, and Fast-Top-ET). Fast-Top-k in
general outperforms Full-Top-k, except for selective predicates, for
similar reasons as in the previous section; hence, the benefits of
Fast-Top-k are greater for top-k queries because it limits the num-
ber of SQL sub-queries that Fast-Top-k has to issue. Full-Top-k-ET
and Fast-Top-k-ET perform very well for unselective queries (ex-
actly where Full-Top-k and Fast-Top-k do not perform very well)
due to the early termination optimizations. However, they perform
very poorly for selective queries because of the overhead of DGJ
operators (we actually show the best and worst plans for this case,
corresponding to different choices of DGJ operator implementa-
tions). Again, Fast-Top-k-ET dominates Full-Top-k-ET in most
cases, except for selective predicates.

Finally, we study the effectiveness of the optimization meth-
ods (Full-Top-k-Opt and Fast-Top-k-Opt). As shown, Fast-Top-k-
Opt (and similarly, Full-Top-k-Opt) almost always makes the right
choice between the Fast-Top-k plan (chosen for selective predi-
cates) and the best Fast-Top-k-ET plan (chosen for medium and
unselective predicates). This provides users with the “best of both
worlds” across various predicate selectivities. In general, Fast-Top-
k-Opt is the preferred strategy because it works well for a wide
range of selectivities. Although Full-Top-k-Opt sometimes domi-
nates Fast-Top-k-Opt for selective queries, the difference in abso-
lute time is not much (about 3 seconds). Hence, Full-Top-k-Opt
appears to be the more robust and efficient method.

6.2.3 Experiments with larger path length
We also experimented with 4-topologies (i.e., each path may re-

late up to 5 nodes). Table 3 shows the space overhead and query
performance of Fast-Top-k-Opt (the best) approach. As shown,
the query performance and space overhead are comparable to 3-
topologies.

However, there are some interesting issues that arise with large
l. First, as l increases, the quality of topologies is often diluted
by what we call weak relationships. For example, one of the most
common paths of length 4 is Protein-DNA-Protein-UniGene-DNA.
In this path, the first protein is linked to another protein (third node)
through a DNA sequence (second node). Further, the middle pro-
tein is also linked to a UniGene cluster (which represents a certain
gene) that contains an EST (which is a short DNA sequence sam-
pled from the corresponding region along the DNA). However, the
first protein and the EST sequence (last node) are most likely unre-
lated. Such weak relationships are of limited interest to biologists.
Further, such relationships also dilute the biological semantics of
meaningful topologies, especially when the weak relationship has
multiple instances. As an illustration, consider a protein and a DNA
sequence that are related by instances of three paths: Protein-DNA-
Protein-DNA, Protein-Interaction-Protein-DNA and (the weak re-
lationship) Protein-DNA-Protein-UniGene-DNA. From the biolog-
ical point of view, the interesting topologies are those that are like
the one in Figure 16. However, the presence of many Protein-DNA-
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interaction selective medium unselective
protein Freq Domain Rare Freq Domain Rare Freq Domain Rare

SQL 774.3 787.1 784.9 817.3 832.7 822.7 843.1 850.7 836.9
Full-Top 0.10 0.12 0.11 0.18 0.17 0.17 2.00 3.79 2.62
Fast-Top 5.56 6.08 5.76 5.84 5.85 5.82 6.13 6.09 6.10

Full-Top-k 0.075 0.075 0.078 0.156 0.178 0.15 0.237 0.267 0.274
selective Fast-Top-k 3.95 3.88 3.90 5.848 5.77 5.86 6.105 6.08 6.056

Full-Top-k-ET 39.42 39.01 38.96 39.19 38.88 38.96 39.23 39.68 38.95
Fast-Top-k-ET 9.65/2467 10.55/2438 8.96/2540 8.79 10.31 8.26 8.84 10.89 8.82
Full-Top-k-Opt 0.08 0.08 0.08 0.17 0.16 0.15 0.229 0.243 0.23
Fast-Top-k-Opt 3.92 3.90 3.91 5.85 5.63 5.77 6.055 6.12 6.076

SQL 386.7 240.6 783.6 1012 1097 1325 996.5 309.7 794.9
Full-Top 32.75 39.76 32.88 28.31 47.16 45.92 29.00 28.98 91.23
Fast-Top 8.06 8.08 7.93 9.84 10.05 9.85 10.88 10.99 10.94

Full-Top-k 27.20 27.69 27.07 28.95 28.9 29.64 28.92 29.5 29.20
medium Fast-Top-k 6.21 6.17 6.10 9.83 9.84 9.75 10.88 10.97 10.89

Full-Top-k-ET 40.47 4.16 28.17 45.33 3.56 28.54 46.0 6.71 2.30
Fast-Top-k-ET 5.94 4.712 1.615 6.63 5.72 1.96 6.81 5.91 2.19
Full-Top-k-Opt 27.6 27.3 31.9 30.15 8.20 4.32 47.2 6.85 2.28
Fast-Top-k-Opt 6.22 6.14 6.20 8.23 5.83 2.02 6.79 6.12 2.31

SQL 239.9 234.5 187.0 6673 1117 355.0 12549 1182 300.7
Full-Top 31.78 32.88 36.34 44.12 45.92 45.31 53.66 91.23 56.54
Fast-Top 18.60 20.23 18.58 34.75 34.89 34.62 44.43 44.66 44.57

Full-Top-k 30.28 30.71 30.31 44.35 44.85 44.72 52.03 73.32 52.57
unselective Fast-Top-k 18.77 18.88 18.82 35.19 35.29 35.05 44.69 47.37 44.46

Full-Top-k-ET 29.74 24.16 26.3 51.85 6.34 3.01 52.01 8.23 3.80
Fast-Top-k-ET 5.04 4.19 1.64 5.53 5.68 2.13 9.39 5.724 1.68
Full-Top-k-Opt 29.8 25.6 26.35 51.84 6.41 3.45 51.9 8.31 3.91
Fast-Top-k-Opt 5.34 4.12 1.78 5.65 5.88 2.31 10.0 5.73 1.57

Table 2: Performance of Different Strategies
interaction selective medium unselective space overhead

protein Freq Domain Rare Freq Domain Rare Freq Domain Rare Table Size
selective 10.5 10.9 10.3 10.9 10.7 10.4 11.8 11.7 11.25 AllTops 186M
medium 13.6 6.38 5.89 17.4 5.84 2.86 8.01 6.4 2.01 LeftTops 18M

unselective 7.68 4.21 0.78 5.97 4.88 2.10 12.6 5.29 1.54 ExcpTops 1.5M

Table 3: Space Overhead and Query Performance (Fast-Top-k-Opt) of 4-topology Data

Protein-UniGene-DNA interacts with the other paths and splits the
interesting topology into four topolgies, as shown in Figure 17.
Consequently, weak relationships degrade the quality of meaning-
ful topologies.

Second, the intrinsic complexity of computing topologies makes
it hard to compute topologies involving weak relationships. For
instance, Protein-DNA-Protein-UniGene-DNA has about 600 mil-
lion instances (because it often connects unrelated end points), and
even for a given pair of end points, weak relationships have up to
5000 instances relating the end points. Consequently, it is very ex-
pensive to compute topologies involving such paths (which may
interact with other paths that have tens of thousands of instances).
Note that this is an intrinsic complexity of the problem because any
solution for topology search has to compute these paths to check
whether any one of them interacts with other paths. While any on-
line query evaluation method would have to compute these paths on
the fly, we incur this computational overhead during the precompu-
tation phase (when generating topologies), but provide good prun-
ing and performance during query time. Nevertheless, computing
such topologies is computational expensive (it took us more than a
day to generate topologies for l = 4 involving weak relationships).

Given the above analysis, we believe that weak relationships
have a detrimental effect on topology search. Consequently, one
solution is to use domain knowledge to prune such weak topolo-
gies. In Appendix B, we describe weak relationships in Biozon
that can potentially be pruned.

6.2.4 Summary of Other Results
We also ran other experiments by varying the parameter k (for
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Figure 17: A weak relationship Protein-DNA-Protein-
UniGene-DNA dilutes the meaningful topology in Figure 16. P
stands for Protein, D for DNA, U for Unigene, and I for Inter-
action.

top-k queries). Since the results are similar, except for a slight
degradation in performance with increasing k, they are omitted
here. We also evaluated the performance of retrieving instances of
topologies, and found that it ranges from 1-50 seconds depending
on the frequency of the topology.

7. RELATED WORK
In the biological data domain, topologies is a new concept. Exist-

ing methods for querying biological data available on the web are
usually limited to the one entity type warehoused in the database
being queried. There are a few servers that allow one to query mul-
tiple databases at once, such as the NCBI entrez server (http://www.
ncbi.nlm.nih.gov/gquery) and the EMBL server (http://www.ebi.ac.
uk/services/ ). However, these servers do not integrate the results,
nor do they analyze the relations between the objects. As such,
they are oblivious to data topologies. There also exist systems, like
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Biomediator [26], Moby [30], DiscoveryLink [18], Kleisli [12] and
others that use a mediated schema and/or wrappers to distribute
queries amongst different sources, integrating the information in
a mediated middle layer. However, they do not support topology
searches.

There have been recent work on keyword search over databases,
such as BANKS [7], DataSpot [15], Lore [28], DBXplorer[6] and
DISCOVER [5, 20, 19]. However as mentioned in the introduction,
these techniques only return “isolated” paths between entities. Fur-
ther, they do not summarize various similarly related entities at the
schema level. ObjectRank[5] supports schema level summaries but
it still only considers isolated paths between entities. None of the
above work summarizes all the rich relationships among entities at
the schema level in the form of topologies, which is one of the main
contributions of our work. Another point of distinction is that the
previous strategies only support “pure” keyword search while our
system can support a mix of keyword search and structured queries.
There has also been a lot of recent work on top-k queries (e.g., [27,
23, 29]), but these techniques do not consider topology results. For
a more detailed discussion of top-k evaluation techniques in rela-
tional databases, please see Section 5.2.

8. CONCLUSION AND FUTURE WORK
We have introduced the notion of a data topology, which cap-

tures and summarizes relationships between interrelated entities,
and shown how (ranked) topology search can be efficiently imple-
mented in a biological database. We have also identified some us-
ability and performance issues that arise when dealing with large
topologies containing weak relationships, and have proposed solu-
tions to this problem by exploiting domain knowledge.

We believe that our current work on topologies is only a first
step toward a more general study of relationships between entities.
Possible directions for future work include extensions to support
multiple end-points in a topology, primitives for comparing topolo-
gies across multiple queries, and alterative topology formulations
for dealing with weak relationships. We also believe that the no-
tion of topology is relevant not only to biological databases, but
may also be applicable to the social and physical sciences.
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APPENDIX

A. PROOF OF THEOREM 2
Given the statistics in Section 5.4.3, we need to determine npi,

nci and eci (1 ≤ i ≤ m). We first calculate the formulae for
some useful intermediate parameters, before computing the desired
formulae.

LEMMA 1. Let xi (1 ≤ i ≤ n) be the probability of an input
tuple of opri (in the outer input) being a result of the plan. We then
have:
(1) xn+1 = 0;
(2) xi =

�siNi
j=1 {ρj

i (1 − ρi)
siNi−j · (1 − (1 − xi+1)

j)} where
1 ≤ i ≤ n:

PROOF. Since (1) is obvious, we only prove (2). Consider an
input tuple u of opri (in the outer input). In expectation, u will join
with siNi inner input tuples. The probability of exactly j of these
inner tuples satisfying the local predicate of opri is αj=ρj

i (1 −
ρi)

siNi−j . Since the probability of each one of the inner tuples
producing a result for the plan is xi+1, ζj=1 − (1 − xi+1)

j is the
probability that at least one of the j tuples will produce a result for
the plan. Thus, xi =

�siNi
j=1 (αi × ζi) which is formula (2).

LEMMA 2. Let δi (1 ≤ i ≤ n) be the expected cost of index
probes for one input tuple of opri (in the outer input) that is not a
result. We then have:
(1)δn+1 = 0;
(2)δi =

�siNi
j=0 {ρj

i (1 − ρi)
sjNj−j × [Ii + j · δi+1]} where 1 ≤

i < n.

PROOF. Since (1) is obvious, we only prove (2). Consider an
input tuple u of opri (in the outer input). In expectation, u will join
with siNi inner input tuples. The probability of exactly j of these
inner tuples satisfying the local predicate of opri is αj=ρj

i (1 −
ρi)

siNi−j . Thus, the cost of index probes for u is ζj=Ii + jδi+1,
where Ii is the cost of a local index probe for u, and j · δi+1 is the
cost of index probes for the j tuples in the other operators. Thus,
δi =
�siNi

j=1 (αi × ζi), which is formula (2).

Using Lemmas 1 and 2, we can compute xi and δi (1 ≤ i ≤ n)
efficiently using dynamic programming. We now show how we can
use these values to compute npi, nci and eci (Section 5.4.2).

THEOREM 2. ∀i. 1 ≤ i ≤ m: npi = (1 − x1)
Cardi

PROOF. From Lemma 1, x1 is the probability of an input tuple
(to the lower-most operator) being a result. Therefore, the probabil-
ity of not finding any result from the group gi is (1−x1)

Cardi .

THEOREM 3. ∀i. 1 ≤ i ≤ m: nci = (1−x1)
Cardi×Cardi×

δ1

PROOF. Since npi is the probability of the plan not finding any
result from group gi, and the expected cost of not finding a result
in group gi is Cardi × δ1, nci = np1 × (Cardi × E[Y ]) = (1 −
x1)

Cardi × Cardi × δ1.

THEOREM 4. ∀i. 1 ≤ i ≤ m. eci=EC1:n
Cardi

, where:
(1) ECn+1:n

h = 0;
(2) ECl:n

h =
�h

j=1{ρl(1− xl)
j−1 · [(j − 1)δl + Il + ECl+1:n

slNl
]}

where 1 ≤ l < n.

PROOF. Intuitively, ECp:q
h is the expected cost of the plan with

oprp...oprq (1 ≤ p, q ≤ n) to find the first result from h input
tuples. Since (1) is obvious, we only prove (2). Assume that the
plan of oprl,...,oprn finds a result after processing j input tuples

Relationship Explanation
DUP related but weaker than DP
PFP related/remotedly related (homologous proteins)
PUP related/remotedly related
PFPD related/remotedly related
FWF weak relation (pathway context)

DUPU remotedly related or completely unrelated
PUPU remotedly related or completly unrelated
PDP likely to be unrelated (functionally)

FWFP likely to be completly unrleated

Table 4: Relationships that can give rise to weak relationships
if repeated multiple times

(of oprl). The probability of this case is αj=ρl(1 − xl)
j−1, where

(1−xl)
j−1 is the probability that the first j − 1 tuples did not pro-

duce a result (Lemma 1), and ρl is the probability that the jth tuple
is a result. The total expected cost of the j − 1 tuples that did not
produce a result is (j − 1)δl (Lemma 2). The cost of processing
the jth tuple is Il (the index lookup cost) plus ECl+1:n

slNl
(because

the tuple joins with slNl inner input tuples of oprl, and these tu-
ples have to be processed by the higher operators). Thus, the total
expected cost for this case is ζj=(j −1)δl + Il +ECl+1:n

slNl
. Hence,

ECl:n
h =

�h
j=1(αj × ζj ).

B. WEAK RELATIONSHIPS IN BIOZON
The interest in data topologies emerges from our interest in de-

tecting new biological phenomena. However, as the length of paths
l increases (with l >= 4) and the size of the topologies grows, it
becomes more difficult to discern the truly interesting topologies
from weak topologies. Weak topologies are subgraphs that contain
weak relationships, i.e., relationships that most likely connect re-
motely related entities. Such relationships are typically formed by
repeating certain indirect relationships (Figure 4).

For example, the paths PFP or PUP form a relation between two
similar (and likely homologous) proteins. Thus, any path that ex-
tends on these and relate another entity (say a DNA) to one of the
proteins, also relates the same entity to the other protein. However,
this relation is not direct and if repeated multiple times, the rela-
tion between the two end entities becomes a weak relationship that
is less and less reliable, to the point that the resulting topologies
have no biological significance. This problem is especially evi-
dent for multi-domain proteins and is aggravated by the presence
of chance similarities, and transitive relations between remote en-
tities that utilize these paths might end up connecting completely
unrelated entities [31].

A different kind of example for a weak relationship arises by ex-
tending the path P-D-P. This path represents two distinct proteins
(the first and the third nodes) that are encoded by the same DNA
sequence (the second node). Some of the DNA sequences are long
(including the complete sequences of certain chromosomes or even
complete genomes) and encode for multiple proteins, and hence
this sub-graph is very common. However, the two proteins might be
at far apart locations and completely unrelated functionally. Com-
bining this path with others can create weak relationships that are of
limited interest to biologists. For example, when combining PDP
with P-U-D the result is one of the most common paths of length 4,
P-D-P-U-D. However, the first protein and the EST sequence (last
node) are most likely unrelated (note that the second and last nodes
do not represent the same instance). Similarly, when combining
the relationships PDP and PFP the result is a weak relationship P-
D-P-F-P that most likely link two unrelated proteins (the two end
nodes).
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