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Abstract We present a decomposition-based approach to
managing probabilistic information. We introduceworld-set
decompositions (WSDs), a space-efficient and complete rep-
resentation system for finite sets of worlds. We study the
problem of efficiently evaluating relational algebra queries
on world-sets represented by WSDs. We also evaluate our
technique experimentally in a large census data scenario and
show that it is both scalable and efficient.

1 Introduction

Incomplete information is commonplace in real-world data-
bases. Classical examples can be found in data integration
and wrapping applications, linguistic collections, or when-
ever information is manually entered and is therefore prone
to inaccuracy or incompleteness.

As a motivation, consider two manually completed forms
that may originate from a census and which allow for more
than one interpretation (Figure 1). For simplicity we assume
that social security numbers consist of only three digits. For
instance, Smith’s social security number can be read either
as “185” or as “785”. We can represent the available infor-
mation using a relation with or-sets:

(TID) S N M
t1 { 185, 785} Smith { 1, 2}
t2 { 185, 186} Brown { 1, 2, 3, 4}

This relation represents2 · 2 · 2 · 4 = 32 possible worlds.

This article is an extended version of the paper with the samename
that appeared in the Proceedings of the International Conference on
Data Engineering (ICDE) 2007 [7].
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Given such an incompletely specified database, it must
of course be possible to access and process the data. Two
data management tasks shall be pointed out as particularly
important, query evaluation anddata cleaning[25,16,26],
by which certain worlds can be shown to be impossible and
can be excluded. The results of both types of operation turn
out not to be representable by or-set relations in general.
Consider for example the integrity constraint that all so-
cial security numbers be unique. For our example database,
this constraint excludes 8 of the 32 worlds, namely those in
which both tuples have the value 185 as social security num-
ber. It is impossible to represent the remaining 24 worlds us-
ing or-set relations. This is an example of a constraint that
can be used for data cleaning; similar problems are observed
with queries, e.g., the query asking for pairs of persons with
differing social security numbers.

What we could do is store each world explicitly using
a table called aworld-set relationof a given set of worlds.
Each tuple in this table represents one world and is the con-
catenation of all tuples in that world (see Figure 2).

The most striking problem of world-set relations is their
size. If we conduct a survey of 50 questions on a popula-
tion of 200 million and we assume that one in104 answers
can be read in just two different ways, we get2106

worlds.
Each such world is a substantial table of 50 columns and
2 · 108 rows. We cannot store all these worlds explicitly in
a world-set relation (which would have1010 columns and
2106

rows). Data cleaning will often eliminate only some of
these worlds, so a DBMS should manage those that remain.

This article aims at dealing with this complexity and pro-
poses the new notion ofworld-set decompositions (WSDs).
These are decompositions of a world-set relation into several
relations such that their product (using the product operation
of relational algebra) is again the world-set relation.



Name:


Marital Status:


Social Security Number:


Name:


Marital Status:


Social Security Number:


(1) single
 (2) married


(3) divorced
 (4) widowed


(1) single
 (2) married


(3) divorced
 (4) widowed


Fig. 1 Two completed survey forms.

t1.S t1.N t1.M t2.S t2.N t2.M
185 Smith 1 186 Brown 1
185 Smith 1 186 Brown 2
185 Smith 1 186 Brown 3
185 Smith 1 186 Brown 4
185 Smith 2 186 Brown 1

...
785 Smith 2 186 Brown 4

Fig. 2 World-set relation containing only worlds with unique social
security numbers.

Example 1The world-set represented by our initial or-set
relation can also be represented by the product

t1.S
185
785

×
t1.N

Smith
×

t1.M
1
2

×
t2.S
185
186

×
t2.N

Brown
×

t2.M
1
2
3
4

The WSD representation of an or-set relation requires in
general the same amount of space as the or-set relation itself.2

Example 2In the same way we can represent the result of
data cleaning with the uniqueness constraint enforced on the
social security numbers as the product of Figure 3.

t1.S t2.S
185 186
785 185
785 186

×
t1.N

Smith
×

t1.M
1
2

×
t2.N

Brown
×

t2.M
1
2
3
4

Fig. 3 WSD of the relation in Figure 2.

The above product is exactly the world-set relation in
Figure 2. The presented decomposition is based on theinde-
pendencebetween sets of fields, subsequently calledcom-
ponents. Only fields that depend on each other, for exam-
ple t1.S and t2.S, belong to the same component. Since

{t1.S, t2.S} and{t1.M} are independent, they are put into
different components. 2

Often, one can quantify the uncertainty of a dependency
of possible values using probabilities. For example, an auto-
matic extraction tool that extracts structured data from text
can produce a ranked list of possible extractions, each as-
sociated with a probability of being the correct one [19].
WSDs can elegantly represent such uncertain data by using
a new column P for each component. This column then de-
fines the probabilities of the dependencies of the values in
each component tuple.

t1.St2.S P
185 186 0.2
785 185 0.4
785 186 0.4

×
t1.N P

Smith 1
×

t1.M P
1 0.7
2 0.3

×
t2.N P

Brown 1
×

t2.M P
1 0.25
2 0.25
3 0.25
4 0.25

Fig. 4 Probabilistic version of the WSD of Figure 3.

Example 3Figure 4 gives a probabilistic version of the WSD
of Figure 3. The probabilities in the last component state
that the possible values for the marital status in tuplet2 are
equally likely. In case oft1, it is more likely to be single
(value 1) than married. The probabilities for the name val-
ues fort1 andt2 equal one, as this information is certain.2

Given a probabilistic WSD{C1, . . . , Cm}, we obtain a
possible world by choosing one tuplewi out of each compo-
nent relationCi. The probability of this world is then com-

puted as
m∏

i=1

wi.P . For example, in Figure 4, choosing the

first, the second, and the third tuple from the first, the third,
and the fifth component, respectively, results in the world

R SSN Name MS
t1 185 Smith 2
t2 186 Brown 2

This world’s probability is0.2 · 1 · 0.3 · 1 · 0.25 = 0.015.
In practice, it is often the case that fields or even tuples

carry the same values in all worlds. For instance, in the cen-
sus data scenario discussed above, we assumed that only one
field in 10000 has several possible values. Such a world-set
decomposes into a WSD in which most fields in component
relations are certain, i.e., have precisely one tuple.

We will also consider a refinement of WSDs,WSDTs,
which store information that is the same in all possible worlds
once and for all in so-calledtemplate relations.

Example 4The world-set of the previous examples can be
represented by the WSDT of Figure 5. 2

WSDTs combine the advantages of c-tables [20] and
WSDs. In particular, WSDTs can be naturally viewed as c-
tables where the body of the c-table corresponds to the tem-
plate relation, and whose formulas have been put into anor-
mal form represented by the component relations, and null



Template S N M
t1 ? Smith ?
t2 ? Brown ?

t1.S t2.S P
185 186 0.2
785 185 0.4
785 186 0.4

×
t1.M P

1 0.7
2 0.3

×

t2.M P
1 0.25
2 0.25
3 0.25
4 0.25

Fig. 5 Probabilistic WSD with a template relation.

values ‘?’ in the template relations represent fields on which
the worlds disagree. Indeed, each tuple in the product of the
component relations is a possible value assignment for the
variables in the template relation. While query evaluation
needs to access both the template relation and the compo-
nents, this brings advantages that are best justified in cases
where most data is certain. The following c-table with global
conditionΦ is equivalent to the WSDT in Figure 5 (without
the probabilistic weights):

T S N M
x Smith y

z Brown w

Φ = ((x = 185 ∧ z = 186) ∨ (x = 785 ∧ z = 185) ∨

(x = 785 ∧ z = 186)) ∧ (y = 1 ∨ y = 2) ∧

(w = 1 ∨ w = 2 ∨ w = 3 ∨w = 4)

The technical contributions of this article are as follows.

– We formally introduce WSDs and WSDTs and study
some of their properties. Our notion is a refinement of
the one presented above and allows to represent worlds
over multi-relation schemas which contain relations with
varying numbers of tuples. WSD(T)s can represent any
finite set of possible worlds over relational databases and
are therefore a strong representation system forany re-
lational query language.

– A practical problem with WSDs and WSDTs is that a
DBMS that manages such representations has to support
relations of arbitrary arity: the schemata of the compo-
nent relations of a decomposition depend on the data.
Unfortunately, DBMSs (e.g. PostgreSQL) in practice of-
ten do not support relations beyond a fixed arity.
For that reason we present refinements of the notion of
WSDs, theuniform WSDs (UWSDs), and their exten-
sion by template relations, theUWSDTs, and study their
properties as representation systems.

– We show how to process relational algebra queries over
world-sets represented by UWSDTs. For illustration pur-
poses, we discuss query evaluation in the context of the
more visual WSDs.
We also develop a number of optimizations and tech-
niques for normalizing the data representations obtained
by queries to support scalable query processing even on
very large world-sets.

– We develop data cleaning techniques in the context of
WSDs. We focus on two kinds of dependencies, func-
tional dependencies and a class of equality-generating
dependencies, and adapt theChase procedure(cf. [24,
3,18]) for incomplete information to the framework of
WSDs.

– We describe a prototype implementation built on top of
the PostgreSQL RDBMS. Our system is called MayBMS1

and supports the management of incomplete information
using UWSDTs.

– We report on our experimental evaluation of UWSDTs
as a representation system for large finite sets of possible
worlds. Our experiments show that UWSDTs yield scal-
able techniques for managing incomplete information.
We found that the size of UWSDTs obtained as query
answers or data cleaning results remains close to that of
a single world. Furthermore, the query processing time
is also comparable to processing just a single world and
thus a classical relational database.

WSDs are designed to cope with large sets of worlds
which exhibit local dependencies and large commonalities.
This data pattern can be found in many applications. Besides
the census scenario, Section 10 describes two further appli-
cations: managing inconsistent databases using minimal re-
pairs [10,12] and medical data.

A fundamental assumption of this work is that one wants
to managefinite sets of possible worlds. This is justified
by previous work on representation systems starting with
Imielinski and Lipski [20], by recent work [15,4,11], and
by current application requirements. Our approach can deal
with databases with unresolved uncertainties. Such databases
are still valuable. It should be possible to do data trans-
formations that preserve as much information as possible,
thus necessarily mapping between sets of possible worlds. In
this sense, WSDs represent acompositional frameworkfor
querying and data cleaning. A different approach is followed
in, e.g., [10,13], where the focus is on findingcertain an-
swersof queries on incomplete and inconsistent databases.

Related Work. Early work on managing incomplete infor-
mation in the relational setting was presented in [20] which
introducedv-tablesandc-tables. In v-tables the tuples can
contain both constants and variables, and each combination
of possible values for the variables yields a possible world.
Relations with or-sets [21] can be viewed as v-tables, where
each variable occurs only at a single position in the table and
can only take values from a fixed finite set, the or-set of the
field occupied by the variable. The so-calledc-tables[20]
extend v-tables with conditions specified by logical formu-
las over the variables, thus constraining the possible values,

1 The version of the MayBMS system released in early 2009, avail-
able at http://maybms.sourceforge.net, uses a representation system
other than WSDs.



and form a strong representation system for relational query
languages.

The probabilistic databases of [15,14] and the dirty re-
lations of [4] are examples of practical representation sys-
tems that are not strong for relational algebra. As query an-
swers in general cannot be represented as a set of possible
worlds in the same formalism, query evaluation is focused
on computing the certain answers to a query, or the proba-
bility of a tuple being in the result. Such formalisms close
the possible worlds semantics using clean answers [4] and
probabilistic-ranked retrieval [15]. As we will see in thisar-
ticle, our approach subsumes the aforementioned two and is
strictly more expressive than them.

In parallel to our approach, [28,11] propose ULDBs that
combine uncertainty and a low-level form of lineage to model
any finite world-set. Like the dirty relations of [4], ULDBs
represent a set of independent tuples with alternatives. Lin-
eage is then used to represent dependencies among alterna-
tives of different tuples and thus is essential for the expres-
sive power of the formalism. Note that lineage corresponds
to local conditions in c-tables [20].

As both ULDBs and WSDs can model any finite world-
set, they inherently share some similarities, yet differ inim-
portant aspects. WSDs support efficient algorithms for find-
ing a minimal data representation based on relational factor-
ization. Differently from ULDBs, WSDs allow representing
uncertainty at the level of tuple fields, not only of tuples.
This causes, for instance, or-set relations to have linear rep-
resentations as WSDs, but (in general) exponential repre-
sentations as ULDBs. As reported in [11], resolving tuple
dependencies, i.e., tracking which alternatives of different
tuples belong to the same world, often requires the compu-
tation of lineage closure. Additionally, query operationson
ULDBs can produce inconsistencies and anomalies, such as
erroneous dependencies and inexistent tuples. In contrast,
WSDs avoid both pitfalls.

In [29] probabilistic databases are modeled using graph-
ical models. Each tuple has an associated random variable,
specifying the existence of the tuple in the database, and
correlations between tuples are given by links between the
corresponding nodes in the graphical model. Querying the
graphical model is done by introducing new factors, and
computing confidence of tuples is reduced to probabilistic
inference in graphical models. Note that world-set decom-
positions correspond to flat graphical models, where the con-
ditional independence between variables is made explicit.
Indeed, WSDs are based on the idea of independence be-
tween variables (attribute values), which is a special kindof
conditional independence. In some cases, graphical models
can be more succinct than WSDs. However, evaluating re-
lational algebra queries on top of graphical models tends to
produce flat models with high treewidth, which makes con-
fidence computation hard on graphical models.

The model used by the Orion system [30] can be seen as
an extension of the world-set-decomposition model for con-
tinuous distributions. There, correlated attributes are grouped
together and represented by a single joint distribution. Sim-
ilarly, in a WSD each component represents the joint (dis-
crete) distribution of a set of correlated attributes.

In [9] we provide complexity results for different deci-
sion problems on WSDs, such as query possibility and cer-
tainty, and present a polynomial algorithm for relational de-
composition. Finally, the more recent work [5] builds upon
WSDs to create a representation system where correlations
can be represented in a more intensional but still relational
way, which ensures more compact representation and effi-
cient query processing. [17] shows how to manage interval
probabilities, either because the exact probabilities arenot
known, or because they were introduced by evaluating se-
lections on top of approximated confidence values.

2 Preliminaries

We use the named perspective of the relational model with
the operations selectionσ, projectionπ, product×, union
∪, difference−, and attribute renamingδ (cf. e.g. [2]). A
relational schemais a tupleΣ = (R1[U1], . . . , Rk[Uk]),
where eachRi is a relation name andUi is a set of attribute
names. LetD be a set of domain elements. Arelation over
schemaR[A1, . . . , Ak] is a set of tuples(A1 : a1, . . . , Ak :

ak) wherea1, . . . , ak ∈ D. A relational databaseA over
schemaΣ is a set of relationsRA, one for each relation
schemaR[U ] from Σ. Sometimes, when no confusion of
database may occur, we will useR rather thanRA to denote
one particular relation over schemaR[U ]. By the size of a
relationR, denoted|R|, we refer to the number of tuples in
R. For a relationR over schemaR[U ], let sch(R) denote
the setU of its attributes and letar(R) denote the arity of
R.

A productm-decompositionof a relationR is a set of
non-nullary relations{C1, . . . , Cm} such thatC1 × · · · ×

Cm = R. The relationsC1, . . . , Cm are calledcomponents.
A productm-decomposition ofR is maximalif there is no
productn-decomposition ofR with n > m.

A set ofpossible worlds(or world-set) over schemaΣ is
a set of databases over schemaΣ. Let W be a set of struc-
tures,rep be a function that maps fromW to world-sets of
the same schema. Then(W, rep) is astrong representation
systemfor a query language if, for each queryQ of that lan-
guage and eachW ∈ W such thatQ is applicable to the
worlds in rep(W), there is a structureW ′ ∈ W such that
rep(W ′) = {Q(A) | A ∈ rep(W)}. Obviously,

Lemma 1 If rep is a function from a set of structuresW
to the set of all finite world-sets, then(W, rep) is a strong
representation system for any relational query language.



3 World-Set Decompositions

In order to use classical database techniques for storing and
querying incomplete data, we develop a scheme for repre-
senting a world-setA by a single relational database.

LetA be a finite world-set over schemaΣ = (R1, . . . , Rk).
For eachR in Σ, let |R|max = max{|RA| : A ∈ A} de-
note the maximum cardinality of relationR in any world
of A. Given a worldA with RA = {t1, . . . , t|RA|}, let
inline(RA) be the tuple obtained as the concatenation (de-
noted◦) of the tuples ofRA in an arbitrary order padded
with a special tuplet⊥ = (⊥, . . . ,⊥)

︸ ︷︷ ︸

ar(R)

up to arity|R|max:

inline(RA) := t1 ◦ · · · ◦ t|RA| ◦ (t⊥, . . . . . . . . . . . . , t⊥
︸ ︷︷ ︸

|R|max−|RA|

)

Then tuple

inline(A) := inline(RA
1 ) ◦ · · · ◦ inline(RA

k )

encodes all the information in worldA. The “dummy” tu-
ples with⊥-values are only used to ensure that the relation
R has the same number of tuples in all worlds inA. We ex-
tend this interpretation and generally define ast⊥ any tuple
that has at least one symbol⊥, i.e., (A1 : a1, ..., An : an),
where at least oneai is ⊥, is a t⊥ tuple. This allows for
several different inlinings of the same world-set.

By a world-set relationof a world-setA, we denote the
relation{inline(A) | A ∈ A}. This world-set relation has
schema{R.ti.Aj | R[U ] ∈ Σ, 1 ≤ i ≤ |R|max, Aj ∈ U}.
Note that in defining this schema we useti to denote the
position (or identifier) of tupleti in inline(RA) and not its
value.

Given the above definition that turned every world in a
tuple of a world-set relation, computing the initial world-
set is an easy exercise. In order to have every world-set re-
lation define a world-set, let a tuple extracted from some
tRA = inline(RA) be inRA iff it does not contain any oc-
currence of the special symbol⊥. That is, we maptRA =

(a1, . . . , aar(R)·|R|max
) toRA as

inline−1 (tRA) :=

{(aar(R)·k+1, . . . , aar(R)·(k+1)) | 0 ≤ k < |R|max,

aar(R)·k+1 6= ⊥, . . . , aar(R)·(k+1) 6= ⊥}.

If tA = tRA
1

◦ . . . ◦ . . . tRA
k

is the inlining for worldA, we
can restoreA in the following way:

inline−1(tA) = (inline−1(tRA
1

), . . . , inline−1(tRA
k
))

Observe that although world-set relations are not unique as
we have left open the ordering in which the tuples of a given
world are concatenated, all world-set relations of a world-set
A are equally good for encoding the world-set because they

can be mapped invariantly back toA. However different or-
derings of the tuples might have implications on the com-
pactness of the decomposition. Note that for each world-set
relation a maximal decomposition exists, is unique, and can
be efficiently computed [9].

Definition 1 Let A be a world-set andW a world-set re-
lation representingA. Then aworld-setm-decomposition
(m-WSD)of A is a productm-decomposition ofW .

We will refer to each of them elements of a world-setm-
decomposition ascomponents, and to the component tuples
aslocal worlds. Somewhat simplified examples of world-set
relations and WSDs over a single relationR (thus “R” was
omitted from the attribute names of the world-set relations)
were given in Section 1. Further examples can be found in
Section 4. It should be emphasized that with WSDs we can
also represent multiple relational schemata and even arbi-
trary correlations of fields across relations (by having com-
ponents with fields from different relations).

Definition 2 Let W = {C1, . . . , Cm} be an m-WSD. Then
the functionrep that mapsW to a set of possible worlds is
defined as

rep(W) =
⋃

{inline−1(t) | t ∈ C1 × . . .× Cm}

It immediately follows from our definitions that

Proposition 1 Any finite set of possible worlds can be rep-
resented as a world-set relation and as a1-WSD.

Corollary 1 (Lemma 1) WSDs are a strong representation
system for any relational query language.

As pointed out in Section 1, this is not true for or-set
relations. For the relatively small class of world-sets that
can be represented as or-set relations, the size of our rep-
resentation system is linear in the size of the or-set relations.
As seen in the examples, our representation ismuch more
space-efficient than world-set relations.

Modeling Probabilistic Information. We can quantify the
uncertainty of the data by means of probabilities using a
natural extension of WSDs. Aprobabilistic world-set m-
decomposition(probabilistic m-WSD) is an m-WSD
{C1, . . . , Cm}, where each component relationC has a spe-
cial attributeP in its schema defining the probability for the
local worlds, that is, for each combination of values defined
by the component. To ensure valid probability distribution,
we require that the probabilities in a component sum up to
one, i.e.

∑

tC∈C

tC .P = 1.

Probabilistic WSDs2 generalize the probabilistic tuple-
independent model of [15], as we show next.

2 Like most recent work we assume that probabilities are givenas
input, for example by an expert, or learned. Follow-up work of the au-
thors discusses how probabilities can be introduced using queries [8].



Example 5Figure 6 (a) is an example taken from [15]. It
shows a tuple-independent probabilistic database with two
relationsS andT . Each tuple is assigned a confidence value,
which represents the probability of the tuple being in the
database, and the tuples are assumed independent. A possi-
ble world is obtained by choosing a subset of the tuples in
the tuple-independent probabilistic database, and its prob-
ability is computed by multiplying the probabilities for se-
lecting a tuple or not, depending on whether that tuple is in
the world. The set of possible worlds forD is given in Fig-
ure 6 (b). For example, the probability of the worldD3 can
be computed as(1 − 0.2) · 0.5 · 0.6 = 0.06. 2

S A B P
s1 m 1 0.8
s2 n 1 0.5

T C D P
t1 1 p 0.6

(a)

world P
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = ∅ 0.04

(b)

Fig. 6 A tuple-independent probabilistic database for relationsS and
T (a), and the represented set of possible worlds (b).

We obtain a probabilistic WSD in the following way.
Each tuplet with confidencec in a tuple-independent prob-
abilistic database induces a WSD component representing
two local worlds: the local world with tuplet and probability
c, and the empty world with probability1−c. Figure 7 gives
the WSD encoding of the tuple-independent probabilistic
database of Figure 6. Of course, in probabilistic WSDs we
can assign probabilities not only to individual tuples, but
also to combinations of values for fields of different tuples
or relations.

C1 s1.A s1.B P
1 m 1 0.8
2 ⊥ ⊥ 0.2

×

C2 s2.A s2.B P
1 n 1 0.5
2 ⊥ ⊥ 0.5

×

C3 t1.C t1.D P
1 1 p 0.6
2 ⊥ ⊥ 0.4

Fig. 7 WSD equivalent to the probabilistic database in Figure 6 (a).

Adding Template Relations.We now present our refine-
ment of WSDs with so-calledtemplate relations. A template
stores information that is the same in all possible worlds and
contains special values ‘?’ /∈ D in fields at which different
worlds disagree.

LetΣ = (R1, . . . , Rk) be a schema andA a finite set of
possible worlds overΣ. Then, the database
(R0

1, . . . , R
0
k, {C1, . . . , Cm}) is called anm-WSD with tem-

plate relations (m-WSDT)of A iff there is a WSD
{C1, . . . , Cm, D1, . . . , Dn} of A such that|Di| = 1 for all

i and if relationDi has attributeRj .t.A and valuev in its
uniqueRj .t.A-field, then the template relationR0

j has a tu-
ple with identifiert whoseA-field has valuev.

Of course WSDTs again can represent any finite world-
set and are thus a strong representation system for any re-
lational query language. Example 4 shows a WSDT for the
running example of the introduction.
Uniform World-Set Decompositions.In practice, database
systems often do not support relations of arbitrary arity (e.g.,
WSD components). For that reason we introduce next a mod-
ified representation of WSDs calleduniform WSDs. Instead
of having a variable number of component relations, pos-
sibly with different arities, we store all values in a single
relationC that has a fixed schema. We use the fixed schema
consisting of the three relation schemata

C[FID ,LWID ,VAL], F [FID ,CID ],W [CID ,LWID ,PR]

whereFID is a triple3 (Rel ,TupleID ,Attr) denoting the
Attr-field of tupleTupleID in database relationRel .

In this representation we need a restricted flavor of world-
ids calledlocal world-ids(LWIDs). The local world-ids re-
fer only to the possible worlds within one component. LWIDs
avoid the drawbacks of “global” world IDs for the individual
worlds. This is important, since the size of global world IDs
can exceed the size of the decomposition itself, thus making
it difficult or even impossible to represent the world-sets in
a space-efficient way. If any world-set over a given schema
and a fixed active domain is permitted, one can verify that
global world-ids cannot be smaller than the largest possible
world over the schema and the active domain.

Given a WSD{C1, . . . , Cm} with schemataCi[Ui], we
populate the corresponding UWSD as follows.

– ((R, t, A), s, v) ∈ C iff, for some (unique)i, R.t.A ∈

Ui and the field of columnR.t.A in the tuple with ids
of Ci has valuev.

– F := {((R, t, A), Ci) | 1 ≤ i ≤ m, R.t.A ∈ Ui},
– (Ci, s, p) ∈ W iff there is a tuple with identifiers in Ci,

whose probability isp.

Intuitively, the relationC stores each value from a com-
ponent together with its corresponding field identifier and
the identifier of the component-tuple in the initial WSD (col-
umnLWID of C). The relationF contains the mapping be-
tween tuple fields and component identifiers, andW keeps
track of the worlds present for a given component.

In general, the VAL column in the component relation
C must store values for fields of different type. One pos-
sibility is to store all values as strings and use casts when
required. Alternatively, one could have one component re-
lation for each data type. In both cases the schema remains
fixed.

3 FID really takes three columns, but for readability we keep them
together under a common name in this section.



R0 S N M
t1 ? Smith ?
t2 ? Brown 3

C FID LWID VAL
(R, t1, S) 1 185
(R, t2, S) 1 186
(R, t1, S) 2 785
(R, t2, S) 2 185
(R, t1, S) 3 785
(R, t2, S) 3 186
(R, t1, M) 1 1
(R, t1, M) 2 2

F FID CID
(R, t1, S) C1

(R, t1, M) C2

(R, t2, S) C1

W CID LWID PR
C1 1 0.2
C1 2 0.4
C1 3 0.4
C2 1 0.7
C2 2 0.3

Fig. 8 A UWSDT corresponding to the WSDT of Figure 5.

Finally, we add template relations to UWSDs in com-
plete analogy with WSDTs, thus obtaining the UWSDTs.

Example 6We modify the world-set represented in Figure
4 such that the marital status int2 can only have the value
3. Figure 8 is then the uniform version of the WSDT of Fig-
ure 4. HereR0 contains the values that are the same in all
worlds. For each field that can have more than one possi-
ble value,R0 contains a special placeholder, denoted by ‘?’.
The possible values for the placeholders are defined in the
component tableC. In practice, we can expect that the ma-
jority of the data fields can take only one value across all
worlds, and can be stored in the template relation. 2

Proposition 2 Any finite set of possible worlds can be rep-
resented as a1-UWSD and as a1-UWSDT.

It follows again that UWSD(T)s are a strong representa-
tion system forany relational query language.

Remark 1In theory and as presented in this section, WSDs
can be obtained by decomposing the world-set relation, and
an efficient algorithm for achieving this is described in [9].
However, we consider this infeasible in practice as the num-
ber of possible worlds (which determines the size of the
world-set relation) can be exponential. Instead, we assume
that in practice WSDs will be constructed by starting off
with a “dirty” relation describing the possible values, and
then repairing the database to satisfy given constraints. The
decomposition algorithm will be then used to optimize the
representation. 2

4 Queries on World-set Decompositions

In this section we study the query evaluation problem for
WSDs. As pointed out before, UWSDTs are a better repre-
sentation system than WSDs; nevertheless WSDs are sim-
pler to explain and visualize and the main issues regarding
query evaluation are the same for both systems.

The goal of this section is to provide, for each relational
algebra queryQ, a queryQ̂ such that for a WSDW ,

rep(Q̂(W)) = {Q(A) | A ∈ rep(W)}.

Of course we want to evaluate queries directly on WSDs
usingQ̂ rather than process the individual worlds using the
original queryQ.

The algorithms for processing relational algebra queries
presented next are orthogonal to whether or not the WSD
stores probabilities. According to our semantics, a query is
conceptually evaluated in each world and extends the world
with the result of the query in that world. In Section 6, we
also consider queries that look across worlds and compute
theconfidenceof tuples in query results.

When compared to traditional query evaluation, the eval-
uation of relational queries on WSDs poses new challenges.
First, since decompositions in general consist of several com-
ponents, a querŷQ that maps from one WSD to another
must be expressed as a set of queries, each of which de-
fines a different component of the output WSD. Second, as
certain query operations may cause new dependencies be-
tween components to develop, some components may have
to be merged (i.e., part of the decomposition undone using
the product operation×). Third, the answer to a (sub)query
Q0 must be represented within the same decomposition as
the input relations to correctly represent the correlations be-
tween the input and the result of the subquery; indeed, we
want to compute a decomposition of world set{(A, Q0(A)) |
A ∈ rep(W)} in order to be able to resort to the input rela-
tions as well as the result ofQ0 within each world. Consider
for example a queryσA=1(R) ∪ σB=2(R). If we first com-
puteσA=1(R), we must store it in the same WSD as the
input relation, otherwise the connection between worlds of
R and the selectionσA=1 is lost and we cannot compute
σA=1(R) ∪ σB=2(R) correctly.

We say that a relationP is a copy of another relationR
in a WSD ifR andP have the same tuples in every world
represented by the WSD. For a componentC, an attribute
R.t.Ai of C and a new attributeP.t.B, the functionext ex-
tendsC by a new columnP.t.B that is a copy ofR.t.Ai:

ext(C,Ai, B) := {(A1 : a1, . . . , An : an, B : ai) |

(A1 : a1, . . . , An : an) ∈ C}

Thencopy(R,P ) executesC := ext(C,R.ti.A, P.ti.A) for
each componentC and eachR.ti.A ∈ S(C).

The implementation of some operations requires the com-
position of components. LetC1 andC2 be two components
with schemata(A1, . . . , Ak, P ), and
(B1, . . . , Bl, P ), respectively. Then the composition ofC1



algorithm select[Aθc] // computeP := σAθcR
begin

copy(R, P );
for each 1 ≤ i ≤ |P |max do begin

let C be the component ofP.ti.A;
for each tC ∈ C do

if not (tC .(P.ti.A) θ c) then
tC .(P.ti.A) := ⊥

propagate-⊥(C);
end

end

algorithm select[AθB] // computeP := σAθBR
begin

copy(R, P );
for each 1 ≤ i ≤ |P |max do begin

let C be the component ofP.ti.A;
let C′ be the component ofP.ti.B;
if (C 6= C′) then

replace componentsC, C′ by C := compose(C, C′);
for each tC ∈ C do

if not (tC .(P.ti.A) θ tC .(P.ti.B)) then
tC .(P.ti.A) := ⊥

propagate-⊥(C);
end

end

algorithm product // computeT := R × S
begin

for each 1 ≤ j ≤ |S|max andR.ti.A ∈ S(R) do begin
let C be the component ofR.ti.A;
C := ext(C, R.ti.A, T.tij .A);

end;
for each 1 ≤ i ≤ |R|max andS.tj .A ∈ S(S) do begin

let C′ be the component ofS.tj .A;
C′ := ext(C′, S.tj .A, T.tij .A);

end
end

algorithm union // computeT := R ∪ S
begin

for each 1 ≤ i ≤ |R|max andA ∈ S(R) do begin
let C be the component ofR.ti.A;
C := ext(C, R.ti.A, T.(R.ti).A);

end;
for each 1 ≤ j ≤ |S|max andA ∈ S(S) do begin

let C′ be the component ofS.tj .A;
C′ := ext(C′, S.tj .A, T.(S.tj).A);

end
end

algorithm project[U ] // computeP := πU (R)
begin

copy(R, P );
for each 1 ≤ i ≤ |P |maxdo

while no fixpoint is reacheddo begin
let C be the component ofP.ti.A, whereA ∈ U ;
let C′ 6= C be the component ofP.ti.B, where

B 6∈ U and (∀A′ ∈ U : P.ti.A′ /∈ S(C′)) and
(∃tC′ ∈ C′ : tC′ .B = ⊥);

replace componentsC, C′ by C := compose(C, C′);
propagate-⊥(C);
project awayP.tj .B from C whereB 6∈ U andj ≤ i;

end
for each 1 ≤ i ≤ |P |max andB /∈ U do begin

let C be the component ofP.ti.B;
project awayP.ti.B from C;

end
end

algorithm rename // computeδA→A′ (R)
begin

for each 1 ≤ i ≤ |R|max do begin
let C be the component ofR.ti.A;
C := δR.ti.A→R.ti.A′ (C);

end;
end

algorithm difference // computeP := R − S
begin

copy(R, P );
for each 1 ≤ i ≤ |P |maxdo

for each 1 ≤ j ≤ |S|maxdo
let C1, . . . , Ck be the components for the fields ofP.ti andS.tj ;
replaceC1, . . . , Ck by C := compose(C1, . . . , Ck);
for each tC ∈ C do begin

if tC .(P.ti.A) = tC .(S.tj .A) for all A ∈ S(R) then
tC .(P.ti.A) := ⊥;

end
end

end

Fig. 9 Evaluating relational algebra operations on WSDs.

andC2 is defined as:

compose(C1, C2) :=

{(A1 : a1, . . . , Ak : ak, B1 : b1, . . . , Bl : bl,

P : p1 · p2) |

(A1 : a1, . . . , Ak : ak, P : p1) ∈ C1,

(B1 : b1, . . . , Bl : bl, P : p2) ∈ C2}

In the non-probabilistic case the composition of some
components is simply their relational product. In the proba-
bilistic case, the probability of a tuple in the resulting com-
ponent is the product of the probabilities of the correspond-
ing tuples from the input components.

Figure 9 presents implementations of the relational alge-
bra operations selection (of the formσAθc or σAθB, where



A andB are attributes,c is a constant, andθ is a compari-
son operation,=, 6=, <, ≤, >, or ≥), projection, relational
product and union on WSDs. In each case, the input WSD
is extendedby the result of the operation.

Given a relational algebra queryQ, let Q̂ denote the
query processor on WSDs we obtain by replacing each op-
eration ofQ by its corresponding operation on WSDs.

Theorem 1 (Correctness)LetW be a WSD and letW ′ be
the WSD obtained from̂Q(W) by dropping all relations but
the result relation ofQ̂. Then,

rep(W ′) = {Q(A) | A ∈ rep(W)}.

Proof The proof of correctness of the translation is by in-
duction on the structure of queryQ.
Base case: LetQ = R. Then the result of the query is{RA |

A ∈ rep(W)} = rep(W ′).
Induction step: LetQ = σAθc(Q

′) and suppose

rep(W ′) 6= {Q(A) | A ∈ rep(W)}

Suppose first thatW = {C}, that isW is a 1-WSD. Let
tA ∈ C be a tuple inC that corresponds to a worldA. The
translationQ̂ replaces with⊥ the values for all tuples intA
that do not satisfy the selection condition, and lett′A be the
result of this operation. Thus by definitioninline−1(t′A) =

Q(A) andrep(W) = {Q(A) | A ∈ rep(W)}.
Consider now an m-WSDW = {C1, . . . , Cm} and let

tA = tC1
◦ . . . ◦ tCm

be the tuple for worldA, wheretCi
∈

Ci. Let t ∈ Q′ and lett.A be defined in componentCi. If
tCi
.(t.A)θc, Q̂ leaves the values fort unchanged intCi

, oth-
erwisetCi

.(t.A) is replaced by⊥. But then by our seman-
tics inline−1(tA) does not contain tuplet, astA.(t.A) = ⊥.
Thusinline

−1(tA) contains exactly the tuples inQ(A).
The correctness for the remaining operators follows along

the same lines. 2

Let us now have a closer look at the evaluation of re-
lational algebra operations on WSDs. For this, we use as
running example the set of eight worlds over the relationR
of Figure 10 (a) and its maximal 7-WSD of Figure 10 (b).
The second component (from the left) of the WSD spans
over several tuples and attributes and each of the remaining
six components refer to one tuple and one attribute. The first
tuple of the second component of the WSD of Figure 10 con-
tains the values forR.t1.B, R.t1.C, andR.t2.B, i.e. some
but not all of the attributes of the first and second tuple of
RA, for all worldsA. In our attempt to keep the WSDs read-
able, we consistently show in the following examples only
the WSDs of the result relations.

Selection with conditionAθc. In order to compute a selec-
tion P := σAθc(R), we first compute a copyP of relation
R and subsequently drop tuples ofP that do not match the
selection condition.

Dropping tuples is a fairly subtle operation, since tuples
can spread over several components and a component can
define values for more than one tuple.

Thus a selection must not delete tuples from component
relations, but should mark fields as belonging to deleted tu-
ples using the special value⊥. To evaluateσAθc(R), our
selection algorithm of Figure 9 checks for each tupleti in
the relationP andtC in componentC with attributeP.ti.A
whethertC .(P.ti.A)θc. In the negative case the tupleP.ti
is marked as deleted in all worlds that take values fromtC .
For that,tC .(P.ti.A) is assigned value⊥, and all other at-
tributesP.ti.A′ of C referring to the same tupleti of P are
assigned value⊥ in tC , (cf. the algorithmpropagate-⊥ of
Figure 12). This assures that if we later project away the at-
tributeA of P , we do not erroneously “reintroduce” tuple
P.ti into worlds that take values fromtC .

algorithm propagate-⊥(C: component)
begin

for each tC ∈ C andP.ti.A ∈ S(C) do
if tC .(P.ti.A) = ⊥ then

for each A′ such thatP.ti.A′ ∈ S(C) do
tC .(P.ti.A′) := ⊥;

end

Fig. 12 Propagating⊥-values.

Example 7Figure 11 shows the answers toσC=7(R) and
σB=1(R). Note that the resulting WSDs should contain both
the query answerP and the original relationR, but due
to space limitations we only show the representation ofP .
One can observe that for both results in Figure 11 we obtain
worlds of different sizes. For example the worlds that take
values from the first tuple of the second component relation
in Figure 11 (a) do not have a tuplet1, while the worlds that
take values from the second tuple of that component relation
containt1. 2

Selection with conditionAθB. The main added difficulty
of selections with conditionsAθB as compared to selections
with conditionsAθc is that it creates dependencies between
two attributes of a tuple, which do not necessarily reside in
the same component.

As the current decomposition may not capture exactly
the combinations of values satisfying the join condition, com-
ponents that have values forA andB of the same tuple are
composed. After the composition phase, the selection algo-
rithm follows the pattern of the selection with constant.

Example 8Consider the queryσA=B(R), whereR is rep-
resented by the 7-WSD of Figure 10. Figure 13 shows the
query answer, which is a 4-WSD that represents five worlds,



A B C
1 1 0
4 3 0
6 6 7

A B C
2 1 0
4 3 0
6 6 7

A B C
1 1 0
5 3 0
6 6 7

A B C
2 1 0
5 3 0
6 6 7

A B C
1 2 7
4 4 0
6 6 7

A B C
2 2 7
4 4 0
6 6 7

A B C
1 2 7
5 4 0
6 6 7

A B C
2 2 7
5 4 0
6 6 7

(a) Set of eight worlds of the relationR.

R.t1.A
1
2

×
R.t1.B R.t1.C R.t2.B

1 0 3
2 7 4

×
R.t2.A

4
5

×
R.t2.C

0
×

R.t3.A
6

×
R.t3.B

6
×

R.t3.C
7

(b) 7-WSD of the world-set of (a).

Fig. 10 World-set and its decomposition.

P.t1.A
1
2

×

P.t1.B P.t1.C P.t2.B
⊥ ⊥ 3
2 7 4

×

P.t2.A
4
5

×
P.t2.C
⊥

×
P.t3.A

6
×

P.t3.B
6

×
P.t3.C

7

(a) P := σC=7(R) applied to the WSD of Figure 10.

P.t1.A
1
2

×
P.t1.B P.t1.C P.t2.B

1 0 ⊥
⊥ ⊥ ⊥

×
P.t2.A

4
5

×
P.t2.C

0
×

P.t3.A
6

×
P.t3.B
⊥

×
P.t3.C

7

(b) P := σB=1(R) applied to the WSD of Figure 10.

Fig. 11 SelectionsP := σC=7(R) andP := σB=1(R) with R from Figure 10.

P.t1.A P.t1.B P.t1.C P.t2.A P.t2.B
1 1 0 ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ 4 4
2 2 7 4 4
2 2 7 ⊥ ⊥

×
P.t2.C

0
×

P.t3.A P.t3.B
6 6

×
P.t3.C

7

Fig. 13 P = σA=B(R) with R from Figure 10.

R.t1.A
1
2

×

R.t1.B R.t2.A
3 5
4 6

×

R.t2.B
7
8

×

S.t1.C
a
b

×

S.t1.D S.t2.C
c e
d f

×

S.t2.D
g
h

(a) WSD of two relationsR andS.

t11.A t12.A
1 1
2 2

×

t11.B t12.B t21.A t22.A
3 3 5 5
4 4 6 6

×

t21.B t22.B
7 7
8 8

×

t11.C t21.C
a a
b b

×

t11.D t21.D t12.C t22.C
c c e e
d d f f

×

t12.D t22.D
g g
h h

(b) WSD of their productR × S.

Fig. 14 The product operationR × S.

where one world has three tuples, three worlds have two tu-
ples each, and one world has one tuple. 2

Product. The productT := R × S of two relationsR and
S, which have disjunct attribute sets and are represented by
a WSD requires that the product relationT extends a com-
ponentC with |S|max (respectively|R|max) copies of each
column ofC with values ofR (respectivelyS). Addition-
ally, the ith (jth) copy is namedT.tij .A if the original has
nameR.ti.A or S.tj .A.

Example 9Figure 14 (b) shows the WSD for the product of
relationsR andS represented by the WSD of Figure 14 (a).
To save space, the relationsR andS have been removed
from Figure 14 (b), and attribute names do not show the re-
lation name “T ”. 2

Projection. A projectionP = πU (R) on an attribute set
U of a relationR represented by the WSDC is translated
into (1) the extension ofC with the copyP of R, and (2)
projections on the components ofC, where all component at-
tributes that do not refer to attributes ofP inU are discarded.
Before removing attributes, however, we need to propagate
⊥-values, as discussed in the following example.

Example 10Consider the 3-WSD of Figure 15 (a) repre-
senting a set of two worlds forR, where one world contains
only the tuplet1 and the other contains only the tuplet2. Let
P ′ represent the first two components ofR, which contain
all values for the attributeA in both tuples. The relationP ′ is
not the answer toπA(R), because it encodes one world with
both tuples, and the information from the third component
of R that only one tuple appears in each world is lost. To



compute the correct answer, we progressively (1) compose
the components referring to the same tuple (in this case all
three components), (2) propagate⊥-values within the same
tuple, and (3) project away the irrelevant attributes. The cor-
rect answerP is given in Figure 15 (b). 2

R.t1.A
a

×
R.t2.A

b
×

R.t1.B R.t2.B
c ⊥
⊥ d

P.t1.A P.t2.A
a ⊥
⊥ b

(a) WSD for R. (b) WSD for P.

Fig. 15 ProjectionP := πA(R).

The algorithm for projection is given in Figure 9. For
each tupleti, attributeA in the projection list, and attribute
B not in the projection list, the algorithm first propagates
the⊥-values ofP.ti.B of componentC′ to P.ti.A of com-
ponentC. If C andC′ are the same, the propagation is
done locally within the component. Otherwise,C andC′

are merged before the propagation. Note that the propaga-
tion is only needed if some tuples ofC′ have at⊥-value
for ti.B. This procedure is performed until no other compo-
nentsC andC′ exist that satisfy the above criteria. After the
propagation phase, the attributes not in the projection list are
dropped from all remaining components.
Union. The algorithm for computing the unionT := R ∪

S of two relationsR andS works similarly to that for the
product. Each componentC containing values ofR or S is
extended such that in each world ofC all values ofR andS
become also values ofT .
Renaming. The operationδA→A′(R) renames attributeA
of relationR to A′ by renaming all attributesR.t.A in a
componentC toR.t.A′.
Difference. To compute the difference operationP := R−

S we scan and compose components of the two relations
R andS. For the worlds where a tuplet from R matches
some tuple fromS, we place⊥-values to denote thatt is
not in these worlds ofP ; otherwiset becomes a tuple of
P . The difference is by far the least efficient operation to
implement not only on WSDs, where it can lead to the com-
position of all components, but also on the other succinct
representation systems. However, if we want to close the
possible world semantics and compute the confidence of tu-
ples in the answer to a difference query, we can often avoid
computing the representation of the result. [22] makes the
observation that computing the confidence of tuples in the
answer to a difference can be done by computing confidence
of the negated positive query which in turn can be efficiently
approximated. This is a special case of computing the con-
ditional probabilityP (φ | ψ) of a positive queryφ given a
universal constraintψ. The formulaψ can express for ex-
ample a functional dependency, or another type of equality-

generating dependency. The answer to the original query can
be obtained by

P (φ | ψ) = P (φ)P (φ ∧ ψ) = P (φ) (P (φ) − P (φ ∧ ¬ψ))

where¬ψ is existential.
Discussion. The operators selection, product and union can
be implemented in polynomial time on WSDs. The imple-
mentation of the join selection, projection and difference
can require the composition of components and can poten-
tially lead to an exponential blow-up in the representation.
Composing components in the projection operation can be
avoided by introducing an additional “exists” column to re-
place columns with⊥-values that are projected away. With
this addition, the projection can also be implemented in poly-
nomial time. As for join and difference, the exponential blow-
up can be avoided by encoding correlations in a more inten-
sional way than the one offered by WSDs. This is the case
of U-relations [5], for instance, which generalize WSDs.

Remark 2The evaluation of relational algebra queries does
not depend on the probabilities of the worlds, since it is con-
ceptually performed in each possible world. Evaluating pro-
jection and join selection modifies the WSD by composing
components; in that case we recompute the probabilities of
the tuples in the new component. With the exception of those
two operators, all other (positive) relational algebra opera-
tors do not need access to the probabilities stored with the
data. The confidence computation operator presented in Sec-
tion 6 makes use of the probability information. 2

5 Efficient Query Evaluation on UWSDTs

The algorithms for computing the relational operations on
WSDs presented in Section 4 can be easily adapted to UWS-
DTs. To do this, we follow closely the mapping of WSDs,
represented as sets of componentsC, to equivalent UWS-
DTs, represented by a triple (F ,C,W ) and at least one tem-
plate relationR0:

– Consider a componentK of WSDC having an attribute
R.t.A with a valuev. In the equivalent UWSDT, this
value can be stored in the template relationR0 if v is the
only value ofR.t.A, or in the componentC otherwise. In
the latter case, the templateR0 contains the placeholder
R.t.A in the tuplet. In addition, in the mapping relation
F there is an entry with the placeholderR.t.A and a
component identifierc, andC contains a tuple formed
byR.t.A, the valuev and a world identifierw.

– Worlds of different sizes are represented in WSDs by
allowing⊥ values in components, and in UWSDTs by
allowing for a same placeholder different amount of val-
ues in different worlds.



Any relational query is rewritten in our framework to
a sequence of SQL queries, except for the projection and
selection with join conditions, where the fixpoint compu-
tations are encoded as recursive PL/SQL programs. In all
cases, the size of the rewriting is linear in the size of the
input query. For the operators that require pure SQL only
this essentially means that the complexity of querying is pre-
served and remains polynomial. Figure 16 shows the imple-
mentation of the selection with constant on UWSDTs.

algorithm select[Aθc] // computeP := σAθcR
begin

1. P 0 := σAθc∨A=?R
0;

2. F := F ∪ {(P.t.B, k) | (R.t.B, k) ∈ F, t ∈ P 0};
3. C := C ∪ {(P.t.B, w, v) | (R.t.B, w, v) ∈ C, t ∈ P 0,

(B = A ⇒ vθc)};
// Remove incomplete world tuples
4. C := C − {(P.t.X, w, v) ∈ C | (P.t.X, k), (P.t.Y, k) ∈ F,

t ∈ P 0, X 6= Y, 6 ∃v′ : (P.t.Y, w, v′) ∈ C};
5. F := F − {(P.t.B, k) | (P.t.B, k) ∈ F ,

6 ∃w, v : (P.t.B, w, v) ∈ C};
6. P 0 := P 0 − {t | t ∈ P 0, 6 ∃B, a : (P.t.B, a) ∈ F};

end

Fig. 16 EvaluatingP := σAθc(R) on UWSDTs.

In contrast to some algorithms of Figure 9, for UWSDTs
we do not create a copyP of R at the beginning, but rather
compute directlyP fromR using standard relational algebra
operators. The templateP 0 is initially the set of tuples ofR0

that satisfy the selection condition, or have a placeholder‘?’
for the attributeA (line 1). We extend the mapping relation
F with the placeholders ofP 0 (line 2), and the component
relationC with the values of these placeholders, where the
values of placeholdersP.t.A for the attributeA must satisfy
the selection condition (line 3). If a placeholderP.t.A has
no value satisfying the selection condition, thent is removed
fromP 0 (line 6) and all placeholders oft are removed from
F (line 5) together with their values fromC (line 4).

Many of the standard query optimization techniques are
also applicable in our context. For our experiments reported
in Section 9, we performed the following optimizations on
the sequences of SQL statements obtained as rewritings. For
the evaluation of a query involving join, we merge the prod-
uct and the selections with join conditions and distribute
projections and selections to the operands. When evaluat-
ing a query involving several selections and projections on
the same relation, we again merge these operators and per-
form the steps of the algorithm of Figure 16 only once. We
further tuned the query evaluation by employing indices and
materializing often used temporary results.

6 Confidence Computation in Probabilistic WSDs

Section 4 discusses query evaluation algorithms for rela-
tional algebra on top of WSDs. Since we consider queries
that are semantically evaluated within each world, these al-
gorithms do not need to explicitly take into account proba-
bility distributions over the possible worlds.

In this section, we also consider queries that look across
worlds and compute confidence of tuples. Theconfidenceof
a tuplet in the result of a queryQ is defined as the sum of
the probabilities of the worlds that containt in the answer
toQ. Clearly, iterating over all possible worlds is infeasible.
We therefore adopt an approach where we only iterate over
the local worlds of the relevant components.

// computec := conf(t)
algorithm conf (tuplet over schema(A1, . . . , Am))
begin

let t1, . . . , tn be the ids of tuples defined by input WSDW ;
// Keep only columns and rows of components ofW
// that define possible fields oft
for each Ci ∈ W do C′

i := πλi
(σφi

(Ci)) where
λi := S(Ci) ∩ {tl.Aj | 1 ≤ l ≤ n, 1 ≤ j ≤ m} and
φi :=

W

tl.Aj∈λi

(tl.Aj = t.Aj);

compute equivalent tuple-level WSDW ′ of the above set ofC′
i;

(i.e., compose components defining fields of the same tuple)

c := 0; // initially, confidence oft is 0
for each C ∈ W ′ do
begin

confC := 0; // probability thatC defines tuples that equalt
for each tC ∈ C do

if t = (tC .(ti.A1), . . . , tC .(ti.Am)) for someti
then confC := confC + tC .P ;

// matches inC are independent from those in other components
c := 1 − (1 − c) · (1 − confC);

end
end

Fig. 17 Computing confidence of possible tuples.

Figure 17 gives our confidence computation algorithm
for a tuplet over schema(A1, . . . , Am). It first computes a
pruned version of the input WSD, where we keep for each
component only columns that define fields for attributes
tl.A1, . . . , tl.Am of any tuple idtl, and only rows that define
fields, whose values equal the corresponding ones int.

Next, a tuple-level representation of the pruned WSD is
computed. This representation enforces that all fields of any
tuple encoded by the WSD are defined in the same compo-
nent. Confidence computation can be performed efficiently
on tuple-level WSDs. This tuple-level normalization can how-
ever lead to a exponential blowup in the representation size.
This is necessary, since special cases of confidence compu-
tation, such as deciding whether the tuplet is certain, i.e., it
occurs in all worlds represented by a WSD, are known to be
NP-hard [9].



Confidence computation on tuple-level WSDs is based
on the observation that worlds containingt correspond to
local worlds from a componentC where some tuples equal
t. Since the local worlds of a component define non-overlap-
ping sets of worlds, to compute the probability that a com-
ponentC defines tuples that equalt, we only need to sum
up the probabilities of the local worlds ofC that definet.
Furthermore, since any two components of a WSD are inde-
pendent of each other, the events defining that a given com-
ponent defines tuples that equalt are pairwise independent.

We next consider the operator possible that computes the
tuples appearing in at least one world of the world-set. For-
mally, for a relation nameR and a world-setA, the operator
possible is defined as:

possible(R)(A) := {t | A ∈ A, t ∈ RA}

// computeP := possible(R)

algorithm possible (relationR over schema(A1, . . . , Am))
begin

let t1, . . . , tn be the ids of tuples inR defined by input WSDW ;
// Keep only columns of components of the input WSDW
// that define possible tuples inR
for each Ci ∈ W do C′

i := πλi
(Ci) where

λi := S(Ci)∩{R.t.A | t ∈ {t1, . . . , tn}, A ∈ {A1, . . . , Am}}

compute equivalent tuple-level WSDW ′ of the above set ofC′
i;

(i.e., compose components defining fields of the same tuple)

P := ∅; // initially, no tuple is possible
for each tuple idt ∈ {t1, . . . , tn} do

for eachC ∈ W ′ do
addπR.t.A1,...,R.t.Am

(σV

1≤j≤m R.t.Aj 6=⊥(C)) to P ;
end

Fig. 18 Computing possible tuples.

Figure 18 gives an algorithm for computing the set of
possible tuples of a relationR in the non-probabilistic case.
The algorithm first discards all columns of components in
the input WSD that do not define possible fields for tuples
of R. It then computes an equivalent tuple-level WSD rep-
resentation of the set of components of the previous step. As
for confidence computation, this tuple-level normalization
can lead to an exponential blowup. Also here, this is un-
avoidable, since a WSD can represent exponentially many
possible tuples (similar to or-sets). In case the input WSD
is already tuple-level, it then encodes polynomially many
possible tuples and our algorithm would only need polyno-
mially many computation steps.

In the probabilistic case, the operator possible can be ex-
tended to also compute the confidence of the possible tuples,
see Figure 19. Confidences of tuples in query results can
then be computed in two steps: First computing the query
result, and then computing the possible tuples and their con-
fidences.

// computeP := possiblep(R)
algorithm possiblep

begin
P := ∅;
for each distinctt in possible(R) do

add(t, conf(t)) to P ;
end

Fig. 19 Computing possible tuples together with their confidences.

Example 11Consider the probabilistic WSD of Figure 4,
queryQ = πS(R), and tuplet = (185). LetC1 denote the
first component. This component represents the answer to
the projection query. There are two tuple ids whose values
match the given tuplet, and they are already defined in the
same componentC1. To compute the confidence oft we
therefore need to sum up the probabilities of the first and
second local world, obtaining0.2+0.4 = 0.6. The following
table contains the possible tuples in the answer toQ together
with their confidences:

Q S conf
185 0.6
186 0.6
785 0.8

2

7 Normalizing probabilistic WSDs

The normalization of a WSD is the process of finding an
equivalent probabilistic WSD that takes the least space among
all its equivalents. Examples of not normalized WSDs are
non-maximal WSDs (with respect to product decomposi-
tion) or WSDs defining invalid tuples (i.e., tuples that do not
appear in any world). Note that removing invalid tuples and
maximizing world-set decompositions can be performed in
polynomial time [9].

Figure 20 gives three algorithms that address these nor-
malization problems. The second algorithm decomposes a
component into a set of components whose product is equal
to the original component. A polynomial-time algorithm for
finding the prime factorization of a relation, i.e. for maxi-
mally decomposing a relation is presented in [9]. The third
algorithm scans for identical tuples in a component and com-
presses them into one by summing up their probabilities.

Example 12The WSD of Figure 11 (a) has only⊥-values
for P.t2.C. This means that the tuplet2 of P is absent (or
invalid) in all worlds and can be removed. The equivalent
WSD of Figure 21 shows the result of this operation. Similar
simplifications apply to the WSD of Figure 11 (b), where
tuplest2 andt3 are invalid. 2



algorithm removeinvalid tuples
begin

for each 1 ≤ i ≤ |P |max andA ∈ S(P ) do begin
let C be the component ofP.ti.A;
if πP.ti.A = {⊥} then

for each B ∈ S(P ) do begin
let C′ be the component ofP.ti.B;
project awayP.ti.B from C′;

end
end

end

algorithm decompose
begin

while no fixpoint is reacheddo begin
let C be a component such that

C = C1 × . . . × Cn;
replaceC by C1, . . . , Cn;

end
end

algorithm compress
begin

while no fixpoint is reacheddo begin
let C be a component,w1, w2 ∈ C such that

w1.A = w2.A for all A ∈ S(C), A 6= P ;
let w be a tuple such thatw.P := w1.P + w2.P ,

w.A := w1.A for all A ∈ S(C), A 6= P ;
replacew1, w2 in C by w;

end
end

Fig. 20 Algorithms for WSD normalization.

P.t1.A
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×
P.t1.B P.t1.C
⊥ ⊥
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×
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6
×

P.t3.B
6

×
P.t3.C

7

Fig. 21 Normalization of WSD of Figure 11 (a).

Example 13The 4-WSD of Figure 13 admits the equiva-
lent 5-WSD, where the third component is decomposed into
two components. This non-maximality case cannot appear
for UWSDTs, because all but the first component contain
only one tuple and are stored in the template relation, where
no component merging occurs. 2

8 Chasing Dependencies

In this section we address the problem of removing incon-
sistent worlds from a probabilistic database. We present a
method calledChase[3,24,2] in the spirit of the work of
[18] for data cleaning on a world-set decomposition of a re-
lationR, given a set of dependenciesΦ.

We consider the following types of dependencies over a
relationR:

– functional dependenciesdenoted by

A1, . . . , Am → A0, where Ai ∈ sch(R), 0 ≤ i ≤ m

– single-tuple equality-generatingdependenciesof the form

φ1 ∧ φ2 ∧ ... ∧ φm ⇒ φ0

where eachφi(Ai) = Aiθici, 0 ≤ i ≤ m is a binary op-
eration comparing the value of an attributeAi ∈ sch(R)

with a constantci. RelationR satisfies a single-tuple
equality-generating dependency4 egd (denoted byR |=
egd) if for each tuplet ∈ R

t.A1 θ1 c1 ∧ . . . ∧ t.Am θk cm ⇒ t.A0 θ0 c0

To remove worlds inconsistent with an integrity con-
straints from a set of possible worlds represented as a WSD
we need to exclude combinations of values from the com-
ponents that cause the constraint to be violated. For that
we may need to compose components to be able to enforce
the dependencies. Recall Example 2 from the introduction.
The uniqueness constraint for the social security number is
a functional dependencyS → N,M , equivalent to the two
functional dependenciesS → N andS → M . To enforce
this constraint we combined the twoS fields (t1.S andt2.S)
in the same component and removed the worlds in which
both have the same value (see Figure 4).

Assume now that from a reliable source we have the in-
formation that the person with social security number 785
is married. The current decomposition allows invalid com-
binations of values: those worlds in whicht1.S = 785 and
t1.M 6= 1 (1 is the code for married). To remove incon-
sistencies, we must compose the first and the third compo-
nents and remove from the new component all tuples that do
not satisfy the given dependency. When removing tuples of
a component we must also renormalize the probabilities of
the remaining tuples so that they sum up to one again. This
is easily done in the following way: if a tuple with proba-
bility x is removed from a component, andy is the original
probability of a tuple that remains, then the new probability
y′ of the second tuple is recomputed asy′ = y/(1 − x). In
our example, as a result of the data-cleaning step we obtain
the 4-WSD in Figure 22.

Enforcing a dependency on a WSD resembles the selec-
tion operation with conditionAθB presented in Chapter 4.
In both cases we identify dependencies across components
and compose dependent components. Nevertheless there is
an important difference between the two operations. In the
selection operation we are interested in finding, for each
world, the subset of tuplesvalid in it. On the other hand,
when enforcing dependencies on a WSD, we want to getthe
maximal subset of the possible worldssuch that the depen-
dencies hold forall tuples. If a tuple has no valid values in
any of the worlds, this automatically means that the database
is inconsistent with respect to the given set of dependencies.

4 Subsequently, whenever we refer to edgs, we mean single-tuple
edgs.



t1.S t2.S t1.M P
185 186 1 0.1842
185 186 2 0.0790
785 185 1 0.3684
785 186 1 0.3684

×
t1.N P

Smith 1
×

t2.N P
Brown 1

×

t2.M P
1 0.25
2 0.25
3 0.25
4 0.25

Fig. 22 Result of chasingS = 785 ⇒ M = 1 on the WSD in Figure 4.

As seen in the previous examples, cleaning inconsistent
worlds involves two basic steps: (1) composing dependent
components into one and (2) removing inconsistent tuples
from the resulting component, and normalizing the probabil-
ities of the remaining tuples so that they sum up to one. Ex-
ecuting these two steps for each dependency and each (pair
of) tuple(s) in the input WSD results in a WSD satisfying all
constraints.

Before proceeding to the formal algorithm for chasing
dependencies, we introduce the following notations.
If fd = A1, . . . , Am → A0 is a functional dependency for
relationR, s, t are tuples ids inR and all attributess.Ai,
t.Ai with 0 ≤ i ≤ m are defined in a componentC, and
tC is a tuple ofC, we will usetC |= fd(s, t) to express the
condition that the dependencyfd is satisfied fors andt in
the worldstC :

tC |= fd(s, t) ⇔
∧

i

(tC .(s.Ai) = tC .(t.Ai)) ⇒ tC .(s.A0) = tC .(t.A0)

Similarly, if t is a tuple id for relationR,

egd = A1 θ1 c1 ∧ ... ∧Am θm cm ⇒ A0 θ0 c0

is an equality-generating dependency overR and all attributes
t.Ai, 0 ≤ i ≤ m are defined in a componentC, andtC is a
tuple ofC, tC |= egd(t) is true if and only if the dependency
egd is satisfied fort in the worldstC :

tC |= egd(t) ⇔
∧

i

(tC .(t.Ai) θi ci) ⇒ tC .(t.A0) θ0 c0

The algorithm of Figure 24 implements the data clean-
ing for a given world-set decomposition and a set of depen-
denciesΦ. Note that as opposed to the traditional chase on
tableaux ([24]), here we do not need a fixpoint computa-
tion but a single pass over all dependencies and tuples in
the WSD. The reason for this is that enforcing a functional
or equality-generating dependency on a WSD cannot induce
further inconsistencies in the data.

We can further refine the data cleaning rules and avoid
redundant operations if we make the following observations.
For a functional dependency

fd = A1, . . . , Am → A0

and tupless andt, if for an attributeAi, 1 ≤ i ≤ m it holds
that s.Ai = t.Ai in all worlds, we do not need to join the
components definings.Ai andt.Ai. Alternatively, if in all

worldss.A0 6= t.A0, we can leave the components fors.A0

and t.A0 unmerged. The same idea can be applied for an
equality-generating dependency

egd = A1 θ1 c1 ∧ ... ∧Am θm cm ⇒ A0 θ0 c0

tuples and an attributeAi, 1 ≤ i ≤ m, such thatφi(t.Ai) =

true in all worlds, orφ0(t.A0) is alwaysfalse, we do not
need to compose the corresponding component.

The chase procedure is not affected by the order in which
dependencies are chased, as it always produces the set of
possible worlds consistent with the given dependencies. How-
ever, order may have an impact on the size of the resulting
decomposition. This means that the world-set decomposi-
tion produced by the Chase algorithm may be non-maximal,
which was also the case with querying. Consider for exam-
ple the WSD in Figure 23 (a) and the set of two dependen-
cies

D = {d1 = (B → C), d2 = (A = 1 ⇒ B 6= 2)}

Chasingd1 = B → C requires the compositions of the
components fort1.B, t2.B, t1.C andt2.C to remove the worlds
in which t1.B = t2.B andt1.C 6= t2.C (see Figure 23 (c)),
and enforcingd2 deletes tuples from the resulting compo-
nent (see Figure 23 (d)). However, if we start withd2, in
the resulting WSDd1 will also be satisfied and no merg-
ing of components will be necessary (Figure 23 (e)). Note
that although the two world-set decompositions are differ-
ent, they are equivalent with respect to the set of possible
worlds they represent. Indeed, the WSD in Figure 23 (d) can
be reduced to the one in Figure 23 (e) using the normaliza-
tion techniques from Section 7.

As in the case of querying, the chase might need to merge
an arbitrary number of components. However, if constraints
are local and do not span over numerous tuples, the chase
will also behave nicely.

The following theorems prove the correctness of the Chase
algorithm.

Theorem 2 The algorithm of Figure 24 terminates on all
inputs.

Theorem 3 (Correctness)For a WSDW and a set of de-
pendenciesΦ, the algorithm of Figure 24 exits with an error
message if no world is consistent with the given set of depen-
dencies, or computes a WSDW ′ s.t. rep(W ′) ⊆ rep(W)

and for eachA ∈ rep(W):

A ∈ rep(W ′) ⇔ A � Φ.



t1.A P
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t1.B P
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D = {d1 = (B → C), d2 = (A = 1 ⇒ B 6= 2)}

(a) World-set decomposition (b) Set of dependencies
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t1.B t2.B t1.C t2.C P
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1 1

×
t2.A P

2 1
×

t1.B t2.B t1.C t2.C P
1 2 5 5 0.25
1 2 5 6 0.25
1 3 5 5 0.25
1 3 5 6 0.25

(c) Result of chasingd1 on the WSD of (a) (d) Result of chasingd2 on the WSD of (c)
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(e) Result of chasingd2 befored1

Fig. 23 Impact of order on chasing.

// chase a set of dependenciesΦ
algorithm chase
begin

for each d for relationR in Φ do
if d = A1, . . . , Am → A0 then // d is a fd

for each s, t ∈ R : {s, t} 2 d in some worlddo begin
let Cji

, Cki
be the component ofs.Ai, t.Ai,

respectively, for each0 ≤ i ≤ m;
replaceCj0 , . . . , Cjm , Ck0

, . . . , Ckm
in W

by their productC;
for each tC ∈ C do

if tC 2 d(s, t) then
removetC from C;
for each t′

C
∈ C do

// normalize probabilities
t′
C

.P = t′
C

.P/(1 − tC .P );
end if

if C = ∅ then error(”World-set is inconsistent”);
end

else ifd = φ1 ∧ . . . ∧ φm → φ0 // d is an egd
for each t ∈ R : {t} 2 d in some worlddo begin

let Ci be the component oft.Ai, for 0 ≤ i ≤ m;
replaceC0, . . . , Cm in W by their productC;
for each tC ∈ C do

if tC 2 d(t) then
removetC from C;
for each t′C ∈ C do

// normalize probabilities
t′C .P = t′C .P/(1 − tC .P );

end if
if C = ∅ then error(”World-set is inconsistent.”);

end;
end.

Fig. 24 Algorithm for chasing integrity constraints on probabilistic
WSDs.

9 Experimental Evaluation

The literature knows a number of approaches to representing
incomplete information databases, but little work has been
done so far on expressive yet efficient representation sys-
tems. An ideal representation system would allow a large set
of possible worlds to be managed using only a small over-
head in storage space and query processing time when com-
pared to a single world represented in a conventional way.
In the previous sections we presented the first step towards
this goal. This section reports on experiments with a large
census database with noise represented as a UWSDT, where
the focus is on representation sizes and processing times for
relational algebra queries on world-set decompositions. We
do not investigate here the confidence computation aspect
of query processing. Followup work of the authors [23] re-
ports on experiments using scalable confidence computation
techniques.

Setting. The experiments were conducted on a Dual Intel
Xeon 5335 processor machine5 with 32 GB RAM, running
Red Hat Enterprise Linux 4 (Linux Kernel 2.6.18) and Post-
greSQL 8.3 configured to use 256MB as buffer.

Datasets. The IPUMS 5% census data (Integrated Public
Use Microdata Series, 1990) [27] used for the experiments is
the publicly available 5% extract from the 1990 US census,
consisting of 50 (exclusively) multiple-choice questions. It
is a relation with 50 attributes and 12491667 tuples (approx.
12.5 million). The size of this relation stored in PostgreSQL
is ca. 3 GB. We also used excerpts representing the first 0.1,
0.5, 0.75, 1, 5, 7.5, and 10 million tuples.

5 The processor has 8 cores running at 2.0 Ghz. The experiments
were run on a single core.



Adding Incompleteness. We added incompleteness as fol-
lows. First, we generated a large set of possible worlds by
introducing noise. After that, we cleaned the data by remov-
ing worlds inconsistent with respect to a given set of depen-
dencies. Both steps are detailed next.

We introduced noise by replacing some values with or-
sets6. We experimented with different noise ratios: 0.005%,
0.01%, 0.05%, 0.1%. For example, in the 0.1% scenario one
in 1000 fields is replaced by an or-set. The size of each or-set
was randomly chosen in the range[2,min(8, size)], where
size is the size of the domain of the respective attribute (with
a measured average of 3.5 values per or-set). In one scenario
we had far more than2624449 worlds, where 624449 is the
number of the introduced or-sets and 2 is the minimal size
of each or-set (cf. Figure 27).

We then performed data cleaning using 12 equality gen-
erating dependencies, representing real-life constraints on
the census data, shown in Figure 25. These represent real-
life constraints on the census data. The first one for example
says that citizens born in the USA are not immigrants, and
the second one requires that citizens who served in the sec-
ond world war have done their military service. Note that
or-set relations are not expressive enough to represent the
cleaned data with dependencies.

To remove inconsistent worlds with respect to given de-
pendencies, we apply the chase algorithm from Section 8,
see also [6]. The chase is implemented in Java as a layer on
top of PostgreSQL. Figure 26 shows a log-log scale of the
times obtained for chasing the 12 dependencies on datasets
with different sizes and uncertainty ratios.

1 CITIZEN = 0 ⇒ IMMIGR = 0
2 FEB55 = 1 ⇒ MILITARY ! = 4
3 KOREAN = 1 ⇒ MILITARY ! = 4
4 VIETNAM = 1 ⇒ MILITARY ! = 4
2 WWII = 1 ⇒ MILITARY ! = 4
6 MARITAL = 0 ⇒ RSPOUSE ! = 6
7 MARITAL = 0 ⇒ RSPOUSE ! = 5
8 LANG1 = 2 ⇒ ENGLISH ! = 4
9 RPOB = 52 ⇒ CITIZEN ! = 0

10 SCHOOL = 0 ⇒ KOREAN ! = 1
11 SCHOOL = 0 ⇒ FEB55 ! = 1
12 SCHOOL = 0 ⇒ WWII ! = 1

Fig. 25 Example dependencies for cleaning census data.

Figure 27 shows the effect of chasing our dependencies
on the 12.5 million tuples and varying placeholder density.
As a result of merging components, the number of com-
ponents with more than one placeholder (#comp>1) grows
linearly with the increase of placeholder density, reaching
about 1.7% of the total number of components (#comp) in

6 We consider it infeasible to iterate over all worlds in secondary
storage or to compute UWSDT decompositions by comparing the
worlds.
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Fig. 26 Time for chasing the dependencies of Figure 25 on UWSDTs
of various sizes and densities.

Density 0.005% 0.01% 0.05% 0.1%
Initial #comp 31095 62517 312699 624311
After #comp 30820 61945 309788 618466
chase #comp>1 268 547 2805 5612

|C| 105150 211770 1061212 2117219
|R| 12.5M 12.5M 12.5M 12.5M

After #comp 674 1503 7333 14251
Q1 #comp>1 4 7 51 76

|C| 1773 4017 19225 37661
|R| 46608 46827 48460 50466

After #comp 21 46 256 459
Q2 #comp>1 0 1 4 16

|C| 92 245 1221 2361
|R| 82996 83029 83275 83616

After #comp 61 113 492 961
Q3 #comp>1 0 0 0 0

|C| 136 244 1075 2023
|R| 17951 18019 18456 19054

After #comp 1568 3150 15523 31379
Q4 #comp>1 15 22 141 322

|C| 4870 9117 46715 94747
|R| 402349 402541 404031 405830

After #comp 16 36 175 266
Q5 #comp>1 16 36 175 266

|C| 24451 40552 279295 561545
|R| 158519 188790 378849 584207

After #comp 94 193 950 1877
Q6 #comp>1 0 0 0 0

|C| 519 1077 5303 10304
|R| 229592 230102 234195 239621

Fig. 27 UWSDTs characteristics for 12.5M tuples.

Size Density size 1 size 2 size 3 size 4 and more
5M 0.005% 12409 105 5 0
5M 0.01% 24454 213 7 0
5M 0.05% 122652 1065 38 2
5M 0.1% 245561 2142 93 1
10M 0.005% 24310 200 6 0
10M 0.01% 48943 430 16 1
10M 0.05% 245373 2164 83 0
10M 0.01% 497618 884 0 0
12.5M 0.005% 30552 261 7 0
12.5M 0.01% 61398 522 25 0
12.5M 0.05% 306983 2703 98 4
12.5M 0.1% 612854 5384 223 5

Fig. 28 Distribution of component size (number of placeholders per
component) of the chased relations for different sizes and densities.



Q1 := σYEARSCH=17∧CITIZEN=0(R)

Q2 := πPOWSTATE,CITIZEN,IMMIGR(σCITIZEN<>0∧ENGLISH>3(R))

Q3 := πPOWSTATE,MARITAL,FERTIL(σPOWSTATE=POB

(σFERTIL>4∧MARITAL=1(R)))

Q4 := σFERTIL=1∧(RSPOUSE=1∨RSPOUSE=2)(R)

Q5 := δPOWSTATE→P1
(σPOWSTATE>50(Q2)) ⊲⊳P1=P2

δPOWSTATE→P2
(σPOWSTATE>50(Q3))

Q6 := πPOWSTATE,POB(σENGLISH=3(R))

Fig. 29 Queries on IPUMS census data.

the 0.1% case. A linear increase is witnessed also by the
chasing time when the number of tuples is also varied. Fig-
ure 28 breaks down the distribution of component size, that
is the number of placeholders per component for some of
our scenarios. One can see that the number of components
with larger size drops down very quickly and most fields
remain independent. Since we used an anonymized version
of the census dataset, we did not perform the chase with
key dependencies like the ones described in Section 1. Note
that when chasing dependencies we only need to compose
components if the possible values for the fields allow for a
constraint to be violated, that is, if there is an invalid combi-
nation of values for the respective fields. Thus while chasing
key constraints can in theory require the composition of all
components for a given attribute, this is unlikely to happen
in practice as it will require the existence of a chain of pairs
of uncertain key fields that share at least one value.

Queries. Six queries were chosen to show the behavior of
relational operators combinations under varying selectivities
(cf. Figure 29). QueryQ1 returns the entries of US citizens
with PhD degree. The less selective queryQ2 returns the
place of birth of US citizens born outside the US that do not
speak English well. QueryQ3 retrieves the entries of wid-
ows that have more than three children and live in the state
where they were born. The very unselective queryQ4 re-
turns all married persons having no children. QueryQ5 uses
queryQ2 andQ3 to find all possible couples of widows with
many children and foreigners with limited English language
proficiency in US states with IPUMS index greater than 50
(i.e., eight ‘states’, e.g., Washington, Wisconsin, Abroad).
Finally, queryQ6 retrieves the places of birth and work of
persons speaking English well.

Figure 27 describes some characteristics of the answers
to these queries when applied on the cleaned 12.5M tuples of
IPUMS data: the total number of components (#comp) and
of components with more than one placeholder (#comp>1),
the size of the component relationC, and the size of the tem-
plate relationR. One can observe that the number of com-
ponents increases linearly with the placeholder density and

that compared to chasing, query evaluation leads to a much
smaller amount of component merging.

Figure 30 shows that all six queries admit efficient and
scalable evaluation on UWSDTs of different sizes and place-
holder densities. The Figure plots on a log-log scale the eval-
uation time versus the size of the relation, and each line cor-
responds to a different noise density. The evaluation time
for all queries butQ5 on UWSDTs follows very closely the
evaluation time in the one-world case. The one-world case
corresponds to density 0% in our diagrams, i.e., when no
placeholders are created in the template relation and conse-
quently there are no components. In this case, the original
queries (that is, not the rewritten ones) of Figure 29 were
evaluated only on the (complete) template relation.

Although the evaluation of join conditions on UWSDTs
can require exponential time (due to the composition of arbi-
trarily many components), our experiments suggest that they
behave well in practical cases, as illustrated in Figures 30(c)
and (e) for queriesQ3 andQ5 respectively. The time re-
ported forQ5 does not include the time to evaluate its sub-
queriesQ2 andQ3. In our largest scenarios (12.5M tuples
and varying densities of uncertainty), the time to evaluate
queryQ5 increases non-linearly, partly due to the change of
query plans used by PostgreSQL and triggered by the in-
crease in the input data size.

In summary, our experiments show that UWSDTs be-
have very well in practical cases. We found that the size of
UWSDTs obtained as query answers remains close to that
of one of their worlds. Furthermore, the processing time for
queries on UWSDTs is comparable to processing one world.
The explanation for this is that in practice there are rather
few differences between the worlds. This keeps the mapping
and component relations relatively small and the lion’s share
of the processing time is taken by the templates, whose sizes
are about the same as of a single world.

10 Application Scenarios

Our approach is designed to cope with large sets of possi-
ble worlds, which exhibit local dependencies and large com-
monalities. This data pattern can be found in many applica-
tions. In addition to the census scenario used in Section 9,
we next discuss two further application scenarios that can
profit from our approach. As for the census scenario, we
consider it infeasible both to iterate over all possible worlds
in secondary storage, or to compute UWSDT decomposi-
tions by comparing the worlds. Thus we also outline how
our UWSDTs can be efficiently computed.
Inconsistent databases.A database is inconsistent if it does
not satisfy given integrity constraints. Sometimes, enforcing
the constraints is undesirable. One approach to manage such
inconsistency is to consider so-calledminimal repairs, i.e.,
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Fig. 30 The evaluation time for queries of Figure 29 on UWSDTs of various sizes and densities.

consistent instances of the database obtained with a minimal
number of changes [10]. A repair can therefore be viewed as
a possible (consistent) world. The number of possible mini-
mal repairs of an inconsistent database may in general be ex-
ponential; however, they substantially overlap. For that rea-
son repairs can be easily modeled with UWSDTs, where the
consistent part of the database is stored in template relations
and the differences between the repairs in components. Cur-
rent work on inconsistent databases [10] focuses on finding
consistent query answers, i.e., answers appearing in all pos-
sible repairs (worlds). With our approach we can provide
more than that, as the answer to a query represents a set of
possible worlds. In this way, we preserve more information
that can be further processed using querying or data cleaning
techniques.
Medical data.Another application scenario is modeling in-
formation on medications, diseases, symptoms, and medical
procedures, see, e.g., [1]. A particular characteristic ofsuch
data is that it contains a big number of clusters of interde-
pendent data. For example, some medications can interact
negatively and are not approved for patients with some dis-
eases. Particular medical procedures can be prescribed for
some diseases, while they are forbidden for others. In the
large set of possible worlds created by the complex interac-
tion of medications, diseases, procedures, and symptoms, a
particular patient record can represent one or a few possible
worlds. Our approach can keep interdependent data within
components and independent data in separate components.
One can ask then for possible patient diagnostics, given an
incompletely specified medical history of the patient, or for
commonly used medication for a given set of diseases.

In [1] interdependencies of medical data are modeled as
links. A straightforward and efficient approach to wrap such
data in UWSDTs is to follow the links and create one com-

ponent for all interrelated values. Additionally, each differ-
ent kind of information, like medications, diseases, is stored
in a separate template relation.

11 Conclusion

This article presents one of the first database approaches to
managing probabilistic data on a large scale. We describe
world-set decompositions which can compactly store large
sets of possible worlds by exploiting independence of uncer-
tainty at the attribute level. WSDs form a strong representa-
tion system for any relational query language. This is an im-
portant property for implementing operations that transform
world-sets such as data cleaning or evaluating expressive
queries on top of the world-set; it also allows for decoupling
confidence computation from relational algebra processing
and using a preferred query plan for optimal performance.
Our experimental evaluation shows that WSDs admit effi-
cient query evaluation.
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