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Abstract We present a decomposition-based approach to Given such an incompletely specified database, it must
managing probabilistic information. We introduserld-set  of course be possible to access and process the data. Two
decompositions (WSDs) space-efficient and complete rep- data management tasks shall be pointed out as particularly
resentation system for finite sets of worlds. We study themportant, query evaluation arthta cleaning25, 16, 26],
problem of efficiently evaluating relational algebra gesri by which certain worlds can be shown to be impossible and
on world-sets represented by WSDs. We also evaluate owan be excluded. The results of both types of operation turn
technique experimentally in a large census data scenattio almut not to be representable by or-set relations in general.
show that it is both scalable and efficient. Consider for example the integrity constraint that all so-
cial security numbers be unique. For our example database,
this constraint excludes 8 of the 32 worlds, namely those in
which both tuples have the value 185 as social security num-
ber. Itis impossible to represent the remaining 24 worlds us
Incomplete information is commonplace in real-world data-ing or-set relations. This is an example of a constraint that
bases. Classical examples can be found in data integratio@yn pe used for data cleaning; similar problems are observed

ever information is manually entered and is therefore prongjtfering social security numbers.

to inaccuracy or incompleteness.
that may OTINAte from a census and which allow for more, . L nat we could do is store each world explicily using
than ong intgrpretation (Figure 1). For simplicity we assum a table call_ed aryorld-set relationof a given set of v_vorlds.
instance, Smith’s social security number can be read eitheatenation of all tuples in that world (see Figure 2).

as “185” or as “785". We can represent the available infor-
mation using a relation with or-sets:

(TID) | s N M
t. | {185,785 Smith  {4,2}
to | {185,186} Brown {1,234}

1 Introduction

The most striking problem of world-set relations is their
size. If we conduct a survey of 50 questions on a popula-
tion of 200 million and we assume that oneligt* answers
can be read in just two different ways, we @&t" worlds.
Each such world is a substantial table of 50 columns and
2 - 10® rows. We cannot store all these worlds explicitly in
a world-set relation (which would have)*® columns and
210° rows). Data cleaning will often eliminate only some of
these worlds, so a DBMS should manage those that remain.

This relation represents 2 - 2 - 4 = 32 possible worlds

This article is an extended version of the paper with the saame
that appeared in the Proceedings of the International Ceamée on
Data Engineering (ICDE) 2007 [7].
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This article aims at dealing with this complexity and pro-
poses the new notion eforld-set decompositions (WSDs)
These are decompositions of a world-set relation into sgver
relations such that their product (using the product opmrat
of relational algebra) is again the world-set relation.



/) 8 5 {t1.5,t2.5} and{t1.M} are independent, they are put into

Social Security Number: different components. a

Name: (& \N\UU’\ Often, one can quantify the uncertainty of a dependency
of possible values using probabilities. For example, an-aut
matic extraction tool that extracts structured data froxh te
can produce a ranked list of possible extractions, each as-

Marital Status: (1) single B (2) married \*
(3) divorced O (4) widowed O

\ % 6‘ sociated with a probability of being the correct one [19].
Social Security Number: WSDs can elegantly represent such uncertain data by using
Name: %I_Qb\]h anew column P for each component. Thls column then dg-
fines the probabilities of the dependencies of the values in
Marital Status: (1) single O (2) married O each component tuple.
(3) divorced O (4) widowed O
t2.M] P
Fig. 1 Two completed survey forms. t1.5t».S| P
185 18602 [N MIP) wTe | L |92
N x| 1 ]0.7|x x| 2 ]0.25
t1.S #.N  #.M .S  t2.N t2.M 785 185 0.4 | Smith| 1 > los Brown|1 3 |o.25
185 Smith 1 186 Brown 1 785 18604 2 025
185  Smith 1 186 Brown 2
185  Smith 1 186 Brown 3 Fig. 4 Probabilistic version of the WSD of Figure 3.
185  Smith 1 186 Brown 4
185  Smith 2 186 Brown 1

: Example 3Figure 4 gives a probabilistic version of the WSD

785  Smith 2 186 Brown 4 of Figure 3. The probabilities in the last component state
Fig. 2 World-set relation containing only worlds with unique saci that the POSSIble values for the marital .Status n m@.lare
security numbers. equally likely. In case ot;, it is more likely to be single

(value 1) than married. The probabilities for the name val-
ues fort; andt, equal one, as this information is certain.

Example 1The world-set represented by our initial or-set

relation can also be represented by the product Given a probabilistic WSO(Cy, . ..,C }, We obtain a
possible world by choosing one tuplg out of each compo-
2. M nent relatiorC;. The probability of this world is then com-
S N tM t2-S N 1 puted asﬁ w;.P. For example, in Figure 4, choosing the
185 X sman <] 1% B X rErown |¥] 2 . i=1 . ) .
785 2 186 3 first, the second, and the third tuple from the first, the third
4 and the fifth component, respectively, results in the world
The WSD representation of an or-set relation requires in R | SSN Name MS
general the same amount of space as the or-set relatidiritsel t1 | 185 Smith 2

to | 186  Brown 2
Example 2In the same way we can represent the result offhis world’s probability isD.2 - 1-0.3-1-0.25 = 0.015.
data cleaning with the uniqueness constraint enforced®n th  |n practice, it is often the case that fields or even tuples
social security numbers as the product of Figure 3. carry the same values in all worlds. For instance, in the cen-
sus data scenario discussed above, we assumed that only one
field in 10000 has several possible values. Such a world-set

1S5S t2.M decomposes into a WSD in which most fields in component
185 186 t1.N t-M t2.N 1 relations are certain, i.e., have precisely one tuple.
785 185 | [ Smith |~ ; *Brown | g We will also consider a refinement of WSD&/SDTs
785 186 4 which store information that is the same in all possible dsrl
once and for all in so-callegmplate relations
Fig. 3 WSD of the relation in Figure 2. Example 4The world-set of the previous examples can be

represented by the WSDT of Figure 5. O

The above product is exactly the world-set relation in ~ WSDTs combine the advantages of c-tables [20] and
Figure 2. The presented decomposition is based oimtlee = WSDs. In particular, WSDTs can be naturally viewed as c-
pendencéetween sets of fields, subsequently caltedh- tables where the body of the c-table corresponds to the tem-
ponents Only fields that depend on each other, for exam-plate relation, and whose formulas have been put imora
ple t;.S andt,.S, belong to the same component. Sincemal formrepresented by the component relations, and null



Template| S N M — We develop data cleaning techniques in the context of

2 : g’rrgm Z WSDs. We focus on two kinds of dependencies, func-
' ' LM P tional dependencies and a class of equality-generating
t1:5t2.S| P | marp T 10.95 dependencies, and adapt tBhase proceduréct. [24,
185 186/0.2 . . .
785 18504 %| L [0-7]x| 2 |0.25 3,18]) for incomplete information to the framework of
785 1860.4f 2123 | % 1025 WSDs.
' — We describe a prototype implementation built on top of

Fig. 5 Probabilistic WSD with a template relation. the PostgreSQL RDBMS. Our system is called MayBMS

and supports the management of incomplete information
using UWSDTs.

values ‘?" in the template relations represent fields on twhic _ )
We report on our experimental evaluation of UWSDTs

the worlds disagree. Indeed, each tuple in the product of the™ ) e ]
component relations is a possible value assignment for the a5 & representation system for large finite sets of possible
variables in the template relation. While query evaluation ~Worlds. Our experiments show that UWSDTs yield scal-
needs to access both the template relation and the compo- 2PI€ techniques for managing incomplete information.
nents, this brings advantages that are best justified irscase Ve found that the size of UWSDTs obtained as query
where most data is certain. The following c-table with globa ~ 2NSWers or data cleaning results remains close to that of

condition® is equivalent to the WSDT in Figure 5 (without & single world. Furthermore, t_he query p'rocessing time
the probabilistic weights): is also comparable to processing just a single world and

thus a classical relational database.

T[S N M
x Smith y WSDs are designed to cope with large sets of worlds
2 Brown w which exhibit local dependencies and large commonalities.

This data pattern can be found in many applications. Besides

the census scenario, Section 10 describes two further-appli

(z=T78N2z=186)) A (y=1Vy=2)A cations: managing inconsistent databases using minimal re

(w=1Vw=2Vw=3Vw=4) pairs [10,12] and medical data.
A fundamental assumption of this work is that one wants

0 managefinite sets of possible world§ his is justified

— We formally introduce WSDs and WSDTs and studypy previous work on representation systems starting with
some of their properties. Our notion is a refinement ofimielinski and Lipski [20], by recent work [15,4,11], and
the one presented above and allows to represent worldsy, cyrrent application requirements. Our approach can deal
over multi-relation schemas which contain relations withyyith databases with unresolved uncertainties. Such de¢aba
varying numbers of tuples. WSD(T)s can represent anyre still valuable. It should be possible to do data trans-
finite set of possible worlds over relational databases anghymations that preserve as much information as possible,
are therefore a strong representation systenafgrre-  thys necessarily mapping between sets of possible worlds. |
lational query language this sense, WSDs represent@mpositional frameworkor

— A practical problem with WSDs and WSDTs is that a gerying and data cleaning. A different approach is folldwe
DBMS that manages such representations has to SUPPGH e.g., [10,13], where the focus is on findingrtain an-

relations of arbitrary arity: the schemata of the compOsyersof queries on incomplete and inconsistent databases.
nent relations of a decomposition depend on the data.

Unfortunately, DBMSs (e.g. PostgreSQL) in practice of-X€lated Work. Early work on managing incomplete infor-
ten do not support relations beyond a fixed arity. manon in the relational setting was presented in [20] which
For that reason we present refinements of the notion dftroducedv-tablesandc-tables In v-tables the tuples can
WSDs, theuniform WSDs (UWSDsknd their exten- contam_both constants and vgrlables_, and each c_ombmauon
of possible values for the variables yields a possible world
properties as representation systems. Relations with or-sets [21] can be viewed as v-tables, where
eqach variable occurs only at a single position in the tabte an

— We show how to process relational algebra queries ov , ]
world-sets represented by UWSDTs. For illustration pur_can only take values from a fixed finite set, the or-set of the

poses, we discuss query evaluation in the context of thI:_'lEId occupied by .the varigple. The ;g-calledab]es[ZO]
more visual WSDs. extend v-tables with conditions specified by logical formu-

We also develop a number of optimizations and tech!as over the variables, thus constraining the possiblesgalu

hiques for normalizing the data representations obtained, The version of the MayBMS system released in early 2009]-avai

by queries to support scalable query processing even Ofpje at http:/maybms.sourceforge.net, uses a repréigentystem
very large world-sets. other than WSDs.

&= ((x=185AN2=186)V (x =785 Az = 185) v

The technical contributions of this article are as follows.

sion by template relations, th#/VSDTsand study their




and form a strong representation system for relationaljquer  The model used by the Orion system [30] can be seen as

languages. an extension of the world-set-decomposition model for con-
The probabilistic databases of [15,14] and the dirty retinuous distributions. There, correlated attributes aoeiged

lations of [4] are examples of practical representation systogether and represented by a single joint distributiom-Si

tems that are not strong for relational algebra. As query anlarly, in a WSD each component represents the joint (dis-

swers in general cannot be represented as a set of possilgkete) distribution of a set of correlated attributes.

worlds in the same formalism, query evaluation is focused In [9] we provide complexity results for different deci-

on computing the certain answers to a query, or the probgion problems on WSDs, such as query possibility and cer-

bility of a tuple being in the result. Such formalisms closetainty, and present a polynomial algorithm for relationed d

the possible worlds semantics using clean answers [4] argbmposition. Finally, the more recent work [5] builds upon

probabilistic-ranked retrieval [15]. As we will see in tis ~ WSDs to create a representation system where correlations

ticle, our approach subsumes the aforementioned two and @&n be represented in a more intensional but still relationa

strictly more expressive than them. way, which ensures more compact representation and effi-
In parallel to our approach, [28, 11] propose ULDBs thatCient query processing. [17] shows how to manage interval

combine uncertainty and a low-level form of lineage to mode?robabilities, either because the exact probabilitiesnate

any finite world-set. Like the dirty relations of [4], ULDBs known, or because they were introduced by evaluating se-

represent a set of independent tuples with alternatives. Li €ctions on top of approximated confidence values.

eage is then used to represent dependencies among alterna-

tives of different tuples and thus is essential for the expre L

. . . 2 Preliminaries
sive power of the formalism. Note that lineage corresponds

to local conditions in c-tables [20]. . We use the named perspective of the relational model with
As both ULDBs and WSDs can model any finite world- yhe gperations selection, projections, productx, union

set, they inherently share some similarities, yet diffeémn U, difference—, and attribute renaming (cf. e.g. [2]). A
portant aspects. WSDs support efficient algorithms for findygational schemas a tupleY = (Ri[U1],..., RulUs),
ing a minimal data representation based on relationalfacto,ynere eaclR, is a relation name and; is a set of attribute
ization. Differently from ULDBs, WSDs allow representing names. LeD be a set of domain elements.rélation over
uncertainty at the level of tuple fields, not only of t“ples-schemaR[Al, ..., A]is a set of tuple$A; : ay, ..., Ay, :
This causes, for instance, or-set relations to have liregar r ay) whereay, ..., a; € D. A relational database4 over
resentations as WSDs, but (in general) exponential repreenemas is a set of relations?, one for each relation
sentations as ULDBs. As reported in [11], resolving tUpleschemaR[U] from X. Sometimes, when no confusion of
dependencies, i.e., tracking which alternatives of d#ifér y5i5pase may occur, we will ugerather thank* to denote
tuples belong to the same world, often requires the compys,e particular relation over schen®U]. By the size of a
tation of lineage closure. Additionally, query operati@ms  yg|ation R, denoted R, we refer to the number of tuples in
ULDBSs can produce inconsistencies and anomalies, such 38 ko a relationR over schemaR[U], let sch(R) denote
erroneous dependencies and inexistent tuples. In contraghe setr7 of its attributes and letr(R) denote the arity of

WSDs avoid both pitfalls. R.

In [29] probabilistic databases are modeled using graph- A productm-decompositiorof a relationR is a set of
ical models. Each tuple has an associated random variablggn-nullary relationg{C1, ..., C,,} such thatC} x --- x
specifying the existence of the tuple in the database, and — R The relationg’;, . .., C,, are calleccomponents

correlations between tuples are given by links between thg productm-decomposition of? is maximalif there is no
corresponding nodes in the graphical model. Querying thgroductn-decomposition o with n > m.

graphical model is done by introducing new factors, and A set ofpossible worldgor world-se) over schem& is
computing confidence of tuples is reduced to probabilistiy set of databases over schemalet W be a set of struc-
inference in graphical models. Note that world-set decomtures'rep be a function that maps frofW to world-sets of
positions correspond to flat graphical models, where the conhe same schema. ThéW , rep) is astrong representation
ditional independence between variables is made eXpliCibysten‘for a query |anguage |f, for each qu@of that lan-
Indeed, WSDs are based on the idea of independence bggage and eachy € W such thatQ is applicable to the
tween variables (attribute values), which is a special kihd \yorids inrep(W), there is a structur®)’ € W such that
conditional independence. In some cases, graphical mode,lgp(wf) ={Q(A) | A € rep(W)}. Obviously,

can be more succinct than WSDs. However, evaluating re-

lational algebra queries on top of graphical models tends teemma 1 If rep is a function from a set of structuré&/
produce flat models with high treewidth, which makes conto the set of all finite world-sets, theiW, rep) is a strong
fidence computation hard on graphical models. representation system for any relational query language.



3 World-Set Decompositions can be mapped invariantly back &0 However different or-

derings of the tuples might have implications on the com-
In order to use classical database techniques for storitig apactness of the decomposition. Note that for each world-set
querying incomplete data, we develop a scheme for repreelation a maximal decomposition exists, is unique, and can
senting a world-seA by a single relational database. be efficiently computed [9].

Let A be a finite world-set over schema= (R, ..., Rx).
For eachR in X, let |R|nax = max{|R*| : A € A} de-
note the maximum cardinality of relatioR in any world
of A. Given a worldA with RA = {t1,... t g4}, let
inline( R*) be the tuple obtained as the concatenation (de- We will refer to each of then elements of a world-set-
notedo) of the tuples ofR“ in an arbitrary order padded decomposition asomponentsand to the component tuples

Definition 1 Let A be a world-set and a world-set re-
lation representing\. Then aworld-setm-decomposition
(m-WSD)of A is a productn-decomposition ofV.

with a special tuplé; = (L,..., L) up to arity| R|yax: aslocal worlds Somewhat simplified examples of world-set
W relations and WSDs over a single relatinthus “R” was
omitted from the attribute names of the world-set relatjons
inline(RA) :=t10---0 tRA O (ELseviiiniis 1) were given in Section 1. Further examples can be found in

Section 4. It should be emphasized that with WSDs we can
also represent multiple relational schemata and even arbi-
Then tuple trary correlations of fields across relations (by having eom
ponents with fields from different relations).

Definition 2 LetW = {C4,...,C,,} be an m-WSD. Then
encodes all the information in world. The “dummy” tu-  the functionrep that maps/V to a set of possible worlds is
ples with L -values are only used to ensure that the relatioryjefined as

R has the same number of tuples in all world\inWe ex- o
tend this interpretation and generally defing asny tuple rep(W) = U{mlme () [t€Crx...xCn}
that has at least one symhaol i.e., (4 : a1, ..., A, : an), It immediately follows from our definitions that
where at least one; is L, is at, tuple. This allows for
several different inlinings of the same world-set.

By aworld-set relationof a world-setA, we denote the
relation{inline(A) | A € A}. This world-set relation has Corollary 1 (Lemma 1) WSDs are a strong representation
schema(R.t;. A; | R[U] € X¥,1 < i < |R|max, Aj € U}.  system for any relational query language.

Note that in defining this schema we ugeto denote the
position (or identifier) of tuple; in inline(R*) and not its
value.

Given the above definition that turned every world in a
tuple of a world-set relation, computing the initial world-
set is an easy exercise. In order to have every world-set r
lation define a world-set, let a tuple extracted from somePace
tra = inline(RA) be in R4 iff it does not contain any oc-
currence of the special symbal. That is, we magrsa =

IRImax*‘R’A‘

inline(A) := inline(R{) o - - - o inline(R{')

Proposition 1 Any finite set of possible worlds can be rep-
resented as a world-set relation and a$-&VvSD.

As pointed out in Section 1, this is not true for or-set
relations. For the relatively small class of world-setst tha
can be represented as or-set relations, the size of our rep-
resentation system is linear in the size of the or-set miati
éﬁs seen in the examples, our representatiomigh more
efficient than world-set relations

Modeling Probabilistic Information. We can quantify the
uncertainty of the data by means of probabilities using a

(@1, Qar(). Rle) 1O R @S natural extension of WSDs. Arobabilistic world-set m-
inline™ (tpa) := decompositiorprobabilistic m-WSD) is an m-WSD
Ci1,...,Cn}, where each component relatiGrhas a spe-

{(@arcry ka1 s Gar(r)-00) [0 S K < | Rlmas, ({:ial attributgP in its schema defining the probability for the
Gar(R)-k+1 7 L5 -5 Gar(R)-(k1) 7 L} local worlds, that is, for each combination of values defined

If ta =tgao.. o.. . tgaistheinlining for worldA, we by the component. To ensure valid probability distribution

can restored in the following way: we require that the probabilities in a component sum up to

one,i.e. > tc.P=1.
inline 1 (t4) = (inlineil(tfo), ce inlineil(tpbf)) to€C

Probabilistic WSD%$ generalize the probabilistic tuple-
Observe that although world-set relations are not unique d@sdependent model of [15], as we show next.
we have left open the ordering in which th? tuples of a given—, Like most recent work we assume that probabilities are gaen
world are concatenated, all world-set relations of a weBtl-  jnpyt, for example by an expert, or learned. Follow-up wdkhe au-
A are equally good for encoding the world-set because theyiors discusses how probabilities can be introduced usieges [8].




Example 5Figure 6 (a) is an example taken from [15]. It 5 and if relationD; has attributeR?;.t.A and valuev in its

shows a tuple-independent probabilistic database with twaniqueR;.t. A-field, then the template relatioﬁ? has a tu-

relationsS and7'. Each tuple is assigned a confidence valueple with identifiert whoseA-field has value.

which represents the probability of the tuple being in the  Of course WSDTs again can represent any finite world-

database, and the tuples are assumed independent. A posst and are thus a strong representation system for any re-

ble world is obtained by choosing a subset of the tuples itational query language. Example 4 shows a WSDT for the

the tuple-independent probabilistic database, and itb-pro running example of the introduction.

ability is computed by multiplying the probabilities for-se Uniform World-Set Decompositions.In practice, database

lecting a tuple or not, depending on whether that tuple is irsystems often do not support relations of arbitrary aritg.(e

the world. The set of possible worlds féris given in Fig-  WSD components). For that reason we introduce nexta mod-

ure 6 (b). For example, the probability of the woiltd can  ified representation of WSDs callehiform WSDslInstead

be computed agl — 0.2) - 0.5 - 0.6 = 0.06. O  of having a variable number of component relations, pos-
sibly with different arities, we store all values in a single
relationC that has a fixed schema. We use the fixed schema

world P consisting of the three relation schemata
s A B = D = {51,82,t1} 0.24
—Tm 1108 Dy = {s1,t1} 0.24 C[FID, LWID, VAL], F[FID, CID], W[CID, LWID, PR]
ss|n 1|05 D3 ={sz2,t1} | 0.06 o ,
Dy ={t:1} 0.06 where FID is a triple® (Rel, TupleID, Attr) denoting the
T|C D| P g"’ = {s1,52} 0.16 Attr-field of tupleTuplel D in database relatioRel.
6 = {s1} 0.16 . . .
tt |1 p|06 Dy = {s2} 0.04 In this representation we need a restricted flavor of world-
Dg =10 0.04 ids calledlocal world-ids(LWIDs). The local world-ids re-
(@) . -
fer only to the possible worlds within one component. LWIDs
() avoid the drawbacks of “global” world IDs for the individual
Fig. 6 A tuple-independent probabilistic database for relatisrend  worlds. This is important, since the size of global world IDs
T (), and the represented set of possible worlds (b). can exceed the size of the decomposition itself, thus making

it difficult or even impossible to represent the world-sets i

We obtain a probabilistic WSD in the following way. a space-efficient way. If any world-set over a given schema
Each tuplet with confidence: in a tuple-independent prob- and a fixed active domain is permitted, one can verify that
abilistic database induces a WSD component representirobal world-ids cannot be smaller than the largest possibl
two local worlds: the local world with tupteand probability ~ World over the schema and the active domain.
¢, and the empty world with probability— c. Figure 7 gives Given a WSD{C1, . ..., Cy, } with schemata’; [U;], we
the WSD encoding of the tuple-independent probabilistid?@Pulate the corresponding UWSD as follows.
database of Figure 6. Of course, in probabilistic WSDs we _ (R ¢, A4),s,v) € C iff, for some (unique), R.t.A €

can assign probabilities not only to individual tuples, but 7. and the field of columrz.t. A in the tuple with ids
also to combinations of values for fields of different tuples  of ¢, has valuey.

or relations. - F={((R,t,A),C)) |1<i<m, Rt.AecU},
— (Ci, s,p) € W iff there is a tuple with identifies in C;,
Ci|s1.As1.B|P C2|s2.A 52.B|P C3|t1.Ct:1.D|P whose probability ig.
1 m 1 (08/x[1] n 1|05 x|1|1 p |06 N .
2| L 1102 |2 L 1]os |2 L L |04 Intuitively, the relationC' stores each value from a com-

ponent together with its corresponding field identifier and
the identifier of the component-tuple in the initial WSD (col
umn LWID of C). The relationF' contains the mapping be-
Adding Template Relations.We now present our refine- tween tuple fields and component identifiers, &ickeeps
ment of WSDs with so-callegtmplate relationsA template ~ track of the worlds present for a given component.

stores information that is the same in all possible worlds an ~ In general, the VAL column in the component relation
contains special value§” ¢ D in fields at which different C must store values for fields of different type. One pos-

Fig. 7 WSD equivalent to the probabilistic database in Figure 6 (a)

worlds disagree. sibility is to store all values as strings and use casts when
LetY = (Ry,..., R;) be a schema and a finite set of required. Alternatively, one could have one component re-

possible worlds oveE. Then, the database lation for each data type. In both cases the schema remains

(RY,...,RY {Cy,...,Cy}) is called anm-WSD with tem- ~ fixed.

plate relations {»-WSDT)of A iff there is a WSD 3 FID really takes three columns, but for readability we kefegnt

{C1,...,Cn, D1,...,D,} of A such thatD;| = 1 for all together under a common name in this section.



R f N ’\4) . . . The goal of this section is to provide, for each relational
2 > E?rrg\m 3 | EhS G algebra query), a query@ such that for a WSDV,
(R7 tlyM) CQ
C FID LWID VAL R,t3,8) C A
T 1 I (ot rep(QOW)) = {Q(A) | A € rep(W)}.
(R,t2,S) 1 186 W | CID LWID | PR
Eg’ ggg ; Igg gi % 8'2 Of course we want to evaluate queries directly on WSDs
(R: tl: S) 3 785 c, 3 0.4 using( rather than process the individual worlds using the
(R,t2,8) 3 186 Cy 1 0.7 original queryqQ.
Eg’ il’ %g ; ; ¢z 2 0.3 The algorithms for processing relational algebra queries
5 U1,

presented next are orthogonal to whether or not the WSD
stores probabilities. According to our semantics, a query i
conceptually evaluated in each world and extends the world
with the result of the query in that world. In Section 6, we
Finally, we add template relations to UWSDs in com-also consider queries that look across worlds and compute
plete analogy with WSDTSs, thus obtaining the UWSDTs. theconfidencef tuples in query results.
_ o When compared to traditional query evaluation, the eval-
Example 6We modify the world-set represented in Figure yation of relational queries on WSDs poses new challenges.
4 such that the marital status 4n can only have the value First, since decompositions in general consist of severatc
3. Figure 8 is then the uniform version of the WSDT of F|g' ponentsl a quer@ that maps from one WSD to another
ure 4. Hel’eRO contains the values that are the same in a.lhf]ust be expressed as a set of querieS, each of which de-
worlds. Foroeach field that can have more than one possfmes a different component of the output WSD. Second, as
ble value,R” contains a special placeholder, denotedBy *  certain query operations may cause new dependencies be-
The pOSSib|e values for the p|aceh0|derS are defined in trﬁ/een Components to deve'op, some Components may have
component tabl€’. In practice, we can expect that the ma-o be merged (i.e., part of the decomposition undone using
jority of the data fields can take only one value across althe product operation). Third, the answer to a (sub)query
worlds, and can be stored in the template relation. O Qo must be represented within the same decomposition as
» o ] the input relations to correctly represent the correlatioe-
Proposition 2 Any finite set of possible worlds can be rep-yveen the input and the result of the subquery; indeed, we
resented as 4-UWSD and as a-UWSDT. want to compute a decomposition of world $&#1, Qo (A)) |
It follows again that UWSD(T)s are a strong representa-’.4 € rep(W)} in order to be abI.e FO resort to the mput. rela-
. . tions as well as the result 6, within each world. Consider
tion system foany relational query language .
for example a query 4—1(R) U o p=2(R). If we first com-

Remark 1In theory and as presented in this section, WSDPUt€ 7a=1(R), we must store it in the same WSD as the
can be obtained by decomposing the world-set relation, angput relation, oth_erW|se the connection between worlds of
an efficient algorithm for achieving this is described in.[9] 1t @nd the selectiom 4, is lost and we cannot compute
However, we consider this infeasible in practice as the numZ4=1(£) U on=2(R) correctly.

ber of possible worlds (which determines the size of the We say that a relatiof? is a copy of another relatioR
world-set relation) can be exponential. Instead, we assuni@ & WSD if R and P have the same tuples in every world
that in practice WSDs will be constructed by starting offrépresented by the WSD. For a componéitan attribute
with a “dirty” relation describing the possible values, andf-t-A; of C'and a new attributé”.. B, the functionext ex-
then repairing the database to satisfy given constraiis. T t€ndsC' by a new columnP.t.B that is a copy of?.t. A;:
decomposition algorithm will be then used to optimize the

representation. O ext(C, A, B) == {(Ay :a1,..., Ay :an, B:a;) |
(Al : al,...,An : Cln,) S C}

Fig. 8 A UWSDT corresponding to the WSDT of Figure 5.

4 Queries on World-set Decompositions

Thencopy(R, P) executes := ext(C, R.t;. A, P.t;. A) for
In this section we study the query evaluation problem foreach componertt' and each.t;.A € S(C).
WSDs. As pointed out before, UWSDTSs are a better repre- The implementation of some operations requires the com-
sentation system than WSDs; nevertheless WSDs are sirpesition of components. L&t; andCs be two components
pler to explain and visualize and the main issues regardingith schematd A, ..., A, P), and
query evaluation are the same for both systems. (By,..., By, P), respectively. Then the composition 6f



algorithm selectjddc]
begin
copy(R, P);
for each1 < i < |P|inas do begin
let C be the component aP.t;. A;
for eachts € C do
if not (tc.(P.t;.A) 0 c) then
te.(Pt;.A) == L1
propagate-_L (C);
end
end

[l computeP := o 49.R

algorithm selectid6B]
begin
Copy(R, P);
for each1 < i < |P|ma2 do begin
let C be the component aP.i;. A;
let C’ be the component df.t;.B;
if (C # C’) then

/I computeP := o 49 R

for eacht¢c € C do
if not (tc.(P.t;.A) 0 tc.(P.t;.B)) then
te.(Pt;.A) == L1
propagate-_L (C);
end
end

algorithm product
begin

/I computd” := R x S

let C be the component aR.¢;.A;
C :=ext(C,R.t;.A, T.tij.A);
end,

let C’ be the component &f.t;. A;
C = ext(C”, S.tj.A, T.tij.A);
end
end

algorithm union
begin
foreach1 < i < |R|maz andA € S(R) do begin
let C be the component aR.¢;.A;
C :=ext(C,R.t;.A, T.(R.t;).A);
end,
foreachl < j < |S|maz andA € S(S) do begin
let C’ be the component &.¢;. A,
C’ = ext(C’,S.t;.A,T.(S.t5).A);
end
end

/I computl” := RU S

replace components, C’ by C := compose(C, C’);

foreachl < j <|S|mae andR.t;.A € S(R) do begin

foreach1 < i < |R|maz andS.t;.A € S(S) do begin

algorithm projectjU]
begin
COpy(R, P);
foreach1 < i < |P|mazd0
while no fixpoint is reachedo begin
let C' be the component aP.t;. A, whereA € U;
let C’ # C be the component dP.t;. B, where
B¢gUand YA’ e U: Pt;.A’ ¢ S(C")) and
Bter € C' i ter.B=1);
replace components, C’ by C' := compose(C, C');
propagate-_L(C);
project awayP.t;.B from C' whereB ¢ U andj < ;
end
for each1 < i < |P|maz andB ¢ U do begin
let C be the component a?.t;.B;
project awayP.t;.B from C;
end
end

/I computeP := my (R)

algorithm rename
begin
for each1 < i < |R|maa do begin
let C be the component ak.t;.A;
C:=6ps; AR (O)
end,
end

Il computé,_, 4/ (R)

algorithm difference
begin
COpy(R, P);
foreach1 < i < |P|mazd0
for each1 < j < |S|mazdo
let C1, ..., Cy be the components for the fields Bft; andS.¢;;
replaceCi, . ..,Cy by C := compose(C1,...,Cy);
for eachtc € C do begin
if tc.(Pt;.A) = tc.(S.t;.A) forall A € S(R) then
tc.(P.ti.A) =1,

/I computé® := R — S

end
end
end

Fig. 9 Evaluating relational algebra operations on WSDs.

and(Cs is defined as:
compose(C1,Cs) :=

{(A41:a1,..., Ak 1 ar, By : by, ..., B : by,
P :p1-p2) |
(A1 :a1,..., A s ag, P :p1) € Ch,
(B1:b1,...,By: b, P:pa) € Co}

In the non-probabilistic case the composition of some
components is simply their relational product. In the proba
bilistic case, the probability of a tuple in the resultingrco
ponent is the product of the probabilities of the correspond
ing tuples from the input components.

Figure 9 presents implementations of the relational alge-
bra operations selection (of the form. or o495, Where



A and B are attributesg is a constant, ané is a compari- Dropping tuples is a fairly subtle operation, since tuples

son operation=, #, <, <, >, or >), projection, relational can spread over several components and a component can

product and union on WSDs. In each case, the input WSefine values for more than one tuple.

is extendedy the result of the operation. Thus a selection must not delete tuples from component
Given a relational algebra query, let Q denote the relations, but should mark fields as belonging to deleted tu-

query processor on WSDs we obtain by replacing each ogples using the special value. To evaluates 4¢.(R), our

eration ofQ) by its corresponding operation on WSDs. selection algorithm of Figure 9 checks for each tuflén

, the relationP andt¢ in componentC with attribute P.¢;. A
Theorem 1 (Correctness).et)V be aWSD and l&0V' be  \yhethers.(P.t;.4)dc. In the negative case the tuplet;

the WSD obtained fro@ (V) by dropping all relations but g marked as deleted in all worlds that take values frem

the result relation of). Then, For that,tc.(P.t;.A) is assigned valug., and all other at-

repOV') = {Q(A) | A € rep(V)}. tribL_JtesP.ti.A’ ofC referring to the ;ame tuple of P are
assigned value_ in ¢, (cf. the algorithmpropagate-_| of

Proof The proof of correctness of the translation is by in-Figure 12). This assures that if we later project away the at-

duction on the structure of que€y. tribute A of P, we do not erroneously “reintroduce” tuple

Base caseLet(Q = R. Then the result of the query{s?* |  P.t, into worlds that take values from:.

A € repOV)} = repW’).

Induction step: Let Q@ = 0 44.(Q’) and suppose

Igorith te- L (C: t

rep(w/) 4 {Q(A) | A € rep(W)} gs;:: m propagate-_L (C: component)

Suppose first thaty = {C}, thatis\V is a 1-WSD. Let forifet?'zg 6 A? inflfhtéf €5(C)do
tq € C be a tuple inC' that corresponds to a world. The for éach A’ such thatP.t;. A’ € S(C) do
translation() replaces withl the values for all tuples ing4 to.(Pt;.A") = 1
that do not satisfy the selection condition, andtigte the end
result of this operation. Thus by definitionline=!(t/,) =
Q(A) andrep(W) = {Q(A) | A € rep(W)}. Fig. 12 Propagatingl -values.

Consider now an m-WsDV = {C4,...,C,,} and let
tqa=tc, o...0tc,, bethe tuple for world4, wherete, €
C;. Lett € Q' and lett.A be defined in componet;. If
te,.(t.A)fc, Q leaves the values farunchanged inc, , oth-
erwisetc,.(t.A) is replaced byl. But then by our seman-

. .. -1 H _
EII_(;]SUZ;ZZ;@,(f é) ?Ziit:l ?:,g%it:ég tutﬁb: t&:; Stlg.s(%?,)zt)_ = to space limitations we only show the representatio of
A y P ' One can observe that for both results in Figure 11 we obtain
The correctness for the remaining operators follows alonvgorlds of different sizes. For example the worlds that take

h me lines. . .
the same lines values from the first tuple of the second component relation
Let us now have a closer look at the evaluation of redn Figure 11 (a) do not have a tupig while the worlds that
lational algebra operations on WSDs. For this, we use akike values from the second tuple of that componentrelation

running example the set of eight worlds over the relafion containt;. o

of Figure 10 (a) and its maximal 7-WSD of Figure 10 (b). . . . . e
The second component (from the left) of the WSD span:,,Selec'uon with condition A9 B. The main added difficulty

over several tuples and attributes and each of the remaininCH_ sr]electgqs Wslilh CQndk']t'Of}AeB as Cgmpargd to'selzctlons
six components refer to one tuple and one attribute. The firdf't con itionsAfc is that it (?reates ependencies etyvegn
tuple of the second component of the WSD of Figure 10 contwo attributes of a tuple, which do not necessarily reside in
tains the values foR.t1.B, R.t1.C, andR.t;.B, i.e. some the same component. .

but not all of the attributes of the first and second tuple of S the current decomposition may not capture exactly
R4, for all worlds.A. In our attempt to keep the WSDs read- the combinations of values satisfying the join conditicome

able, we consistently show in the following examples onlyponents that have values fﬂrr_mdB of the same tupl_e are
the WSDs of the result relations. composed. After the composition phase, the selection algo-

rithm follows the pattern of the selection with constant.

Example 7Figure 11 shows the answers dg—7(R) and
op=1(R). Note that the resulting WSDs should contain both
the query answelP and the original relatiom?, but due

Selection with condition Afc. In order to compute a selec-

tion P := o49.(R), we first compute a copy of relation = Example 8Consider the query 4—5(R), whereR is rep-

R and subsequently drop tuples Bfthat do not match the resented by the 7-WSD of Figure 10. Figure 13 shows the
selection condition. query answer, which is a 4-WSD that represents five worlds,




A BC A BC ABC ABC A BC A BC A BC A BC
110 210 110 210 127 2 27 127 2 27
4 30 4 30 530 530 4 4 0 4 4 0 540 540
6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7
(a) Set of eight worlds of the relatiaR.
R.t1.A R.t1.B Rt:.C R#2.B R.ts.A Riz.C Riz A RisB Riz.C
1 X 1 0 3 X 4 X 0 X 3 X 3 X 7
2 2 7 4 5
(b) 7-WSD of the world-set of (a).
Fig. 10 World-set and its decomposition.
Pt .A Pt1.B Pz,.C Pt>.B Pt A PLs.C Pis A Pl B Pis.C
1 X 1 1L 3 X 4 X T X 5 X 5 X =
2 2 7 4 5
(@) P := oc=7(R) applied to the WSD of Figure 10.
Pt1.A Pt:.B P#,.C Pt2.B Pty A Pi3.C Pis A Pis B Pi3.C
1 X 1 0 1 X 4 X 0 X 5 X n X =
2 1 1 1 5
(b) P := op=1(R) applied to the WSD of Figure 10.
Fig. 11 SelectionsP := oc—7(R) and P := op—1 (R) with R from Figure 10.
Pt .A Pt1.B Pz,.C Pts A Pt>.B
1 1 0 1L 1L
1 1 1 1 1 % Pt,.C % Pts.A Pi3.B % Pt3.C
1L 1L L 4 4 0 6 6 7
2 2 7 4 4
2 2 7 1L 1L
Fig. 13 P = 04— (R) with R from Figure 10.
R.t1.A R.t1.B Rits.A R.t2.B St:.C St.D Si1,.C Sits.D
1 X 3 5 X 7 X a X c e X g
2 4 6 8 b d f h
(a) WSD of two relations? and S.
t11.A t12.A t11.B t12.B t21.A t22.A to1.B t22.B t11.Ct21.C t11.D t21.D t12.C t22.C t12.D t92.D
1 1 X 3 3 5 5 |x 7 7 X a a |x [ [§ e e |[x g g
2 2 4 4 6 6 8 8 b b d d f f h h

(b) WSD of their produci? x S.
Fig. 14 The product operatio® x S.

where one world has three tuples, three worlds have two tuProjection. A projection P = 7y (R) on an attribute set
ples each, and one world has one tuple. o U of a relationR represented by the WSD is translated
into (1) the extension of with the copyP of R, and (2)

Product. The productl” := R x 5 of two relationsk and  projections on the components@fwhere all component at-

S, which have disjunct attribute sets and are represented Rifhutes that do not refer to attributesBifin U are discarded.
a WSD requires that the product relatidrextends a com-  Before removing attributes, however, we need to propagate

ponentC' with | S|q. (respectively R|mq.) copies of each | _yajyes, as discussed in the following example.
column of C' with values of R (respectivelyS). Addition-

ally, theith (jth) copy is named'.t;;. A if the original has Example 10Consider the 3-WSD of Figure 15 (a) repre-
nameR.t;. A or S.t;. A. senting a set of two worlds faR, where one world contains

only the tuplet; and the other contains only the tuple Let
Example 9Figure 14 (b) shows the WSD for the product of P’ represent the first two components®f which contain

relationsRk andS represented by the WSD of Figure 14 (a). all values for the attributé in both tuples. The relatioR’ is

To save space, the relatiods and S have been removed notthe answer ta 4 (R), because it encodes one world with
from Figure 14 (b), and attribute names do not show the rebothtuples, and the information from the third component
lation name 7. O  of R that only one tuple appears in each world is lost. To



compute the correct answer, we progressively (1) composgenerating dependency. The answer to the original query can
the components referring to the same tuple (in this case dtle obtained by

three components), (2) propagdtevalues within the same
tuple, and (3) project away the irrelevant attributes. Tdre ¢
rect answelP is given in Figure 15 (b). a

R.t1.BRt2.B Pt1.A Pts A
Rt;A % Rt;A % c T a T
€ d L b
(a) WSD for R. (b) WSD for P.

Fig. 15 ProjectionP := 74 (R).

The algorithm for projection is given in Figure 9. For
each tuple;, attributeA in the projection list, and attribute

B not in the projection list, the algorithm first propagates

the L-values ofP.t;. B of component’ to P.t;. A of com-

ponentC. If C andC’ are the same, the propagation is

done locally within the component. Otherwisg,and C’

P(¢|4) = P(9)P(¢ NY) = P(¢) (P(¢) — P(p A —))

where— is existential.

Discussion The operators selection, product and union can
be implemented in polynomial time on WSDs. The imple-
mentation of the join selection, projection and difference
can require the composition of components and can poten-
tially lead to an exponential blow-up in the representation
Composing components in the projection operation can be
avoided by introducing an additional “exists” column to re-
place columns withL-values that are projected away. With
this addition, the projection can also be implemented igpol
nomialtime. As for join and difference, the exponentialt?lo

up can be avoided by encoding correlations in a more inten-
sional way than the one offered by WSDs. This is the case
of U-relations [5], for instance, which generalize WSDs.

Remark 2The evaluation of relational algebra queries does

are merged before the propagation. Note that the Propagisy depend on the probabilities of the worlds, since itis-con

tion is only needed if some tuples 6f have atl-value
for ¢;.B. This procedure is performed until no other compo
nentsC andC’ exist that satisfy the above criteria. After the
propagation phase, the attributes notin the projectivaitis
dropped from all remaining components.

Union. The algorithm for computing the unidh := R U

S of two relationsk and S works similarly to that for the
product. Each componeft containing values oRR or S is
extended such that in each world@fall values ofR andS
become also values df.

Renaming The operatior4_, 4/(R) renames attributel

of relation R to A’ by renaming all attribute®.¢.4 in a
component’ to R.t. A’

Difference. To compute the difference operatiéh.= R —

ceptually performed in each possible world. Evaluating pro
jection and join selection modifies the WSD by composing
components; in that case we recompute the probabilities of
the tuples in the new component. With the exception of those
two operators, all other (positive) relational algebrarape
tors do not need access to the probabilities stored with the
data. The confidence computation operator presented in Sec-

tion 6 makes use of the probability information. O

5 Efficient Query Evaluation on UWSDTs

The algorithms for computing the relational operations on
WSDs presented in Section 4 can be easily adapted to UWS-

5 we scan and compose components of the two relatlonBTS_ To do this, we follow closely the mapping of WSDs,

R and S. For the worlds where a tuplefrom R matches
some tuple fromS, we placel-values to denote thatis
not in these worlds of?; otherwiset becomes a tuple of

represented as sets of compondhtso equivalent UWS-
DTs, represented by a triplé’(C',)W) and at least one tem-
plate relationk’:

P. The difference is by far the least efficient operation to
implement not only on WSDs, where it can lead to the com- —
position of all components, but also on the other succinct
representation systems. However, if we want to close the
possible world semantics and compute the confidence of tu-
ples in the answer to a difference query, we can often avoid
computing the representation of the result. [22] makes the
observation that computing the confidence of tuples in the
answer to a difference can be done by computing confidence
of the negated positive query which in turn can be efficiently
approximated. This is a special case of computing the con—
ditional probability P(¢ | ) of a positive query) given a
universal constrain). The formulay) can express for ex-
ample a functional dependency, or another type of equality-

Consider a componet# of WSD C having an attribute
R.t.A with a valuev. In the equivalent UWSDT, this
value can be stored in the template relatihif v is the
only value ofR.t. A, or in the componend’ otherwise. In
the latter case, the templa®¥ contains the placeholder
R.t.Ain the tuplet. In addition, in the mapping relation
F there is an entry with the placehold&t.A and a
component identifier, andC' contains a tuple formed
by R.t. A, the valuev and a world identifietw.

Worlds of different sizes are represented in WSDs by
allowing L values in components, and in UWSDTSs by
allowing for a same placeholder different amount of val-
ues in different worlds.



Any relational query is rewritten in our framework to 6 Confidence Computation in Probabilistic WSDs
a sequence of SQL queries, except for the projection and
selection with join conditions, where the fixpoint compu- Section 4 discusses query evaluation algorithms for rela-
tations are encoded as recursive PL/SQL programs. In alional algebra on top of WSDs. Since we consider queries
cases, the size of the rewriting is linear in the size of théhat are semantically evaluated within each world, these al
input query. For the operators that require pure SQL onhgorithms do not need to explicitly take into account proba-
this essentially means that the complexity of queryingés pr bility distributions over the possible worlds.
served and remains polynomial. Figure 16 shows the imple- In this section, we also consider queries that look across
mentation of the selection with constant on UWSDTSs. worlds and compute confidence of tuples. Thefidencef
a tuplet in the result of a query) is defined as the sum of
the probabilities of the worlds that containn the answer
to Q. Clearly, iterating over all possible worlds is infeasible
algorithm selectddc]  // computeP := o 49.R We therefore adopt an approach where we only iterate over

begin the local worlds of the relevant components.

1. PY:= 0 49cva=2R";

2.F:=FU{(Pt.B,k)| (Rt.B,k) € F,t € P°};

3.C:=CU{(Pt.B,w,v) | (Rt.B,w,v) € C,t € PY,
(B=A=v0c)};

/I Remove incomplete world tuples

4.C:=C - {(Pt.X,w,v) € C| (Pt.X,k),(PtY,k) € F,
te PO, X £Y, A : (Pt.Y,w,v') € C};

5 F:=F —{(Pt.B,k)| (Pt.B,k) € F,

/I computec := con f(t)
algorithm conf (tuplet over schemdA, ..., A;,))
begin
lettq,...,t, be the ids of tuples defined by input WSD;
I/l Keep only columns and rows of componentdf
) Il that define possible fields of
o o Aw, v : (JOD't'va’”) €Ch ) for eachC; € W do C/ := 5, (0, (C;)) where
6.PO:=PY—{t|te P° AB,a: (P.t.B,a) € F}; M= S(C) N A, | 1< 1< nl < j < m}and
end gii= V(A =tA);
) ) . AjEN;
Fig. 16 EvaluatingP := o 40.(R) on UWSDTs. compute eéuivalent tuple-level WS of the above set of’;
(i.e., compose components defining fields of the same tuple)

¢ := 0; // initially, confidence ot is 0
for eachC € W’ do

. . begin
In contrast to some algorithms of Figure 9, for UNSDTs confc := 0; /] probability thatC defines tuples that equal
we do not create a copy of R at the beginning, but rather for eachtc € C do
compute directly? from R using standard relational algebra g]t = (tcf(ti-Al)v f ’tct'(t}Am)) for somet;
. 0 enconfc :=confoc +tc.P;
operatqrs. The templgféo IS ml,tl_a”y the set of tUpIes oft /I matches irC are independent from those in other components
that satisfy the selection condition, or have a placehoRler ci=1—(1—¢)- (1 - confo);

for the attributeA (line 1). We extend the mapping relation end

F with the placeholders aP° (line 2), and the component |_end

relationC' with the values of these placeholders, where theig 17 computing confidence of possible tuples.
values of placeholderB.t. A for the attributed must satisfy

the selection condition (line 3). If a placeholdert. A has

no value satisfying the selection condition, thémremoved Figure 17 gives our confidence computation algorithm
from PY (line 6) and all placeholders ofare removed from for a tuplet over schemdA,, ..., A,,). It first computes a
F (line 5) together with their values frof (line 4). pruned version of the input WSD, where we keep for each
component only columns that define fields for attributes
Many of the standard query optimization techniques aré;. A1, . .., t;.A,,, of any tuple idt;, and only rows that define

also applicable in our context. For our experiments replortefields, whose values equal the corresponding onés in

in Section 9, we performed the following optimizations on  Next, a tuple-level representation of the pruned WSD is
the sequences of SQL statements obtained as rewritings. Fcomputed. This representation enforces that all fields pf an
the evaluation of a query involving join, we merge the prod-tuple encoded by the WSD are defined in the same compo-
uct and the selections with join conditions and distributenent. Confidence computation can be performed efficiently
projections and selections to the operands. When evaluatn tuple-level WSDs. This tuple-level normalization camho
ing a query involving several selections and projections orever lead to a exponential blowup in the representation size
the same relation, we again merge these operators and péiis is necessary, since special cases of confidence compu-
form the steps of the algorithm of Figure 16 only once. Wetation, such as deciding whether the tuple certain, i.e., it
further tuned the query evaluation by employing indices anaccurs in all worlds represented by a WSD, are known to be
materializing often used temporary results. NP-hard [9].



Confidence computation on tuple-level WSDs is based
on the observation that worlds containingorrespond to Zlcg:‘tmep ::iglﬁ;”blep(m
local worlds from a componerdt where some tuples equal beggin poss
t. Since the local worlds of a component define non-overlap P.=0;
ping sets of worlds, to compute the probability that a com for each distinctt in possible(R) do
ponentC defines tuples that equalwe only need to sum ond add(t, conf(t)) to P;
up the probabilities of the local worlds @f that definet.
Furthermore, since any two components of a WSD are ind
pendent of each other, the events defining that a given conhig: 19 Computing possible tuples together with their confidences.

ponent defines tuples that equare pairwise independent.

We next consider the operator possible that computestr\gxample 11Consider the probabilistic WSD of Figure 4,
tuples appearing in at least one world of the world-set. ForQUeryQ — 7s(R), and tuplet = (185). LetC; denote the
mally, for a relation na'méé and a world-se\, the Operator ot component. This component represents the answer to
possible is defined as: the projection query. There are two tuple ids whose values
possible(R)(A) := {t | A € A,t € R4} match the given tuple, and they are aIready defined in the

same componen®;. To compute the confidence ofwe
therefore need to sum up the probabilities of the first and
I/ computeP Hle(R) second local world, obtaining2+0.4 = 0.6. The following
1= possible . . .
algorithm possible (relation? over schemaA, ..., A) table contains the possible tuples in the answé) together

begin with their confidences:
lettq,...,tn be the ids of tuples iR defined by input WSDV;
/I Keep only columns of components of the input W8D
/ that define possible tuples iR
for each C; € W do C; := my,(C;) where
i = S(Cz)ﬂ{RtA [te{tr,...,tn}, A€ {A1,...,An}}

compute equivalent tuple-level WS of the above set of/; u
(i.e., compose components defining fields of the same tuple)

P := 0; //initially, no tuple is possible

for eachtuple idt € {t1,...,tn} do 7 Normalizing probabilistic WSDs
for eachC € W’ do

addmr.i Ay, Rt Ap (OA, R, 710 (C)) O]

end The normalization of a WSD is the process of finding an

equivalent probabilistic WSD that takes the least spacen@gmo
all its equivalents. Examples of not normalized WSDs are
non-maximal WSDs (with respect to product decomposi-
tion) or WSDs defining invalid tuples (i.e., tuples that d@ no

Figure 18 gives an algorithm for computing the set ofappear in any world). Note that removing invalid tuples and
possible tuples of a relatioR in the non-probabilistic case. maximizing world-set decompositions can be performed in
The algorithm first discards all columns of components inpolynomial time [9].
the input WSD that do not define possible fields for tuples  Figure 20 gives three algorithms that address these nor-
of R. It then computes an equivalent tuple-level WSD rep-malization problems. The second algorithm decomposes a
resentation of the set of components of the previous step. Asomponent into a set of components whose product is equal
for confidence computation, this tuple-level normalizatio to the original component. A polynomial-time algorithm for
can lead to an exponential blowup. Also here, this is unfinding the prime factorization of a relation, i.e. for maxi-
avoidable, since a WSD can represent exponentially manyally decomposing a relation is presented in [9]. The third
possible tuples (similar to or-sets). In case the input WSRxlgorithm scans for identical tuples in a component and com-
is already tuple-level, it then encodes polynomially manypresses them into one by summing up their probabilities.
possible tuples and our algorithm would only need polyno-
mially many computation steps. Example 12The WSD of Figure 11 (a) has only-values

In the probabilistic case, the operator possible can be exXer P.to.C. This means that the tuptg of P is absent (or
tended to also compute the confidence of the possible tupleisvalid) in all worlds and can be removed. The equivalent
see Figure 19. Confidences of tuples in query results caW/SD of Figure 21 shows the result of this operation. Similar
then be computed in two steps: First computing the quergimplifications apply to the WSD of Figure 11 (b), where
result, and then computing the possible tuples and their cortuplest, andts are invalid. O
fidences.

Fig. 18 Computing possible tuples.



algorithm removeinvalid_tuples
begin
foreach1 < i < |P|maz andA € S(P) do begin
let C be the component aP.i;. A;
if tpt, 4 ={L}then
for each B € S(P) do begin
let C’ be the component aP.t;.B;
project awayP.t;. B from C’;
end
end
end

algorithm decompose
begin
while no fixpoint is reachedo begin
let C be a component such that
C=C1x...xCh;
replaceC by C4,...,Ch;
end
end

algorithm compress

— single-tuple equality-generating dependenciEthe form

¢1/\¢2/\.../\¢m:>¢0

where eacly;(A;) = A;0;c;,0 < i < mis a binary op-
eration comparing the value of an attribute € sch(R)
with a constant:;. Relation R satisfies a single-tuple
equality-generating dependefi@gd (denoted by? =
egd) if for each tuplet € R

t.A1 01y AN AL A, O o = t.Ag b co

To remove worlds inconsistent with an integrity con-
straints from a set of possible worlds represented as a WSD
we need to exclude combinations of values from the com-
ponents that cause the constraint to be violated. For that
we may need to compose components to be able to enforce
the dependencies. Recall Example 2 from the introduction.
The uniqueness constraint for the social security number is

a functional dependency — N, M, equivalent to the two
functional dependencies — N andS — M. To enforce
this constraint we combined the twgfields ¢;.S andt,.S)
in the same component and removed the worlds in which
w.A:=wy.Aforall A e S(C), A+ P; both have the same value (see Figure 4).
replacews , we in C by w; Assume now that from a reliable source we have the in-

end formation that the person with social security number 785
end is married. The current decomposition allows invalid com-
binations of values: those worlds in whi¢h.S = 785 and
t1.M # 1 (1 is the code for married). To remove incon-
sistencies, we must compose the first and the third compo-
nents and remove from the new component all tuples that do
not satisfy the given dependency. When removing tuples of
a component we must also renormalize the probabilities of
the remaining tuples so that they sum up to one again. This
is easily done in the following way: if a tuple with proba-
Example 13The 4-WSD of Figure 13 admits the equiva- bility = is removed from a component, apds the original
lent 5-WSD, where the third componentis decomposed intprobability of a tuple that remains, then the new probapilit
two components. This non-maximality case cannot appeay of the second tuple is recomputedigs= y/(1 — z). In
for UWSDTSs, because all but the first component contairbur example, as a result of the data-cleaning step we obtain
only one tuple and are stored in the template relation, whergie 4-WSD in Figure 22.
no component merging occurs. U Enforcing a dependency on a WSD resembles the selec-
tion operation with conditioméB presented in Chapter 4.
In both cases we identify dependencies across components
and compose dependent components. Nevertheless there is

In this section we address the problem of removing incon2" IMportant difference between the two operations. In the

sistent worlds from a probabilistic database. We present gelec'uon operation we are interested in finding, for each

method calledChase[3,24,2] in the spirit of the work of world, the sgbset of tuplesglid in it. On the other hand,
[18] for data cleaning on a world-set decomposition of a re—When enforcing dependencies on a WSD, we want tofget

lation R, given a set of dependenciés maximal subset of the possible worklisch that the depen-

We consider the following types of dependencies over éiencies hold foall tuples If a tuple has no valid values in
relationR: any of the worlds, this automatically means that the dabas

is inconsistent with respect to the given set of dependencie

begin
while no fixpoint is reachedo begin
let C be a componenty;, w2 € C such that
wi1.A=wy. Aforall A e S(C), A # P;
let w be a tuple such that.P := w;.P + ws.P,

Fig. 20 Algorithms for WSD normalization.

Pt1.A Pt1.B Pt,.C
1 |x| L 1 |x
2 2 7

Pi3.A Pt3.B Pt3.C
6 |“[ 6 || 7

Fig. 21 Normalization of WSD of Figure 11 (a).

8 Chasing Dependencies

— functional dependencieenoted by

. 4 Subsequently, whenever we refer to edgs, we mean single-tup
A1, Ay — Ag, where A; € sch(R),0<i<m edgs.



t1.St2.St1. M| P to.M P
185 186 10.1842 1025
185 186 2|0.0790 | x St;n:\tlh E x Btfdxn '; «| 2025
785 185 1|0.3684 3 |0.25
785 186 1 |0.3684 4 |0.25

Fig. 22 Result of chasing = 785 = M = 1 on the WSD in Figure 4.

As seen in the previous examples, cleaning inconsistentorldss. Ay # t.Ag, we can leave the components foA,
worlds involves two basic steps: (1) composing dependerand¢. Ay, unmerged. The same idea can be applied for an
components into one and (2) removing inconsistent tuplesquality-generating dependency
from the resulting component, and normalizing the probabil
ities of the remaining tuples so that they sum up to one. ExC9¢ = A1 01 er Ao A A O e = Ao o o
ecuting these two steps for each dependency and each (paiples and an attributel,;, 1 < i < m, such that,(¢.4;) =
of) tuple(s) in the input WSD results in a WSD satisfying all true in all worlds, or¢g(t.Ao) is alwaysfalse, we do not
constraints. need to compose the corresponding component.

Before proceeding to the formal algorithm for chasing  The chase procedure is not affected by the order in which
dependencies, we introduce the following notations. dependencies are chased, as it always produces the set of
If fd = A4,..., A, — Agis afunctional dependency for possible worlds consistent with the given dependencies-Ho
relation R, s,t are tuples ids inkR and all attributess. A;,  ever, order may have an impact on the size of the resulting
t.A; with 0 < i < m are defined in a compone6t, and decomposition. This means that the world-set decomposi-
tc is atuple ofC, we will usetc |= fd(s,t) to express the tion produced by the Chase algorithm may be non-maximal,
condition that the dependengyi is satisfied fors andt in  which was also the case with querying. Consider for exam-

the worldstc: ple the WSD in Figure 23 (a) and the set of two dependen-
to | fd(s,1) < cles
N(to-(5.4:) = te.(t.A) = te.(s.4g) = te.(t.Ao) D={d=(B~-C0C)d=(A=1=B#2)}
i Chasingd; = B — C requires the compositions of the
Similarly, if t is a tuple id for relatiorR, components fot;.B, t2.B, t1.C andt,.C to remove the worlds

in whicht,.B = t5.B andt;.C # t,.C' (see Figure 23 (c)),
and enforcingl, deletes tuples from the resulting compo-
is an equality-generating dependency aRemd all attributes Nent (see Figure 23 (d)). However, if we start witky in
t.A;,0 < i < m are defined in a compone@t andt¢c isa  the resulting WS4, will also be satisfied and no merg-
tuple of C, tc |= egd(t) is true if and only if the dependency ing of components will be necessary (Figure 23 (e)). Note

egd=A1601c1 N ... NAp, Oy e = Ag Op o

egd is satisfied for in the worldstc: that although the 'two Worlq-set decompositions are diffgr-
ent, they are equivalent with respect to the set of possible
tc E egd(t) & /\(tc-(t-Ai) 0; c;) = tc.(t.Ag) o co worlds they represent. Indeed, the WSD in Figure 23 (d) can

i be reduced to the one in Figure 23 (e) using the normaliza-

The algorithm of Figure 24 implements the data cleandion techniques from Section 7.
ing for a given world-set decomposition and a set of depen-  AS in the case of querying, the chase might need to merge
denciesp. Note that as opposed to the traditional chase of" arbitrary number of components. However, if constraints
tableaux ([24]), here we do not need a fixpoint computa@’€ local and do not span over numerous tuples, the chase
tion but a single pass over all dependencies and tuples #ill 2lso behave nicely.
the WSD. The reason for this is that enforcing a functional ~ The following theorems prove the correctness of the Chase
or equality-generating dependency on a WSD cannot induc@gorithm.
further inconsistencies in the data. Theorem 2 The algorithm of Figure 24 terminates on all

We can further refine the data cleaning rules and avoighputs.

redundant operations if we make the following observations
For a functional dependency Theorem 3 (Correctness)or a WSDW and a set of de-

pendencie®, the algorithm of Figure 24 exits with an error
fd=A41,..., An — Ao message if no world is consistent with the given set of depen-
dencies, or computes a WS’ s.t. rep(W’) C rep(W)

and tupless andt, if for an attribute4;, 1 <i <mitholds 54 for eachd € rep(W):

thats.A; = t.A; in all worlds, we do not need to join the )
components defining.4; andt.4,. Alternatively, if in all A € rep(WV’) & AE .
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(e) Result of chasings befored;

Fig. 23 Impact of order on chasing.

/I chase a set of dependencigs
algorithm chase
begin
for each d for relationR in ¢ do
ifd=A,...,An — Apthen//disafd
for eachs,t € R : {s, ¢} ¥ din some worlddo begin
let Cj,, Cy, be the component ¢f A;,t. A;,
respectively, for each < i < m;
replaceCjy, ..., Cj,.,Crys- -+, Ch,p, INW
by their productC;
foreachts € C do
if tc ¥ d(s,t) then
removet. from C;
foreacht,, € C do
/I normalize probabilities
te.P =1t.P/(1—tc.P),
end if
if C = 0 then error("World-set is inconsistent”);
end
elseifd =¢1 N... A pm — ¢o /ldis an egd
foreacht € R : {t} ¥ din some worlddo begin
let C; be the component afA;, for0 < i < m;
replaceCy, ..., Cp in W by their produciC;
for eachts € C do
if tc ¥ d(t) then
removet. from C,
for eacht;, € C do
/I normalize probabilities
ty,.P =t,.P/(1—tc.P);
end if
if C = 0 then error("World-set is inconsistent.”);
end;
end.

Fig. 24 Algorithm for chasing integrity constraints on probalitis

WSDs.

9 Experimental Evaluation

The literature knows a number of approaches to representing
incomplete information databases, but little work has been
done so far on expressive yet efficient representation sys-
tems. An ideal representation system would allow a large set
of possible worlds to be managed using only a small over-
head in storage space and query processing time when com-
pared to a single world represented in a conventional way.
In the previous sections we presented the first step towards
this goal. This section reports on experiments with a large
census database with noise represented as a UWSDT, where
the focus is on representation sizes and processing times fo
relational algebra queries on world-set decompositiores. W
do not investigate here the confidence computation aspect
of query processing. Followup work of the authors [23] re-
ports on experiments using scalable confidence computation
techniques.

Setting. The experiments were conducted on a Dual Intel
Xeon 5335 processor machineith 32 GB RAM, running
Red Hat Enterprise Linux 4 (Linux Kernel 2.6.18) and Post-
greSQL 8.3 configured to use 256MB as buffer.

Datasets The IPUMS 5% census data (Integrated Public
Use Microdata Series, 1990) [27] used for the experiments is
the publicly available 5% extract from the 1990 US census,
consisting of 50 (exclusively) multiple-choice questiolts

is a relation with 50 attributes and 12491667 tuples (approx
12.5 million). The size of this relation stored in PostgréSQ

is ca. 3 GB. We also used excerpts representing the first 0.1,
0.5,0.75,1, 5, 7.5, and 10 million tuples.

5 The processor has 8 cores running at 2.0 Ghz. The experiments
were run on a single core.



Adding Incompleteness We added incompleteness as fol- Chase times
lows. First, we generated a large set of possible worlds by 10000 — —T T3

— T
introducing noise. After that, we cleaned the data by remov- § 1000 o_%éﬁf; L e
ing worlds inconsistent with respect to a given set of depen- 5 obogh =
dencies. Both steps are detailed next. g 1 i S |
We introduced noise by replacing some values with or- é 10 fp— B 60 4

set$. We experimented with different noise ratios: 0.005%,
0.01%, 0.05%, 0.1%. For example, in the 0.1% scenario one
in 1000 fields is replaced by an or-set. The size of each or-set _ ~ tuples in millions (In scale)

was randomly chosen in the I’an@emin(& size)], where Fig. 26 Time for chasing the dependencies of Figure 25 on UWSDTs

. . . . . .. of various sizes and densities.
sizels the size of the domain of the respective attribute (with

[y

10
125

1
— 0 10
~

0.1
0.5
0.75

a measured average of 3.5 values per or-set). In one scenario Density | 0.005% 0.01%  0.05% 0.1%
we had far more tha@®24449 worlds, where 624449 is the _Initial | #comp 31095 62517 312699 624311
number of the introduced or-sets and 2 is the minimal size Aftér | #comp | 30820 61945 309788 618466
. chase | #comp>1 | 268 547 2805 5612
of each or-set (cf. Figure 27). le] 105150 211770 1061212 2117219
We then performed data cleaning using 12 equality gen- |R| 125M  125M  12.5M 12.5M
erating dependencies, representing real-life consgraint ~ After | #comp 674 1503 7333 14251
the census data, shown in Figure 25. These represent rea@: | #comp-1 | 4 7 51 76
. . ) |C| 1773 4017 19225 37661
life constra!r?ts onthe cgnsus data. The f|rst_ one_ for example IR| 46608 46827 48460 50466
says that citizens born in the USA are not immigrants, andafer | #comp 21 76 256 459
the second one requires that citizens who served in the secQ- #comp>1 | O 1 4 16
ond world war have done their military service. Note that }g || 22996 2435029 182322175 28356116
or-set relatlons' are not expressive enough to represent thg— Aicomp 61 113 795 961
cleaned data with dependencies. Qs #comp>1 | 0 0 0 0
To remove inconsistent worlds with respect to given de- |C 136 244 1075 2023
pendencies, we apply the chase algorithm from Section 8 - LR| i;ggl ;fgég 1123253 ;fg?g
P . er com
see also [6]. The chas_e is implemented in Java as a layer o , #Comf;l 15 29 141 322
top of PostgreSQL. Figure 26 shows a log-log scale of the I 4870 9117 46715 94747
times obtained for chasing the 12 dependencies on datasets |R| 402349 402541 404031 405830
with different sizes and uncertainty ratios. After | #comp 16 36 175 266
Qs #comp>1 | 16 36 175 266
|C| 24451 40552 279295 561545
1 | CITIZEN —0 — IMMIGR —0 |R| 158519 188790 378849 584207
2 | FEB55 - =  MILITARY 1=4 After | #comp 94 193 950 1877
3| KOREAN =1 = MILITARY !=4 Qs #comp>1 | 0 0 0 0
4 | VIETNAM =1 = MILITARY !=4 IC] 519 1077 5303 10304
2 | Wwil - —  MILITARY 1—4 |R| 229592 230102 234195 239621
g MQEEQ:: ;8 j Egigggg : ;g Fig. 27 UWSDTs characteristics for 12.5M tuples.
8 | LANG1 = = ENGLISH !=4
9 | RPOB —-52 = CITIZEN 1—0 Size Density | sizel | size 2| size 3| size 4 and more
10 | SCHOOL =0 = KOREAN !=1 sM 0.005% | 12409 | 105 | 5
11 | SCHOOL =0 = FEBS55 =1 SM 0.01% | 24454 | 213 | 7
12 | SCHOOL -0 =  WWII 1=1 5M 0.05% 122652 | 1065 | 38

5M 0.1% 245561 | 2142 | 93
Fig. 25 Example dependencies for cleaning census data. 10M 0.005% | 24310 | 200 6

10M | 0.01% | 48943 | 430 | 16
. _ ~10M | 0.05% | 245373 2164 | 83
Figure 27 shows the effect of chasing our dependenciesiom | 0.01% | 497618| 884 | 0

on the 12.5 million tuples and varying placeholder density. 12.5M | 0.005% | 30552 | 261 | 7
As a result of merging components, the number of com-12:5M | 0.01% | 61398 | 522 | 25

onents with more than one placeholder (#cortipgrows 12.5M | 0.05% | 306983 2703 | 98
b ; . P MPQrowS — —77EM | 0.1% | 612854| 5384 | 223
linearly with the increase of placeholder density, reaghin

about 1.7% of the total number of components (#comp) ifFig. 28 Distribution of component size (number of placeholders per
component) of the chased relations for different sizes amgites.

Q| O|O(O|O| R O|FR|IN OO

6 We consider it infeasible to iterate over all worlds in sestamy
storage or to compute UWSDT decompositions by comparing the
worlds.



that compared to chasing, query evaluation leads to a much

Q1 = oyeaRsCH=17ACITIZEN=0([?) smaller amount of component merging.

Q2 = TPOWSTATE,CITIZEN,IMMIGR (TCITIZEN < >0AENGLISH>3 (1)) Figure 30 shows that all six queries admit efficient and

Q3 := TPOWSTATE, MARITAL FERTIL (TPOWSTATE=POB scalable evaluation on UWSDTs of different sizes and place-
(rERTIL> 4nMARITAL=1 (R))) holder densities. The Figure plots on a log-log scale thk eva

Q4 = OFERTIL=1A (RSPOUSE=1vRSPOUSE=2) (R) uation time versus the size of the relation, and each line cor

responds to a different noise density. The evaluation time
for all queries but)s on UWSDTSs follows very closely the
evaluation time in the one-world case. The one-world case
corresponds to density 0% in our diagrams, i.e., when no
placeholders are created in the template relation and eonse
quently there are no components. In this case, the original
gueries (that is, not the rewritten ones) of Figure 29 were
evaluated only on the (complete) template relation.

the 0.1% case. A linear increase is witnessed also by the Although the evaluation of join conditions on UWSDTs
chasing time when the number of tuples is also varied. Figzan require exponential time (due to the composition ofarbi
_ure 28 breaks down the distribution of component size, thaﬁarily many components), our experiments suggest thgt the
is the number of placeholders per component for some Qfehave well in practical cases, as illustrated in Figure&B0
our scenarios. One can see that the number of componenjgq (e) for querie®); and Qs respectively. The time re-
with larger size drops down very quickly and most fieldsyorteqd for; does not include the time to evaluate its sub-
remain independent. Since we used an anonymized VerSiQﬂJerieng andQs. In our largest scenarios (12.5M tuples
of the census dataset, we did not perform the chase with4 varying densities of uncertainty), the time to evaluate
key dependencies like the ones described in Section 1. NOEﬁJeryQ5 increases non-linearly, partly due to the change of

that when chasing dependencies we only need to COMPO¥Riery plans used by PostgreSQL and triggered by the in-
components if the possible values for the fields allow for &ease in the input data size.

constraint to be violated, that is, if there is an invalid ¢@m In summary, our experiments show that UWSDTSs be-
nation of values for the respective fields. Thus while chasin have very well in practical cases. We found that the size of

key constraints can in theory require the composition of aljyspTs obtained as query answers remains close to that
components for a given attribute, this is unlikely to happeny¢ yne of their worlds. Furthermore, the processing time for
in pract|ce. as it w.|II require the existence of a chain of pair queries on UWSDTSs is comparable to processing one world.
of uncertain key fields that share at least one value. The explanation for this is that in practice there are rather
Queries Six queries were chosen to show the behavior ofew differences between the worlds. This keeps the mapping
relational operators combinations under varying selgefs/y  and componentrelations relatively small and the lion'ssha
(cf. Figure 29). Queryy; returns the entries of US citizens of the processing time is taken by the templates, whose sizes
with PhD degree. The less selective quély returns the are about the same as of a single world.

place of birth of US citizens born outside the US that do not

speak English well. Querg); retrieves the entries of wid-

ows that have more than three children and live in the statgq Application Scenarios

where they were born. The very unselective qu@uyre-

turns all married persons having no children. QuUryses  oyr approach is designed to cope with large sets of possi-
queryQ» and@; to find all possible couples of widows with - pje worlds, which exhibit local dependencies and large com-
many children and foreigners with limited English languageyonalities. This data pattern can be found in many applica-
proficiency in US states with IPUMS index greater than SQjons In addition to the census scenario used in Section 9,
(i.e., eight ‘states’, e.g., Washington, Wisconsin, Alba \ve next discuss two further application scenarios that can
Finally, queryQ retrieves the places of birth and work of nrqit from our approach. As for the census scenario, we
persons speaking English well. consider it infeasible both to iterate over all possible d®r
Figure 27 describes some characteristics of the answeis secondary storage, or to compute UWSDT decomposi-
to these queries when applied on the cleaned 12.5M tuples tibns by comparing the worlds. Thus we also outline how
IPUMS data: the total number of components (#comp) anéur UWSDTSs can be efficiently computed.
of components with more than one placeholder (#cop  Inconsistent databasesA database is inconsistent if it does
the size of the component relatiéh and the size of the tem- not satisfy given integrity constraints. Sometimes, ecifay
plate relationR. One can observe that the number of com-the constraints is undesirable. One approach to manage such
ponents increases linearly with the placeholder densitly aninconsistency is to consider so-callednimal repairs i.e.,

Q5 := dpowsTATE— P, (TPOWSTATE> 50 (Q2)) DXP, =P,
IpOWSTATE— P, (OPOWSTATE > 50 (@3))

QS ‘= TPOWSTATE,POB (UENGLISH:B (R))

Fig. 29 Queries on IPUMS census data.
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Fig. 30 The evaluation time for queries of Figure 29 on UWSDTSs ofmasisizes and densities.

consistent instances of the database obtained with a mlinimponent for all interrelated values. Additionally, eachfelif
number of changes [10]. A repair can therefore be viewed asnt kind of information, like medications, diseases, isexio
a possible (consistent) world. The number of possible miniin a separate template relation.

mal repairs of an inconsistent database may in general be ex-

ponential; however, they substantially overlap. For tleatr

son repairs can be easily modeled with UWSDTs, where th@ 1 conclusion

consistent part of the database is stored in templateoakti

and the differences between the repairs in components. Cuths article presents one of the first database approaches to
rent work on inconsistent databases [10] focuses on findin@anaging probabilistic data on a large scale. We describe
consistent query answetise., answers appearing in all pos- world-set decompositions which can compactly store large
sible repairs (worlds). With our approach we can providesets of possible worlds by exploiting independence of uncer
more than that, as the answer to a query represents a setigfnty at the attribute level. WSDs form a strong representa
possible worlds. In this way, we preserve more informationion system for any relational query language. This is an im-
that can be further processed using querying or data clganimyortant property for implementing operations that tramsfo
techniques. world-sets such as data cleaning or evaluating expressive
Medical data. Another application scenario is modeling in- queries on top of the world-set; it also allows for decouplin
formation on medications, diseases, symptoms, and medicgbnfidence computation from relational algebra processing
procedures, see, e.g., [1]. A particular characterist&uch  and using a preferred query plan for optimal performance.

data is that it contains a big number of clusters of interde©ur experimental evaluation shows that WSDs admit effi-
pendent data. For example, some medications can interagent query evaluation.

negatively and are not approved for patients with some dis-

eases. Particular medical procedures can be prescribed for

some diseases, yvhlle they are forbidden for others_. In thﬁcknowledgments
large set of possible worlds created by the complex interac-

tion _of medicgtions, diseases, procedures, and symptoms,-rff)]is work has been supported by grant KO 3491/1-1 of the
particular patient record can represent one or a few pmss'bberman National Science Foundation (DFG) and later by

worlds. Our apprqach can keep intgrdependent data WithiQrant 11S-0812272 of the US National Science Foundation.
components and independent data in separate components.

One can ask then for possible patient diagnostics, given an
incompletely specified medical history of the patient, ar fo
commonly used medication for a given set of diseases.

In [1] interdependencies of medical data are modeled A8 http:/www.medicinenet.com.
links. A straightforward and efficient approach to wrap such - serge Abiteboul, Richard Hull, and Victor VianBoundations of
data in UWSDTSs is to follow the links and create one com-  DatabasesAddison-Wesley, 1995.
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