

Edinburgh Research Explorer

Rewriting Regular XPath Queries on XML Views

Citation for published version:
Fan, W, Geerts, F, Jia, X & Kementsietsidis, A 2007, Rewriting Regular XPath Queries on XML Views. in
Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15-20, 2007. Institute of Electrical and Electronics Engineers (IEEE), pp. 666-675.
https://doi.org/10.1109/ICDE.2007.367912

Digital Object Identifier (DOI):
10.1109/ICDE.2007.367912

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15-20, 2007

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1109/ICDE.2007.367912
https://doi.org/10.1109/ICDE.2007.367912
https://www.research.ed.ac.uk/en/publications/7f02eac9-fe15-40e7-89fa-ca81211bcdc8

Rewriting Regular XPath Queries on XML Views

Wenfei Fan 1,2 Floris Geerts 1,3 Xibei Jia 1 Anastasios Kementsietsidis 1

1 University of Edinburgh 2 Bell Laboratories 3 Hasselt University/Transnational Univ. of Limburg
{wenfei,fgeerts,xjia,akements}@inf.ed.ac.uk

Abstract

We study the problem of answering queries posed on
virtual views of XML documents, a problem commonly en-
countered when enforcing XML access control and integrat-
ing data. We approach the problem by rewriting queries
on views into equivalent queries on the underlying docu-
ment, and thus avoid the overhead of view materialization
and maintenance. We consider possibly recursively defined
XML views and study the rewriting of both XPath and reg-
ular XPath queries. We show that while rewriting is not
always possible for XPath over recursive views, it is for reg-
ular XPath; however, the rewritten query may be of expo-
nential size. To avoid this prohibitive cost we propose a
rewriting algorithm that characterizes rewritten queries as
a new form of automata, and an efficient algorithm to eval-
uate the automaton-represented queries. These allow us to
answer queries on views in linear time. We have fully im-
plemented a prototype system, SMOQE, which yields the first
regular XPath engine and a practical solution for answering
queries over possibly recursively defined XML views.

1. Introduction

In many applications users are allowed to access an XML

document only by querying a view of the data. The need
for this is evident in, for example, enforcing access control
on XML data [2, 5, 9]. To prevent improper disclosure of
sensitive or confidential information of XML data residing
in a server, the server defines an XML view for each group
of users, consisting of all and only the information that the
users are authorized to access. While the users may query
the view, they are not allowed to directly query or access
the underlying document (referred to as the source). With
this comes the need to answer queries posed on the views.
One way to do this is to first materialize the views and then
directly evaluate queries on the views. However, it is of-
ten too costly to materialize and maintain a large number
of views, a common scenario when many groups of users
with different access privileges query the same source. A
more realistic approach is to rewrite (aka. translate, refor-
mulate) queries on the views into equivalent queries on the
source, evaluate the rewritten queries on the source without
materializing the views, and return the answers to the users.

We study how to rewrite XML queries posed on vir-
tual XML views into equivalent queries on the underlying
XML document. For XML queries we start with a fragment
of XPath, which supports recursion (the descendant-or-self
axis ‘//’), union and complex filters (predicates). This class
of XPath queries is commonly used in practice and is essen-
tial to XQuery, XSLT and XML Schema. We consider XML

views defined by annotating a view DTD with a collection
of (regular) XPath expressions, along the same lines as how
commercial systems specify XML views [15, 21, 20]. An
XML view defined as above is a mapping σ : D → DV in
the global-as-view style, from XML documents of the docu-
ment DTD D to documents of the view DTD DV . When the
view schema DV is recursively defined, i.e. if some element
type in DV is defined in terms of itself, so is the view. The
central technical problem studied in this paper is:

The rewriting problem is to find an algorithm that, given a
view definition σ and an XPath query Q over the view DTD

DV , computes an XPath query Q′ over the document DTD

D such that for any XML tree T of D, Q(σ(T)) = Q′(T).

While there has been a host of work on rewriting XPath
queries into SQL queries for XML views of relational data
(see [17] for a survey), little previous work has considered
rewriting XPath queries into XPath queries for XML views
of XML data. In this context, query rewriting has only been
studied for non-recursive XML views, over which XPath
rewriting is always possible [9]. However, query rewriting
for recursive views is still an open problem [17].

Recursive DTDs naturally arise when, e.g., specifying
biomedical data (see the Gene Ontology database, GO [7]);
in fact [3] shows that out of 60 real-world DTDs analyzed,
more than half (35) of them were recursive. It is the reason
that Oracle supports fully recursively defined XML views
(AXSD [21]) and that IBM also allows a class of recursively
defined XML view (DAD [15]). However desirable, the
rewriting problem is more intriguing for recursively defined
views, due to the interaction between recursion in XPath
queries (e.g., ‘//’) and recursion in the view definition.

Example 1.1: Consider a hospital DTD D shown as a graph
in Fig. 1(a). A hospital document of D consists of a list of
departments, and each department has a list of in-patients
(i.e. patients who are currently residing in the hospital; we

1-4244-0803-2/07/$20.00 ©2007 IEEE. 666

name

address

hospital

patient

doctor

street city zip

pname

parent

visit

treatment

medication

type

* *

*

dname specialty

date

diagnosis

department

*

*

test

sibling

(a) document DTD D

hospital

patient

parent record

diagnosis

* *
*

empty

(b) view DTD DV

production: hospital → patient∗
σ0(hospital,patient) = department/patient[visit/treatment/

medication/diagnosis/text() = ‘heart disease’] /*Q1*/
production: patient → parent∗ , record∗
σ0(patient, parent) = parent /*Q2*/
σ0(patient, record) = visit /*Q3*/

production: parent → patient
σ0(parent, patient) = patient /*Q4*/

production: record → empty + diagnosis
σ0(record, empty) = treatment/test /*Q5*/
σ0(record, diagnosis)= treatment/medication/diagnosis /*Q6*/

(c) view specification

Figure 1. Example: document and view DTDs and view specification.

use ‘∗’ on an edge to indicate a list). For each patient, the
hospital maintains her name (pname), address, records of
visits, each including the visit date and treatment which is
either a test or some medication (dashed edges indicate dis-
junction), as well as information about the treating doctor.
Each name, pname, street, city, zip, date, type, dname, spe-
cialty has a single text node (PCDATA) as its child (omitted
in the figure). The hospital also maintains family medical
history by means of the recursively defined parent and sib-
ling. It records the same information of ancestors with those
of in-patients, by sharing the description for patients.

A view σ0 is defined for a research institute studying in-
herited patterns of heart disease, with the view DTD depicted
in Fig. 1(b) (the view is defined in Example 2.2). Obliged
by the Patient Privacy Act, the view reveals only those pa-
tients who have heart disease, along with their parent hier-
archy. While the institute may access diagnosis information
of those patients and their ancestors, it is denied access to
their name, address, test and doctor data.

Consider an XPath query Q posed on the view, which is
to find patients whose ancestors also had heart disease:
Q: patient[*//record/diagnosis/text()=‘heart disease’].

Here ∗ denotes a wildcard, i.e., any element. However, it is
impossible to rewrite Q on the view to an equivalent query
(in the XPath fragment mentioned above) on the underlying
hospital document. This is because ‘//’ in Q is supposed
to traverse only the parent hierarchy on the view, i.e., a se-
quence of the (parent/patient) pattern; however, when trans-
lated to a query Q′ on the source, Q′ necessarily retains
‘//’ since the view DTD is recursive, and ‘//’ in Q′ may ac-
cess siblings of those patients, although siblings are not in
the view and are not allowed to be accessed. An incorrect
translation may lead to serious security breach. �

In response to this we develop both fundamental results
and practical techniques for the rewriting problem. The
main contributions of the paper include the following.

1. Closure Properties. On the theoretical side, we study the
closure property of XPath under query rewriting: is it al-
ways possible to rewrite XPath queries on views to XPath
queries on the source? We prove that XPath is not closed
under query rewriting for recursive views. In light of this
we consider a mild extension of XPath, regular XPath [19],

which uses the general Kleene closure E∗ instead of the ‘//’
axis. We show that regular XPath is closed under rewriting
for arbitrary views, recursive or not. Since regular XPath
subsumes XPath, any XPath queries on views can be rewrit-
ten to equivalent regular XPath queries on the source.

However, the rewriting problem is EXPTIME-complete:
for a (regular) XPath query Q over even a (non-)recursive
view, the rewritten regular XPath query on the source may
be inherently exponential in the size of Q and the view DTD

DV . This tells us that rewriting is beyond reach in practice
if Q is directly rewritten into regular XPath.

On the practical side, to avoid the exponential blow-up
we develop the following techniques for answering (regu-
lar) XPath queries posed on XML views.

2. Automaton-based rewriting for (regular) XPath. We in-
troduce a rewriting method based on a notion of mixed
finite state automata (MFA) to represent rewritten regular
XPath queries. An MFA is a nondeterministic finite au-
tomaton (NFA) “annotated” with alternating finite state au-
tomata (AFA), which characterize data-selection paths and
filters of a regular XPath query Q, respectively. The algo-
rithm rewrites Q into an equivalent MFA M. In contrast
to the exponential blowup, the size of M is bounded by
O(|Q||σ||DV |). This makes it possible to answer queries
on views via rewriting. To our knowledge, although a num-
ber of automaton formalisms were proposed for XPath and
XML stream (e.g. [6, 13]), they cannot characterize regular
XPath queries, as opposed to MFA.

3. Evaluation of rewritten query. We provide an efficient al-
gorithm for evaluating MFA M (rewritten regular XPath
queries) on XML source T . While there have been a num-
ber of evaluation algorithms developed for XPath, none is
capable of processing regular XPath queries. Previous algo-
rithms for XPath (e.g., [16]) require at least two passes of T :
a bottom-up traversal of T to evaluate filters, followed by a
top-down pass of T to select nodes in the query answer. In
contrast, our evaluation algorithm combines the two passes
into a single top-down pass of T during which it both eval-
uates filters and identifies potential answer nodes. The key
idea is to use an auxiliary graph, often far smaller than T ,
to store potential answer nodes. Then, a single traversal
of the graph suffices to find the actual answer nodes. The

1-4244-0803-2/07/$20.00 ©2007 IEEE. 667

algorithm effectively avoids unnecessary processing of sub-
trees of T that do not contribute to the query answer. It is
not only the first efficient algorithm for evaluating regular
XPath queries (MFA), but also provides an efficient (alterna-
tive) algorithm to evaluate XPath queries.
4. Implementation and experimental study. We have imple-
mented a prototype system SMOQE (Secure MOdular Query
Engine [10]) for answering queries on XML views, fully sup-
porting the rewriting and evaluation techniques mentioned
above. Using SMOQE we have conducted an experimen-
tal study, which clearly demonstrates that our evaluation
techniques are efficient and scale well. For regular XPath
queries, we compared the SMOQE evaluation of queries with
that of their XQuery translation, and found that the lat-
ter requires considerably more time. Furthermore, SMOQE

outperforms the widely used XPath engine Xalan (default
XPath implementation in Java 5), whether Xalan uses its in-
terpretive processor or its high performance compiling pro-
cessor (XSLTC), when evaluating XPath queries.

In summary, we provide the first practical and complete
solution to answering regular XPath queries posed on (vir-
tual and possibly recursively defined) XML views. It is
provably efficient: it has a linear-time data complexity and
a quadratic combined complexity. Furthermore it yields
the first efficient technique for processing regular XPath
queries, whose need is evident since regular XPath is in-
creasingly being used both as a stand-alone query language
and as an intermediate language in query translation [11].

Organization. Section 2 reviews (regular) XPath and XML

views. Section 3 discusses the closure property of (regu-
lar) XPath rewriting. Section 4 introduces MFA and Sec-
tion 5 describes the rewriting algorithm. Section 6 presents
the MFA evaluation algorithm, followed by experimental re-
sults in Section 7. Related work is discussed in Section 8,
followed by conclusions in Section 9.

2. Background
In this section we review XPath [4], regular XPath [19],

DTDs and XML views considered in this paper.

2.1. XPath and Regular XPath
We consider a class of regular XPath queries proposed

and studied in [19], denoted by Xreg and defined as follows:

Q ::= ε | A | Q/Q | Q ∪ Q | Q∗ | Q[q],
q ::= Q | Q/text() = ‘c’ | ¬Q | Q ∧ Q | Q ∨ Q

where ε is the empty path (self), A is a label (tag), ‘∪’ repre-
sents union, ‘/’ is the child-axis, and ∗ is the Kleene star; [q]
is referred to as a filter, in which Q is an Xreg expressions,
c is a string constant, and ¬,∧,∨ are the Boolean negation,
conjunction and disjunction, respectively. Regular XPath
extends regular expressions by allowing filters [19], and ex-
tends XPath by supporting Kleene closure Q∗ as opposed to
the restricted recursion ‘//’ (the descendant-or-self axis).

Like XPath queries, when an Xreg query Q is evaluated
at a node v in an XML tree T , it returns the set of nodes of
T reachable via Q from v, denoted by v[[Q]].

We also study an XPath fragment of Xreg, denoted by X ,
which is defined by replacing Q∗ with ‘//’ in the definition
above. Note that given a DTD D of the documents on which
queries are posed, ‘//’ is expressible in Xreg as (

⋃
Ele)∗,

where
⋃

Ele denotes the union of all the labels in D.

Example 2.1: Consider an XML document T conforming to
the document DTD D in Fig. 1(a). The regular XPath query
Q = department/patient[q0 ∧ (q1/(q1)

∗)]/pname
q0 = visit/treatment/medication/diagnosis/text() = “heart disease”
q1 = parent/patient[¬q0]/parent/patient[q0]

when evaluated on T , returns the names of patients who
have heart disease and the disease appears in their ancestors
but always skips a generation. Such queries, which look for
certain patterns, are often encountered in medical research.
Note that the query is in the fragment Xreg, but is not ex-
pressible in the XPath fragment X . �

In this work we focus on regular XPath queries with only
downward modalities since they are most commonly used
in practice. As will be seen shortly, rewriting queries is
already challenging in this setting. It is thus necessary to
understand rewriting of these basic queries before dealing
with full-fledged XPath or XQuery.

2.2. DTD
Following [9], we represent a DTD D as a triple

(Ele, P, r), where Ele is a finite set of element types; r is a
distinguished type in Ele, called the root type; P defines the
element types: for each A in Ele, P (A) is a regular expres-
sion of the form: str, ε, B1, . . . , Bn, or B1 + · · ·+Bn. Here
str denotes PCDATA, ε is the empty word, Bi is either B or
of the form B∗ where B is in Ele (referred to as a child type
of A), and ‘+’, ‘,’ and ‘∗’ denote disjunction (with n > 1),
concatenation and the Kleene star, respectively. We refer
to A → P (A) as the production of A. This form of DTD’s
does not lose generality since any DTD can be converted to
a DTD of this form by using new element types.

A DTD can be represented as a graph, as shown in Fig. 1.
It is recursive if the corresponding graph is cyclic. For ex-
ample, both DTD’s depicted in Fig. 1 are recursive.

2.3. XML Views
We consider views defined by annotating a DTD [9].

This is similar in spirit to XML view specification in com-
mercial systems, e.g. annotated XSD’s (AXSD) in Oracle
XML DB [21] and Microsoft SQLServer 2000 SQLXML [20],
and Document Access Definitions (DAD) of IBM DB2 XML

Extender [15]. Specifically, we define an XML view as a
mapping σ : D → DV , where D is a document DTD, DV

is a view DTD. Given an XML document T of D, the map-
ping generates an XML view σ(T) that conforms to the view

1-4244-0803-2/07/$20.00 ©2007 IEEE. 668

Query rewriting Views Closure Complexity

from X to X non-rec. Yes [9] EXPTIME-complete
from X to X recursive No NA

from X to Xreg arbitrary Yes EXPTIME-complete
from Xreg to Xreg arbitrary Yes EXPTIME-complete

Figure 2. Closure property and complexity

DTD DV . More specifically, for each element type A and its
child type B in DV (i.e., each edge (A, B) in the DTD graph
of DV), σ maps (A, B) to a query σ(A, B) defined on doc-
uments T of D. Intuitively, given an A element, σ(A, B)
generates its B children in the view by extracting data from
T . The query σ(A, B) is in the regular XPath fragment Xreg

given above. The XML view is recursive if the view DTD

DV is recursive.

Example 2.2: Figure 1(c) defines the view σ0 described in
Example 1.1. The semantics of σ0, informally presented,
is as follows: Given a hospital document T , σ0 generates
a view σ0(T) top-down, which conforms to the view DTD

of Fig. 1(b). The query Q1 (i.e., σ0(hospital, patient)) ex-
tracts from T those patients who have heart disease. For the
patients extracted by Q1, (a) Q2 finds their parent nodes,
which are in turn processed by Q4 and then inductively by
Q2 and Q3 to form the parent hierarchy, and (b) Q3 finds
the record (i.e., visit) data, which can be either be empty
(i.e., test) or diagnosis, handled by Q5, Q6, respectively. �

3. The Closure Property of (Regular) XPath

We next study the closure property and complexity of
XPath and regular XPath query rewriting. The main results
of this section are summarized in Fig. 2.

Formally, an XML query language L is closed under
rewriting if there exists a computable function F : L → L
that, given any view definition σ : D → DV and any query
Q in L over DV , computes query Q′ = F (Q) in L such that
for any document T of D, Q(σ(T)) = Q′(T). While one
may consider translating an XPath query Q to an equivalent
Q′ in a richer language, e.g. XQuery or XSLT, it is vastly
preferable to have an XPath translation since it is more effi-
cient to evaluate XPath queries than queries in the aforemen-
tioned Turing-complete languages. The closure property is
desirable since rewriting should not be penalized by paying
the higher price for evaluating and optimizing queries in a
richer language than that of the original query.

It was shown in [9] that the class X of XPath queries de-
fined in Section 2 is closed under query rewriting for non-
recursive views. However, below we show that in the pres-
ence of recursion in a view definition, this is no longer the
case (even when the annotating queries are in X).

Theorem 3.1: For recursively defined XML views, the frag-
ment X is not closed under query rewriting. �

In contrast, the fragment Xreg of regular XPath given in
the last section is closed under query rewriting:

Theorem 3.2: For arbitrary XML views (recursive or non-
recursive), Xreg is closed under rewriting. �

Example 3.1: Recall the view σ0 : D → DV de-
fined in Example 2.2 and the query Q given in Exam-
ple 1.1. Using the queries Q1, Q2, Q3, Q4 and Q6 from the
view specification in Fig. 1(c), we can compute a correct
rewriting Q′ of query Q. Specifically: Q′ = Q1[Q2/Q4/
(Q2/Q4)∗/Q3/Q6/text() =‘heart disease’]. For any docu-
ment T that conforms to D, Q′(T) = Q(σ0(T)). �

Although it is always possible to rewrite a (regular)
XPath query on a view to an equivalent regular XPath query
on the source, it is often prohibitively expensive if it is to di-
rectly compute Xreg queries as output. Indeed, the rewriting
problem subsumes the problem for translation from NFA’s
to regular expressions. The latter problem is EXPTIME-
complete [8]: the size of the explicit representation of a reg-
ular expression is exponential in the size of the NFA. Worse
still, it remains exponential even if the NFA is acyclic.

Corollary 3.3: There exist a view definition σ : D →
DV and a query Q in X such that for any Q′ in Xreg, if
Q(σ(T)) = Q′(T) for all XML trees T of D, then the size
|Q′| of Q′, when represented as an Xreg query, is exponen-
tial in |Q| and the size |DV | of DV . The lower bound re-
mains intact even when DV is non-recursive. �

4. Mixed Finite State Automata

The exponential lower bound of Corollary 3.3 tells us
that a direct rewriting into (regular) XPath is beyond reach
in practice. To overcome this, in this section we introduce
a new representation of Xreg queries, referred to as mixed
finite state automata (MFA). Along the same lines as NFA

for regular expressions, MFA characterize Xreg queries and
avoid the exponential blowup of rewriting. Leveraging MFA

we shall present a practical solution to the rewriting prob-
lem by providing (a) a low polynomial-time algorithm for
rewriting Xreg queries on a view into the MFA-presentation
of equivalent Xreg queries on the source (Section 5), and
(b) a linear-time algorithm for directly evaluating the MFA-
presentation of Xreg queries on the source (Section 6).

While a regular expression can be efficiently represented
as a graph or a NFA, for Xreg queries a notion of automaton
representation is not yet available. The difficulties of char-
acterizing an Xreg query Q as an automaton include the fol-
lowing: (a) Q typically involves both “selecting” paths that
are to extract and return nodes, and filters that constrain the
extraction; (b) a filter [q] in Q may involve Boolean opera-
tors ‘∧,∨,¬’ and constant test p/text() = ‘c’, which are not
encountered in regular expressions; (c) worse still, it may
be nested: q itself may be a query of the form p[q1]; and
(d) the sub-query p of p∗ may itself contain Kleene closure.

Mixed finite state automata (MFA). In light of this we
define an MFA M as a nondeterministic finite automaton

1-4244-0803-2/07/$20.00 ©2007 IEEE. 669

s1
s2 s3 s4

patient parent

record diagnosis

ε

ε

patient
λ(s4) = X0

sA1

sA2 sA3 sA4

sA5 sA6

ε
parent patient

ε

ε
ε

sA7

∨
∨

text()=“heart disease”

X0 = AFA
0

AFA
0

Ns

Figure 3. NFA Ns and AFA AFA
0 in Example 4.1

(NFA) in which a state may be annotated with an alternating
finite state automaton (AFA). Intuitively, the NFA in M is to
capture the selecting paths of an Xreg query Q and the AFA’s
are to characterize the filters in Q.

Formally, an MFA M is defined to be (Ns, �A), where
(a) �A is a set of bindings Xi = AFA

i , Xi is a name and AFA
i

is an AFA as defined below; (b) Ns = (Ks, Σs, δs, s, F, λ)
is a variation of NFA, referred to as the selecting NFA of
M, where Ks, Σs, δs, s, F are the states, alphabet, transi-
tion function, start state and final states as in the standard
NFA definition; and λ is a partial mapping from Ks to names
Xi, i.e., a state in Ns may be annotated with a single Xi.

We employ a variation of AFA’s [24] to represent Xreg

filters. We define an AFA AFA to be (K, Σ, δ, s, F), where
(a) K is a set of states partitioned into Kop, Kl and F ,
where Kop is a set of operator states marked with AND,
OR or NOT, Kl is a set of transition states, and F is a set of
final states optionally annotated with predicates of the form
text()=‘c’ or position()=k; (b) Σ is a set of labels; (c) s is the
start state in K; and (d) δ is the transition function defined
as follows. (1) For a state s1 in Kop, δ is only defined for
empty string ε and δ(s1, ε) = K ′, where K ′ is a subset of
K . In particular, if s1 is marked with NOT, K ′ has a single
state in it. (2) For each state s2 in Kl, δ is only defined for
a single label A ∈ Σ and δ(s2, A) contains a single state in
K . (3) δ is not defined for any state in F . Observe that ex-
cept for operator states marked with AND or OR, from each
state at most one state can be reached via δ. These operator
states capture Boolean operators ∧,∨ and ¬ in Xreg filters.

Example 4.1: Consider an Xreg query Q0 posed on an XML

tree conforming to the DTD of Fig. 1(b), which is to find all
patients who have an ancestor diagnosed with heart disease:

Q0 = (patient/parent)∗/patient[q0],
q0 = (parent/patient)∗/record/diagnosis[text() =“heart disease”].

Consider MFA M0 in Fig. 3. It consists of a selecting
NFA Ns (shown at the top of the figure), and an AFA AFA

0 ,
corresponding to the filter q0 (shown at the bottom). The
MFA M0 is equivalent to Q0, in the sense that when evalu-
ating M0 at a node n in an XML tree T (described below),
it returns the same set n[[M0]] of nodes as n[[Q0]].

The (conceptual) evaluation of M0 is illustrated, by ex-
ample, in Fig. 4. At the root node 1 of the tree, M0 asso-
ciates a set {s1, s3} of Ns states, where s1 is the start state
of Ns and s3 is reached from s1 via an ε-transition. It then
inspects the children of node 1: for all its children labeled
patient (nodes 2 and 9), it associates them with states s2, s4,
moves down to these children and processes them induc-
tively, in parallel. At a node associated with state s2, for

hospital

patient

parent

heart disease

recordparent

patient patient

record
diagn

lung disease

diagn

lung disease

record

brain disease

{s1, s3}
{s2, s4} {s2, s4}

{s1, s3}
{s2, s4}

{s1, s3}
{s2, s4}

1
2

3

4

5
6

7
8

9

10
11

12
13

14

15

∨

X(8, sA7)

X(7, sA6)
X(2, sA5)X(2, sA2)

X(2, sA1)

X(3, sA3)

X(4, sA4)

X(4, sA2) X(4, sA5)

X(5, sA6)

X(6, sA7)

∨

F
F

FF

F

F
F

F

F

F

F
∨

∨F

F

F
F

X(9, sA1)

X(9, sA2) X(9, sA5)
X(14, sA6)

X(15, sA7)

X(10, sA3)

X(11, sA4)

X(11, sA2) X(11, sA5)

X(12, sA6)

X(13, sA7) T

T

T

T

T

T

T

diagn

record

diagn

patient

Figure 4. Conceptual evaluation of M0

all its children labeled parent (nodes 3 and 10) it associates
them with states s1, s3 and processes them in the same way
as at the parent node of the tree. In the case of state s4,
since this state is annotated with AFA

0 , any node associated
with state s4 must also evaluate AFA

0 (the evaluation of AFA
0

is described below). This is the case for both nodes 2 and
9. Since s4 is a final state, if AFA

0 evaluates to true, the cor-
responding node is added to n[[M0]] (the answer of M0).

When the AFA AFA
0 is invoked, e.g., at node 2, a Boolean

value 2[[AFA
0]] is computed as follows: AFA

0 associates a
Boolean variable X(2, sA1) with node 2, whose value is
to be computed and treated as 2[[AFA

0]], where sA1 is the start
state of AFA

0 . It then traverses the subtree rooted at node
2 top-down. From sA1 there are two ε-transitions to sA2

and sA5, and thus node 2 is also associated with variables
X(2, sA2) and X(2, sA5) for these AFA states. Since sA1

is an OR state, X(2, sA1) is computed via X(2, sA2) ∨
X(2, sA5). To compute X(2, sA5), it inspects the chil-
dren of node 2: if no child is labeled record, no AFA

0 tran-
sition can be made from sA5 and X(2, sA5) is assigned
false; otherwise, for all children labeled record, in this case
node 7, it associates a variable X(7, sA6), moves down to
these children and process them in parallel. Inductively,
X(7, sA6) is true if node 7 has a child labeled diagno-
sis and carrying text “heart disease”, and if so, X(2, sA5)
is assigned true as well. Similarly, X(2, sA2) is com-
puted and becomes true if it has a descendant that is reach-
able via (parent/patient)∗/record/diagnosis and carries text
“heart disease”. If either X(2, sA2) or X(2, sA5) is true,
then X(2, sA1) is true and so is the output 2[[AFA

0]]. This is
not the case here, however, and AFA

0 returns false. �

Observe the following. (a) Although AFA
0 traverses

the subtree top-down, the Boolean variables are computed
bottom-up. (b) In AFA

0 the only operator states are OR states
(sA1 , sA4); but AND and NOT states can be processed simi-
larly. (c) The conceptual evaluation requires multiple passes
over a subtree, one pass for each filter. In contrast, our eval-
uation algorithm in Section 6 requires only one pass of the
input tree, regardless of the number of filters.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 670

Equivalence of MFA and Xreg queries. An MFA M and
an Xreg query Q are equivalent if for each XML tree T and
any node n in T , n[[M]] = n[[Q]], where n[[M]] (resp. n[[Q]])
denotes the result of evaluating an MFA M (resp. Q) at n.

The result below tells us that we can identify a class of
MFA’s, namely, MFA’s with a syntactic restriction on AFA’s
called the split property, to precisely capture the fragment
Xreg of regular XPath queries; as a result, MFA’s can be used
to represent Xreg queries.

Theorem 4.1: For any Xreg query Q, there exists an equiv-
alent MFA M with the split property, and vice versa. �

5. Rewriting Algorithm

We now present an efficient algorithm, called rewrite
(not shown due to space constraints), for rewriting (regu-
lar) XPath queries on arbitrary views into equivalent MFA’s
on the underlying documents.

Algorithm rewrite takes as input an Xreg query Q and
a view definition σ : D → DV ; it returns an MFA

M = (Ns, �A) as output, such that for any XML tree T
of D, M on T yields the same result as Q on σ(T). It
is based on dynamic programming: for each sub-query Q′

of Q and each element type A in DV , it computes a local
translation rewr(Q′, A), i.e., an MFA on D that is equiva-
lent to Q′ when Q′ is evaluated at any A elements of DV .
The MFA rewr(Q′, A) is constructed inductively, based on
structure of Q′. It assembles local translations to obtain
M = rewr(Q, r), where r is the root type of DV .

Example 5.1: Given query Q0 of Example 4.1 on the
view σ0 of Example 2.2, assume that we want to compute
rewr(Q0, hospital). Fig. 5(a) shows a simplified parse tree
of Q0. Algorithm rewrite uses this parse tree to induc-
tively build the MFA for Q0. In more detail, Fig. 5(b) shows
three MFAs and two AFAs that are the basis of the induction
of the rewriting of Q0. Specifically, M0

0 corresponds to
rewr(parent, patient), M1

0 to rewr(patient, parent) and
M2

0 to rewr(patient, hospital). Notice that the construc-
tion of M2

0 also requires the construction of AFA
0 .

Figure 5(c) shows how Algorithm rewrite uses these ba-
sic blocks to build inductively the MFA rewr(Q0, hospital).
Specifically, it constructs M3

0 = rewr(Q0
0/Q1

0, hospital)
by concatenating MFA M2

0 and M0
0. Then, it constructs

M5
0 = rewr((Q0

0/Q1
0)

∗, hospital) by concatenating M3
0

with M4
0 = rewr(Q0

0/Q1
0, parent) and adding appropriate

ε-transitions for the recursion. Finally, the algorithm con-
siders the rewriting of Q2

0[q0] and concatenates this to MFA

M5
0 to compute the final result. �

Similarly rewrite constructs AFA’s for filters q, with the
following features. (a) For a “path sub-queries” Q′ (i.e., of
the form p given in Section 2) of q, rewrite defines its AFA

in same way as MFA for Q′. (b) For logical connectives
∧,∨, or ¬, rewrite connects inductively obtained AFA’s by

introducing a new logical state, i.e., an AND, OR, or NOT
state. (c) For nested filters, i.e., q = p[q1] where q1 = p′[q′1],
rewrite constructs a single AFA, rather than nested AFA’s,
for q, by “concatenating” the AFA’s for p and q1.

Example 5.2: Consider the filter q0 in the query Q0 of Ex-
ample 4.1. Figure 5(b) shows how its AFA AFA

1 is constructed
step-wise, by reusing the MFA’s M0

0,M1
0,M2

0 for path sub-
queries, and by concatenating these and “local” AFA’s to
build AFA

0 and AFA
1 . Note that although q0 contains a nested

filter text()=‘heart disease’, the two filters are combined into
a single AFA and no “nested” AFA’s are required. �

Concluding, we have the following result, which, in con-
trast to Corollary 3.3, justifies the use of MFA’s.

Theorem 5.1: Given a view definition σ : D → DV

and an Xreg query Q over DV , Algorithm rewrite computes
an equivalent MFA of size at most O(|Q||σ||DV |) over the
original document in at most O(|Q|2|σ||DV |2) time. �

6 Evaluation Algorithm

To make query rewriting a practical approach it is nec-
essary to be able to efficiently evaluate MFA’s. We next
present an evaluation algorithm for MFA’s, referred to as
HyPE (Hybrid Pass Evaluation, Fig. 6). Algorithm HyPE
takes as input a document tree T , a context node n in T and
an MFA M = (Ns, �A); it outputs n[[M]]. The desired result
r[[M]] is obtained by invoking HyPE with the root r of T .

A salient feature of HyPE is that it requires only a single
top-down pass over the document tree, and a single pass
over an auxiliary structure, which in most cases is much
smaller than the document tree. It employs several pruning
strategies in its top-down pass to avoid visiting irrelevant
parts of the tree and the computation of irrelevant AFA’s.

Since any regular XPath query can be transformed into
an MFA, HyPE serve as a stand-alone evaluation algorithm
for regular XPath, beyond the rewriting context. To the best
of our knowledge, HyPE is the first practical algorithm for
evaluating regular XPath. Indeed, no practical algorithm has
been provided thus far that can be done within a bounded
number of tree traversals. For XPath only, a two-pass algo-
rithm was presented in [16]: a bottom-up phase for evaluat-
ing filters followed by a top-down phase for selecting nodes.
However, it requires a pre-processing step (another scan of
the tree) during which the document tree is converted to a
special data format (a binary representation of the tree), and
the construction of a tree automata which are more com-
plex than MFA’s and are possibly large. Algorithm HyPE
requires neither pre-processing of the data nor the construc-
tion of tree automaton. Moreover, in contrast to HyPE, the
two-pass XPath evaluation algorithm may have to evaluate
filters at nodes in its first phase, although these nodes will
not be accessed in its second phase. As will be verified
in Section 7, the pruning technique of HyPE speeds up the

1-4244-0803-2/07/$20.00 ©2007 IEEE. 671

/
*

/

Q0
0 Q1

0

Q2
0

q0

[]

/

Q0
0 = patient

Q1
0 = parent

Q2
0 = patient

Q0 = (Q0
0/Q1

0)
∗/Q2

0[q0]

(a) Parse tree of Q0

s1

diagnosis

patient

ε

parent patient

ε

ε

ε

∨
∨

text()=“heart disease”

M0
0

department
s2

s3

AFA
1

visit treatment medication diagnosis
text()=“heart disease”

sA1 sA2 sA3 sA4 sA5

s4

s5

patientM1
0

M2
0

parent

s6 s7

sA6

sA7 sA8 sA9 sA10 sA11 sA12

λ(s7) = X0

AFA
0

X0 = AFA
0

visit treatment

medication∧ε

ε sA13sA14
sA15

sA16

(b) Basic rewriting components

M0
0M2

0
ε M0

0
εM1

0

ε
M3

0 = rewr(Q0
0/Q1

0, hospital) M4
0 = rewr(Q0

0/Q1
0, parent)

M5
0 = rewr((Q0

0/Q1
0)∗, hospital)

X1 = AFA
1

ε M1
0

ε M2
0 X2 = AFA

1
ε

ε

ε

M9
0 = rewr((Q0

0/Q1
0)

∗/Q2
0[q0], hospital)

M7
0 = rewr(Q2

0[q0], parent)

M8
0 = rewr(Q2

0[q0], hospital)

(c) Resulted MFA rewriting

Figure 5. Rewriting query Q0 to the corresponding MFA

Algorithm HyPE(n, T,M).

Input: Context node n, tree T , MFA M.
Output: Answer set n[[M]].

1. Initialize mstates(n), fstates↓(n), and P = {n};
2. cans(n):=PCans(n, mstates(n), fstates↓(n));
3. Traverse cans(n) starting from set I of cans(n), add
4. visited nodes ν(v) for vertices in cans(n) to n[[M]];
5. return n[[M]];

Procedure PCans(n, T, mstates(n), fstates↓(n))

Input: Context node n, tree T , states mstates(n), vector fstates↓(n).
Output: Candidate answers cans(n).

1. if mstates(n) �= ∅ or fstates↓(n) �= �∅ then
2. for each child v of n then
3. push(v,P);
4. mstates(v):=NextNFAStates(mstates(n), v, Ns);
5. fstates↓(v):=NextAFAStates(fstates↓(n), v, �A);
6. for each s ∈ mstates(v), s.t. λ(s) = Xi, i ∈ [1..κ], do
7. add initial state of AFA

i to fstates↓(v)[i];
8. cans(v):=PCans(v, mstates(v), fstates↓(v));
9. cans(n):=connect mstates(n) to I of cans(v);
10. Set the set I of initial vertices in cans(n) to mstates(n);
11. for each i such that fstates↓(n)[i] �= ∅ do
12. fstates↑(n)[i]:=PrevAFAStates(fstates↑(n)[i]);
13. fstates↑(n)[i]:=fstates↑(n)[i] ∪ {f ∈ F | f is true at n};
14. for each s ∈ mstates(n) s.t. associated AFA is false do
15. Delete s and all its in- and outgoing edges from cans(n);
16. for each final state f of mstates(n) in cans(n) do
17. assign n to f , i.e., ν(f) := n;
18. pop(n,P);
19. if head(P) �= ∅ do
20. u:=head(P);
21. fstates↑(u):=fstates↑(u) ∪ fstates↑(n);
22. return cans(n);

Figure 6. Evaluation algorithm for MFA’s.

evaluation of both regular XPath and XPath queries.
In a nutshell, HyPE consists of two phases (not to be

confused with two passes of the tree T). In the first phase,
the tree T is traversed (top-down) depth-first, during which
the MFA M prunes away irrelevant subtrees and identifies
which AFA’s in �A need to be evaluated at nodes in the tree.
Visited nodes are pushed into a stack P . This stack is used
to evaluate the AFA’s in a synthesized (bottom-up) way. A
node is popped from P once all its related AFA’s have been
evaluated. The size of P is at most the depth of T . During

this traversal, HyPE also constructs an auxiliary DAG struc-
ture, called cans (for candidate answers), representing the
history of the run of the selecting NFA Ns. Vertices in cans
will correspond to states in this run for which the associated
AFA evaluated to true. Moreover, vertices in cans are pos-
sible annotated with a node in T which is potentially in the
answer set n[[M]]. A node in T associated with a vertex in
cans will be in n[[M]] if this node is reachable from a node
in cans corresponding to an initial state of Ns at context
node n. This allows for distinguishing between potential
and real answer nodes in cans. In the second phase, cans is
traversed top-down to identify the real answer nodes. The
size of cans is typically much smaller than T .

Example 6.1: Consider the MFA M0 in Fig. 3 and the tree
T shown in Fig. 4. We illustrate how HyPE evaluates M0

on T through the table in Fig. 7. In the figure, we assume
that HyPE already traversed, top-down, the left-most patient
(node 2) in the tree and we join the execution of HyPE at the
point where node 9 is considered (the first row in the table).
Each row in the table corresponds to a step in the execution
of HyPE during which the node n at the head of the stack P
is considered. In the table, we also show (a) mstates(n),
i.e., the ε-closure of states in Ns (i.e., the set of states
reached by following one or more ε moves), reached by de-
scending to n in T ; (b) fstates↓(n), i.e., a set of states in
AFA

0 . If this set is non-empty then n will be involved in the
bottom-up evaluation of AFA

0 ; and (c) fstates↑(n), i.e., a set
of states (and their truth values) of AFA

0 used in the bottom-
up evaluation of AFA

0 . At the bottom of Fig. 7, we show the
auxiliary structure cans. It is constructed during the traver-
sal of T . We indicate, through boxes, which rows in the
table are responsible for the corresponding updates to cans
(note that cans is constructed from left to right in Fig. 7).

Going back to the figure, the first row of the table in-
dicates two things. First, since s4 is a final state of Ns,
we know that node 9 is a candidate answer. Second, state
s4 is annotated with AFA

0 and therefore we need to evalu-
ate AFA

0 to determine whether node 9 is an actual answer.
We remember that AFA

0 needs to be evaluated on node 9 by
initializing fstates↓(9) with the initial states of AFA

0 . Con-
sider now the second row in the table. Node 10 is in the

1-4244-0803-2/07/$20.00 ©2007 IEEE. 672

s1

s3

s4 s2

s4

s1

s3

11
9

Initcans

fstates↑stack P mstates fstates↓
true false

...
...

...
...

...
(1|9) s2, s4 sA1, sA2, sA5 ∅ ∅
(1|9|10) s1, s3 sA3 ∅ ∅
(1|9|10|11) s2, s4 sA2, sA4, sA5 ∅ ∅
(1|9|10|11|12) ∅ sA6 ∅ ∅
(1|9|10|11|12|13) ∅ sA7 ∅ ∅
(1|9|10|11|12) ∅ sA6 sA6 ∅
(1|9|10|11) s2, s4 sA2, sA4, sA5 sA1, sA4, sA11 ∅
(1|9|10) s1, s3 sA3 sA3 ∅
(1|9) s2, s4 sA1, sA2, sA5 sA1, sA2, sA4 ∅
(1|9|14) ∅ sA6 ∅ ∅
(1|9|14|15) ∅ sA7 ∅ ∅
(1|9|14) ∅ sA6 ∅ sA6

(1|9) s2, s4 sA1, sA2, sA5 sA1, sA2, sA4 sA5

(1) s1, s3 ∅ ∅ ∅

Figure 7. HyPE evaluation.

top of P . Furthermore, mstates(10) is {s1, s3} and is ob-
tained by calling function NextNFAStates with arguments
the mstates(9) = {s2, s4} (line 4 in algorithm of Fig. 6).
Similarly, NextAFAStates computes fstates↓(10) = {sA3}
from fstates↓(9) (line 5 in Fig. 6). The fact that fstates↓(10)
is non-empty tells us that node 10 is relevant for the evalua-
tion of AFA

0 . The actual evaluation of AFA
0 starts when in the

head of P is node 13. At that point, fstates↓(13) includes
the final state of AFA

0 and from that point on AFA
0 is evalu-

ated bottom-up. This hybrid mixing of a top-down with a
bottom-up evaluation is the distinguishing characteristic of
HyPE. Essentially, HyPE uses the former evaluation type to
determine when to initiate the latter. When HyPE returns to
P = {1, 9} (the dark grey row of the table), the fact that
fstates↑(9) includes {sA1 = true} indicates that the evalu-
ation of AFA

0 results in true. Therefore, node 9 is an actual
answer. Concerning cans, this is constructed bottom-up.
For each node n for which mstates(n)
= ∅, mstates(n) is
connected to the existing cans, each time the subtree be-
low a child of n has been traversed. For example, when
P = {1, 9} (dark gray row), mstates(9) is connected (us-
ing the transitions in M0) to the cans structure to its left.
At this point, notice that by following the path s2, s3, s4 we
reach node 11 in T . Furthermore, through the new state s4

node 9 is also reachable. When the construction of cans is
completed (row with dashed box), a traversal of cans start-
ing from the Init nodes shows that nodes 9 and 11 are still
reachable and hence are in the answer of M0 on T . �

Complexity. The complexity of HyPE is determined by
that of PCans (for constructing cans) and the traversal of
cans. PCans needs for each context node n at most O(|M|)
time. Moreover, connecting and updating cans takes at
most O(|M|) time as well. Hence, the overall time com-
plexity of PCans is O(|T ||M|). Moreover, PCans requires
a single scan of the input document T and cans. The space

requirement of PCans is dominated by the size of cans,
which, although in the worst case is O(|T ||M|), is typi-
cally much smaller than |T |. Traversing cans takes again
O(|T ||M|) time in the worst case. As a consequence:

Theorem 6.1: Given an MFA M and tree T , HyPE com-
putes r[[M]] in at most O(|T ||M|) time and space. �

Using the evaluation algorithm together with the rewrit-
ing algorithm, we obtain a complete practical method for
answering queries on (virtual) views. The overall complex-
ity of our method follows from Theorems 5.1 and 6.1.

Theorem 6.2: Given an Xreg query Q on a view of an XML

source T , our query answering method returns the answer
to Q in O(|Q|2|σ||DV |2 + |Q||σ||DV ||T |) time. �

The size |T | of the document is dominant and is typically
much larger than the size |DV | of the view DTD and the size
|σ| of the view definition σ; when only |T | is concerned
(e.g., if DV and σ are fixed as commonly encountered in
practice), our method answers queries in linear-time (data
complexity), and in quadratic combined complexity.

Variants of HyPE. Although HyPE already performs well
in practice (see Section 7), we developed a novel index
structure which enables HyPE to skip even more subtrees.
In the following, we denote by OptHyPE the version of
HyPE which is built on top of the index, and by OptHyPE-C
the version of HyPE which uses a compressed version of the
index.

7. Experimental Study

We have developed a prototype system SMOQE [10] sup-
porting MFA’s and algorithms rewrite and HyPE (and its
variants OptHyPE and OptHyPE-C). In our experiments,
we focused on the most time-consuming module of SMOQE,
i.e., the query evaluator. The experiments were conducted
on a dual 2.3GHz Apple Xserve with 4GB of memory. For
the generation of our datasets, we used ToXGene [1]. We
generated XML documents that conform to our recursive
hospital DTD shown in Fig. 1(a), with sizes ranging from
7MB to 70MB, in 7MB increments. Each increment roughly
corresponds to adding the medical history of 10,000 pa-
tients to our document tree. Therefore, the largest document
stores the medical history of approximately 100,000 pa-
tients. The maximal depth of the trees is 13. The generated
data consist mainly of element nodes, and to a lesser extent
of text nodes. Therefore, the size of the document has a
direct impact on query evaluation. For example, our small-
est document (7MB) consists of 303,714 element nodes vs
151,187 text nodes. The text nodes are used to increase the
selectivity of queries but their size is kept to a minimum (so
as not to increase the document size).

Using the generated document trees, we conducted two
sets of experiments, one regarding XPath evaluation, the

1-4244-0803-2/07/$20.00 ©2007 IEEE. 673

14

12

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

JAXP
HyPE

OptHyPE
OptHyPE-C

(a) A filter returning a large set of nodes

14

12

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

JAXP
HyPE

OptHyPE
OptHyPE-C

(b) Query with filter conjunctions

16

14

12

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

JAXP
HyPE

OptHyPE
OptHyPE-C

(c) Query with filter disjunctions

Figure 8. XPath query evaluation times

20
18
16
14
12
10
8
6
4
2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

HyPE
OptHyPE

OptHyPE-C

(a) Kleene star outside filter

16

14

12

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

HyPE
OptHyPE

OptHyPE-C

(b) Filter inside Kleene star

10

8

6

4

2

7063564942352821147

T
im

e
(s

ec
)

Document size (MB)

HyPE
OptHyPE

OptHyPE-C

(c) Kleene star in filter

Figure 9. regular XPath query evaluation times

other regarding regular XPath. The reported times are av-
eraged over at least 5 runs of each experiment.

Evaluating XPath Queries. Since regular XPath subsumes
XPath, we investigate the performance of HyPE and its vari-
ants for the evaluation of XPath queries.

We compared our performance with that of the Java API
for XML Processing Reference Implementation (JAXP RI

1.3), which relies on XERCES and XALAN [23]. We also
compared with JAXP-COMPILE, a version of JAXP that pre-
compiles the input query and converts it into a set of Java
classes. The two JAXP versions had similar performance
and thus we only report one of them.

We ran various types of XPath queries with simple filters
on data values, unions of queries, and Boolean combina-
tions of filters. Figure 8 shows the evaluation time for three
different types of XPath queries. We show the evaluation
time both for queries with result sizes of a few hundreds of
nodes (Figures 8(b) and (c)) and queries that return a few
thousands of nodes (Fig. 8(a)). For each query type, we
report the evaluation time for JAXP, HyPE, OptHyPE and
OptHyPE-C. The figures show clearly that our algorithm
consistently outperform JAXP by a factor of three for HyPE,
and four for OptHyPE and OptHyPE-C. We also observe
that in most cases, both optimized versions of HyPE run
almost twice as fast as HyPE. Note as well that the perfor-
mance of OptHyPE-C is almost identical to that of OptHyPE
(while OptHyPE-C uses a compressed index).

Evaluating Regular XPath Queries. The second set of ex-
periments investigated the performance of evaluating regu-
lar XPath queries with the different versions of HyPE. Ex-
isting alternatives rely on a translation of regular XPath
into a more powerful query language like XQuery. We

conducted a series of experiments following this approach.
Specifically, we translated several regular XPath queries
into XQuery and evaluated them in GALAX (http://db.bell-
labs.com/galax). These experiments consistently showed
that the queries in XQuery required considerably more time
than their regular XPath counterparts. As a result we omit
GALAX from our discussion because even for a simple
regular XPath query on the smallest used document tree,
GALAX needed more time than HyPE for the same query
on the largest tree. Hence, we only focus on the relative
performance of our algorithm.

We ran different types of regular XPath queries that in-
volve Kleene star outside a filter, inside a filter, filters inside
Kleene stars and combinations thereof. Figure 9 reports the
evaluation time for three of these queries. The overall con-
clusion is consistent with our observations regarding XPath
queries. Indeed, OptHyPE and OptHyPE-C show consider-
able improvement over HyPE.

An interesting observation is that HyPE prunes a sub-
stantial number of element nodes. Specifically, HyPE (resp.
OptHyPE) prunes, on average, 78.2% (resp. 88%) of the
element nodes for our example queries.

8. Related Work
There has been a host of work on rewriting queries posed

on XML views to relational queries on top of RDBMS (e.g.,
[22, 12]). Even in this setting, recursion in the view DTD

makes the translation challenging. As observed by [18],
most of the existing approaches cannot translate recursive
queries over recursive views (two exceptions are [22, 11]).

There has been little work on query rewriting for XML

views in the native XML setting where one does not rely on
any RDBMS, i.e., the setting considered in this paper. To

1-4244-0803-2/07/$20.00 ©2007 IEEE. 674

our knowledge, the only work in this context is [9], which
showed that X is closed under query rewriting for non-
recursive XML views. Our rewriting algorithm given here
is the first practical solution to rewriting queries in XPath
and its extension regular XPath over recursive XML views.

In [19], regular XPath was introduced and it was shown
that a regular XPath query Q can be evaluated over an XML

tree T in O(|Q||T |) time, requiring multiple passes over
the document tree. A two-pass algorithm for XPath was
developed in [16], but it cannot be easily extended to deal
with the Kleene star. As already observed in Section 6,
even when only XPath is concerned, our evaluation algo-
rithm, HyPE, does not need a pre-processing step (another
scan of T) that is required by the algorithm of [16], and is
more effective in pruning irrelevant nodes when traversing
T , among other things. To our knowledge, HyPE is the first
practical algorithm to evaluate regular XPath queries.

As remarked in Section 1, several automaton formalisms
were proposed for processing multiple XPath queries on
streaming XML (e.g. [6, 13]). The idea of AFA was explored
by [13] for evaluating XPath filters. However, no previous
work has attempted to characterize regular XPath in terms
of both NFA and AFA in an integrated automaton.

Another line of research concerns view-based query
rewriting and answering (see [14] for a survey). Here, given
a set of (materialized) views and a query Q on the underly-
ing database, the goal is to answer Q solely on the basis of
the views. The problem we consider here is the opposite
scenario where the query Q is posed on the view, and it is
to find a rewriting Q′ of Q on the underlying document.

9. Conclusion
We have provided a solution for efficiently answering

regular XPath queries posed on possibly recursively defined
XML views. On the theoretical side, we have established
results for the closure property and complexity of rewrit-
ing (regular) XPath queries on views into (regular) XPath
queries on the source. On the practical side, we proposed
a practical approach for query rewriting, by using MFA as
an intermediate representation of rewritten regular XPath
queries. The novelty of the approach consists in (a) an al-
gorithm for rewriting regular XPath queries on XML views
to equivalent MFA on the source, and (b) an efficient evalua-
tion algorithm for MFA. These yield an effective method for
answering queries posed on XML views of XML data, and
are useful in enforcing XML security, among other things.
Furthermore, our evaluation algorithm is among the first for
efficiently processing regular XPath queries. We have fully
implemented a prototype system supporting all these algo-
rithms, and our experimental results verified the efficiency
of our techniques. We are currently studying extension of
our rewriting algorithms to handle XML queries and views
defined in XQuery and XSLT.
Acknowledgment.Wenfei Fan is supported in part by EP-

SRC GR/S63205/01, GR/T27433/01 and BBSRC BB/D006473/1.
Floris Geerts is a postdoctoral researcher of the FWO Vlaanderen.
References

[1] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A.
Lyons. Toxgene: An extensible template-based data genera-
tor for XML. In WebDB, 2002.

[2] S. Cho, S. Amer-Yahia, L. Lakshmanan, and D. Srivastava.
Optimizing the secure evaluation of twig queries. In VLDB,
2002.

[3] B. Choi. What are real DTDs like. In WebDB, 2002.
[4] J. Clark and S. DeRose. XML Path Language (XPath). W3C

Working Draft, Nov. 1999.
[5] E. Damiani, S. di Vimercati, S. Paraboschi, and P. Samarati.

Securing XML documents. In EDBT, 2000.
[6] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. YFilter:

Efficient and scalable filtering of XML documents. In ICDE,
2002.

[7] EBI. Gene Ontology. http://www.geneontology.org/.
[8] A. Ehrenfeucht and H. P. Zeiger. Complexity measures for

regular expressions. JCSS, 12(2):134–146, 1976.
[9] W. Fan, C. Y. Chan, and M. Garofalakis. Secure XML

querying with security views. In SIGMOD, 2004.
[10] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. SMOQE:

A system for providing secure access to XML data. In
VLDB, 2006. Demo.

[11] W. Fan, J. X. Yu, H. Lu, J. Lu, and R. Rastogi. Query transla-
tion from XPath to SQL in the presence of recursive DTDs.
In VLDB, 2005.

[12] M. F. Fernandez, Y. Kadiyska, D. S. A. Morishima, and
W. Tan. SilkRoute: A framework for publishing relational
data in XML. TODS, 27(4):438–493, 2002.

[13] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata and
stream indexes. TODS, 29(4):752–788, 2004.

[14] A. Y. Halevy. Answering queries using views: A survey.
VLDB J., 10(4):270–294, 2001.

[15] IBM. DB2 XML Extender.
http://www-3.ibm.com/software/data/db2/extended/xmlext/.

[16] C. Koch. Efficient processing of expressive node-selecting
queries on xml data in secondary storage: A tree automata-
based approach. In VLDB, 2003.

[17] R. Krishnamurthy, V. Chakaravarthy, R. Kaushik, and
J. Naughton. Recursive XML schemas, recursive XML
queries, and relational storage: XML-to-SQL query trans-
lation. In ICDE, 2004.

[18] R. Krishnamurthy, R. Kaushik, and J. Naughton. Efficient
XML-to-SQL query translation: Where to add the intelli-
gence. In VLDB, 2004.

[19] M. Marx. XPath with conditional axis relations. In EDBT,
2004.

[20] Microsoft. XML support in microsoft SQL server 2005,
2005. http://msdn.microsoft.com/library/en-us/dnsql90/
html/sql2k5xml.asp/.

[21] Oracle. Oracle Database 10g Release 2 XML DB Technical
Whitepaper. http://www.oracle.com/technology/tech/xml/
xmldb/index.html.

[22] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
VLDB, 2001.

[23] Xerces and Xalan. http://xml.apache.org.
[24] S. Yu. Regular languages. In Handbook of Formal Lan-

guages, volume 1. Springer, 1996.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 675

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

