
Technical report LSIR-REPORT-2006-011

UniStore: Querying a DHT-based Universal Storage

Marcel Karnstedt, Kai-Uwe Sattler,
Martin Richtarsky, Jessica M̈uller

TU Ilmenau
Germany

Manfred Hauswirth, Roman Schmidt,
Renault John

EPFL
Switzerland

Abstract

In recent time, the idea of collecting and combining large
public data sets and services became more and more pop-
ular. The special characteristics of such systems and the
requirements of the participants demand for strictly decen-
tralized solutions. However, this comes along with sev-
eral ambitious challenges a corresponding system has to
overcome. In this demonstration paper, we present a light-
weight distributed universal storage capable of dealing with
those challenges, and providing a powerful and flexible way
of building Internet-scale public data management systems.
We introduce our approach based on a triple storage on top
of a DHT overlay system, based on the ideas of a universal
relation model and RDF, outline solved challenges and open
issues, and present usage as well as demonstration aspects
of the platform.

1 A Universal Storage based on DHTs

An increasing number of applications on the Web are
based on the idea of collecting and combining large public
data sets and services. In suchpublic data managementsce-
narios, the information, its structure, and its semantics are
controlled by a large number of participants. Despite being
distributed or decentralized in respect to data from a con-
ceptual point of view, the supporting infrastructures of these
systems still are based on inherently centralized concepts.
The downsides at the physical layer of such centralized sys-
tems, such as bottlenecks, single-point-of-failures and enor-
mous costs for providing the needed resources, are extended
by problems on a more logical level, e.g., the problem of
integrating data/services and the need of database process-
ing functionality. Examples of such applications include
(specialized) Web search engines, scientific database appli-
cations, naming or directory services and “social” applica-
tions such as file/picture sharing, encyclopedias, friend-of-
a-friend networks or recommender systems.

In this paper, we argue for a decentralization of data
management by creating a universal distributed storage for
such public data/metadata, which exploits the gigantic stor-

age and processing capacity of the worldwide available In-
ternet nodes in the same way as the network layer exploits
the worldwide communication devices for routing messages
between nodes. Information sources are highly distributed,
data is described according to heterogeneous schemas, no
participant has a global view of all information, and data
and service quality can only be guaranteed in a best effort
way. In this context, the global challenge is to develop a
light-weight, generic data management component playing
the same role as the TCP/IP stack and a highly scalable in-
frastructure enforcing a fair distribution of storage and pro-
cessing load in a highly dynamic world without any central
control.

For such type of public information management, DHT-
based overlay systems offer an interesting alternative to ex-
isting information system architectures. While problems
like scalability, robustness and fair balance of load and work
are covered by modern DHTs, new research problems have
to be addressed, the most prominent being: Data may exist
in a large number of different schema organizations and ex-
pressiveness of queries and possible guarantees (existence,
completeness, etc.) are limited at the moment.

Concerning a distributed universal storage as we pro-
pose, the key issues can be classified along three questions:
(1) How to structure and organize data in massively dis-

tributed settings?
(2) How to query data and how to query efficiently?
(3) What is needed to get a robust and practical solution?

The first question raises two main problems: We need
a generic and flexible schema for structuring data and we
have to deal with heterogeneities on schema and on data
level. The second question highlights challenges of query
processing: The system has to support the combination of
both, classical DB-like queries allowing to restrict and com-
bine data (selection, projection, join, set operations) as well
as IR-style queries (e.g., keyword search over all attributes,
similarity). Moreover, querying schema data (attributes,
correspondences) has to be supported as well. Physical
query processing should exploit the features of the under-
lying infrastructure (e.g., hash-based placement, topology-
aware routing and multicasting), come with worst-case
guarantees, and involve cost-based and adaptive query opti-

1



Technical report LSIR-REPORT-2006-011

mization considering the dynamicity of the whole network
and the autonomy of the individual nodes. Finally, question
(3) touches practicability of a large-scale distributed plat-
form, where the main challenges are: scalability, robustness
and availability, as well as privacy, trust, and fairness.

In this work, we present a platform we implemented in
order to attack several of the mentioned challenges. It is
based on a triple storage on top of the P-Grid [1] overlay, a
universal relation model treating data and schema informa-
tion uniformly and a light-weight query language inspired
by RDF query languages. The software is not intended to
run simulations, rather we introduce a platform intended for
usage. In section 2 we will give a brief overview of the sys-
tem’s architecture, whereupon in section 3 we will highlight
special features of our approach. Finally, in section 4 we
will introduce usage of the system and outline what we are
going to demonstrate.

2 Architecture

Structured P2P overlays are a good basis for a distributed
universal storage as we propose, because they scale well,
offer logarithmic search complexity in the number of nodes
and are based on hashing for data placement, which allows
for realizing efficient query processing strategies. Addition-
ally, they offer guarantees and limits needed for defining an
appropriate cost model.

Figure 1 shows the architecture of the implemented sys-
tem. Based on the P-Grid [1] DHT layer, triple storage func-
tionality is provided by a second layer, which is used by
P-Grid’s StorageServiceto store triple data and to process
structured queries.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

1 2 3 4

Storage
Service

Query
Executor

Analyzer

store VQL

Triple

Manager

Universal Storage

2

3

4
1

P
−

G
rid D

H
T

T
riple S

tore

P2P basic layer
0

00 01 11

1

10

Network layer (TCP/IP)

P2P storage layer

Triple storage layer

QueryPlan Network

User interface

Figure 1: Architecture
In P-Grid, nodes are at the leaf level of a virtual binary

trie inducing no hierarchy of nodes. The trie is constructed
by pair-wise interactions between nodes without central co-
ordination nor global knowledge. While nodes incremen-
tally partition the key space during runtime of the overlay,
they keep references to each other to enable prefix-based
query routing. A prefix-preserving hash-function assigns
data stored in P-Grid to key partitions respectively nodes.
While an order-preserving hash function as used in P-Grid

keeps semantic relations between data, it requires sophisti-
cated load-balancing to deal with skewed data distributions.
P-Grid includes a mature load-balancing technique able to
deal with nearly arbitrary data skews [2]. P-Grid supports
efficient substring search and range queries through its basic
infrastructure, where other DHTs require additional struc-
tures (e.g., in Chord an additional trie-structure is con-
structed on top of its ring-based overlay network to support
range queries). Additionally, P-Grid comes with an update
functionality with lose consistency guarantees [4] and en-
ables the merging of two, formerly independent, overlays
in a parallel fashion. P-Grid is implemented in Java and
available from http://www.p-grid.org/.

In order to face the challenges of data organization,
we follow the idea of the universal relation model allow-
ing schema-independent query formulation. However, be-
cause exploiting the features of a DHT for fast lookups
requires to index all attributes, we store data vertically,
similar to the idea of RDF. If we assume relational data,
each tuple(OID, v1, . . . , vn) of a given relation schema
R(A1, . . . , An) is stored in the form ofn triples

(OID, A1, v1), . . . , (OID, An, vn)

whereOID is a unique key, e.g., a URI, and the attribute
namesAi may contain a namespace prefixns which al-
lows the user to distinguish different relations and avoid
conflicts. Furthermore, the vertical storage supersedes the
explicit representation of null values making the universal
relation approach feasible even for heterogeneous data. Ob-
viously, this data storage model is exactly the same layout as
RDF – therefore RDF data can be stored seamlessly. Note
that, though we use anOID field, we do not assume unique
and homogeneous identifiers for all objects – instead the
OID is system generated allowing to group the triples for a
logical tuple.

v−>(v34,’confname’,’ICDE 2005’)

1 2 43 85 6 7

0

00 01 11

1

10

001
010 011

100 101
110 111

000

OID−>(a12,’confname’,’ICDE 2006 − WS’)
OID−>(a12,’title’,’Similarity...’)

OID−>(a12,’year’,2006)
A#v−>(a12,’confname’,’ICDE 2006 − WS’)

A#v−>(v34,’year’,2005)
A#v−>(a12,’year’,2006)

(v34,’Progressive...’,’ICDE 2005’,2005)(OID,’title’,’confname’,’year’)

v−>(v34,’year’,2005)
v−>(a12,’year’,2006)

v−>(a12,’confname’,’ICDE 2006 − WS’)

Logical tuples schema: (a12,’Similarity...’,’ICDE 2006 − Workshops’,2006)

A#v−>(v34,’confname’,’ICDE 2005’)

OID−>(v34,’confname’,’ICDE 2005’)
OID−>(v34,’year’,2005)

OID−>(v34,’title’,’Progressive...’)
A#v−>(a12,’title’,’Similarity...’)

v−>(a12,’title’,’Similarity...’)
A#v−>(v34,’title’,’Progressive...’)

v−>(v34,’title’,’Progressive...’)

Figure 2: Example tuples in the triple store

By default, we index each triple on theOID, Ai#vi (the
concatenation ofAi andvi), andvi. This enables search
based on the unique key, queries of the formAi ≥ vi,
and usingvi as the key for queries on an arbitrary attribute.
Like this, efficient reproduction of origin data, as well as
access to parts of special interest, is ensured in each sit-
uation. Figure 2 illustrates this for two example tuples,

2



Technical report LSIR-REPORT-2006-011

each containing three attributes: 18 resulting triples are dis-
tributed in the network of 8 peers (corresponding hash keys
are sketched: e.g.,OID->t means triplet was inserted ac-
cording tohash(OID) ). Additionally, we allow to store
triples representing a simple kind of schema mappings in
order to overcome schema heterogeneities. This additional
metadata can be queried explicitly by the user – or even au-
tomatically by the system to retrieve relevant data without
needing the user to interact.

In order to support the formulation and processing of
DB-like queries, we propose a structured query language
VQL (Vertical Query Language), which is derived from
SPARQL [8], and introduce an according logical algebra.

Person

String

Number
name
phone

String

office

String
email

Publication

String

Date

Conferencetitle
published_in

year

has_published

Bookmark

interested_in

has_friend

Research 
Area

belongs_to

classified_in

String

series

String

confname

Number

age

Number

num_of_pubs

Figure 3: Example schema
In a VQL query, the targeted triples are formulated in

braces, where variables are indicated by a question mark.
OptionalFILTER statements are used to provide filter pred-
icates returned triples have to match. Further, the basic con-
struct remembers the structure of SQL queries, including
obligatorySELECTandWHEREblocks, optional statements
like ORDER BYandLIMIT , as well as advanced ones like
SKYLINE OF.

Imagine a simple example schema about authors and
their publications as shown in figure 3. This schema could
describe the data of one or more peers joining the system.
The following example VQL query corresponds to this
schema and exemplarily presents a part of thefull supported
query functionality:�

�

�

�

SELECT ?name,?age,?cnt
WHERE {(?a,’name’,?name) (?a,’age’,?age)

(?a,’num_of_pubs’,?cnt)
(?a,’has_published’,?title) (?p,’title’,?title)
(?p,’published_in’,?conf) (?c,’confname’,?conf)
(?c,’series’,?sr) FILTER edist(?sr,’ICDE’)<3

}
ORDER BY SKYLINE OF ?age MIN, ?cnt MAX

The result of this query represents a skyline of authors
that reaches from the youngest authors to those authors
published the most publications, whereby we only consider
authors published in ICDE series. Note that, for the name
of the series we allow an edit distance of up to 2 to the term
’ICDE’ in order to ignore typos and similar.

The algebra supports traditional “relational” operators
(π, σ, ./, . . .) as well as special operators needed to query
the distributed triple storage. Operators of both classes can
be freely combined and are applicable to schema, instance

and metadata level. Furthermore, in order to support large-
scaled and heterogeneous data collections, we extend the
set of operators by special operators like similarity opera-
tors (e.g., similarity join) and ranking operators (e.g., top-
N , skyline). Similarity operations are an extremely impor-
tant and essential part of a universal storage as we propose.
By supporting similarity queries, among others, we provide
tools for data integration tasks, which are finally due to the
individual user. Despite the wide functionality, query for-
mulation is based on a simple and small set of VQL clauses.

For each logical operator there are several physical im-
plementations available and in development. Key lookups,
range queries on key level and prefix search are supported
by P-Grid. All of the implemented operators only rely on
functionality provided by the overlay system. They differ
in the kind of used indexes, applied routing strategy, par-
allelism, etc. For example, in [6] we introduced a q-gram
index (q-gram: a substring of fixed length q) in order to be
able to process string similarity efficiently.

The physical operators are used to build complex query
plans. The processing of these plans can be described as an
extension of the concept ofMutant Query Plans[7]. For
each physical operator, and thus, for each query plan, we
can determine worst-case guarantees (almost all are loga-
rithmic) and predict exact costs [5]. We base these calcula-
tions on the characteristics of the used overlay system and
the actual data distribution. By this, we derive a cost model
for choosing concrete query plans, which is repeatedly ap-
plied at each peer involved in a query, resulting in an adap-
tive query processing approach.

For more details of the system, the underlying approach
and aspects of physical query processing we refer to [5, 6].

3 Outstanding Features

The presented platform reveals some highlighting fea-
tures that distinguish it from existing approaches, where the
most outstanding are:
• it is based on a generic, self-descriptive and flexible

schema for storing data and metadata analogously
• a light-weight query language leverages query expres-

siveness and allows simple formulation of structured
queries with fuzzy and ranking predicates on both,
schema and instance level

• there exist several implementations of physical oper-
ators, each beneficial in special situations – which is
captured by an appropriate cost model

• operators can be applied to all levels of data (instance,
schema and metadata, e.g., correspondences)

• we exploit powerful features of DHTs to create a ro-
bust, scalable and reliable massively distributed (up
to 1000 peers and more) storage in arbitrary environ-
ments (even if they are unreliable and highly dynamic)

• the user interface is kept simple, but provides an intu-
itive way of full-featured usage

3



Technical report LSIR-REPORT-2006-011

Besides the ability to overcome several burdens and chal-
lenges of a universal storage solution, our implementation
reveals some other interesting features and benefits from a
more technical point of view:
• it is extensible at ease, e.g., by new query processing

strategies, replication approaches or indexing methods
• due to its logging capabilities results are traceable, an-

alyzable and (in limits) repeatable
• its readily implemented for usage across multiple plat-

forms, due to the utilization of Java and XML as the
fundamental data model.

To the best of our knowledge, this is the first P2P plat-
form attacking the challenges of a distributed universal stor-
age in a concrete way, while being flexible, light-weight and
ready for practical use.

4 Demonstration

Usage of our platform is quite simple. A user can down-
load the software, start it by calling Java, and then he is pro-
vided with a simple but intuitive user interface. When join-
ing (or even later), he decides if he wants to insert any data.
Optional schema mapping data is inserted just the same, by
defining and inserting according triples.

Figure 4: Example query and results

After successfully joining the system, the user can for-
mulate VQL queries in a separate tabbed window, results
will be displayed in the next tab. The basic interface is com-
pleted by the opportunities to inspect the local data and the
locally built routing tables. Figure 4 shows screenshots of a
query and according results.

At the conference we want to show the powerfulness of
our approach in order to build a universal distributed storage
and its applicability in praxis, which includes aspects like
performance, scalability, robustness and usability. In order
to achieve this, we plan to prepare some remote machines
ready to share data. As a practical example, we decided to
choose data about contacts and publications, similar to the
schema introduced in section 2. A laptop at the conference
will act as a demonstration peer, from where we can add and
search for data. The platform is not limited to nor only in-
tended to share contact data, rather this shall present one of

many conceivable use cases. We plan to present the whole
set of query formulation and processing capabilities, which
includes (similarity) joins and filters, ranking operators like
top-N and skylines, substring search, etc. on schema and
instance level.

We will demonstrate the platform’s ability to handle dy-
namicity and data heterogeneities by allowing interested
people to include their own machines and/or data into a run-
ning (or even one built from scratch) P-Grid overlay. Like
this, any new user will be able to experience the powerful-
ness and flexibility of our solution – while adhering to a
simple but usable and intuitive user interface. With the will
of the conference participants and their readiness to share
personal data, this could even be extended to a conference
data sharing system at ease. People could also insert data
about restaurants, bars, sights or anything other that is con-
ceivable – and apply queries intended for such distributed
public data collections, e.g., skyline operators.

In order to show performance, scalability and robustness,
we also plan to run a couple of peers on PlanetLab [3], if
Internet access is available. PlanetLab is a world-wide con-
sortium for evaluating large-scaled distributed applications,
especially under the aspects of world-wide node distribu-
tion, changing load and network situations, as well as unre-
liable node behavior. We will show that even with up to 400
PlanetLab nodes query answer times are still only a couple
of seconds. Additionally, we plan to demonstrate some ben-
efits we earn from implementing different query processing
strategies, routing techniques and indexing methods. In this
context, we will execute identical queries sequentially while
influencing the integrated optimizer and/or data placement,
which will result in different performance results depending
on the current data load, network state, etc.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for P2P
information systems. InCoopIS, 2001.

[2] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing
data-oriented overlay networks. InVLDB, 2005.

[3] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Over-
lay Testbed for Broad-Coverage Services.SIGCOMM Comp.
Comm. Rev., 33(3), 2003.

[4] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly
Unreliable, Replicated Peer-to-Peer Systems. InICDCS,
2003.

[5] M. Karnstedt, K.-U. Sattler, M. Hauswirth, and R. Schmidt.
Cost-Aware Processing of Similarity Queries in Structured
Overlays. InIEEE P2P2006, 2006.

[6] M. Karnstedt, K.-U. Sattler, M. Hauswirth, and R. Schmidt.
Similarity Queries on Structured Data in Structured Overlays.
In NetDB’06, 2006.

[7] V. Papadimos and D. Maier. Mutant Query Plans.Information
and Software Technology, 44(4), 2002.

[8] E. Prud’hommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. W3C Cand. Recommendation 6 Apr 2006.
http://www.w3.org/TR/rdf-sparql-query/.

4


