
Evolution of Distributed Web Data:
An Application of the Reactive Language XChange

François Bry Michael Eckert Hendrik Grallert Paula-Lavinia Pătrânjan
University of Munich, Institute for Informatics

http://www.pms.ifi.lmu.de,{bry,eckert,grallert,patranjan}@pms.ifi.lmu.de

Abstract

Many data sources on the Web evolve in the sense that
they change their content over time, typically as a reaction
to some event. Such changes often need to be mirrored in
data on other Web nodes: updates need to be propagated.
To respond to the need for evolution and reactivity both
locally and globally, the language XChange has been de-
veloped. In this work, we demonstrate its applicability to
a concrete scenario of distributed Web sites of a scientific
community with mutual data dependencies.

1. Introduction

Many data sources on the Web and Semantic Web are
evolving in the sense that they change their content over
time in reaction to events bringing new information or ren-
dering existing information out-of-date [2]. Often, such
changes must be mirrored in data on other Web nodes: up-
dates need to be propagated.

The reactive, rule-based language XChange [4] has been
developed to respond to the need for both local (at a sin-
gle Web node) and global (distributed over several Web
nodes) evolution and reactivity on the Web. Borrowing
ideas from active database systems [7], XChange is a lan-
guage of Event-Condition-Action (ECA) rules. XChange is
tailored for the distributed nature of the Web and for com-
mon Web data formats by allowing event-based communi-
cation and by embedding the versatile Web query language
Xcerpt [6, 8].

The demonstration described in this article shows how
XChange can be applied to programming reactive Web sites
where data evolves locally and, through mutual dependen-
cies, globally. The setting we consider are several dis-
tributed Web sites of a fictitious scientific community of
historians called the Eighteenth Century Studies Society
(ECSS). ECSS is subdivided into participating universities,
thematic working groups, and project management. Univer-
sities, working groups, and project management have each

their own Web site, which is maintained and administered
locally. The different Web sites are autonomous, but coop-
erate to evolve together and mirror relevant changes from
other Web sites. For example, Web sites maintain informa-
tion about personal data of members; a change of member
data at a university entails further changes at the Web sites
of the management and some working groups.

2. The Language XChange

ECSS’s distributed Web sites are realized using the lan-
guage XChange. XChange provides the following bene-
fits over conventional approaches based on general-purpose
programming languages to implement reactive behavior as
needed in the demo:

(i) XChange reactive rules are highly declarative. They
allow programming on a high abstraction level and are easy
to analyze for both humans and machines.

(ii) The various parts of a rule all follow the same
paradigm of specifying patterns for XML data, thus mak-
ing XChange an elegant, easy to learn language.

(iii) Both atomic and composite events can be detected
and relevant data extracted from events. Composite events,
temporal combinations of events, are an important require-
ment in composing an application from different services.

(iv) XChange embeds an XML query language, Xcerpt,
allowing to access and reason with Web data.

(v) XChange provides an integrated XML update lan-
guage for modifying Web data.

(vi) XChange reactive rules enforce a clear separation of
persistent data (Web resources) and volatile data (events).
The distinction is important for programmers: the former
relates tostate, while the latter reflectschanges in state.

(vii) XChange’s high abstraction level and its powerful
constructs allow for short and compact code.

We give in this section a very short introduction to the
language XChange emphasizing general ideas especially
those related to distributed programming with ECA rules.
The demo itself will be described in the next section.

ON xchange : e ve n t{{
change−member {{

memberId { va r ID } ,
newData {{

workingGroups {{
wi thou t wg {” Church and Reformat ion ”}

}} }} }} }}
FROM i n { r e s o u r c e {” h t t p : / / e c s s . org / members . xml ”} ,

members{{
member {{

i d { va r ID } ,
desc wg {” Church and Reformat ion ”}

}} }} }
DO xchange : e ve n t{

xchange : r e c i p i e n t{ ” h t t p : / / c hu rc h re fo rm . ne t ” } ,
d e l e t e−member {

memberId { va r ID }
} }

END

Figure 1. ECA propagating the removal of a
member from a working group

An XChange program is located at one Web site and con-
sists of one or more (re)active rules of the formEvent query
— Web query — Action. Such an ECA rule has the follow-
ing meaning: When events answering the event query are
received and the Web query is successfully evaluated, the
action is performed. Both event query and Web query can
extract data through variable bindings, which can then be
used in the action. With this, we can see that both event
and Web queries serve a double purpose of detectingwhen
to react and –through binding variables–how to react. For
querying data, as well as for updating data, XChange em-
beds and extends the Web query language Xcerpt.

XChange programs at different Web sites can coordinate
each other by sending and receiving events. Events are com-
municated in a push-manner as XML messages. Push com-
munication has several advantages over pull communica-
tion: it allows faster reaction, avoids unnecessary network
traffic through periodic polling, and saves local resources.

Example The rule in Figure 1 runs at the manage-
ment’s Web site and reacts to changes in the working
group affiliation of a member. The event query detects
change-member events, where the member is not part
of the working group “Church and Reformation.” The Web
query then tests if this member has previously been a mem-
ber of this working group. If this is the case, an event mes-
sage is sent to the working group’s Web site, requesting the
member to be deleted.

We now take a closer look at the individual parts of
XChange rules and explain the example in more detail,
starting with how XML data of both events and Web re-
sources is queried.

2.1. Queries as Patterns

Both event queries and Web queries are based on de-
scribing patternsfor XML data. For conciseness, query
patterns as well as construction patterns and update patterns
are represented in a term-like syntax. In the term syntax,
square brackets denote that the order of the children of an
XML element is relevant, curly braces denote that the order
is not relevant.

Both partial (i.e., incomplete) or total (i.e., complete)
query patterns can be specified. A query termt using a par-
tial specification (denoted by double brackets[[]] or braces
{{ }}) for its subterms matches with all such terms that (1)
contain matching subterms for all subterms oft and that (2)
might contain further subterms without corresponding sub-
terms int. In contrast, a query termt using a total specifi-
cation (denoted by single brackets[] or braces{ }) does not
match with terms that contain additional subterms without
corresponding subterms in the queryt.

Query terms contain variables for selecting subterms of
data terms that are bound to the variables. Accordingly, the
result of a query are bindings for the free variables in that
query.

More advanced constructs for describing query patterns
are available, e.g., in our example we usewithout to
query theabsenceof subterms anddesc to query for sub-
terms that are not immediate children of the parent term but
descendantsat arbitrary depth. Non-structural conditions
(e.g., comparisons on integer variables) can be specified by
adding awhere-clause to queries.

2.2. Event Queries

Each Web site monitors the incoming event messages
(XML representations of events) to check if they match an
event query of one of its XChange rules. Atomic event
queries are single query terms (as described above) and de-
tect and react to single incoming event messages. In the
example rule, we have an atomic event query which binds
the variableID to the content of thememberId-element.

Often, situations that require a reaction by a rule are not
given by a single atomic event, but a temporal combina-
tion of events. For this, XChange supports composite event
queries [3], which are built by combining event queries
with composition operators likeandthen (ordered se-
quence of events),and (unordered conjunction of events),
or without (absence of events) and temporal restrictions
like within (all events happen within a given length of
time).

2.3. Web Queries

The condition part of XChange rules queries data from
Web resources such as XML documents or RDF documents.

The keywordin together withresource is used to spec-
ify the URIs of the documents that are queried.

Queries can be combined into conjunctions (and) and
disjunctions (or), thus allowing to access multiple docu-
ments and complex conditions. Also, negation (as failure)
is supported (not).

2.4. Actions: Updates and Raising New
Events

The (re)action part of XChange rules has the following
primitive actions: executing simple updates to persistent
Web data (such as the insertion of an XML element) and
raising new events (i.e., sending a new event message to
a remote Web site or oneself). To specify more complex
actions, compound actions can be constructed as from the
primitive actions.

Raising New Events Events to be raised are specified
as a construction pattern for the new event messages. Con-
struction patterns (also called construct terms) are similar
to query patterns; however only complete patterns (single
brackets/braces) can be used. Variables are replaced by the
bindings obtained previously in the event and Web queries.

Grouping and aggregation is supported through con-
structs likeall ct group-by var X , which will be
“replaced” by one construction ofct for each binding of the
variableX .

Construction patterns for events must contain an element
xchange:recipientwhich specifies the recipient Web
node’s URI. Note that this can be a variable.

Updates Updates to Web data are specified as so-called
update terms. An update term is a (possibly incomplete)
query pattern for the data to be updated, augmented with
the desired update operations. An update term may contain
different types of update operations: An insertion operation
specifies a construct term that is to be inserted, a deletion
operation specifies a query term for deleting all data terms
matching it, and a replace operation specifies a query term
to determine data items to be modified and a construct term
for their new value.

Complex Actions Actions can be combined with dis-
junctions and conjunctions. Disjunctions specify alterna-
tives, only one of the specified actions is to be performed
successfully. (Note that actions such as updates can be un-
successful, i.e., fail). Conjunctions in turn specify thatall
actions need to be performed. The combinations are indi-
cated by the keywordsor andand, followed by a list of the
actions enclosed in braces or brackets.

3. Demo Description

Our demonstration applies the ECA rule language
XChange to the distributed Web data of ECSS, as described

in Section 1. Data evolves locally and updates are propa-
gated globally by means of event messages. The Web sites
of universities, working groups, and management are au-
tonomous, but cooperate to evolve together and mirror rele-
vant changes from other Web sites.

The different Web sites maintain XML data about mem-
bers, publications, meetings, library books, and newsletters.
Data is often shared, for example a member’s personal data
is present at his home university, at the management node,
and in the working groups he participates in. Such shared
data needs to be kept consistent among different nodes; this
is realized by communicating changes as events between
the different nodes using XChange ECA rules.

Events that occur in this community include changes in
the personal data of members, keeping track of the inven-
tory of the community-owned library, or simply announc-
ing information from email newsletters to interested work-
ing groups. These events require reactions such as updates,
deletion, alteration, or propagation of data, which are im-
plemented using XChange rules. The rules run locally at
the different Web nodes of the community, allowing for the
processing of local and remote events.

For a concrete example, consider changing a member’s
personal data including his working group affiliation. The
information flow is depicted in Figure 2. The initial change
is entered by using a Web form at the member’s home uni-
versity LMU. The form generates event messagem1. One
ECA rule (r1) reacts to this event and locally updates the
member’s data at LMU accordingly. Another ECA rule (r2)
forwards the change to the management node.

The management node has rules for updating its own
local data about the member (r3) and for propagating the
change to the affected working groups (r4 for adding,r5 for
deleting a member). In the example, the member changes
the working group affiliation from WG2 to WG3. Accord-
ingly, eventm4 is sent to WG3 by ruler4 andm3 is sent to
WG2 byr5.

The working groups finally each have rules reacting to
deletion and insertion events (m2 andm3) to perform the
requested updates (here:r6 at WG2 andr7 at WG3).

In this description we have restricted ourselves for space
reasons to this one example of changing member data.
The demonstration realizes full member management of the
community, a community-owned and distributed virtual li-
brary (e.g., lending books, monitions, reservations), meet-
ing organization (e.g., scheduling panel moderators), and
newsletter distribution. These other tasks are also imple-
mented by ECA rules that are in place at the different nodes.
For presentation purposes, the demonstration includes fa-
cilities for displaying the rules of each node and logging
received and sent events.

r1: ON change member
DO update LMU data

r2: ON change member
DO forward to management

r3: ON change member
DO update management data

r4: ON change member (w/WG3)
IF was not member of WG3
DO send add member to WG3

r5: ON change member (w/o WG2)
IF was member of WG2
DO send remove member to WG2

r6: ON remove member
DO update WG2 data

r7: ON add member
DO update WG3 data

Figure 2. Changing a member’s personal data (including work ing group affiliation)

4. Conclusions

While a similar behavior as the one in the demo could
be obtained with conventional programming languages,
XChange provides an elegant and easy solution. Evolu-
tion of data and reactivity on the Web are easily arranged
for by using readable and intuitive ECA rules. Moreover,
by employing and extending Xcerpt as a query language,
XChange integrates reactivity to events, querying of Web
resources, and updating those resources in a single, easy-to-
learn language.

The demo presented here has been implemented in the
framework of a three months independent study project.
The student has had no prior experience with XChange,
Xcerpt, and rule-based programming (including ECA
rules). Out of the three month, large parts were dedicated to
designing the use case from scratch; the actual rule author-
ing consumed less than one month. Judging from the learn-
ing curve, we estimate that adding a new task to the demo
(such as managing reports that are delivered to the funding
agency of the ECSS) could be done within only two or three
days now.

XChange is an ongoing research project [9]. The design,
the core language constructs, and the semantics are com-
pleted. A prototype implementation is available and used to
run the demo described in this article.

We are currently considering automatic generation of
ECA rules (e.g., from data dependency specifications or for
monitoring integrity constraints), constructs for structuring
of rule sets, and efficient evaluation of rule sets. Learn-
ing from experience with the current “algebraic” approach
to querying composite events (which is similar to the ap-
proaches found in active databases [10]), a novel composite
event query language is being developed [1]. Issues related

to efficient event query evaluation are investigated in this
work. Also, other use cases than the one presented here
are investigated, in particular in the domain of business pro-
cesses and business rules [5].

References

[1] F. Bry and M. Eckert. A high-level query language for
events. InProc. Int. Workshop on Event-driven Architecture,
Processing and Systems. IEEE, 2006. To appear.

[2] F. Bry and M. Eckert. Twelve theses on reactive rules for
the Web. InWorkshop ”Reactivity on the Web” at Int. Conf.
Extending Database Technology, 2006. (Invited paper).

[3] F. Bry, M. Eckert, and P.-L. Pătrânjan. Querying composite
events for reactivity on the Web. InProc. Intl. Workshop
on XML Research and Applications, number 3842 in LNCS,
pages 38–47. Springer, 2006.

[4] F. Bry, M. Eckert, and P.-L. Pătrânjan. Reactivity on the
Web: Paradigms and applications of the language XChange.
Journal of Web Engineering, 5(1):3–24, 2006.

[5] F. Bry, M. Eckert, P.-L. Pătrânjan, and I. Romanenko. Re-
alizing business processes with ECA rules: Benefits, chal-
lenges, limits. InProc. Int. Workshop on Principles and
Practice of Semantic Web, LNCS. Springer, 2006.

[6] S. Schaffert and F. Bry. Querying the Web reconsidered: A
practical introduction to Xcerpt. InProc. of Extreme Markup
Languages Conf., 2004.

[7] J. Widom and S. Ceri, editors. Active Database Sys-
tems: Triggers and Rules for Advanced Database Process-
ing. Morgan Kaufmann, San Francisco, CA, USA, 1996.

[8] Xcerpt. http://xcerpt.org.
[9] XChange. http://www.reactiveweb.org/xchange.

[10] D. Zimmer and R. Unland. On the semantics of complex
events in active database management systems. InProc. Int.
Conf. on Data Engineering. IEEE, 1999.

