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Abstract static spatiotemporal archives like [11, 5] in two major as-

pects. First, the continuous nature of the streaming data
We introduce a novel query type defined over streamingrequires real time processing using relatively simple data
moving object data, namely, ti@ontinuous Motion Pattern  structures for indexing. Second, in the streaming environ-
(CMP) Queries. A motion pattern is defined as a sequencement the query evaluation is a continuous process. Unlike
of distinct spatial predicates, each attached to a temporal the typical snapshot queries over the static archives that are
constraint. The spatial predicates can be of various types evaluated only once, continuous queries require a continu-
(range, nearest neighbor, etc.) The temporal constraints ous reevaluation since results become obsolete and invalid
are relative to the current time instant and are used to spec- as information about the monitored objects changes.
ify the order of the spatial predicates on the time axis. A Recent research in continuous spatial query processing
CMP query is continuously reevaluated over streaming spa- has been focused mainly singlepredicate queries, where
tiotemporal data, producing the moving objects which sat- the predicate is a Range [3, 12] or a Nearest Neighbor [6].
isfy the query’s motion pattern. We first introduce an easily |n this paper we focus on the continuous evaluation of “mo-
maintainable indexing scheme for spatiotemporal streamstion pattern” (i.e. CMP) queries. Here a single query is
that facilitates the evaluation of the spatial predicates over expressed Wiﬂnnu|tip|e predicates, correlated over time.
their temporal constralnts..l.Jsmg this sch.eme We Proposeé \ve argue that since the data produced by the moni-
a generic framework for efficiently answering a wide range (44 moving objects is “trajectorial” in nature, users of
of CMP queries. The effectiveness of our algorithms in re- y, a5 syrveillance and tracking systems should also be able
ducing the query computation cost and /O operations is 1, query the “behavior” of the moving objects over time.
revealed through a thorough experimental evaluation. Consider for instance a criminal offenders monitoring ap-
plication (like tracNET24 or ExacuTrack) which tracks the
movement of law offenders (through special wearable GPS
1 Introduction devices) inside a given area and alerts the correctional offi-
cers for any suspicious or illegal behavior. The suspicious
The widespread use of location detection devices (RFID, behavior can be defined as a CMP query like: “Continu-
GPS etc.) has enabled the creation of complex tracking andously report objects that did pass through all five bank of-
situational awareness systems which continuously monitorfices in the area and have been in areas not covered with
the position of moving objects of interest and can thus pro- surveillance cameras for more than 20 minutes in the last
vide complex services to their end users. Example applica-half an hour”. In this example, the object behavior is cap-
tions include security monitoring, vehicle tracking, traffic tured by the sequence of spatial (range) predicates ordered
management, etc. In a typical surveillance system architecPy time, where the temporal predicates are relative to the
ture the set of monitored objects continuously report their €ver increasing current time. This type of query cannot be
position to the data collection device using data packetsanswered with processing methods focused only on the cur-
containing their identifier, current location and timestamp. rent state of the stream; rather, we need to maintain and
These data packets are combined into a single spatiotemguery appropriate past states (the history) of the spatiotem-
poral stream that is forwarded to a centralized server for poral stream.
guery processing. The system users register their queries to Motion pattern queries [4] have been well studied for
the server and continuously receive the result based on thestatic spatiotemporal archives (i.e., when all data is known
changing state of the data. in advance and the query is evaluated once). To the best
The described streaming architecture differs from the of our knowledge there is no work for this problem in the



streaming environment where the query result has to be contenance, a grid structure can handle very effectively issues
stantly reevaluated. A trivial solution involves repetitive ex- like frequent updates, high arrival rates, and the continuous
ecution of the static algorithms described in [4], i.e. every nature of the data, which are critical in a streaming environ-
time when the result becomes obsolete it has to be recomment. Unfortunately, because of its simplicity this structure
puted. This would be very expensive and inefficient since cannot capture the temporal characteristics of the data and
in a typical streaming environment location updates are verycan be used only for a queries focused on the current state
frequent. of the stream. Thus it cannot be used directly to evaluate
The predominant approach for effective evaluation of continuous motion pattern queries.
continuous queries is by incremental processing [20, 19]. Methods using tree structures are either B+-tree based
This strategy implies that the query processor utilizes as[9] or R-tree based [7, 8, 18, 16, 17]. The main objective
much as possible the current intermediate results and datdere is to improve the index update performance. In [7] the
structures in the successive iterations of the evaluation al-amortized update cost is reduced by avoiding updates for
gorithm. The query result can be kept persistent during objects that do not move outside their MBRs. [8] general-
consecutive iterations by applying positive and negative up-ized this technique through a bottom - up update strategy.
dates onit. [9] propose instead the linearization of the moving object
In this paper we first present a novel indexing scheme for location representation by using space filling curves. Then
answering CMP queries on spatiotemporal streams. UsingB+ trees can be used, which have better update characteris-
this indexing structure we propose an efficient framework tics than R-trees.
for incremental evaluation of a wide range of CMP queries.  The last group [15, 10] of query evaluation methods for
The effectiveness of our algorithms is revealed trough anspatiotemporal streams avoids the expensive maintenance

extensive experimental evaluation. of index structures over the streaming data. Instead, they in-
troduce the notion of safe regions, created either around the
2  Related Work moving object [15] or around the query [10]. If the object

does not leave its safe region no further query processing
is required. Similarly in [10] objects are considered only if

With the exception of [4] which presents a set of algo- they fall inside the query region or its uncertainty regions.

rithms for pattern query evaluation in a static environment,

all previous related work on spatiotemporal pattern queries L

deals only with modeling and language issues. [1] proposes3 Problem Definition

using spatiotemporal patterns as a systematic and scalable

guery mechanism to characterize complex object behaviors Consider a situational awareness system that contin-

in space and time; nevertheless no query evaluation stratuously monitors the location of a set of moving ob-

egy is proposed. Similarly [13] presents a powerful query jects. Location data arrive as a stream of tuptes=

language able to describe complex pattern queries using du, us, ..., u, . ..) whereu; = (o,1,t), o is the moving

combination of logical functions and quantifiers. This lan- object identifiert is the observation timestamp ahis the

guage however is of declarative nature and cannot be useabject location at time (wherel € R% ¢t € N,o € N).

the query optimization. Pattern queries have recently at-A trajectory TR(o;,1") of objecto; inside the streant

tracted interest for a numerical (i.e no trajectory) data in a for time predicatel” is defined as a sequence of tuples

relational DBMS. UL, U2, . .., Un, ... Whereu;.o = o; andVi ,u;.t € T. The
Related to our research is also the work done on contin-notation used in the rest of the paper is summarized in the

uously querying spatiotemporal streams. Various indexing following table:

structures have been proposed in the past as well as multiple

algorithms utilizing these structures to answer mainly NN [ Notation | Meaning \

and range queries. They all fall in three basic categories: (i) [ @ continuous spatial predicate
methods using grids, (ii) methods utilizing tree structures, T relative time constraint
and, (iii) methods using “safe” regions. 0 spatial object
Many of the proposed indexing structures [3, 14Juse a [ CNP | setof continuous numerical predicates
simple grid to index the location of the objects inside the CBP set of continuous binary predicates

spatiotemporal stream. Every cell inside the grid structure
keeps a list with the objects whose location is within the ~ Our definition of continuous motion pattern queries is
boundaries of this cell. Multiple algorithms have been pro- based on the notion of pattern queries defined in [2]. How-
posed to solve single range [3, 12]. and NN predicatesever instead of absolute time constraints we redative

[6, 14]. using this simple grid structure in distributed and ones; in a streaming environment absolute time constraints
centralized environments. Given its straightforward main- as defined in [2] do not apply since their result never



changes. A relative time constraint uses the current timea spatiotemporal streany, f is a score function if
instance as a reference point. (e.g.. “between 40 and 50f(Q;,TR(0;,T;),¥;) = ¢ wherec € R for a numerical
minutes ago”). As time advances, the value of the currentspatial predicate ar € B for a binary spatial predicate.
timestamp changes, forcing the relative time constraint slide  Given a pattern quer® and a strean$ our goal is to
along the temporal axis. find the moving objects; € S which satisfy the querg.
More formally a CMP queryQ is expressed as a se- If the queryQ contains binary predicat&sB P we have to
quence of (arbitrary number) spatiotemporal predicates:  find all objectso; which satisfy all binary predicates (i.e.
VQ; € CBP — f(Qi,TR(0;,T;), ;) = true). The bi-
Q={(Q1,(T1,¥1)),....(Qn, (5, ¥n)), O} nary predicates are aggregated using the operatdND).
] . ] ) o If the query@ contains numerical predicat€sN P, their
whereQ; is a spatial predicatel; is a relative time con-  gcores on objech; are aggregated using a summation to

straint',\I/i is a Iogical qugntifigr\yi = .{v, 3}) which indi- produce an object numerical scqre
cates if the spatial predicate is applies for the whole dura-
tion of the time constrainT; or just for one time instance.
' o) pi= Y. f(Qi,TR(0;,T),¥,)

© is an operator that maps a real valBeto a boolean
B = {true, false}. Note that in the definition above the

temporal constraintg; are optional. If there is no temporal To determine if an object; satisfies theC'N P predi-
constraint prOVided for Spatial prEdicm a temporal or- cates of query;) its numerical score has to be mapped to
dering is implied by the actual position of the predic@te 3 binary value. This is done by tt@ operator defined in
in the query sequena@. For example in the query: the queryQ. An example of© operator can be the simple
check function < 4. In this example© will return true

Q = {(@1,(30,20),),(Q2), (@), (Q4, (10,5),3), ©} for all objectso; that have a sum of the numerical scoring
functions less or equal than 4 (i.@.; < 4). Itis also possi-
ble to use more sophisticat&loperators likenin or mazx.
In the first case the operator will retutnue only for the
object which has the smallest numerical score In anal-
ogy © = max Will return true only for the object with the
highest numerical score. To summarize, in order to check if
an objecb; satisfiesl) we compute\(Q, o;) where:

Qi€CNP

defines a pattern where the spatial predicates satisfied
for every time instance in the time interval between 20 and
30 minutes agay), is satisfied for at least one time instance
in the time interval between 5 and 10 minutes ago and the
predicates), and Qs are satisfied between predicatgs
and@ in that order.

We allow a very general class of spatial predicates to par-
ticipate in a CMP query. A spatial predicagg is described
through a spatial objecto; (whereso; represents point or M@, 05) = ﬂ f(@i, TR(0;, T2), ¥i)

region) and can be eithdinary or numerical Let CBP QicCBP

(respectivelyC'N P) denote the set of all binary (respec-

tively, numerical) predicates. n oe( >  [f(QiTR(0;,T;), ¥;))
Binary spatial predicate: A predicate)); € C BP maps Qi€CNP

a combination between a moving objegtand the spatial g9\ = {true, false}.
objectso; defined in this predicate to a boolean valkie=
{true, false}. ThatisQ; = o; x so; — B.
An example of a binary predicate is the predicate 4 Index Structure
Inside. that checks whether the moving objectis in-
side regionso; Range predicates belong to CBP as well. In Given that incremental processing has been shown to be
analogy: the most efficient approach for continuous query evalua-
Numerical spatial predicate A predicateQ; € CNP tion, we need an appropriate spatiotemporal indexing struc-
maps the combination of moving object and spatial ob-  ture that can accommodate positive and negative updates.
jectso; to areal value. That is; x so; — R. Such structure should answer efficiently questions of the
A numerical spatial predicate example is the function type “given area A, provide all objects that amet in A
min distance which returns the minimal distance between at the previous time instant but appear in A at the current
the moving objecb; and spatial objecio; (which canbe a  instant” (a positive update), or, “provide all objects that do
point or a region). Clearly NN predicates belong to CNP.  not appear in A in the current time instant but were in A at
For both binary and numerical predicates the mapping the previous one” (a negative update).

is done through acore function f(Q;, T R(o;,T;), ¥;). Generating positive or negative updates every time an
Given a single spatial predicatg;, its relative time object changes its location would produce an intractable
constraint7;, quantifier ¥; and a moving objecb; in number of such updates. Instead we generate positive and
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Figure 2. Indexing space. We now describe how the above indexing structure leads

to effective incremental evaluation of continuous queries.
To simplify the discussion we ignore the spatial axes in this

negative updates every time an object enters or leaves a spandexing space and focus only on the plane formed by the

tial cell. Hence we utilize a uniform grid structure to dis- two temporal axes i.e., the “from” and “to” axes. Figure 3

cretize the spatial domain. This grid is combined with two shows the projection of the index points of figure 2 on the

temporal axes (“from” and “to”) to form @ + 2 dimen- time axes.

sional index space (whetgis the number of dimensions in

the spatial domain).

In particular, for every time period ¢,om; ti) during

Given a time periodts;qr:; teng) We can partition the
index space in four regions as shown on figure 3. To lo-
which an objecb; was inside grid cely; we place ai + 2 cate a." posmvg updates for time pe”@m”’ tena) (€.0.

. . o . . all objects which enter some grid cell) we need to lo-
index pointl; inside the index space. The projected co- : . X

. N T cate all index pointd; such that: (tsiart < Litirom <

ordinate of; on the temporal “from” axis ig ¢, and . J .
S X : X tend) N (I;-to > tenq)). These are the index points which
on the “to” axis ist;,. I; keeps the period during which AR el S .

. o : reside inside regiot in figure 3. Similarly, for the negative

object o; was within cell g;, and points to a secondary

storage (disk page) where the actual (raw) object move-Updates we need the index poirifssuch that(7; t rrom <
ment data for the specified time period and the specified?e”d)m(t““” < Li-tip < tena))- These are the index points

grid cell are stored. Hence, andex point carries a tu- inside region 2 in figure 3. Region 3 contains objects which

DIe I, = (0}, g1, ¢ rom: tzo, ), Whereo; is an object in the were inside the given grid cell during the whole time period

streams$, g; is the grid cell that contains objeet (i.e., (VI; = (it from < tstart) 0 (tena < Ii-ty,))) and region
Algi TRy ) = true 08 VE € (troms- .. to)) andp is a 4 contains objects which moved in and then moved out of
(] ' TOM Y * * *

pointer pointing to a place in secondary storage which storessome grid celp; during the time period.

the sequence of paifg/y, t1), ..., (I, tn)}, Wherel; € g; As a result, the process of finding objects which change

andt; € (tyrom; - tto)- their location and move to another grid cell is equivalent to
As a result, an object trajectory can be abstracted as assuing a range query in the indexing space which retrieves

“sequence of index points” in the indexing space. the indexing points in the appropriate partition. Such range

Figure 1 shows a 1-dimensional trajectory which stays queries can be efficiently resolved with a spatial index (an
within grid cell 1 during interval(0; ¢, ); it then stays inside R tree or kdb tree) build on top of the index space.
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Result so; borders are “snapped” to the grid (fig 5.a). (An exten-
——— Ouery Regraraion sion that har_wdles arbitrary object shape_s like the one in fig
. 5.b will be discussed later). For every single predicate ob-
Figure 4. General Framework. ject so; we have two types of grid cells: (1) grid cells en-
tirely covered by objecto; and (2) grid cells not covered by
5 CMP Query Evaluation so; at all. The set of grid cells covered by objeet form

the search areaof the binary predicaté);. (This depends
on the type of the spatial predicate - for example in the pred-
icatedisjoint the search area will be formed by the set of
grid cells NOT covered by theo; while for the predicate
inside this is the set of grid cells covered By;). Using
the described index structure we locate all index points
5.1 General Framework inside the search area for the specified time constaint
A hash table called Binary Hash Table (BHT) is created.

As depicted in Figure 4 there are two major processesThis hashing table is indexed by the object identifiers and
in a CMP query evaluation framework that work in paral- has a column for every binary predicae € CBP in the
lel. The Data Manager keeps the raw data storage and thuery Q. For each moving objeat; and for each predi-
indexed space on the server side consistent with the SpacateQi the table contains a list of index pointsthat have
tiotemporal streant. The Query Processor is responsi- peen discovered for this object inside the search area of the
ble for the continuous reevaluation of the motion pattern predicate);. Checking if an object satisfies all predicates
queriesQ in the system. The clients submit their CMP  can be done on the fly while inserting the index points in
queries and they are registered inside the Query Processothe structure. If an objeat; covers all predicates (there are
During its lifetime, a registered motion pattern query goes index points in all columns for this object) then this object
trough two distinctive phases, namely: the Initialization satisfies the quer@ and is placed inside the result set. Fig-
phase and the Reevaluation phase. During the first phasgre 6 shows an example of such a hash table. Algorithm 1
the initial result for a CMP query is computed from scratch describes the first (initialization) phase.
and then reported to the client. The result and the intermedi-  puring the second phase (Algorithm 2) the result is kept
ate data structures are preserved inside the query processtkgnsistent by applying positive and negative updates. To
After the formation of the initial result, the evaluation of the (g so we use th&HT table produced in the first phase.
continuous query moves to its second phase (and stays untihssume that the last query reevaluation was at timestamp
it is removed from the system). In this phase the result is trev and the current timestamp is,,,. Using the parti-
kept persistent through consecutive executions of an incre-tjoning of the index space as shown in Figure 3 inside the
mental evaluation algorithm. Ona regular time basis the re- Q1 search area for a time peri(éqwev; tnow) we can com-
sultis reported to the client. Given the different approachespyte the list of positive and negative updates which occur in

We proceed with the evaluation algorithms for answer-
ing CMP queries assuming that we have a spatiotemporal
streamS and the indexing described in the previous section.

for evaluating binary and numerical predicates, we presentthe (), search area for time iNtervéll, cv; trnow)-

their algorithms separately. The set of index points inside region 2 forms the negative
updates and the index points inside region 3 - the positive

5.2 Binary predicates ones. We apply these updates to & T for predicate;

and adjust the result set accordingly.

We will illustrate the evaluation algorithm for continuous A more general situation is when the spatial objegt
binary predicates” BP using the predicaténside as an describing the spatial predicat® does not snap precisely
example. to the grid. In this case there are three categories of grid

For simplicity first we assume that the spatial object cells, as following: (1) cells which are entirely covered by
related to a binary spatial predicafe € CBP can be cov-  so; (2) cells that are partially covered by; (3) cells not
ered precisely with the grid cells or, equivalently, that the covered byso; (Figure 5.b). We process the partially cov-
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Figure 6. Binary hash table example.

ered grid cells similarly as the fully covered grid cells with
one major difference. If an object inside the hash table cov-
ers all the predicates but some of the index poiftsre
generated from partially covered grid cells (we call them

gray index points) we have to load the actual trajectory data

from the secondary storage for this predicate and verify if
the predicate is indeed satisfied.

5.3 Numerical predicates

We describe the algorithm for continuous numerical
predicateC' N P using as example predicate then dist
while as© operator inQ we usemin. This operator re-
turnstrue only for the moving object; with minimal sum
of the distances to the query predicafgse CN P.

First we discuss the initialization phase (Algorithm 3).

Algorithm 1 Binary query - phase 1

Require: Query@ = {(RP(r1),T1),...,(RP(rn), Tn)},
LC—0;R—0;H 0
2:fori=1tondo

3 IdxzPoints <+ GetAllindedxPoints(r;, T;);
4: GreyldzPoints — GetAllGreylndedxPoints(r;, T );
5: while IdxPoints U GreyIdxz Points not emptydo
6: Entry ip = IdzPoints U GreyldxPoints.pop
7: InsertintoHash (H, ip.obj, i, ip)
8: if H.allPredicatesCoverétp.obj) then
9: if H.coveredByGre{ip.obj) then

10: C.push(ip.obyj);

11 else R.push(ip.obj);

12: end if

13: end if

14: while C not emptydo

15: Entryid = U.pop

16: P = getTrajectoryData(id)

17: if P satisfies) then R.push(id)

18: end for

spatial objectso; associated with the predicaf® and in-
teractively examines all cells adjacent to them. (This is the
case when th® operator minimizes the object scores

If ® maximizes the object scores we start from the most
distant grid cell from the query). In each step the process
increases the number of adjacent cells examined by moving
one step further away from the query point (see Figure 7).
We maintain two hash tables in main memory - the Lower
bound table L BT') and the Actual Score Tablel6T). The
structures are populated with lower bound object scores
and actual object numerical scqrgas we visit the adjacent

to the spatial objecto; cells.

Table L BT has a column for every query predicéle €
C'N P and one row for every single objeet discovered so
far. It contains the lower bound scoyfel(Q;, o;[T;]) per
predicate for every object. If the given predicate has not

The general idea here is to use the index structure and théeen covered by an objegt in the corresponding column,

grid it contains to compute an upper boyndu and a lower
boundy;.l, of the object numerical score; for every ob-

we put the maximal lower bound distance for this predicate
regardless of which object trajectory it corresponds to. Due

jecto;. Using these bounds we then prune as many objectto the incremental visit of grid cells the computed approxi-

trajectories as possible.

For the case of anin dist predicate we use the index
structure described in section 3 (in particular the spatial
grid inside it), to compute the upper and the lower bound

mation is still a lower bound to the actual object sgoyeln
each iteration and for each predicglec C N P we add the
grid cells one hop away from the grid cells accessed the pre-
vious step to the vicinity of the predicafg,. We query the

distances of the actual distance between an object locatiorindex points; in the index space for these newly added grid

and the spatial objecio;. By summing together the lower

cells, compute the lower bound score of the corresponding

bound distances for all predicates we get a lower boundgrid cell to the predicaté); and place them insidé BT

object scorgu;.l. The sum of the upper bound distances
generates the object upper bound sqoye:. We can suc-
cessfully prune and avoid the raw trajectory access for all
objects which have a lower bound distaneg! > pu;.u
bigger than the upper bound distance of another object.
The algorithm starts from the grid cells containing the

The sum of the lower bound distances in thB7T columns
for a given object forms the object lower bound scpyd.
The rows inside. BT are also sorted in increasing order of
/L]l

The AST table stores the actual object score
f(Qi,04[T;]) per predicate and is organized in the



Algorithm 2 Binary query - phase 2 »
Require: QueryQ = {(RP(r1),T1),...,(RP(r,), Tn)}, R, - Dbjedt Ay
C, H ] Pleea Be

1: for ¢ = 1ton do o0 7% 0\_.__,__,(
2: PU « GetPosUpdatér;, T;) 7 b2 [ 2
3: NU « GetNegUpdatdr;, T;) _ 2 e
4: while NU not emptydo \ ? /
5: Entryip = NU.pop ] i”_,._.-—-"'abjectl
6: RemoveFromHash H, ip.obj, i, ip)
7: if | H.allPredicatesCoverétp.obj) then
8: if ip.obj € C then C.pop(ip.obj); Actudl Score Table
9: else R.pop(ip.obj); Obj. Predicate Numerical

10: end if 1] 2 ] 5 | ¢

1L end if 1 15 | 13 | 11 | 39

12: while PU not emptydo i i i i

13: Entryip = PU.pop

14: InsertintoHash (H, ¢p.obj, 1, ip) Lower Bound Table

15: if H.allPredicatesCoverétp.obj) then o, F—— Cower

16: if H.coveredByGrefip.obj) then Bound

17: C.pust(ip.obj); L] 2] 8 | Seoe

18: else R.push{ip.obj) 3 0 1 1 2

;g: end?fnd if 2 (o7 | 1 |oafo21

21: while U not emptydo Figure 7. NN query example.
22: Entry:d = U.pop

23: P = getTrajectoryData(id)

24: if P satisifes then R.push(id)

25- end for the time period since the last reevaluation, and recomputing

1
Both update types - positive or negative modify the lower
same way ad.BT. There is one column for every query bounds inL BT. When the updates are applied, it may hap-
predicate); € C NP and one row for every object, which  pen that the best actual score 467 is bigger than the
covers all predicates i®. The sum of the scores in the best lower bound scoré BT. In this scenario, phase 1

columns forms the actual object numerical scpre The is reevaluated increasing the vicinity circle for the predi-
rows insideAST are sorted in increasing order of. cates); € C N P. Elements from thd. BT are popped and
We Continuous|y compare the best lower bound, BT added taA.ST until the condition is satisfied again.

and the best numerical scqug in AST'. (these are the first

rows in both tables). If the best lower bound irBT is

larger than the best numerical scargin AST (for © max- 5.4 Predicates without Temporal Con-

imizing scores it is the opposite) and the corresponding ob- straints

jectin LBT covers all predicates i@, then for this moving

object, the raw trajectory data is loaded is computed and

placed inside thelST'. The algorithm stops when the best For CMP queries where the temporal constraifitare

lower boundy.; ./ in LBT is bigger than the best numerical not specified, an ordering will be implied by the actual

scorey; in AST. position of the predicate); in the query sequence. For
For the second phase (reevaluation) of the algorithm (Al- such CMP queries we need to verify that the predicates

gorithm 4) we keep both tables - tHeBT and AST and are satisfied in the proper order. To do so during the in-

the vicinity discovered so far for each numerical predicate sertion of the index pointg; for predicate@;, which is

Qi € CNP in Q. Assume that the last query reevaluation without temporal constrairf;, we check if;.t ¢, and

was at time-stamp,,.,, and the current time-stampis,., . I;.t, satisfy the order (e.9(3I; for Qi—1 — Lj.ty, <

Using the partitioning of the index space shown on Figure I;.t yrom) N (31x for Qiv1 — Iktrrom > Iity,)) Only

3 we locate the positive and negative updates in each prediif I; satisfies the order we increase the satisfied predicate’s

cate vicinity for the time period since the last reevaluation. counter. To speed up this process the index points can be

These updates are appliedii® T to keep it persistent. We  kept sorted during the insertions and deletion®BiHT by

keep AST persistent by loading the raw trajectory data for using a heap (details are omitted due to lack of space).



Algorithm 3 Numerical query - phase 1 Algorithm 4 Numerical query - phase 2

Require: QueryQ = {(NNP(q1),T1),-..,(NNP(¢qn), Tn)} Require: Query @ = {(RP(r1),T1),...,(RP(rn),Tn)},
1. AST «— 0; LBT «— 0;r =0 AST,LBT,r
2: while AST.best > LBT.best do 1: for i =1ton do
3: for i = 1ton do 2: SA «—getSearchAredq;, r);
4: r=r+1; 3: PU «— GetPosUpdatgS A, T;)
5: SA —IncreaseSearchAredg;, r); 4 NU — GetNegUpdatd S A, T;)
6: IdxzPoints «+ GetAllindedxPoints(S A, T;); 5: while NU not emptydo
7: while Idx Points not emptydo 6: Entryip = NU.pop
8: Entryip = IdxPoints.pop 7 DeleteFromLBT (ip, i);
9: if ip.obj € AST thenlnsertintoAST (ip, 7); 8: end if
10: else InsertintoLBT (ip, 3); 9: end while
11 end if 10: while PU not emptydo
12: end while 11: Entry ip = PU.pop
13: end for 12: InsertintoLBT (ip,i);
14: while LBT.best covers all predicatedo 13: end if
15: Entryid = LBT .best; 14: end while
16: P = getTrajectoryData(id); 15: end for
17: AST LoadIntoAST (P); 16: RefreshAST
18: end while 17: if AST.best > LBT.best then goto phase 1
19: end while 18: end if
6 Experimental Evaluation T T —
In our experiments we use synthetic data to test the be-| * = fow T
havior of each algorithm under different settings. We have | | ¢ )
created up to 150,000 objects moving in a 2-dimensional ’ L e
spatial universe which is 1,000 miles long in each direc- [Z=arsreen (o hose oG hore__orue o]

tion. Objects follow random routes on a freeway network  Figure 8. RANGE AND NN QUERIES Number of predi-
traveling through a number of consecutive intersections and  cates.

report their positions every time-instant. Query reevalua-

tion is done every 2 minutes. On the top of this data we

build the indexing space as it is described in section 4. We remaining experiments.

used a standard R tree (with utilization factor 64%) and a

KDB trge as the indexing structures bund.on top of the in- 6.2 Binary Predicates

dex points. To test the proposed techniques we use two
measures, namely: (i) the average number of index node .
accesses, which is mainly CPU related and, (ii) the averagee"z'1 Performance vs. Number of Predicates
number of data pages per query that need to be retrieved

from secondary storage for verification of the result (the I/O | = -
cost of the algorithms). We refer to the first phase as "ini- | o
tial” and to the second as "continuous”. £ omo £
. . 5000 500 ‘\‘*‘—A
6.1 Comparison with the brute force ap- o k"‘/"—_"ﬁ A
proach ‘ Hamber ot prciats | amber of rcicats
First we compare our algorithms with a brute-force ap- Figure 9. RANGE QUERIES Number of predicates.

proach where all trajectories from the repository are exam-

ined sequentially. The results are shown in Figure 8. Note  This set of experiments examines how the algorithms
the logarithmic scale. We can see that the proposed indexperform for queries with increasing number of predicates.
structure and algorithms help reduce the total I/O cost by Figure 9 depicts the average number of index node and data
orders of magnitude for both the numerical and the binary pages accesses for different number of predicates. A dataset
predicates. The brute force approach is shown to be com-with size 100,000 objects was used. Clearly the continuous
putationally very expensive and is thus not depicted in the phase is much faster than the initial phase. As expected, the



number of index points accessed in both the initial and con-| == =

tinuous phases increases with the number of the query pred; , ==
icates because of the increased total search area. The nur ;i

150000

ber of data pages accessed decreases linearly asthenumb =z =, o : R
of predicates increases. With the increase in the number, * > >« 5 ¢ TR s

Number of predicates Number of predicates

of predicates it becomes less likely to find objects which | e e T
satisfy all predicates; thus there is a smaller number of can-———— == : -
didates which must be evaluated using the raw trajectory Figure 11. NN QuERIES Number of predicates.
data.

spatial stream contains object trajectories that are very sim-
ilar to the query definition (RelevantPattern). This enables
fast pruning because the algorithm quickly finds an object

6.2.2 Performance vs. Dataset Size

8 iiialphase 5 Coninus phase which covers all numerical predicates. Then its numerical
B o score is used for pruning the other objects. For the Random-
R i § o Pattern set as the number of predicates increases the proba-
om0 =00 bility that a given object matches closely the query predicate
ooy oy decreases dramatically. As a result, the discovered areas for
=oow w B each predicate need to grow large until an object which sat-
isfies all predicates is found. This results in a large number
Figure 10. RANGE QUERIES Dataset Size. of index points which have to be retrieved. For the data

page access the behavior of the algorithms in the initial and

We next evaluate the performance scale-up for variouscontinuous phase is similar. This is because few candidate
dataset sizes. We use queries with five range predicatesirajectories have been discovered by the end of the initial
Figure 10 shows the results for the four different datasetsphase resulting in a limited number of verification steps. As
(the size is given in thousands). Again the continuous phaseWith the binary predicates the continuous phase is faster.
is an order magnitude faster than the initial one. As ex-
pected, the average number of node accesses per query ing.3.2 Performance vs. Dataset Size
creases as the dataset size increases. This is because the
density in the index space is increased and the total numbe
of points inside the query regions also grows. The number

minitial phase Rehant o Cont
oinitial phase Random

@ initial phase Rehant

initial phase Random

of objects in the result set also increases and this causes th| e 1 .

increase of the data 1/0s needed for the verification step.| = - I
Nevertheless, the number of index points and data pages Eﬁjgggg E :EjE

accessed during the reevaluation step is much smaller thar ww;ﬂﬂ_aﬂ;i il L

the same number in the initial phase. This is due to the B L w W = e wow

incremental evaluation and because during the reevaluation
we access only partitions 1 and 2 (see Figure 3). Given
the small reevaluation period these partitions have relatively
small area and therefore generate limited number of index To test the scalability of the numerical predicate algo-

Figure 12. NN QUERIES Dataset Size.

points. rithm we use the same dataset sizes (given in thousands)
used in the scale-up test for the binary predicates. The re-
6.3 Numerical Predicates sults are shown in Figure 12. As it can be seen for the Ran-

domPattern dataset the average number of node accesses
per query starts growing very fast with the increase of the
dataset size compared with the growth in the RelevantPat-
For the nearest neighbor queries we generate two query setdern query set. This is because in the RelevantPattern the
namely: (i) a RandomPattern set where the location of thealgorithm discovers the candidate objects very fast and the
query predicate and its time interval are chosen in random,vicinity of the numerical predicates is thus relatively small.
and, (ii) a RelevantPattern set which is generated using ex-As a result, the search for positive and negative updates dur-
isting object trajectories, that are slightly skewed in space ing the continuous phase reaches only a limited number of
as compared with the original. The results for both datasetsindex points. As for the data pages, in the initial phase for
are shown on Figure 11. We first discuss node accesses Oupoth query sets there is an increase in the number of pages
incremental algorithm is expected to work best when the accessed with the increase of the dataset size. Nevertheless

6.3.1 Performance vs. Number and Type of Predicates
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Figure 13. Index type. R tree v.s. KDB tree
[2]

the actual number is relatively small since for NN queries [3]
few candidate trajectories are typically found.
6.4 Performance using KDB and R tree [41

5

We tested the algorithms performance using KDB tree Bl

and R tree structures for efficient access to the content of
the indexing space. We use dataset containing 25K trajec- [6]
tories and query with 5 range predicates. The results are
shown on Figure 13. As it can be depicted the algorithmic
performance does not depend of the type of index structure
chosen. The KDB tree performs slightly better mainly be-
cause there is no overlapping between the point bounding [g]
boxes which is advantageous for point data indexing.

El
6.5 Performance vs. Buffer Size

(10]

Numerical predicates
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Figure 14. Buffer Size.
(14]
Figure 14 shows the effect of different buffer sizes on the

query performance for 50K objects. Since we run multiple
nearest neighbor searches concurrently we expect that ther 5
will be a large number of pages accessed in two or more
consecutive iterations. Larger buffer sizes can help alleviate
loading these nodes multiple times. As expected numerical
predicate queries benefit the most since they iteratively visit [16]
grid cells which are spatially close. (7

7 Conclusions
(18]

In this paper we define a novel type of complex con-
tinuous queries called Continuous Motion Pattern Queries. ;9
We present a framework for efficient evaluation of the CMP
gueries, starting with an index structure for spatiotemporal
streams, oriented towards incremental evaluation of contin-[20]
uous queries. The results show that our algorithms are able

10

to do fast pruning and thus achieve very good performance.
Overall the continuous phase in our system is very efficient
which leads to very fast incremental query evaluation.
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