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Abstract
Finding latent patterns in high dimensional data is an important research problem with numerous
applications. Existing approaches can be summarized into 3 categories: feature selection, feature
transformation (or feature projection) and projected clustering. Being widely used in many
applications, these methods aim to capture global patterns and are typically performed in the full
feature space. In many emerging biomedical applications, however, scientists are interested in the
local latent patterns held by feature subsets, which may be invisible via any global transformation.
In this paper, we investigate the problem of finding local linear correlations in high dimensional data.
Our goal is to find the latent pattern structures that may exist only in some subspaces. We formalize
this problem as finding strongly correlated feature subsets which are supported by a large portion of
the data points. Due to the combinatorial nature of the problem and lack of monotonicity of the
correlation measurement, it is prohibitively expensive to exhaustively explore the whole search
space. In our algorithm, CARE, we utilize spectrum properties and effective heuristic to prune the
search space. Extensive experimental results show that our approach is effective in finding local
linear correlations that may not be identified by existing methods.

I. Introduction
Many real life applications involve the analysis of high dimensional data. For example, in bio-
medical domains, advanced microarray techniques [1], [2] allow to monitor the expression
levels of hundreds to thousands of genes simultaneously. By mapping each gene to a feature,
gene expression data can be represented by points in a high dimensional feature space. To make
sense of such high dimensional data, extensive research has been done in finding the latent
structure among the large number of features. In general, existing approaches in analyzing high
dimensional data can be summarized into 3 categories [3]: feature selection, feature
transformation (or feature projection) and projected clustering.

The goal of feature selection methods [4], [5], [6], [7] is to find a single representative subset
of features that are most relevant for the task at hand, such as classification. The selected
features generally have low correlation with each other but have strong correlation with the
target feature.

Feature transformation methods summarize the dataset by creating linear combinations of
features in order to uncover the latent structure. The commonly used feature transformation
methods include principal component analysis (PCA) [8], linear discriminant analysis (LDA),
and their variants (see [9] for an overview). PCA is one of the most widely used feature
transformation methods. It seeks an optimal linear transformation of the original feature space
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such that most variance in the data is represented by a small number of orthogonal derived
features in the transformed space. PCA performs one and the same feature transformation on
the entire dataset. It aims to model the global latent structure of the data and hence does not
separate the impact of any original features nor identify local latent patterns in some feature
subspaces.

Recently proposed projected clustering methods, such as [10], [11], [12], can be viewed as
combinations of clustering algorithms and PCA. These methods can be applied to find clusters
of data points that may not exist in the axis parallel subspaces but only exist in the projected
subspaces. The projected subspaces are usually found by applying the standard PCA in the full
dimensional space. Like other clustering methods, projected clustering algorithms find the
clusters of points that are spatially close to each other in the projected space. However, a subset
of features can be strongly correlated even though the data points do not form any clustering
structure.

A. Motivation
PCA is an effective way to determine whether a set of features, F = {xi1, · · · , xin}, show strong
correlation [8]. The general idea is as follows. If the features in F are indeed strongly correlated,
then a few eigenvectors of the covariance matrix with the largest variance will describe most
variance in the whole dataset. Only a small amount of variance is represented by the remaining
eigenvectors. The variance on each eigenvector is its corresponding eigenvalue of the
covariance matrix CF of F. Therefore, if the sum of the smallest eigenvalues (i.e., the variance
on the last few eigenvectors) is a small fraction of the sum of all eigenvalues (i.e., the variance
in the original data), then the features in F are strongly correlated.

In many real life applications, however, it is desirable to find the subsets of features having
strong linear correlations. For example, in gene expression data analysis, a group of genes
having strong linear correlation is of high interests to biologists since it helps to infer unknown
functions of genes and gives rise to hypotheses regarding the mechanism of the transcriptional
regulatory network [1], [2]. We refer to such correlation among a subset of features in the
dataset as a local linear correlation in contrast to the global correlation found by the full
dimensional feature transformation methods.

For example, Figure 1 shows a dataset consisting of 9 features and 15 data points. Among the
9 features, {x2, x7, x9} have local linear correlation 2x2 + 6x7 + 3x9 = 0 on point set {p1, p2,
· · · , p9}, and {x1, x5, x6, x8} have local linear correlation x1+3x5+2x6+5x8 = 0 on point set
{p7, p8, · · · , p15} with i.i.d. gaussian noise of mean 0 and variance 0.01. The eigenvalues of
the example dataset is shown in Figure 2.

Figure 2 tells us that the features in the example dataset are somehow correlated, since the
smallest eigenvalues are much smaller than the largest ones.

To get the linear correlation identified by PCA, we can apply the following approach. Note
that this approach has been adopted in [12] to derive the quantitative descriptions for projected
clusters. As a basic concept of linear algebra, a hyperplane is a subspace of co-dimension 1
[8]. Each vector a = [a1, a2, · · · , an]T in an n-dimensional linear space uniquely determines a
hyperplane a1x1+a2x2+· · ·+anxn = 0 through the origin and orthogonal to a. For example,
Figure 3 shows the hyperplane x1 − x2 + x3 = 0 that is orthogonal to vector [1, −1, 1]T .
Therefore, a straightforward way to discover the correlations by full dimensional PCA is to
compute the hyperplanes that are orthogonal to the eigenvectors with smallest eigenvalues
(variances).
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Using the example dataset, Table I shows the hyperplanes (linear correlations) determined by
the 3 eigenvectors with the smallest eigenvalues. Clearly, none of them captures the embedded
correlations. This is because PCA does not separate the impact of different feature subsets that
are correlated on different subsets of points.

Recently, many methods [1], [13] have been proposed for finding clusters of features that are
pair-wisely correlated. However, a set of features may have strong correlation but each pair of
features only weakly correlated.

For example, Figure 4 shows 4 genes that are strongly correlated in the mouse gene expression
data collected by the biologists in the School of Public Health at UNC. All of these 4 genes
have same Gene Ontology (GO) [14] annotation cell part, and three of which, Myh7,
Hist1h2bk, and Arntl, share the same GO annotation intracelluar part. The linear relationship
identified by our algorithm is −0.4(Nrg4) + 0.1(Myh7) + 0.7(Hist1h2bk) − 0.5(Arntl) = 0. As
we can see from the figure, all data points almost perfectly lay on the same hyperplane, which
shows that the 4 genes are strong correlated. (In order to visualize this 3-dimensional
hyperplane, we combine two features, Nrg4 and Myh7, into a single axis as −0.4(Nrg4) + 0.1
(Myh7) to reduce it to a 2-dimensional hyperplane.) If we project the hyperplane onto 2
dimensional spaces formed by each pair of genes, we find none of them show strong correlation,
as depicted in Figures 5(a) to 5(c).

Projected clustering algorithms [10], [11] have been proposed to find the clusters of data points
in projected feature spaces. This is driven by the observation that clusters may exist in
arbitrarily oriented subspaces. Like other clustering methods, these methods tend to find the
clusters of points that are spatially close to each other in the feature space. However, as shown
in Figure 4, a subset of features (genes in this example) can still be strongly correlated even if
the data points are far away from each other. This property makes such strong correlations
invisible to the projected clustering methods. Moreover, to find the projections of original
features, projected clustering methods apply PCA in the full dimensional space. Therefore they
cannot decouple the local correlations hidden in the high dimensional data.

B. Challenges and Contributions
In order to find the local linear correlations, a straightforward approach is to apply PCA to all
possible subsets of features to see if they are strongly correlated. This approach is infeasible
due to the large number of possible feature combinations. For example, given a 100-
dimensional dataset, the number of feature subsets need to be checked is 2100.

Real life datasets often contain noises and outliers. Therefore, a feature subset may be correlated
only on a subset of the data points. In order to handle this situation, it is reasonable to allow
the algorithm to find the local linear correlations on a large portion of the data points. This
makes the problem even harder since for a fixed subset of features, adding (or deleting) data
points can either increase or decrease the correlation among them. More details about the
computational challenges of finding local linear correlations can be found in Section III.

In this paper, we investigate the problem of finding local linear correlations in high dimensional
data. This problem is formalized as finding strongly correlated feature subsets. Such feature
subsets show strong linear correlations on a large portion of the data points. We examine the
computational challenges of the problem and develop an efficient algorithm, CARE1, for
finding local linear correlations. CARE utilizes spectrum properties about the eigenvalues of
the covariance matrix, and incorporates effective heuristic to improve the efficiency. Extensive

1CARE stands for finding loCAl lineaR corrElations.
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experimental results show that CARE can effectively identify local linear correlations in high
dimensional data, which cannot be found by applying existing methods.

II. Related work
The goal of feature transformation (or projection) methods, such as PCA, is to find linear
combinations of original features in order to uncover the latent structures hidden in the data.
Feature transformation methods can be further divided into supervised methods and
unsupervised methods. Principal component analysis (PCA) is a representative unsupervised
projection method. PCA finds the eigenvectors which represent the directions with maximal
variances of the data by performing singular value decomposition (SVD) to the data matrix
[8]. Supervised methods take the target feature into consideration. Existing supervised methods
include linear regression analysis (LRA) [15], linear discriminant analysis (LDA) [16],
principal component regression (PCR) [17], supervise probabilistic PCA (SPPCA) [18] and
many others [9]. LRA and LDA find the linear combinations of the input (predictor) features
which best explain the target (dependent) feature. In these methods, the input features are
generally assumed to be non-redundant, i.e., they are linearly independent. If there are
correlations in the input features, PCR first applies PCA to the input features. The principal
components are then used as predictors in standard LRA. SPPCA extends PCA to incorporate
label information. These feature transformation methods perform one and the same feature
transformation for the entire dataset. It does not separate the impact of any original features
nor identify local correlations in feature subspaces.

Feature selection methods [4], [5], [6], [7] try to find a subset of features that are most relevant
for certain data mining task, such as classification. The selected feature subset usually contains
the features that have low correlation with each other but have strong correlation with the target
feature. In order to find the relevant feature subset, these methods search through various
subsets of features and evaluate these subsets according to certain criteria. Feature selection
methods can be further divided into two groups based on their evaluation criteria: wrapper and
filter. Wrapper models evaluate feature subsets by their predictive accuracy using statistical
re-sampling or cross-validation. In filter techniques, the feature subsets are evaluated by their
information content, typically statistical dependence or information-theoretic measures.
Similar to feature transformation, feature selection finds one feature subset for the entire
dataset.

Subspace clustering is based on the observation that clusters of points may exist in different
subspaces. Many methods [19], [20], [21] have been developed to find clusters in axes
paralleling subspaces. Recently, the projected clustering was studied in [10], [11], inspired by
the observation that clusters may exist in arbitrarily oriented subspaces. These methods can be
treated as combinations of clustering algorithms and PCA. Similar to other clustering methods,
these methods tend to find the clusters of points that are close to each other in the projected
space. However, as shown in Figure 4, a subset of features still can be strongly correlated even
if the data points are far away from each other. Pattern based bi-clustering algorithms have
been studied in [1], [13]. These algorithms find the clusters in which the data points share pair-
wise linear correlations, which is only a special case of linear correlation.

III. Strongly Correlated Feature Subset
In this section, we formalize the problem and study its computational challenges.
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A. Problem Definition
Let D = A × B be a data matrix consisting of M N-dimensional data points, where the feature
set A = {x1, x2, · · · , xN} and the point set B = {p1, p2, · · · , pM}. Figure 1 shows an example
dataset with 15 points and 9 features.

A strongly correlated feature subset is a subset of features that show strong linear correlation
in a large portion of data points.

Definition 1: Let F = {xi1, · · · , xin} × {pj1, · · · , pjm} be a submatrix of D, where 1 ≤ i1 < i2 <
· · · < in ≤ N and 1 ≤ j1 < j2 < · · · < jm ≤ M. CF is the covariance matrix of F . Let {λl} (1 ≤ l ≤
n) be the eigenvalues of CF and arranged in increasing order2, i.e., λ1 ≤ λ2, · · · , ≤n. The features
{xi1, · · · , xin} is a strongly correlated feature subset if the value of the objective function

 and m/M ≥ δ, where k, ε and δ are user specified parameters.

Eigenvalue ≥ λl is the variance on eigenvector vl [8]. The set of eigenvalues {λl} of matrix
CF is also called the spectrum of CF [22].

Geometrically, each m × n submatrix of D represents an n-dimensional space with m points in
it. This n-dimensional space can be partitioned into two subspaces, S1 and S2, which are
orthogonal to each other. S1 is spanned by the k eigenvectors with smallest eigenvalues and
S2 is spanned by the remaining n − k eigenvectors. Intuitively, if the variance in subspace S1
is small (equivalently the variance in S2 is large), then the feature subset is strongly correlated.

The input parameters k and threshold ε for the objective function  are used to
control the strength of the correlation among the feature subset. The default value of k is 1.
The larger the value of k, the stronger the linear correlation.

The reason for requiring m/M ≥ δ is because a feature subset can be strongly correlated only
in a subset of data points. In our definition, we allow the strongly correlated feature subsets to
exist in a large portion of the data points in order to handle this situation. Note that it is possible
that a data point may participate in multiple local correlations held by different feature subsets.
This makes the local correlations more difficult to detect. Please also note that for a given
strongly correlated feature subset, it is possible that there exist multiple linear correlations on
different subsets of points. In this paper, we focus on the scenario where there exists only one
linear correlation for a strongly correlated feature subset.

For example, in the dataset shown in Figure 1, the features in submatrix F = {x2, x7, x9}×
{p1, p2, · · · , p9} is a strongly correlated feature subset when k = 1, ε = 0.004 and δ = 60%.
The eigenvalues of the covariance matrix, CF, the input parameters and the value of the
objective function are shown in Table II.

In real world applications, it is typical that many local correlations co-exist, each of which
involves a small number of features. Thus, it is reasonable to set the maximum size, maxs, of
the feature subsets to be considered for each local correlation3. The co-occurrence of multiple
local correlations poses serious challenge, since neither the feature subsets nor the supporting
data points of these correlations are independent. It is crucial to decouple the compound effects
of different local correlations.

2In this paper, we assume that the eigenvalues are always arranged in increasing order. Their corresponding eigenvectors are {v1, v2, ·
· · , vn}.
3Setting the maximum size of the feature subsets is also used in many other feature selection and feature transformation methods [5],
[8].
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Our goal is to find all strongly correlated feature subsets in the database D. This problem is
computationally challenging. In the following subsection, we study the properties concerning
the monotonicity of the objective function with respect to the feature subsets and point subsets
separately.

B. Monotonicity of the Objective Function
1) Monotonicity with respect to feature subsets—The following theorem concerning
the spectrum of covariance matrix developed in the matrix theory community is often called
the interlacing eigenvalues theorem4 [22].

Theorem 3.1: Let F = {xi1, · · · , xin} × {pj1, · · · , pjm} and F′ = {xi1, · · · , xin, xi(n+1)} × {pj1,
· · · , pjm} be two submatrices of D. CF and CF′ are their covariance matrices with eigenvalues

{λl} and . We have

Theorem 3.1 tells us that the spectra of CF and CF′ interleave each other, with the eigenvalues
of the larger matrix bracketing those of the smaller one.

By applying the interlacing eigenvalues theorem, we have the following property for the
strongly correlated feature subsets.

Property 3.2: (Upward closure property of strongly correlated feature subsets) Let F = X × P
and F′ = X′ × P be two submatrices of D with . If X is a strongly correlated feature subset,
then X′ is also a strongly correlated feature subset.

Proof: We show the proof for the case where |X′| = |X| + 1, i.e., X is a subset of X′ by deleting
one feature from X′. Let CF and CF′ be the covariance matrices of F and F′ with eigenvalues

{λl} and . Since X is a strongly correlated feature subset, we have . By

applying the interlacing eigenvalues theorem, we have  and .

Thus . Therefore, X′ is also a strongly correlated feature subset. By
induction we can prove for the cases where X is a subset of X′ by deleting more than one feature.
■

The following example shows the monotonicity of the objective function with respect to the
feature subsets. Using the dataset shown in Figure 1, let F1 = X1 × P1 = {x2, x7} × {p1, · · · ,

p15}, , and . The values of the objective function,
when k = 1, are shown in Table III. It can be seen from the table that the value of the objective
function monotonically decreases when adding new features.

Property 3.2 shows that for a fixed set of points, if a subset of features are strongly correlated,
then all of its supersets are also strongly correlated. Therefore, in our algorithm, we can focus

4This theorem also applies to Hermitian matrix [22]. Here we focus on the covariance matrix, which is semi-positive definite and
symmetric.
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on finding the minimum strongly correlated feature subsets, of which no subset is strongly
correlated.

2) Lack of monotonicity with respect to point subsets—For a fixed feature subset,
adding (or deleting) data points may cause the correlation of the features to either increase or
decrease. That is, the objective function is non-monotonic with respect to the point subsets.
The following property states this fact.

Property 3.3: Let F = {xi1, · · · , xin} × {pj1, · · · , pjm} and F′ = {xi1, · · · , xin} × {pj1, · · · ,
pjm, pj(m+1)} be two submatrices of D. f(F, k) can be equal to, or less than, or greater than f(F
′, k).

We use the following example to show the non-monotonicity of the objective function with
respect to the point subsets. Using the dataset shown in Figure 1, let F2 = X2 × P2 = {x2, x7,

x9} × {p1, · · · , p9, p11}, , and . The values of their
objective functions, when k = 1, are shown in Table IV. It can be seen from the table that the
value of the objective function f can either increase or decrease when adding more points.

In summary, the value of the objective function will monotonically decrease when adding new
features. On the other hand, adding new points can either increase or decrease the value of the
objective function.

IV. CARE
In this section, we present the algorithm CARE for finding the minimum strongly correlated
feature subsets. CARE enumerates the combinations of features to generate candidate feature
subsets. To examine if a candidate is a strongly correlated feature subset, CARE adopts a 2-
step approach. It first checks if the feature subset is strongly correlated on all data points. If
not, CARE then apply point deletion heuristic to find the appropriate subset of points on which
the current feature subset may become strongly correlated. In Section IV-A, we first discuss
the overall procedure of enumerating candidate feature subsets. In Section IV-B, we present
the heuristics for choosing the point subsets for the candidates that are not strongly correlated
on all data points.

A. Feature Subsets Selection
For any submatrix F = X × {p1, · · · , pM } of D, in order to check whether feature subset X is
strongly correlated, we can perform PCA on F to see if its objective function value is lower

than the threshold, i.e., if .

Starting from feature subsets containing a single feature, CARE adopts depth first search to
enumerate combinations of features to generate candidate feature subsets. In the enumeration
process, if we find that a candidate feature subset is strongly correlated by evaluating its
objective function value, then all its supersets can be pruned according to Property 3.2.

Next, we present an upper bound on the value of the objective function, which can help to
speed up the evaluation process. The following theorem shows the relationship between the
diagonal entries of a covariance matrix and its eigenvalues [22].

Property 4.1: Let F be a submatrix of D and CF be the n×n covariance matrix of F . Let {ai}
be the diagonal entries of CF arranged in increasing order, and {λi} be the eigenvalues of CF
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arranged in increasing order. Then  for all s = 1, 2, · · · , n, with equality held
for s = n.

Applying Property 4.1, we can get the following proposition.

Proposition 4.2: Let F be a submatrix of D and CF be the n×n covariance matrix of F. Let

{ai} be the diagonal entries of CF and arranged in increasing order. If , then we have
, i.e., the feature subset of F is a strongly correlated feature subset.

The proof of Proposition 4.2 is straightforward and omitted here. This proposition gives us an
upper bound of the objective function value for a given submatrix of D. For any submatrix F
= X × {p1, · · · , pM} of D, we can examine the diagonal entries of the covariance matrix CF of
F to get the upper bound of the objective function. The computational cost of calculating of
this upper bound is much less than that of evaluating the objective function value directly by
PCA. Therefore, before evaluating the objective function value of a candidate feature subset,
we can check the upper bound in Proposition 4.2. If the upper bound is no greater than the
threshold ε, then we know that the candidate is a strongly correlated feature subset without
performing PCA on its covariance matrix.

B. Choosing the Subsets of Points
In the previous subsection, we discussed the procedure of generating candidate feature subsets.
A feature subset may be strongly correlated only on a subset of the data points. As discussed
in Section III-B.2, the monotonicity property does not hold for the point subsets. Therefore,
some heuristic must be used in order to avoid performing PCA on all possible subsets of points
for each candidate feature subset. In this subsection, we discuss the heuristics that can be used
for choosing the subset of points.

1) A successive point deletion heuristic—For a given candidate feature subset, if it is
not strongly correlated on all data points, we can delete the points successively in the following
way.

Suppose that F = {xi1, · · · , xin} × {p1, · · · , pM } is a submatrix of D and f(F, k) > ε, i.e., the
features of F is not strongly correlated on all data points. Let F\pa be the submatrix of F by
deleting point pa (pa ∈ {p1, · · · , pM}) from F . This heuristic deletes the point pa from F such
that f(\pa, k) has the smallest value comparing to deleting any other point. We keep deleting
points until the number of points in the submatrix reaches the ratio m/M = δ or the feature subset
of F turns out to be strongly correlated on the current point subset.

This is a successive greedy point deletion heuristic. In each iteration, it deletes the point that
leads to the most reduction in the objective function value. This heuristic is time consuming,
since in order to delete one point from a submatrix containing m points, we need to calculate
the objective function value m times in order to find the smallest value.

2) A distance-based point deletion heuristic—In this subsection, we discuss the
heuristic used by CARE. It avoids calculating objective function value m times for deleting a
single point from a submatrix containing m points.

Suppose that F = {xi1, · · · , xin} × {p1, · · · , pM} is a submatrix of D and f(F, k) > ε, i.e., the
features of F is not strongly correlated on all data points. As discussed in Section III-A, let
S1 be the subspace spanned by the k eigenvectors with the smallest eigenvalues and the S2 be
the subspace spanned by the remaining n − k eigenvectors. For each point pa (pa ∈ {p1, · · · ,
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pM}), we calculate two distances: da1 and da2. da1 is the distance between pa and the origin in
sub-eigenspace S1 and da2 is the distance between pa and the origin in sub-eigenspace S2. Let
the distance ratio rpa = da1/da2. We sort the points according to their distance ratios and delete
(1−δ)M points that have the largest distance ratios.

The intuition behind this heuristic is that we try to reduce the variance in subspace S1 as much
as possible while retaining the variance in S2.

Using the running dataset shown in Figure 1, for feature subset {x2, x7, x9}, the deleted points
are shown as red stars in Figures 6(a) and 6(b) using the two different heuristics described
above. The reestablished linear correlations are 2x2+5.9x7+3.8x9 = 0 (successive), and
2x2+6.5x7+2.9x9 = 0 (distance-based). Note that the embedded linear correlation is 2x2 +
6x7 + 3x9 = 0. As we can see from the figures, both methods choose almost the same point
subsets and correctly reestablish the embedded linear correlation.

The distance-based heuristic is more efficient than the successive approach since it does not
have to evaluate the value of the objective function many times for each deleted point.

As a summary of Section IV, CARE adopts the depth-first search strategy to enumerate the
candidate feature subsets. If a candidate feature subset is not strongly correlated on all data
points, then CARE applies the distance-based point deletion heuristic to find the subset of
points on which the candidate feature subset may have stronger correlation. If a candidate turns
out to be a strongly correlated feature subset, then all its supersets can be pruned.

V. Experiments
To evaluate CARE, we apply it on both synthetic datasets and real life datasets. CARE is
implemented using Matlab 7.0.4. The experiments are performed on a 2.4 GHz PC with 1G
memory running WindowsXP system.

A. Synthetic Datasets
1) Effectiveness evaluation—To evaluate the effectiveness of the CARE, we generate a
synthetic dataset of 100 features and 120 points in the following way. The dataset is first
populated with randomly generated points for each one of the 100 features. Then we embedded
three local linear correlations into the dataset as described in Table V. For example, on points
{p1, · · · , p60} we create local linear correlation x50 − x20 + 0.5x60 = 0. Gaussian noise with
mean 0 and variance 0.01 is added into the dataset.

a) Comparison with full dimensional PCA: We first show the comparison of CARE and full
dimensional PCA. We perform PCA on the synthetic dataset described above. To present the
linear correlation discovered by PCA, we show the resulting hyperplanes determined by the
three eigenvectors with the smallest eigenvalues. Each such hyperplane represents a linear
correlation of all the features in the dataset. Due to the large number of features, we only show
the features with coefficients with absolute values greater than 0.2. The linear correlations
reestablished by full dimensional PCA are shown in Table VI. Clearly, these are not the local
linear correlations embedded in the dataset.

Table VII shows the local linear correlations reestablished by CARE, with k = 1, ε = 0.006, δ
= 50%, and maxs = 4. As can be seen from the table, CARE correctly identifies the correlations
embedded in the dataset.

b) Comparison with projected clustering methods: Figure 7 shows the hyperplane
representation of the local linear correlation, x40 − 0.97x30 + 0.83x80 − 0.47x10 = 0,
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reestablished by CARE. Since this is a 3-dimensional hyperplane in 4-dimensional space, we
visualize it as a 2-dimensional hyperplane in 3-dimensional space by creating a new feature
(−0.83x80+0.47x10). As we can see from the figure, the data points are not clustered on the
hyperplane even though the feature subsets are strongly correlated. The existing projected
clustering algorithms [10], [11], [12] try to find the points that are close to each other in the
projected space. Therefore, they can not find the strongly correlated feature subset as shown
in this figure. In Section V-B.3, we further compare CARE with projected clustering method
on real dataset.

c) Pair-wise correlations of strongly correlated feature subsets: In Figures 8(a) to 8(c), we
show the pair-wise correlations between the features of the local linear correlation x40 −
0.97x30 + 0.83x80 − 0.47x10 = 0. These figures demonstrate that although the feature subset is
strongly correlated, the pair-wise correlations of the features may still be very weak. The
clustering methods [1], [13] focusing on pair-wise correlations cannot find such local linear
correlations.

d) Sensitivity with respect to parameters: We run CARE under different parameter settings.
Table VIII shows the local linear correlations reestablished by CARE for the embedded
correlation x40 − x30 + 0.8x80 − 0.5x10 = 0. As we can see from the table, CARE is not very
sensitive to the parameters. Similar results have also been observed for other embedded
correlations.

2) Efficiency evaluation—To evaluate the efficiency of CARE, we generate synthetic
datasets as follows. Each synthetic dataset has up to 500K points and 60 features, in which 40
linear correlations are embedded. Gaussian noise with mean 0 and variance 0.01 is added into
the dataset. The default dataset for efficiency evaluation contains 5000 points and 60 features
if not specified otherwise. The default values for the parameters are: k = 1, ε = 0.006, δ = 50%,
and maxs = 4.

Figures 9(a) to 9(f) show the efficiency evaluation results. Figure 9(a) shows that the running
time of CARE is roughly quadratic to the number of features in the dataset. Note that the
theoretical worst case should be exponential when the algorithm has to check every subset of
the features and data points. Figure 9(b) shows the scalability of CARE with respect to the
number of points when the dataset contains 30 features. The running time of CARE is linear
to the number of data points in the dataset as shown in the figure. This is due to the distance-
based point deletion heuristic. As we can see from the figure, CARE finishes within reasonable
amount of time for large datasets. However, since CARE scales roughly quadratically to the
number of features, the actual runtime of CARE mostly depends on the number of features in
the dataset.

Figure 9(c) shows that the runtime of CARE increases steadily until ε reaches certain threshold.
This is because the higher the value of ε, the weaker the correlations identified. After certain
point, too many weak correlations meet the criteria will be identified. Figure 9(d) demonstrates
that CARE's runtime when varying δ. Figure 9(e) shows CARE's runtime with respect to
different maxs when the datasets contain 20 features.

Figure 9(f) shows the number of patterns evaluated by CARE before and after applying the
upper bound of the objective function value discussed in Section IV-A.

B. Real Life Datasets
1) Gene expression data—We apply CARE on the mouse gene expression data provided
by the School of Public Health at UNC. The dataset contains the expression values of 220 genes
in 42 mouse strains. CARE find 8 strongly correlated gene subsets with parameter setting: k =
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1, ε = 0.002, δ = 50%, and maxs = 4. Due to the space limit, we show 4 of these 8 gene subsets
in Table IX with their symbols and the corresponding GO annotations. As shown in the table,
genes in each gene subset have consistent annotations. We also plot the hyperplanes of these
strongly correlated gene subsets in 3-dimensional space in Figures 10(a) to 10(d). As we can
see from the figures, the data points are sparsely distributed in the hyperplanes, which again
demonstrates CARE can find the groups of highly similar genes which cannot be identified by
the existing projected clustering algorithms.

2) NBA dataset—We apply CARE on the NBA statistics dataset5. This dataset contains the
statistics of 28 features for 200 players of season 2006-2007. Since the features have different
value scales, we normalized each feature by its variance before applying CARE. The parameter
setting is: k = 2, ε = 0.003, δ = 50% and maxs = 4. We report some interesting local linear
correlations found by CARE in Table X.

• Correlation 1 says that the total number of rebounds is equal to the sum of defensive
and offensive rebounds. This is an obvious correlation that one would expect.

• The meaning of correlation 2 is that the number of games played is highly correlated
with the 2-point shooting percentage and free throw percentage of the player.

• Correlation 3 says that players having high 3-point shooting percentage tend to get
more 3-point field goals in the game.

• Correlation 4 tells us that the total number of field goals made by a player is correlated
with his 2-point shooting percentage and the number of times he attempted to shoot
3-point.

• Correlation 5 shows the number of games started depends on how good the player is
at offensive rebounds and free throws.

We plot Correlation 5 in Figure 11. This correlation holds on 3 different groups of players. The
points in circle 1 show that the players not good at both offensive rebound and free throw get
low game start. Circle 2 shows that players good at free throw get high game start and circle
3 show players good at offensive rebound get high game start. The points in circle 1 are close
to each other but other points are far away from each other. Therefore this local linear
correlation is invisible to the existing projected clustering algorithms.

3) Wage dataset—We further compare CARE with the projected clustering method COPAC
[12], which has been demonstrated to be more effective than ORCLUS [10] and 4C [11]. We
apply CARE on the wage dataset6, which also has been used in [12]. CARE successfully
identifies both linear correlations reported in [12], i.e., YE + YW − A = −6 and YW − 1.03A =
−17.4. Further more, CARE identifies two new linear correlations, which are 4.25YW+W
−4.5A = −80 and 2.4YE+0.34YW−W = 28.4. These two linear correlations show the relationship
among wage, working experience, age, and education, which are not discovered by COPAC.
Figure 12(a) shows the hyperplane of linear correlation YE+YW − A = −6, which is found by
both methods. In this figure, the points in the red circle form a density connected cluster.
Therefore, the projected clustering method can find the correlation by first identifying this
cluster. However, as shown in the figure, this correlation is also supported by other points
outside the cluster. We also plot, in Figure 12(b), the hyperplane of correlation 4.25YW+W
−4.5A = −80, which is only found by CARE. Clearly, such correlation cannot be found by
projected clustering methods because the points are sparsely distributed on the plane.

5http://sports.espn.go.com/nba/teams/stats?team=Bos&year=2007&season=2
6http://lib.stat.cmu.edu/datasets/CPS_85_Wages
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VI. Conclusion
In this paper, we investigate the problem of finding local linear correlations in high dimensional
datasets. The local linear correlations may be invisible to the global feature transformation
methods, such as PCA. We formalize this problem as finding the feature subsets that are
strongly correlated on a large number of data points. We use spectrum theory to study the
monotonicity properties of the problem. An efficient and effective algorithm, CARE, for
finding such strongly correlated feature subsets is presented. The experimental results show
that CARE can find these interesting local linear correlations that cannot be identified by the
existing algorithms, such as full dimensional PCA, and projected clustering methods. The
experimental results also demonstrate that CARE scales well to large datasets.

Our work reported in this paper focuses on the case where there is one linear correlation for a
strongly correlated feature subset. For future work, one interesting direction is to extend current
work to find multiple linear correlations in a feature subset. This is more challenging, since to
find such correlations we have to decouple both features and points.
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Fig. 1.
An example dataset
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Fig. 2.
Eigenvalues of the example dataset
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Fig. 3.
Hyperplane determined by vector [1, −1, 1]T
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Fig. 4.
A strongly correlated gene subset
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Fig. 5.
Pair-wise correlations of a strongly correlated gene subset

Zhang et al. Page 18

Proc Int Conf Data Eng. Author manuscript; available in PMC 2010 April 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Points deleted using different heuristics
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Fig. 7.
The hyperplane representation of a local linear correlation reestablished by CARE
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Fig. 8.
Pair-wise correlations of a local linear correlation
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Fig. 9.
Efficiency evaluation
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Fig. 10.
Hyperplane representations of strongly correlated gene subsets
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Fig. 11.
A local linear correlation in NBA dataset
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Fig. 12.
The hyperplane representations of local linear correlations in the wage dataset
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TABLE I

Linear correlations reestablished by full dimensional PCA

Eigenvectors Linear correlations reestablished

v 1 –0.4775x1 + 0.4311x2 + 0.1018x3 – 0.1516x4
–0.1185x5 + 0.1318x6 + 0.6215x7 – 0.3437x8
–0.1312x9 = 0

v 2 –0.4503x1 – 0.3533x2 – 0.0432x3 + 0.1931x4
–0.0460x5 – 0.2823x6 – 0.1219x7 – 0.4577x8
–0.5703x9 = 0

v 3 –0.2072x1 + 0.3259x2 – 0.0742x3 + 0.4307x4
–0.5181x5 – 0.2438x6 – 0.4166x7 – 0.0333x8
+0.3966x9 = 0
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TABLE II

An example of strongly correlated feature subset

Feature subset {x2, x7, x9}

Eigenvalues of CF λ1 = 0.001, λ2 = 0.931, λ3 = 2.067

Input parameters k = 1, ε = 0.004 and δ = 60%

Objective function value f(F, k) = 0.0003
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TABLE III

Monotonicity with respect to feature subsets

Point subset P1 = {p1, ···, p15}

Feature subset X1 f(F1, k) = 0.1698

Feature subset X1 ∪ {x9} f (F1
′, k) = 0.0707

Feature subset X1 ∪ {x4, x9} f (F1
′′, k) = 0.0463
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TABLE IV

No Monotonicity with respect to point subsets

Feature subset X2 = {x2, x7, x9}

Point subset P2 f(F2, k) = 0.0041

Point subset P2 ∪ {p10} f (F2
′, k) = 0.0111

Point subset P2 ∪ {p14} f (F2
′′, k) = 0.0038
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TABLE V

Local linear correlations embedded in the dataset

Point subsets Local linear correlations

{p1, ···, p60} x50 – x20 + 0.5x60 = 0

{p30, ···, p90} x40 – x30 + 0.8x80 – 0.5x10 = 0

{p50, ···, p110} x15 – x25 + 1.5x45 – 0.3x95 = 0
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TABLE VI

Linear correlations identified by full dimensional PCA

Eigenvectors Linear correlations reestablished

v1 (λ1 = 0.0077) 0.23x22 – 0.25x32 – 0.26x59 ≈ 0

v2 (λ2 = 0.0116) 0.21x34 – 0.26x52 ≈ 0

v3 (λ3 = 0.0174) –0.22x6 – 0.29x8 + 0.22x39
–0.23x72 + 0.26x93 ≈ 0

Proc Int Conf Data Eng. Author manuscript; available in PMC 2010 April 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 32

TABLE VII

Local linear correlations identified by CARE

x50 – 0.99x20 + 0.42x60 = 0

x40 – 0.97x30 + 0.83x80 – 0.47x10 = 0

x15 – 0.9x25 + 1.49x45 – 0.33x95 = 0
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TABLE VIII

Local linear correlations reestablished under different parameter settings

k ε δ Linear correlations reestablished

1 0.006 50% x40 – 0.97x30 + 0.83x80 – 0.47x10 = 0

1 0.006 40% x40 – 0.98x30 + 0.78x80 – 0.47x10 = 0

1 0.006 30% x40 – 0.98x30 + 0.78x80 – 0.48x10 = 0

1 0.009 50% x40 – 0.96x30 + 0.82x80 – 0.53x10 = 0

1 0.012 50% x40 – 1.06x30 + 0.85x80 – 0.47x10 = 0

1 0.03 55% x40 – 0.79x30 + 1.05x80 – 0.33x10 = 0

2 0.006 50% x40 – 0.97x30 + 0.85x80 – 0.47x10 = 0

3 0.02 50% x40 – 0.95x30 + 0.86x80 – 0.55x10 = 0
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TABLE IX

Strongly correlated gene subsets

Subsets Gene IDs GO annotations

1 Nrg4 cell part

Myh7 cell part; intracelluar part

Hist1h2bk cell part; intracelluar part

Arntl cell part; intracelluar part

2 Nrg4 integral to membrane

Olfr281 integral to membrane

Slco1a1 integral to membrane

P196867 N/A

3 Oazin catalytic activity

Ctse catalytic activity

Mgst3 catalytic activity

4 Hspb2 cellular physiological process

2810453L12Rik cellular physiological process

1010001D01Rik cellular physiological process

P213651 N/A
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TABLE X

Local linear correlations identified by CARE in the NBA dataset

Local linear correlations

1 TOT = 0.99OFF + DEF

2 GP = 0.21(2P%) + 0.86(FT%)

3 3PM = 0.99(3P%)

4 FGM = 0.17(2P%) + 0.89(3PA)

5 GS= 0.38OFF+0.74FTM
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