

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-796431

Christian Thomsen, Torben Bach Pedersen, Wolfgang Lehner

RiTE: Providing On-Demand Data for Right-Time Data Warehousing

Erstveröffentlichung in / First published in:

IEEE 24th International Conference on Data Engineering. Cancun, 07.-12.04.2008. IEEE, S.
456-466. ISBN 978-1-4244-1836-7

DOI: https://doi.org/10.1109/ICDE.2008.4497454

https://doi.org/10.1109/ICDE.2008.4497454

RiTE: Providing On-Demand Data for Right-Time

Data Warehousing

Christian Thomsen # 1
, Torben Bach Pedersen #2

, Wolfgang Lehner * 3

#Dep. of Computer Science, Aalborg University
Aalborg, Denmark
1chr@cs.aau.dk
2tbp@cs.aau.dk

* Dep. of Computer Science, Dresden University of Technology
Dresden, Germany

3
wolfgang.lehner@tu-dresden.de

Abstract- Data warehouses (DWs) have traditionally been

loaded with data at regular time intervals, e.g., monthly, weekly,
or daily, using fast bulk loading techniques. Recently, the trend
is to insert all (or only some) new source data very quickly into

DWs, called near-realtime DWs (right-time DWs). This is done
using regular INSERT statements, resulting in too low insert
speeds. There is thus a great need for a solution that makes
inserted data available quickly, while still providing bulk-load

insert speeds. This paper presents RiTE ("Right-Time ETU'), a
middleware system that provides exactly that. A data producer

(ETL) can insert data that becomes available to data consumers
on demand. RiTE includes an innovative main-memory based
catalyst that provides fast storage and offers concurrency control.

A number of policies controlling the bulk movement of data based
on user requirements for persistency, availability, freshness, etc.
are supported. The system works transparently to both producer
and consumers. The system is integrated with an open source

DBMS, and experiments show that it provides "the best of both
worlds", i.e., INSERT-like data availability, but with bulk-load
speeds (up to 10 times faster).

l. INTRODUCTION

Data warehouses (DWs) [1] have traditionally been loaded
with data at regular time intervals, e.g., monthly, weekly, or
daily. Here, fast bulk loading techniques have typically been
used in order to obtain sufficiently high insert speeds for
the huge data volumes. In recent years, there has been an
increasing demand for having very fresh data in DWs. Thus,
new or updated data from the operational source systems has
been inserted very quickly (within seconds or minutes) into
the DWs, which are commonly referred to as "near-realtime
DWs". A more sophisticated approach acknowledges that some
data needs to be very fresh, while other data may be less fresh,
and thus, based on the freshness needs, inserts data at the
"right time" into the DWs, referred to as "right-time DWs".
Bulk-loading techniques are only efficient for relatively large
batches of data, and are thus not feasible for the single/few
row "trickle feeds" used in the latter types of DWs. Thus,
these have had to revert to classical OLTP-style inserts, using
regular INSERT statements executed in small transactions. But
here the unavoidable problem is that the insert speed is not
high enough (often an order of magnitude lower than bulk
loading).

There is thus a great need for a solution that makes inserted
data available quickly, while still providing bulk-load insert
speeds. A Jot of work has been done on supporting read
optimized DWs, e.g. special multidimensional index structures,
OLAP servers, etc. It is, however, equally necessary to have
write-optimized system "before" the DW. Thus, we need a
solution to asynchronously propagate data from sources to
the DW (under some consistency constraints). Such a solution
should strike the right batch size between the two extreme
forms (bulk versus single row) and find the right time to move
"micro batches" of data within the system. We note that data
must be inserted at the latest when, but not necessarily before,
it is needed, i.e., data should be available only on-demand.
There is also a need to decouple source systems and the DW.

This paper presents RiTE ("Right-Time ETL"), a middle
ware system that provides exactly such a solution. RiTE allows
a data producer to continuously insert data into a DW at
bulk-load speed, but such that data consumers (DW clients
executing queries) get access to fresh data. To do this, RiTE
takes advantage of a nurnber of special characteristics of DW
systems. RiTE is thus targeted at supporting one producer
(the ETL program) doing many INSERTs with low persistency
requirements (persistency can be guaranteed if needed). RiTE
includes an innovative main-memory based catalyst that, like
a chemical catalyst, enables the insert process to be performed
faster and with less effort. RiTE supports a number of policies
controlling the bulk movement of data based on user require
ments for persistency, availability, freshness, as well as elapsed
time and CPU load. Using RiTE is transparent and requires
only very few changes to producer and consumer code, in most
cases only the few lines establishing database connections have
to be changed.

Figure l(A) shows a classical DW system with source
systems, a producer, a DW, and consumers. The black boxes
show database drivers, e.g., JDBC [2]. Figure l(B) shows the
architecture for the same system using RiTE, with the catalyst
and specialized database drivers. The catalyst holds data in
main memory but ensures that data is transparently available
to the consurners. Data frorn the producer can then float to the
DW either via the catalyst or directly.

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

IConsumerl

�/

,... peration l

source

_.I Consumerj

source IConsumerl source

RiTE
catalyst

(A) (B)

Fig. 1. Architectures for (A) a classical system and (B) a system using RiTE

Performance studies of the PostgreSQL-based prototype
shows that RiTE improves insert time by up to an order of
magnitude. Rows are transparently read from the RiTE catalyst
with only a small overhead. Thus, RiTE provides INSERT-like
data availability, but with bulk-load speeds.

The remainder of the paper is structured as follows. Sec
tion II describes RiTE from a user perspective. Section III
describes the producer database driver. Section N describes
the catalyst. Section V describes the table function and the
consumer database drivers. Section VI presents experimental
results. Section VII presents related work and Section VIII
concludes and points to future work.

II. USER-ÜRIENTED ÜPERATIONS

We now give short, informal introductions to the operations
that are treated specially by the RiTE package. These oper
ations and other operations used internally by RiTE are all
exemplified and described in details in the following sections.
Note that other classical database operations that are not
handled specially by RiTE can still be performed.

A. Producer Operations

The two producer operations insert and commit are handled
specially by RiTE. From the user's point of view, insert
operations work as normal inserts but are faster. Behind the
scenes, RiTE temporarily keeps the inserted values locally at
the producer side and later moves them towards the DW in
bulk. The strategy about when to move data in bulk is based on
different policies that are explained later. lt is, however, done
such that the data always is available from the DW when it is
needed for querying.

The commit operation makes inserted data available for con
sumers. But when using RiTE, the user decides if committed
data is written to the DW's tables. If this is done, the commit
is called a materialization. If the user does not have strict
persistency requirements (e.g., if the data can be re-extracted
from the sources), it is also possible to commit the data without
doing a materialization which then can be done later. This is
faster, but still makes the data available for consumers. Such
a commit can be done in different ways that affect when the
bulk moving of data takes place.

B. Consumer Operations

For a consumer, there are also two operations that are
handled specially: read and ensure accuracy. From the user's
point of view, a read is done by using SELECT. Behind the
scenes, transparently to the user, the read is not necessarily
just a read from tables in the DW.

The only new operation introduced by RiTE is ensure
accuracy. This is relevant for a consumer that does not
necessarily need data that is as fresh as possible and thus can
help the system to get a better performance. For example, it
may be acceptable for a daily status report to consider all sales
data that existed 10 minutes ago but not newer data. By using
the ensure accuracy operation, the consumer is guaranteed that
it at least sees the data that existed 10 minutes ago.

III. PRODUCER SIDE

In this section, the specialized database driver for the
producer is described.

A. Setup

The RiTE producer driver is defined by an extension of
the standard Java JDBC Connection interface. That means
that to start using it from an existing Java application, only
the lines where the connection to the database is made must
be changed. The driver must be told which of the DW's
tables the catalyst provides intermediate storage for (so-called
memory tables). Inserts to these tables are then handled by the
driver. Statements not handled specially by the RiTE driver are
executed via a traditional JDBC Connection implementation.

B. Insert

W hen a prepared statement is made, the driver detects if the
statement inserts scalar values into a memory table. If so, the
driver takes the values to insert from the statement when this
is executed and stores them in a local buffer.

Example 3.1 (Insert): Consider an example where the DW

has two (empty) tables, X(A, B) and Y (C, D). RiTE is used
such that a memory table is made f or X. (This setup is used
as a running example in the paper.) Now, assume that the
producer code with prepared statements inserts the rows (1, 1)
and (2, 2) into X and (3, 3) into Y Before these inserts, the
system has the following state where the local buffer for X
is shown to the left, the catalyst's memory table for X in the

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

middle and the DW's tables (from now on referred to as the
DW tables) to the right. A double line in the bottom of a table
shows that the table is empty.

!AIBi !AIBi !AIBl!CIDI
X X X Y

Producer Catalyst DW
After the inserts, the system has the state shown below where
the two new X rows are held in the local buffer and the new
Y row is in the DW table Y.

ffffi ! A*BI
X

Producer Catalyst DW

C. Flush
The new rows from the prepared statement remain in the

producer driver's buffer until a commit operation is done
by the producer or optionally until the producer executes a
query that should consider (uncommitted) data inserted by the
producer itself. The held rows are then flushed to the catalyst
(not the DW) in a bulk operation.

Example 3.2 (Flush): Consider again the state obtained in
Example 3.1 and assume that the producer commits the data
such that a flush is initiated. This results in a state where the
X rows have migrated to the catalyst.

!AIBi �
X Ll__Ll_j

!AIBi�
X �

Producer Catalyst DW

D. Lazy Commit
lt is also possible for the producer driver to keep rows

locally after a commit whenever a policy defines to do so.
When committed data is not flushed immediately, we have
a lazy commit. When a lazy commit appears, the producer
driver records the commit time at which commit operation was
invoked and places all rows in the buffer in an archive which
holds committed, but not flushed, rows. The archive is flushed
later as explained below.

Example 3.3 (Lazy commit): Consider again the state ob
tained in Example 3.1. lf the producer performs a lazy commit,
we get the following state where Xarch is an archive.

AIBi� IAIBI
X Ll__Llj X

Xarch
Producer Catalyst

IAIBI�
X �

DW

Compare this to the state obtained in Example 3.2. In the
current example, the X rows are not migrating to the catalyst
but remain on the producer side. After a flush is performed,
the state resembles the situation of Example 3.2.

E. Requests for data
lt is possible for the producer driver at the same time to have

several archives with different commit times. These archives
hold committed data that eventually should be flushed. At the
latest, the flush is done when the connection to the DW is

closed, but it may also happen before. When one or more
archives exist, the producer driver sets up a background thread
that listens for requests for data from the catalyst. As will be
explained later, such a request occurs because a consumer has
a demand for fresh data. The catalyst might ask only for parts
of the archived data in which case only the requested parts are
flushed. The recorded commit times are used to decide which
parts to flush.

Example 3.4 (Request for data): Consider again the running
example and assume that lazy commits are used for the
following sequence of events. The numbers shown to the left
are (abstract) time stamps. Before the shown events, nothing
has happened.

1) The row r = (l, 1) is inserted into X by the producer.
2) The producer commits, resulting in the archive XI,.��

for X. This archive holds the row r.
3) The row s = (2, 2) is inserted into X by the producer.
4) The producer commits. This results in that the archive

X;;'
r
�t is made for X. This archive holds the row s.

5) The consumer requests the catalyst to hold data for X
that is maximally 2 time units old. This means that the
catalyst should at least hold the data committed at time
5 - 2 = 3. To fulfill this, the catalyst sends a request
for data to the producer. The producer then flushes the
data in XI,.�� (the only archive with data committed at
time 3). Row r (committed at time 2) is then available
from the catalyst, whereas row s (committed at time 4)
is not. This gives the state shown below.

AIBi� � IA!BIICID
x

xr=4 x x
arch

Producer Catalyst DW

F. Materialize
Data from the archives is also flushed when the producer

wishes to materialize the rows such that they are written to
the DW tables. This is done to make the rows reach their
final target (the DW table), to make space for other rows in
the catalyst, and to guarantee persistency. Persistency is not
guaranteed when rows are stored by the catalyst. In case of a
crash, the rows in the catalyst will be lost. Recall that in typical
DW environments this is not a problem since the data can be
reloaded from the operational systems. When rows on the other
hand have been materialized, the usual persistency guarantees
given by the DW DBMS apply. Note that the producer thus
controls the persistency guarantee since the catalyst does
not do "implicit" materializations. To make materialization
possible, the RiTE producer driver extends JDBC's Connection
class with the method commi t (boolean) which performs
a commit operation and where the argument decides whether
the rows should be materialized to the DW tables before
the commit operation is performed in the DW. To make the
rows ready for materialization, the producer driver first has to
transfer them to the catalyst. Note that since a materialization
only happens together with a commit operation, data held in
the producer driver's local buffer is flushed at the same time.

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Example 3.5 (Materialization): Assume that the state is as
obtained in Example 3.2. A materialization then gives the

following state where the X rows are inserted into the DW

1 Al BI üffi I tF I tqE
Producer Catalyst DW

Note that the rows are still present in the catalyst after the
materialization. However, it is automatically ensured that a
consumer only sees each row instance once (this is explained
in Section V). When space is needed, the now materialized
rows will eventually be deleted from the catalyst.

G. Policies

Finally, data in archives is flushed when a policy has defined

that it is time to do so. A policy is simply a function that

returns a Boolean value. When the return value of the policy
is true, the rows are flushed and vice versa. The producer
invokes the policy and checks the return value at regular

user-definable intervals. By using policies, it is for example
possible to make the producer less intrusive on busy systems
by considering the load average. A possible policy is thus only
to flush if the load average for the last minute has been below

80% or if 10 minutes have passed since the last flush.

The RiTE package includes policies 1) for flushing imme

diately after a commit (this is the default), 2) for waiting as
long as possible, i.e, only flush on-demand, and 3) for load
aware policy-based flushing when the load average is below

some percentage or a certain time interval has passed since the
last flush. Further, an interface that the user can implement to
define her own policies is included. The interface has two

functions: One for the policy itself, i.e., a function returning a

Boolean value, and one used to inform the implementation that

the data has been flushed for another reason, e.g., a request

for data from the catalyst.

To start using lazy commit with a given policy, the user

only has to define which policy to use. Thus, it only requires
one line of code to start using a policy. The rest is handled
transparently by the RiTE drivers.

H. The minmax Table

When rows are flushed to the catalyst, the catalyst implicitly
assigns row /Ds to the rows and returns the maximal assigned
row ID to the producer driver. The producer driver then

updates a special metadata table, called the minmax table, in
the DW. The minmax table holds data about the minimal and
maximal row ID for rows that a consumer should get from
the catalyst. Note that these row IDs are handled completely
transparently by the RiTE software and are never seen by the

producer or consumer code. So after a flush, rows with new

row IDs are available and the information about the maximal

available row ID is updated. As explained later, this only
affects later consumer queries. Already running queries are

unaffected and will not see the new rows that were committed
after they started.

After a materialization, the producer driver similarly updates

the information about the minimal row ID of rows that a new

consumer query should get from the catalyst. The reason is

that rows with lower row IDs now, after the materialization,
have migrated to the tables in the DW.

Example 3.6 (The minmax table): Consider again Exam
ple 3.2 where data was fiushed. Assume that the row (1, 1)
is assigned row ID I and the row (2, 2) is assigned row ID

2. After the fiush, the minmax table has the content shown to
the left below. After the materialization in Example 3.5, it has
the content shown to the right.

1 mj° 1 m;x 1 ,-1-m
...,.

;n
--y

l- m-2-ax
--,

I

After Ex. 3.2 After Ex. 3.5

Note that after the materialization, the minmax table teils that
consumers should get the empty set of rows from the catalyst
since no row has an ID such that both ID s 2 and ID z 3

hold. The consumers should now get the rows from the DW

table inste ad.

IV. CATALYST SIDE

We now describe the catalyst. The purpose of the catalyst

is to provide fast, intermediate storage for data. lt does so by

storing rows in main memory. lt can serve one producer driver
and many consumer drivers and their table functions at the
same time. Note that the consumer driver itself does not fetch

rows. Instead it (transparently to the user) informs the catalyst
about which rows should be readable by a table function. A

table function is the remedy that makes rows accessible in the

DW. The catalyst is independent of the used DBMS as its sole
functions are to 1) store rows for a producer, 2) deliver them to
a table function, and 3) delete them when they are marked as

unused (i.e., no consumer currently uses them and they have

been materialized).

A. The Row Index

The catalyst allocates a user-adjustable amount of memory

for each memory table and uses this to store the memory
table's rows. Whenever a producer driver adds rows, the rows

are implicitly assigned row IDs by the catalyst. All row IDs

are taken from the same sequence such that there are no
duplicates among row IDs for different memory tables. The

catalyst maintains a row index that is used to map between
row IDs and start and end positions for the data of the rows.
The row IDs are only stored in the row index, not together

with the data of the rows.

Example 4.1 (The row index): Consider again Example 3.2
and assume again that the row (1, 1) is assigned the row ID
1 and the row (2, 2) the row ID 2. T hen the row index will be

as shown below.

(Note that although the row index here is shown as a list, a

tree-based index is used in the implementation.)

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

When a table function reads data, it gives the minimal and
maximal needed row IDs (recall that these were made available
in the minmax table by the producer driver). By using the row
index, it is then very easy for the catalyst to find the chunk
of memory to transfer to the table function.

B. The Time Index

When a producer driver adds rows, it must tell the catalyst
when the rows were committed at the producer side. For each
memory table, the catalyst maintains a time index that for a
commit time t maps to the row ID of the last row that was
committed at time t. When a producer driver adds rows that
are not yet committed (this is an option for a producer that
needs to query its own uncommitted data), it gives them the
special time stamp oo.
Example 4.2 (The time index): Consider again inserts into
the memory table X in the running example and assume that
the rows r1 and r2 are committed at time t1 and the rows r3

and r4 are committed at time t2. Assume that the row rn gets
the row ID n. The time index r is then a partial fanction from
time stamps to row IDs such that r(t1) = 2 and r(t2) = 4.

A producer driver must transfer rows in a way where for
a single memory table, all rows that were committed at time
t1 are flushed in one operation and before rows committed at
time t2 for t1 < t2 . lt therefore holds that when a producer
driver adds uncommitted rows, it must already have added all
its committed rows since they have commit times less than oo.
On the other hand, when new rows with a time stamp t -/= oo
are added, all rows with the time stamp oo can implicitly be
assumed to also be covered by this new commit and can have
their time stamp updated to t. In case of a rollback, the catalyst
simply has to discard all rows with the time stamp oo. The
chunk of memory that holds these rows is easy to identify by
using the time and row indexes.

C. Ensuring Accuracy

A consumer can tell the catalyst to ensure that it holds the
data with a certain accuracy (i.e., the data that was committed
by the producer a certain time interval ago) for a subset of the
memory tables. The default is that the catalyst should have
all data, but with a one-line change in the consumer code, the
consumer can ease the work of the producer and catalyst by
only requiring data of a certain freshness.

When the catalyst receives such a wish, it sees if this can
be fulfilled with the data it currently has. If the producer
does not do lazy commits, this is trivially true. The catalyst
knows whether the producer driver has connected to listen for
requests for data. If it has not, it can be assumed that the
producer driver does not do lazy commits. If the producer on
the other hand uses lazy commits and the catalyst is instructed
to ensure that it at least has data committed at time t for the
set of memory tables M, it must ensure that it has the data or
request the producer driver to flush that data. This is the case
in Example 3.4 where the producer is requested to flush data
committed at time 3. If the catalyst already has rows with the
time stamp t' where t s t' -/= oo for all m E M, it also has

the committed data for t for m E M due to the flush order
rule explained above. lt can even be the case that for every
m E M, the catalyst has data committed at time t' > t. This
data can also be used as the operation is meant to ensure that
the catalyst's data is not older than the data that was committed
at the given time stamp.

lt might, however, be the case that the catalyst has no data
committed at or after the wished time stamp t for (some
of) the memory tables in M for which accuracy should be
ensured. When this happens, the catalyst finds the tables that
do not have sufficiently accurate data and requests the producer
driver to transfer data for these. lt might then be the case
that for a memory table m no rows are held in the producer
driver's archives in which case the producer driver sends an
empty update form, i.e. adds and commits zero rows. For the
catalyst, this is still valuable information as the time index can
be updated and the accuracy ensured.
Example 4.3 (Empty update): Consider again Example 4.2
and assume that no farther rows are inserted into X, but
that there is a lazy commit at time t3. lf the catalyst sends
a request for data committed at time t3, the producer driver
will make an empty update such that the time index maps the
time stamp t3 to the row lD 4: r(t3) = 4. Note that we then
have r(h) = r(t3) since no rows were added to X between
the commits at t2 and t3.

If the catalyst is instructed to ensure that it at least has all
data committed at time t for the memory tables M, it goes
through Algorithm 1 where C(m, t) = {t I i E T(m) /\
t 2'.'. t} and T(m) is the set of commit times different from oo
in the time index for memory table m.

Algorithm 1 Find time stamp to consider
Input: A time stamp t and a set of memory tables M

1: form EM do
2: if C(m, t) = 0 then

3: Request from the producer driver all the unflushed
data for m that was committed before or at time t

4: Om <-{t}
5: eise

6 Om <- C(m,t) U {t}
7: return max (nmEM Om)

The return value of Algorithm 1 is the newest time stamp for
which data can be considered. That means that if the algorithm
is invoked for a time stamp t and a set of of memory tables
M and returns i, it holds that i 2'.'. t and that the catalyst now
holds all data that was committed at time t for all m E M.

Line 2-3 of the algorithm ensure that the catalyst at least has
all the (possibly empty) data sets committed at (or before) time
t for each m E M. So we know that data from time t can
be considered. But if all m E M have newer committed data
available, the algorithm picks the maximum time stamp that
every m has data for. The found time stamp is returned to the
consumer driver which (transparently to the user) ensures that
it is used when data is read from the catalyst the next time.

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

D. Reads

When a table function reads data, it must also give the
catalyst a time stamp that decides what data to include in
the result. The time stamp is needed to ensure that data that
is too new is not included in the result set as illustrated in the
following example.

Example 4.4 (Problems in not using tJ,e time stamp):

Recall the setup f or the running example but now assume
that both tables X and Y have memory tables. Now consider

a scenario where the producer uses lazy commit and the
following events take place. (Ihe numbers show how many
minutes have passed since the system was started).

1) The producer inserts X and Y rows and commits.

2) Data for Y is fiushed.

3) The producer inserts X and Y rows and commits.

4) Datafor Xis flushed.
5) A consumer wants 4 minutes accuracy for X and Y.

Ihe time stamp to use is then for the first commit (4 minutes
ago). Note that the last fiush for X was 1 minute ago (so all
committed data for X is available in the catalyst) while the

last flush for Y was 3 minutes ago (so only data committed
4 minutes ago is available in the catalyst). 1f the catalyst
did not use the time stamp and naively returned all data, it
would return possibly inconsistent data since X contains data
committed 1 minute ago but Y does not.

So by using the time stamp, the catalyst ensures that a con
sistent snapshot of the committed data is used when retuming
data to a table function. Based on the time stamp and the time
index, the last row to include is found. The last row retumed
is the row with the biggest row ID that is less than or equal
to the minimum of the requested max row ID and the row ID
found from the time stamp. Formally, if the minimal requested
row ID is imin, the maximal requested row ID is imax , the
time stamp is t, and f(t) is a function giving the time index
mapping from the biggest time stamp smaller than or equal to
t to a row ID (or -1 if this is undefined), then all retumed
rows have their row IDs in the set

.6. = { n I n E N, imin Sn S min(imax , f(t))}

Note that the number of retumed rows may be different from
1 .6. 1. For a single memory table it is not given that it has all
(or even any of) the rows with row IDs in .6..

If the catalyst has not been instructed to ensure a certain
accuracy, the table function will use a special time stamp
that says that all committed data must be considered (i.e., the
catalyst must hold data committed at or before the current time
and the time stamp is set to the current time).

E. Registering Rows as Being Used

A consumer driver can register rows with row IDs in a
given interval as being used to ensure that they are not deleted
from the catalyst while a consumer query should be able to
read them there. To register rows as being used, corresponds
to getting a shared lock. Rows that are registered as being
used cannot be deleted from the catalyst. Note that it is not

enough to consider rows currently being read as used. A single
consumer query may need data from different memory tables
or from the same table more than once. In between two reads,
the catalyst should not have deleted rows that were within
the desired interval of rows in the first read. Therefore, rows
should be registered as being used before the query starts
and deregistered after it finishes (the consumer driver does
this automatically and transparently as will be explained in
Section V).

Only rows that are not already materialized can be registered
as being used by a consumer. Already materialized rows,
can be read from the DW tables and should not block the
catalyst from freeing memory. Rows can, on the other hand,
be materialized while they are still registered as used. When
this happens, the rows will for some time be available both in
the DW and in the catalyst. But due to the consumer driver's
use of the minmax table, a consumer will only see one instance
of each row. This is explained in Section V.

When the producer has performed a materialization, the
producer driver informs the catalyst about this. The catalyst
uses this to decide which rows it can delete. Rows that are
materialized and not registered as being used, can safely be
deleted such that the memory can be reused. Deletion is done
automatically by the catalyst when more space is needed.
Since materialization happens together with commit, it is the
case that the rows to materialize have row IDs within a given
interval. lt is therefore also the case, that the catalyst only
has to free one continuous block of memory for each memory
table and there is no need to use maps over free regions or
similar techniques.

V. CüNSUMER SIDE

In this section, the consumer driver is described. Like
the producer driver, the consumer driver is defined by an
extension of the JDBC Connection interface. This extension
adds methods for defining how accurate data read from the
catalyst has to be. Further, the consumer driver (transparently
to the user) ensures that rows are not deleted from the catalyst
while they are needed by a consumer query .

From the consumer's point of view, the consumer driver
is executing queries with the READ COMMI TTED isolation
level. To implement this such that it works as expected for
both data in the DW and in the catalyst, the driver actually
executes queries towards the DW in the REPEATABLE READ
isolation level.

A. Registering Rows as Being Used

Before a query is executed, the consumer driver has to
register row IDs as used. As explained in the previous section,
this is done to ensure that the rows that exist in the catalyst
when the query starts, continue to exist while the query is
executed. The row IDs to register as used are those in the
range defined by the minmax table, i.e., from the first row that
is not materialized when the query starts to the last row that
is committed when the query starts. To make sure that rows
will not disappear from the catalyst while a query is running,

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

the consumer driver will whenever a method executing a

query is invoked, first read values from the minmax table

and try to register them with the catalyst. This might fail

if a materialization is done between the time the consumer

driver reads the values and the time it gives them to the

catalyst (recall that the catalyst only allows row IDs of non

materialized rows to be registered as used). In that case, the

consumer driver ends the transaction, starts a new transaction

and reads values from the minmax table and tries to register

them. To avoid starvation problems, the catalyst gives priority

to consumers retrying to register values. When the values from

the minmax table are registered, the query is executed. After

the query is executed, the consumer driver deregisters the

values.

B. Ensuring Accuracy of Read Data

The consumer driver also provides the consumer with meth

ods that determine how old data from the catalyst is allowed

to be. This is relevant when the producer uses lazy commits.
A consumer can then explicitly teil the catalyst how accurate

data it needs. If data of the given accuracy or newer data

already exist in the catalyst, the producer and the catalyst are

released from the burden of flushing data. If the catalyst, on the

other hand, does not hold sufficiently fresh data, it requests the

producer to flush the needed data. But this happens on-demand

and only for the needed data. Note that if these methods are

not used, the default is that the catalyst holds all committed

data.

Concretely, the JDBC Connection interface is extended

with methods ensureAccuracy (...) that take a time

interval and memory table names as arguments. When these

are invoked, the consumer driver passes the wanted accuracy

to the catalyst that returns a time starnp for for which it has

the committed data and that is accurate enough. The value is

stored in the DW in a session variable such that it is available

for the table function.

C. Reading Data with the Table Function

The consumer driver itself does not read rows from the

catalyst. Instead the DW reads rows through a table function,

i.e., a stored procedure that returns a set of rows with a

structure like rows in a table in the DW. The table function

takes as arguments the name of the memory table to read data

from and the minimal and maximal row ID of rows to read.

When the table function wants to read rows from the catalyst,

it also gives the catalyst a time stamp that defines how fresh

the data must be (as explained in Section IV). Although the

row ID arguments can be used to limit the result set in other

ways, the normal usage of the minimal row ID is to avoid that

the catalyst retums rows that are already materialized when

the query begins. This value is defined such that rows with

lower row IDs have already been rnaterialized and should be

read from the DW. Only from the found value and up, the

rows should be read from the catalyst. The normal usage of

the maximal row ID is to avoid that the catalyst retums rows

that are not committed when the query begins. lt is defined

to mean that rows with a greater row ID are not committed

yet. If this value is read once and reused, it does not affect

the query if more rows are committed later.

Example 5.1 (Use of tlie minmax fable): Consider again

the state of the minmax table after the materialization in
Example 3.6 and assume that the producer inserts and
commits two rows that get the row IDs 3 and 4, respectively.

In the minmax fable, the min value is then 3 and the max

value is 4.
A consumer driver now reads these values from the minmax

table and successfully registers them. When the fable function
is given these values, it reads the two new rows from the

catalyst. Rows with a row 1D less than 3 should not be read

since they were already in the DW table when the query

started. Now assume that the consumer's query is expensive

and involves reading data from the memory table twice. After

the first time data is read, but before the second time, the

producer inserts and commits some new rows that get row
IDs greater than 4. These rows did not exist when the query
started. To avoid that the query sees them, the table function
is still given the previously read values (i.e., min = 3 and
max= 4).

Finally, assume that while the consumer's query is execut

ing, the producer performs a materialization such that all
the new rows also become available in the DW fable. The
consumer query is still able to read the rows from the catalyst
(since they are registered as used and thus cannot be deleted).

The consumer query does not get the same rows from the DW
table (since it is running in REPEATABLE READ mode and
the rows were not in the DW when the query began). So the

consumer sees every row that existed when the query began
exactly once. The rows that were committed after the query

began are not seen.

D. Transparency

To make these things transparent to the end user, a view

over a DW table and its associated memory table can be

defined. If the view definition uses the minmax table directly,

we find the same rows in the view every time the view is used

within one query (recall that the consumer connection is put

in REPEATABLE READ mode). So for each DW table for

which a memory table also exists, a view should be defined

as

CREATE VIEW v AS
SELECT * FROM dwtable
UNION ALL
SELECT * FROM tablefunction('dwtable',

(SELECT min FROM minmax),
(SELECT max FROM minmax))

If the view v is used instead of dwtable in queries, the

end user does not have to think about if rows are read from

the tables in the DW or frorn the catalyst. Since the consurner

driver behind the scenes is using the REA PEATABLE READ

isolation level, a single query that uses the view many times

sees the same values from the minmax table and thus the same

set of rows in the view. But the consumer driver starts a new

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

800 ��-�-�-�-�-�
Tradilional JDBC �

800 ��-�-�-�-�-�
Traditional JOOC �

800 ��-�-�-�-�-�
Traditional JDBC �

700 JOOC with batches --- 700 JDBC with batches ·--- 700 JDBC with batches -�-
RiTE with mal RiTE with mal. ··•-•O,••·-· RiTE with mal. -····•-···

600 Bulk loading � 600 RiTE without mal. --- 600 RiTE withoul mal. �
RiTE without mat. _..,_

500
400

500
400

--
__...

300 --
--

_.,... 300

200 ----

:��
,/�-///-· 300

// 200 --
100 --------

0 �-.......-- ______ ___:, __ ...:...-�---------- 100 c::;..--------:... -• ... -• ..
0 JA;;;;:===1�:=E::::::::====:J

0

...,.�····
200 y
100 �

··-· ·
····· ------

···· �
0

0 2 3 4

Million rows Million rows
0 2 4

Million rows

(A) Cornmit after the last raw (B) Cornmit per 10,000 raws (C) Concurrent producer and consumer

Fig. 2. Performance results

transaction for each query and some rows might have been

updated when a query is re-executed. In other words, non
repeatable reads are possible such that the isolation level in
effect is READ COMMITTED as promised by the driver.

VI. PERFORMANCE STUDY

A. Setup

We now present a performance study of the RiTE prototype.
The prototype (www.cs.aau.dk/~chr/RiTE) consists of 1) Java
JDBC database drivers for producers and consumers, 2) the
catalyst (Java), and 3) a C implementation of a PostgreSQL
table function. The prototype shows a working solution for

a DW based on PostgreSQL [3] version 8.1 running on
a Linux x86 platform. However, the applied principles are
general and could be used for most DBMSs. The catalyst is
completely DBMS-independent while the JDBC drivers have

few (marked) PostgreSQL dependencies. The table function is,

of course, highly dependent on the hosting DBMS platform.

The experiments have been carried out on a 3GHz Pentium

4 PC with 3.2GB RAM and four SATA disks of which one
is used for DW data, one for PostgreSQL's write-ahead logs,

one for source data and one for binary executables and swap
area. The PC is running Ubuntu Linux 6.10, Java 6SE, and
PostgreSQL 8.1.4. The PostgreSQL configuration can be found
at www.cs.aau.dk/~chr/RiTE. We simulate a producer filling

a fact table. The source data originales from TPC-H [4], with
the schema modified to a star schema. Rows are inserted into
the typical fact table lineitem with 6 integer colurnns (custkey,

datekey, orderkey, partkey, suppkey, and quantity).

B. Long Transactions

We first consider the performance when inserting many rows
into one table with insert statements. We consider a producer
application, both when using RiTE and the traditional JDBC
driver, and compare this to applications that load the same
data set by doing multirow inserts with JDBC batches and

bulk loading, respectively. Prepared statements are used where

applicable. The values to insert are read from a text file. The
producer runs in one lang transaction and commits after the
last insert. The same producer application is used throughout,
with only the lines setting up the DW JDBC connection and

doing the final commit changed. A suitably modified JDBC

application is used to test JDBC batches with a batch size

of 10,000 rows. Bulk loading is done by letting a modified
application write the data to a comma separated file and then
!et the PostgreSQL server read the file directly.

The graph shown in Figure 2(A) shows the results, which
are 9,646 rows/second (traditional JDBC driver), 17,088
rows/second (JDBC batches), 49,878 rows/second (RiTE
with materialization), 56,846 rows/second (bulk loading), and

98,723 rows/second (RiTE without materialization). As the
systems scales linearly, the speeds are based on the line slopes.
The best throughput is obtained when using RiTE without
materialization. The throughput is then 74% higher than for
bulk loading.

C. Short Transactions

The experiment is now repeated, but with commits for every

10,000 rows. As bulk loads do not commit during the load,
they are not used. The results plotted in Figure 2(B) show that

JDBC's performance is not affected. For JDBC batches, the
throughput drops slightly (to 16,841 rows/second). With RiTE,

the producer can now insert 47,686 rows/second with ma

terialization and 90,356 rows/second without materialization.
Similar results are obtained for commits for every 100,000
rows.

D. lnfluence from a Consumer

The 10,000 row commit experiment is repeated, but
now a consumer application simultaneously performs the

query SELECT SUM(quantity) (reading all rows) on the
lineitem table (which has a memory table when using RiTE).
The query is re-executed right after retuming its results, so the
system is constantly loaded. The results plotted in Figure 2(C)
show that the JDBC application can insert 7,451 rows/second

whereas JDBC with batches can insert 10,862 rows/second.
For RiTE, the producer can insert 22,437 rows/second with
materialization and 54,111 rows/second without materializa
tion. Thus, performance is affected, but the relative advantage

of RiTE remains.

E. Read Performance

We now compare how fast data can be read from a DW

table and a memory table. The data sets used in the previous

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

experiments are loaded once (into a memory table or a DW
table, depending on what is being tested). Then all rows are
read 6 times from PostgreSQL's terminal and the time usages
measured. The first recorded time usage is not considered
as this is used to let PostgreSQL buffer the data to make
fair comparisons. The performance results are plotted in the
graph shown in Figure 3. From the slopes of the lines, we

35
Memory table �

�

30
O-d1nary table _ _.,._

25

20 § 1/' 0

15 (J,
1//

10

5

Million rows

Fig. 3. Read performance results

estimate that the system reads 219,168 rows/second from a
non-memory (but buffered) table whereas it reads 182,786
rows/second from a memory table. The difference is due to that
when data is read from a memory table, type conversions from
Java types to the host machine's native types are performed
and data is transferred from the catalyst to the DBMS. There
is thus a small overhead for RiTE reads.

F Lazy Commit Delays

We now consider a producer that constantly inserts rows
and commits once per second. The producer uses lazy commit
and its flush policy is to flush when the system load is below
70% or 20 seconds have passed since the last flush. While
the producer runs, a load simulator generates randomness in
the CPU load. In the graph shown in Figure 4, the dotted
line shows the CPU load (to be read relatively to the left
Y axis) at different times while a cross at (x, y) shows that
data committed at time x waits y seconds before it is flushed
(where y should be read relatively to the right Y axis). The
solid horizontal line shows where 70% is on the left Y axis
and where 20 seconds is on the right Y axis, i.e., it shows the
"limits" for the policy.

140
Time from commit to flush + 45

120
Load avg. ······--····

40

35 00
c 100

30 i1 �
i � 80 25

];;
.J\ \ \

20

60 \ 15 �
\ '\; \ \40 '\; \ '+,

10

\ \ \\ \\ 5

\ '4 \ .. \'+,
20 0

0 20 40 60 80 100 120 140

Time since start (seconds)

Fig. 4. Lazy commit delays and CPU load

lt is seen that at first, the CPU load is below 70% and data is
flushed with no delay after a commit. After appx. 12 seconds,
the load gets higher than 70% and there are up to 20 second
delays between commit and flush. When a flush is done, all
committed data is flushed (notice how the crosses lie on lines
with a negative slope). After appx. 82 seconds, the CPU load
gets below 70% and data is flushed before 20 seconds have
passed since the last flush (see the short line of crosses around
80 seconds). Also when the producer terminales, it flushes all
data, so the delay is below 20 seconds.

G. Summary

From the experiments it is clear that RiTE provides a
significant performance increase: between 4 and 10 times for
inserts and 2 to 6 times for inserts with concurrent reads.

VII. RELATED WüRK

The issue of moving data from one place to another has
a long tradition in both research and industry. The ETL
process may be implemented in a materialized or virtual
way. Linking external data sources into a target system is
discussed in the context of federations. Using wrapper-like
technologies [5], DW systems gain access to the underlying
data. Selection and transformation routines are directly applied
to the external data; the result directly goes into the DW
tables. Materialization implies the physical movement of data
into the target system. Techniques are ranging from import of
flat files to (a)synchronous replication [6]. While replication
may conceptually provide functionality somewhat similar to
RiTE, current replication techniques are (unlike RiTE) limited
to simple transformations and certain (cooperative) source
systems, and put additional overhead on the data sources. In
comparison, RiTE takes advantage of the special characteris
tics of right-time DWs, and provides quickly-available data at
bulk-load insert speeds. This can be provided for any type
of source system and any type of transformation, as these
parts are handled by the ETL code. With RiTE, the producer
decides when to make data available to all consumers and
when to move data around (by using the commit materialize
and operations, respectively).

From a conceptual point of view, incorporating external data
into a single DW database requires a consistent global view.
Starting with database snapshots [7], significant research was
devoted to that problem in recent years under the notion of
materialized views [8]. Initial work like [9], [10] investigated
methods to establish a consistent view over multiple sources
or updating multiple views with data coming from a single
source [11]. All these mechanism are orthogonal to RiTE
and may be applied on top of our middleware. More closely
related is research documented in [12] rolling global DW
states forward to certain points in time. However, this approach
requires an explicit trigger while our approach is fully demand
driven. A similar approach with implicit instructions based on
the notion of policies is outlined in [13]. In addition the work
of Guo et al. [14] documents a project to control consistency
and currency of data for a given query. In contrast, we focus

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

on the efficient implementation (catalyst) in combination with

a transactionally consistent view on the data source and thus

go much further.

The state of the art of continuous loading is summarized

in [15]. Compared to that, RiTE gives the producer full control

over the units of work to commit together and is flexible with

respect to persistency guarantees versus load speed. Further,

RiTE is more flexible with respect to freshness of data and

offers lazy commit which can make data available in the DW

on demand.

The MySQL [16] DBMS offers a memory storage en

gine for fast, but non-persistent, storage and access. Unlike

MySQL, RiTE has functionality for migrating rows from

memory to the database (i.e., materialization). The MySQL

main memory storage engine also obviously does not scale

to DW data volumes. Additionally, RiTE allows rows to be

added while other rows are read, whereas MySQL uses table

locking when rows are inserted into a memory table. MySQL

also offers INSERT DELAYED syntax where many inserts can

be bundled and written in one block when the target table is

not in use. This holds back INSERT data similarly to RiTE,

but in RiTE the producer controls when to make the rows

available (at commit time). INSERT DELAYED is slower than

normal INSERT if the target is not in use and should be used

carefully. RiTE provides a speed-up for the producer also when

no consumers exist.

VIII. CONCLUSION AND FUTURE WORK

Motivated by the need for a solution that makes inserted

data available quickly, while still providing bulk-load insert

speeds, this paper presented the middleware RiTE ("Right

Time ETL"). A data producer (ETL) can insert data that

becomes available to data consumers on demand. To make

this possible, RiTE introduces an innovative main-memory

based catalyst and supports a number of policies that control

the bulk movement of data based on user requirements for

persistency, availability, freshness, etc. RiTE works completely

transparently to both producer and consumers. A prototype has

been integrated with an open-source DBMS, and experiments

have shown that RiTE provides 'Tue best of both worlds", i.e.,

INSERT-like data availability, but with bulk-load speeds (up

to 10 times faster).

There are many interesting directions for future work.

Logging could be added to the catalyst such that persistency

guarantees can also be given without materialization. Possibil

ities for letting rules provide transparent updating and deletion

of rows inserted into memory tables are also relevant. Fast

inserts could then be performed on the fly and a data cleansing

procedure could correct mistakes or delete bad rows before

materialization. The catalyst could also be implemented as a

module in the underlying DBMS since an even better per

formance could be obtained if no repetitive type conversions

from Java types to the DBMS' native types would have to take

place. A related task is to allow indexes and constraints to be

declared on memory tables.

ACKNOWLEDGMENTS

This work was in part supported by the European Internet

Accessibility Observatory (EIAO) project, funded by the Eu

ropean Commission under Contract no. 004526.

REFERENCES

[!] R. Kimball and M. Ross: 77ie Data Warehouse Too/kit, 2nd ed., Willey
2002.

[2] java. sun. com/javase/technologies/database. Last ac-
cessed Nov. 19 2007.

[3] pos tgresql. org. Last accessed Nov. 19 2007.
[4] tpc. org/ tpch/. Last accessed Nov. 19 2007.
[5] M.T. Roth and P.M. Schwarz: "Don't Scrap lt, Wrap lt! A Wrapper

Anohitecture for Legacy Data Sounoes". In Proc. of VIDB'97 pp. 266-
275.

[6] TM. Özsu and P. Valduriez: Principles of Distributed Database Systems
2nd ed., Prentice Hall, 1999.

[7] M.E. Adiba and B.G. Lindsay: "Database Snapshots". In Proc. of
VIDB'80 pp. 86-91.

[8] A. Gupta and I.S. Mumick: "Maintenance of Materialized Views:
Problems, Techniques, and Applications". IEEE Data Eng. Bull. 18(2):
3-18 (1995).

[9] Y. Zhuge, H. Garcia-Molina, and J.L. Wiener: "The Strobe Algorithms
for Multi-Sounoe Warehouse Consistency". In Proc. of PDIS'96 pp. 146-
157.

[10] L.S. Colby, A. Kawaguchi, D.F. Lieuwen, I.S. Mumick, and K.A. Ross:
"Supporting Multiple View Maintenance Policies". In Proc. of SIG
MOD'97 pp. 405-416.

[11] N. Folkert, A. Gupta, A. Witkowski, S. Subramanian, S. Bellamkonda,
S. Shankar, T. Bozkaya, and L. Sheng: "Optimizing Refresh of a Set of
Materialized Views". In Proc. of VIDB'05 pp. 1043-1054.

[12] K. Salem, K.S. Beyer, R. Cochrane, and B.G. Lindsay: "How To Roll
a Join: Asynchronous Incremental View Maintenance". In Proc. of
SIGMOD'00 pp. 129-140.

[13] H. Engström, S. Chakravarthy, and B. Lings: "A Heuristic for Refresh
Policy Selection in Heterogeneous Environments". In Proc. of ICDE'03
pp. 674-676.

[14] H. Guo, P.-Ä. Larson, and R. Ramakrishnan: "Caching with 'Good
Enough' Currency, Consistency, and Completeness". In Proc. of
VIDB'05 pp. 457-468.

[15] G. Luo, J.F. Naughton, C.J. Eilmann, and M.W. Waltzke: "Transaction
Reordering and Grouping for Continuous Data Loading". In Proc. of
BIRTE'06 pp. 34-49.

[16] mysql. com. Last accessed Nov. 19 2007.

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466.
ISBN 978-1-4244-1836-7

https://doi.org/10.1109/ICDE.2008.4497454

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	RiTE_Providing_On-Demand_Data_for_Right-Time_Data_Warehousing_PPerstelltmei.pdf
	RiTE_Providing_On-Demand_Data_for_Right-Time_Data_Warehousing_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Christian Thomsen, Torben Bach Pedersen, Wolfgang Lehner
	RiTE: Providing On-Demand Data for Right-Time Data Warehousing

