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Abstract- Data warehouses (DWs) have traditionally been 

loaded with data at regular time intervals, e.g., monthly, weekly, 
or daily, using fast bulk loading techniques. Recently, the trend 
is to insert all (or only some) new source data very quickly into 

DWs, called near-realtime DWs (right-time DWs). This is done 
using regular INSERT statements, resulting in too low insert 
speeds. There is thus a great need for a solution that makes 
inserted data available quickly, while still providing bulk-load 

insert speeds. This paper presents RiTE ("Right-Time ETU'), a 
middleware system that provides exactly that. A data producer 

(ETL) can insert data that becomes available to data consumers 
on demand. RiTE includes an innovative main-memory based 
catalyst that provides fast storage and offers concurrency control. 

A number of policies controlling the bulk movement of data based 
on user requirements for persistency, availability, freshness, etc. 
are supported. The system works transparently to both producer 
and consumers. The system is integrated with an open source 

DBMS, and experiments show that it provides "the best of both 
worlds", i.e., INSERT-like data availability, but with bulk-load 
speeds (up to 10 times faster). 

l. INTRODUCTION

Data warehouses (DWs) [1] have traditionally been loaded 
with data at regular time intervals, e.g., monthly, weekly, or 
daily. Here, fast bulk loading techniques have typically been 
used in order to obtain sufficiently high insert speeds for 
the huge data volumes. In recent years, there has been an 
increasing demand for having very fresh data in DWs. Thus, 
new or updated data from the operational source systems has 
been inserted very quickly (within seconds or minutes) into 
the DWs, which are commonly referred to as "near-realtime 
DWs". A more sophisticated approach acknowledges that some 
data needs to be very fresh, while other data may be less fresh, 
and thus, based on the freshness needs, inserts data at the 
"right time" into the DWs, referred to as "right-time DWs". 
Bulk-loading techniques are only efficient for relatively large 
batches of data, and are thus not feasible for the single/few 
row "trickle feeds" used in the latter types of DWs. Thus, 
these have had to revert to classical OLTP-style inserts, using 
regular INSERT statements executed in small transactions. But 
here the unavoidable problem is that the insert speed is not 
high enough (often an order of magnitude lower than bulk 
loading). 

There is thus a great need for a solution that makes inserted 
data available quickly, while still providing bulk-load insert 
speeds. A Jot of work has been done on supporting read
optimized DWs, e.g. special multidimensional index structures, 
OLAP servers, etc. It is, however, equally necessary to have 
write-optimized system "before" the DW. Thus, we need a 
solution to asynchronously propagate data from sources to 
the DW (under some consistency constraints). Such a solution 
should strike the right batch size between the two extreme 
forms (bulk versus single row) and find the right time to move 
"micro batches" of data within the system. We note that data 
must be inserted at the latest when, but not necessarily before, 
it is needed, i.e., data should be available only on-demand. 
There is also a need to decouple source systems and the DW. 

This paper presents RiTE ("Right-Time ETL"), a middle
ware system that provides exactly such a solution. RiTE allows 
a data producer to continuously insert data into a DW at 
bulk-load speed, but such that data consumers (DW clients 
executing queries) get access to fresh data. To do this, RiTE 
takes advantage of a nurnber of special characteristics of DW 
systems. RiTE is thus targeted at supporting one producer 
(the ETL program) doing many INSERTs with low persistency 
requirements (persistency can be guaranteed if needed). RiTE 
includes an innovative main-memory based catalyst that, like 
a chemical catalyst, enables the insert process to be performed 
faster and with less effort. RiTE supports a number of policies 
controlling the bulk movement of data based on user require
ments for persistency, availability, freshness, as well as elapsed 
time and CPU load. Using RiTE is transparent and requires 
only very few changes to producer and consumer code, in most 
cases only the few lines establishing database connections have 
to be changed. 

Figure l(A) shows a classical DW system with source 
systems, a producer, a DW, and consumers. The black boxes 
show database drivers, e.g., JDBC [2]. Figure l(B) shows the 
architecture for the same system using RiTE, with the catalyst 
and specialized database drivers. The catalyst holds data in 
main memory but ensures that data is transparently available 
to the consurners. Data frorn the producer can then float to the 
DW either via the catalyst or directly. 
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Fig. 1. Architectures for (A) a classical system and (B) a system using RiTE 

Performance studies of the PostgreSQL-based prototype 
shows that RiTE improves insert time by up to an order of 
magnitude. Rows are transparently read from the RiTE catalyst 
with only a small overhead. Thus, RiTE provides INSERT-like 
data availability, but with bulk-load speeds. 

The remainder of the paper is structured as follows. Sec
tion II describes RiTE from a user perspective. Section III 
describes the producer database driver. Section N describes 
the catalyst. Section V describes the table function and the 
consumer database drivers. Section VI presents experimental 
results. Section VII presents related work and Section VIII 
concludes and points to future work. 

II. USER-ÜRIENTED ÜPERATIONS 

We now give short, informal introductions to the operations 
that are treated specially by the RiTE package. These oper
ations and other operations used internally by RiTE are all 
exemplified and described in details in the following sections. 
Note that other classical database operations that are not 
handled specially by RiTE can still be performed. 

A. Producer Operations

The two producer operations insert and commit are handled
specially by RiTE. From the user's point of view, insert 
operations work as normal inserts but are faster. Behind the 
scenes, RiTE temporarily keeps the inserted values locally at 
the producer side and later moves them towards the DW in 
bulk. The strategy about when to move data in bulk is based on 
different policies that are explained later. lt is, however, done 
such that the data always is available from the DW when it is 
needed for querying. 

The commit operation makes inserted data available for con
sumers. But when using RiTE, the user decides if committed 
data is written to the DW's tables. If this is done, the commit 
is called a materialization. If the user does not have strict 
persistency requirements (e.g., if the data can be re-extracted 
from the sources), it is also possible to commit the data without 
doing a materialization which then can be done later. This is 
faster, but still makes the data available for consumers. Such 
a commit can be done in different ways that affect when the 
bulk moving of data takes place. 

B. Consumer Operations

For a consumer, there are also two operations that are
handled specially: read and ensure accuracy. From the user's 
point of view, a read is done by using SELECT. Behind the 
scenes, transparently to the user, the read is not necessarily 
just a read from tables in the DW. 

The only new operation introduced by RiTE is ensure 
accuracy. This is relevant for a consumer that does not 
necessarily need data that is as fresh as possible and thus can 
help the system to get a better performance. For example, it 
may be acceptable for a daily status report to consider all sales 
data that existed 10 minutes ago but not newer data. By using 
the ensure accuracy operation, the consumer is guaranteed that 
it at least sees the data that existed 10 minutes ago. 

III. PRODUCER SIDE

In this section, the specialized database driver for the 
producer is described. 

A. Setup

The RiTE producer driver is defined by an extension of
the standard Java JDBC Connection interface. That means 
that to start using it from an existing Java application, only 
the lines where the connection to the database is made must 
be changed. The driver must be told which of the DW's 
tables the catalyst provides intermediate storage for (so-called 
memory tables). Inserts to these tables are then handled by the 
driver. Statements not handled specially by the RiTE driver are 
executed via a traditional JDBC Connection implementation. 

B. Insert

W hen a prepared statement is made, the driver detects if the
statement inserts scalar values into a memory table. If so, the 
driver takes the values to insert from the statement when this 
is executed and stores them in a local buffer. 

Example 3.1 (Insert): Consider an example where the DW 

has two ( empty) tables, X(A, B) and Y (C, D). RiTE is used 
such that a memory table is made f or X. (This setup is used 
as a running example in the paper.) Now, assume that the 
producer code with prepared statements inserts the rows (1, 1) 
and (2, 2) into X and (3, 3) into Y Before these inserts, the 
system has the following state where the local buffer for X 
is shown to the left, the catalyst's memory table for X in the 
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middle and the DW's tables (from now on referred to as the 
DW tables) to the right. A double line in the bottom of a table 
shows that the table is empty. 

!AIBi !AIBi !AIBl!CIDI
X X X Y

Producer Catalyst DW 
After the inserts, the system has the state shown below where 
the two new X rows are held in the local buffer and the new 
Y row is in the DW table Y. 

ffffi ! A*BI
X 

Producer Catalyst DW 

C. Flush
The new rows from the prepared statement remain in the

producer driver's buffer until a commit operation is done 
by the producer or optionally until the producer executes a 
query that should consider (uncommitted) data inserted by the 
producer itself. The held rows are then flushed to the catalyst
(not the DW) in a bulk operation. 

Example 3.2 (Flush): Consider again the state obtained in 
Example 3.1 and assume that the producer commits the data 
such that a flush is initiated. This results in a state where the 
X rows have migrated to the catalyst. 

!AIBi �
X Ll__Ll_j 

!AIBi�
X �

Producer Catalyst DW 

D. Lazy Commit
lt is also possible for the producer driver to keep rows

locally after a commit whenever a policy defines to do so.
When committed data is not flushed immediately, we have 
a lazy commit. When a lazy commit appears, the producer
driver records the commit time at which commit operation was
invoked and places all rows in the buffer in an archive which
holds committed, but not flushed, rows. The archive is flushed 
later as explained below. 

Example 3.3 (Lazy commit): Consider again the state ob
tained in Example 3.1. lf the producer performs a lazy commit, 
we get the following state where Xarch is an archive. 

AIBi� IAIBI 
X Ll__Llj X 

Xarch 
Producer Catalyst 

IAIBI� 
X � 

DW 

Compare this to the state obtained in Example 3.2. In the 
current example, the X rows are not migrating to the catalyst 
but remain on the producer side. After a flush is performed, 
the state resembles the situation of Example 3.2. 

E. Requests for data
lt is possible for the producer driver at the same time to have

several archives with different commit times. These archives 
hold committed data that eventually should be flushed. At the 
latest, the flush is done when the connection to the DW is 

closed, but it may also happen before. When one or more 
archives exist, the producer driver sets up a background thread 
that listens for requests for data from the catalyst. As will be 
explained later, such a request occurs because a consumer has 
a demand for fresh data. The catalyst might ask only for parts 
of the archived data in which case only the requested parts are 
flushed. The recorded commit times are used to decide which 
parts to flush. 

Example 3.4 (Request for data): Consider again the running 
example and assume that lazy commits are used for the 
following sequence of events. The numbers shown to the left 
are ( abstract) time stamps. Before the shown events, nothing 
has happened. 

1) The row r = (l, 1) is inserted into X by the producer. 
2) The producer commits, resulting in the archive XI,.��

for X. This archive holds the row r. 
3) The row s = (2, 2) is inserted into X by the producer. 
4) The producer commits. This results in that the archive

X;;'
r
�t is made for X. This archive holds the row s.

5) The consumer requests the catalyst to hold data for X
that is maximally 2 time units old. This means that the
catalyst should at least hold the data committed at time
5 - 2 = 3. To fulfill this, the catalyst sends a request
for data to the producer. The producer then flushes the
data in XI,.�� (the only archive with data committed at
time 3 ). Row r ( committed at time 2) is then available
from the catalyst, whereas row s ( committed at time 4)
is not. This gives the state shown below.

AIBi� � IA!BIICID
x 

xr=4 x x 
arch 

Producer Catalyst DW 

F. Materialize
Data from the archives is also flushed when the producer

wishes to materialize the rows such that they are written to
the DW tables. This is done to make the rows reach their 
final target (the DW table), to make space for other rows in 
the catalyst, and to guarantee persistency. Persistency is not 
guaranteed when rows are stored by the catalyst. In case of a 
crash, the rows in the catalyst will be lost. Recall that in typical 
DW environments this is not a problem since the data can be 
reloaded from the operational systems. When rows on the other 
hand have been materialized, the usual persistency guarantees 
given by the DW DBMS apply. Note that the producer thus 
controls the persistency guarantee since the catalyst does 
not do "implicit" materializations. To make materialization 
possible, the RiTE producer driver extends JDBC's Connection 
class with the method commi t (boolean) which performs 
a commit operation and where the argument decides whether 
the rows should be materialized to the DW tables before 
the commit operation is performed in the DW. To make the 
rows ready for materialization, the producer driver first has to 
transfer them to the catalyst. Note that since a materialization 
only happens together with a commit operation, data held in 
the producer driver's local buffer is flushed at the same time. 
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Example 3.5 (Materialization): Assume that the state is as 
obtained in Example 3.2. A materialization then gives the 

following state where the X rows are inserted into the DW 

1 Al BI üffi I tF I tqE
Producer Catalyst DW 

Note that the rows are still present in the catalyst after the 
materialization. However, it is automatically ensured that a 
consumer only sees each row instance once (this is explained 
in Section V). When space is needed, the now materialized 
rows will eventually be deleted from the catalyst. 

G. Policies

Finally, data in archives is flushed when a policy has defined

that it is time to do so. A policy is simply a function that 

returns a Boolean value. When the return value of the policy 
is true, the rows are flushed and vice versa. The producer 
invokes the policy and checks the return value at regular 

user-definable intervals. By using policies, it is for example 
possible to make the producer less intrusive on busy systems 
by considering the load average. A possible policy is thus only 
to flush if the load average for the last minute has been below 

80% or if 10 minutes have passed since the last flush. 

The RiTE package includes policies 1) for flushing imme

diately after a commit (this is the default), 2) for waiting as 
long as possible, i.e, only flush on-demand, and 3) for load
aware policy-based flushing when the load average is below 

some percentage or a certain time interval has passed since the 
last flush. Further, an interface that the user can implement to 
define her own policies is included. The interface has two 

functions: One for the policy itself, i.e., a function returning a 

Boolean value, and one used to inform the implementation that 

the data has been flushed for another reason, e.g., a request 

for data from the catalyst. 

To start using lazy commit with a given policy, the user 

only has to define which policy to use. Thus, it only requires 
one line of code to start using a policy. The rest is handled 
transparently by the RiTE drivers. 

H. The minmax Table

When rows are flushed to the catalyst, the catalyst implicitly
assigns row /Ds to the rows and returns the maximal assigned 
row ID to the producer driver. The producer driver then 

updates a special metadata table, called the minmax table, in 
the DW. The minmax table holds data about the minimal and 
maximal row ID for rows that a consumer should get from 
the catalyst. Note that these row IDs are handled completely 
transparently by the RiTE software and are never seen by the 

producer or consumer code. So after a flush, rows with new 

row IDs are available and the information about the maximal 

available row ID is updated. As explained later, this only 
affects later consumer queries. Already running queries are 

unaffected and will not see the new rows that were committed 
after they started. 

After a materialization, the producer driver similarly updates 

the information about the minimal row ID of rows that a new 

consumer query should get from the catalyst. The reason is 

that rows with lower row IDs now, after the materialization, 
have migrated to the tables in the DW. 

Example 3.6 (The minmax table): Consider again Exam
ple 3.2 where data was fiushed. Assume that the row (1, 1) 
is assigned row ID I and the row (2, 2) is assigned row ID 

2. After the fiush, the minmax table has the content shown to
the left below. After the materialization in Example 3.5, it has
the content shown to the right.

1 mj° 1 m;x 1 ,-1-m
...,.

;n
--y

l- m-2-ax
--,

I 

After Ex. 3.2 After Ex. 3.5 

Note that after the materialization, the minmax table teils that 
consumers should get the empty set of rows from the catalyst 
since no row has an ID such that both ID s 2 and ID z 3

hold. The consumers should now get the rows from the DW 

table inste ad. 

IV. CATALYST SIDE

We now describe the catalyst. The purpose of the catalyst 

is to provide fast, intermediate storage for data. lt does so by 

storing rows in main memory. lt can serve one producer driver 
and many consumer drivers and their table functions at the 
same time. Note that the consumer driver itself does not fetch 

rows. Instead it (transparently to the user) informs the catalyst 
about which rows should be readable by a table function. A 

table function is the remedy that makes rows accessible in the 

DW. The catalyst is independent of the used DBMS as its sole 
functions are to 1) store rows for a producer, 2) deliver them to 
a table function, and 3) delete them when they are marked as 

unused (i.e., no consumer currently uses them and they have 

been materialized). 

A. The Row Index

The catalyst allocates a user-adjustable amount of memory

for each memory table and uses this to store the memory 
table's rows. Whenever a producer driver adds rows, the rows 

are implicitly assigned row IDs by the catalyst. All row IDs 

are taken from the same sequence such that there are no 
duplicates among row IDs for different memory tables. The 

catalyst maintains a row index that is used to map between 
row IDs and start and end positions for the data of the rows. 
The row IDs are only stored in the row index, not together 

with the data of the rows. 

Example 4.1 (The row index): Consider again Example 3.2 
and assume again that the row (1, 1) is assigned the row ID 
1 and the row (2, 2) the row ID 2. T hen the row index will be 

as shown below. 

(Note that although the row index here is shown as a list, a 

tree-based index is used in the implementation.) 
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When a table function reads data, it gives the minimal and 
maximal needed row IDs (recall that these were made available 
in the minmax table by the producer driver). By using the row 
index, it is then very easy for the catalyst to find the chunk 
of memory to transfer to the table function. 

B. The Time Index

When a producer driver adds rows, it must tell the catalyst
when the rows were committed at the producer side. For each 
memory table, the catalyst maintains a time index that for a 
commit time t maps to the row ID of the last row that was 
committed at time t. When a producer driver adds rows that 
are not yet committed (this is an option for a producer that 
needs to query its own uncommitted data), it gives them the 
special time stamp oo. 
Example 4.2 (The time index): Consider again inserts into 
the memory table X in the running example and assume that 
the rows r1 and r2 are committed at time t1 and the rows r3 

and r4 are committed at time t2. Assume that the row rn gets
the row ID n. The time index r is then a partial fanction from 
time stamps to row IDs such that r(t1 ) = 2 and r(t2 ) = 4. 

A producer driver must transfer rows in a way where for 
a single memory table, all rows that were committed at time 
t1 are flushed in one operation and before rows committed at 
time t2 for t1 < t2 . lt therefore holds that when a producer 
driver adds uncommitted rows, it must already have added all 
its committed rows since they have commit times less than oo. 
On the other hand, when new rows with a time stamp t -/= oo 
are added, all rows with the time stamp oo can implicitly be 
assumed to also be covered by this new commit and can have 
their time stamp updated to t. In case of a rollback, the catalyst 
simply has to discard all rows with the time stamp oo. The 
chunk of memory that holds these rows is easy to identify by 
using the time and row indexes. 

C. Ensuring Accuracy

A consumer can tell the catalyst to ensure that it holds the
data with a certain accuracy (i.e., the data that was committed 
by the producer a certain time interval ago) for a subset of the 
memory tables. The default is that the catalyst should have 
all data, but with a one-line change in the consumer code, the 
consumer can ease the work of the producer and catalyst by 
only requiring data of a certain freshness. 

When the catalyst receives such a wish, it sees if this can 
be fulfilled with the data it currently has. If the producer 
does not do lazy commits, this is trivially true. The catalyst 
knows whether the producer driver has connected to listen for 
requests for data. If it has not, it can be assumed that the 
producer driver does not do lazy commits. If the producer on 
the other hand uses lazy commits and the catalyst is instructed 
to ensure that it at least has data committed at time t for the 
set of memory tables M, it must ensure that it has the data or 
request the producer driver to flush that data. This is the case 
in Example 3.4 where the producer is requested to flush data 
committed at time 3. If the catalyst already has rows with the 
time stamp t' where t s t' -/= oo for all m E M, it also has 

the committed data for t for m E M due to the flush order 
rule explained above. lt can even be the case that for every 
m E M, the catalyst has data committed at time t' > t. This 
data can also be used as the operation is meant to ensure that 
the catalyst's data is not older than the data that was committed 
at the given time stamp. 

lt might, however, be the case that the catalyst has no data 
committed at or after the wished time stamp t for (some 
of) the memory tables in M for which accuracy should be 
ensured. When this happens, the catalyst finds the tables that 
do not have sufficiently accurate data and requests the producer 
driver to transfer data for these. lt might then be the case 
that for a memory table m no rows are held in the producer 
driver's archives in which case the producer driver sends an 
empty update form, i.e. adds and commits zero rows. For the 
catalyst, this is still valuable information as the time index can 
be updated and the accuracy ensured. 
Example 4.3 (Empty update): Consider again Example 4.2 
and assume that no farther rows are inserted into X, but 
that there is a lazy commit at time t3. lf the catalyst sends 
a request for data committed at time t3, the producer driver 
will make an empty update such that the time index maps the 
time stamp t3 to the row lD 4: r(t3) = 4. Note that we then
have r(h) = r(t3 ) since no rows were added to X between
the commits at t2 and t3.

If the catalyst is instructed to ensure that it at least has all 
data committed at time t for the memory tables M, it goes 
through Algorithm 1 where C(m, t) = {t I i E T(m) /\ 
t 2'.'. t} and T(m) is the set of commit times different from oo 
in the time index for memory table m.

Algorithm 1 Find time stamp to consider 
Input: A time stamp t and a set of memory tables M

1: form EM do 
2: if C(m, t) = 0 then

3: Request from the producer driver all the unflushed 
data for m that was committed before or at time t

4: Om <-{t} 
5: eise 

6 Om <- C(m,t) U {t} 
7: return max (nmEM Om )

The return value of Algorithm 1 is the newest time stamp for 
which data can be considered. That means that if the algorithm 
is invoked for a time stamp t and a set of of memory tables 
M and returns i, it holds that i 2'.'. t and that the catalyst now 
holds all data that was committed at time t for all m E M.

Line 2-3 of the algorithm ensure that the catalyst at least has 
all the (possibly empty) data sets committed at (or before) time 
t for each m E M. So we know that data from time t can 
be considered. But if all m E M have newer committed data 
available, the algorithm picks the maximum time stamp that 
every m has data for. The found time stamp is returned to the 
consumer driver which (transparently to the user) ensures that 
it is used when data is read from the catalyst the next time. 
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D. Reads

When a table function reads data, it must also give the
catalyst a time stamp that decides what data to include in 
the result. The time stamp is needed to ensure that data that 
is too new is not included in the result set as illustrated in the 
following example. 

Example 4.4 (Problems in not using tJ,e time stamp): 

Recall the setup f or the running example but now assume 
that both tables X and Y have memory tables. Now consider 

a scenario where the producer uses lazy commit and the 
following events take place. (Ihe numbers show how many 
minutes have passed since the system was started). 

1) The producer inserts X and Y rows and commits.

2) Data for Y is fiushed.

3) The producer inserts X and Y rows and commits.

4) Datafor Xis flushed.
5) A consumer wants 4 minutes accuracy for X and Y.

Ihe time stamp to use is then for the first commit ( 4 minutes
ago). Note that the last fiush for X was 1 minute ago (so all 
committed data for X is available in the catalyst) while the 

last flush for Y was 3 minutes ago ( so only data committed 
4 minutes ago is available in the catalyst). 1f the catalyst 
did not use the time stamp and naively returned all data, it 
would return possibly inconsistent data since X contains data 
committed 1 minute ago but Y does not. 

So by using the time stamp, the catalyst ensures that a con
sistent snapshot of the committed data is used when retuming 
data to a table function. Based on the time stamp and the time 
index, the last row to include is found. The last row retumed 
is the row with the biggest row ID that is less than or equal 
to the minimum of the requested max row ID and the row ID 
found from the time stamp. Formally, if the minimal requested 
row ID is imin, the maximal requested row ID is imax , the 
time stamp is t, and f(t) is a function giving the time index 
mapping from the biggest time stamp smaller than or equal to 
t to a row ID (or -1 if this is undefined), then all retumed 
rows have their row IDs in the set 

.6. = { n I n E N, imin Sn S min(imax , f(t))} 

Note that the number of retumed rows may be different from 
1 .6. 1. For a single memory table it is not given that it has all 
(or even any of) the rows with row IDs in .6.. 

If the catalyst has not been instructed to ensure a certain 
accuracy, the table function will use a special time stamp 
that says that all committed data must be considered (i.e., the 
catalyst must hold data committed at or before the current time 
and the time stamp is set to the current time). 

E. Registering Rows as Being Used

A consumer driver can register rows with row IDs in a
given interval as being used to ensure that they are not deleted 
from the catalyst while a consumer query should be able to 
read them there. To register rows as being used, corresponds 
to getting a shared lock. Rows that are registered as being 
used cannot be deleted from the catalyst. Note that it is not 

enough to consider rows currently being read as used. A single 
consumer query may need data from different memory tables 
or from the same table more than once. In between two reads, 
the catalyst should not have deleted rows that were within 
the desired interval of rows in the first read. Therefore, rows 
should be registered as being used before the query starts 
and deregistered after it finishes (the consumer driver does 
this automatically and transparently as will be explained in 
Section V). 

Only rows that are not already materialized can be registered 
as being used by a consumer. Already materialized rows, 
can be read from the DW tables and should not block the 
catalyst from freeing memory. Rows can, on the other hand, 
be materialized while they are still registered as used. When 
this happens, the rows will for some time be available both in 
the DW and in the catalyst. But due to the consumer driver's 
use of the minmax table, a consumer will only see one instance 
of each row. This is explained in Section V. 

When the producer has performed a materialization, the 
producer driver informs the catalyst about this. The catalyst 
uses this to decide which rows it can delete. Rows that are 
materialized and not registered as being used, can safely be 
deleted such that the memory can be reused. Deletion is done 
automatically by the catalyst when more space is needed. 
Since materialization happens together with commit, it is the 
case that the rows to materialize have row IDs within a given 
interval. lt is therefore also the case, that the catalyst only 
has to free one continuous block of memory for each memory 
table and there is no need to use maps over free regions or 
similar techniques. 

V. CüNSUMER SIDE

In this section, the consumer driver is described. Like 
the producer driver, the consumer driver is defined by an 
extension of the JDBC Connection interface. This extension 
adds methods for defining how accurate data read from the 
catalyst has to be. Further, the consumer driver (transparently 
to the user) ensures that rows are not deleted from the catalyst 
while they are needed by a consumer query . 

From the consumer's point of view, the consumer driver 
is executing queries with the READ COMMI TTED isolation 
level. To implement this such that it works as expected for 
both data in the DW and in the catalyst, the driver actually 
executes queries towards the DW in the REPEATABLE READ 
isolation level. 

A. Registering Rows as Being Used

Before a query is executed, the consumer driver has to
register row IDs as used. As explained in the previous section, 
this is done to ensure that the rows that exist in the catalyst 
when the query starts, continue to exist while the query is 
executed. The row IDs to register as used are those in the 
range defined by the minmax table, i.e., from the first row that 
is not materialized when the query starts to the last row that 
is committed when the query starts. To make sure that rows 
will not disappear from the catalyst while a query is running, 

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466. 
ISBN 978-1-4244-1836-7 

https://doi.org/10.1109/ICDE.2008.4497454

6 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



the consumer driver will whenever a method executing a 

query is invoked, first read values from the minmax table 

and try to register them with the catalyst. This might fail 

if a materialization is done between the time the consumer 

driver reads the values and the time it gives them to the 

catalyst (recall that the catalyst only allows row IDs of non

materialized rows to be registered as used). In that case, the 

consumer driver ends the transaction, starts a new transaction 

and reads values from the minmax table and tries to register 

them. To avoid starvation problems, the catalyst gives priority 

to consumers retrying to register values. When the values from 

the minmax table are registered, the query is executed. After 

the query is executed, the consumer driver deregisters the 

values. 

B. Ensuring Accuracy of Read Data

The consumer driver also provides the consumer with meth

ods that determine how old data from the catalyst is allowed 

to be. This is relevant when the producer uses lazy commits. 
A consumer can then explicitly teil the catalyst how accurate 

data it needs. If data of the given accuracy or newer data 

already exist in the catalyst, the producer and the catalyst are 

released from the burden of flushing data. If the catalyst, on the 

other hand, does not hold sufficiently fresh data, it requests the 

producer to flush the needed data. But this happens on-demand 

and only for the needed data. Note that if these methods are 

not used, the default is that the catalyst holds all committed 

data. 

Concretely, the JDBC Connection interface is extended 

with methods ensureAccuracy ( ... ) that take a time 

interval and memory table names as arguments. When these 

are invoked, the consumer driver passes the wanted accuracy 

to the catalyst that returns a time starnp for for which it has 

the committed data and that is accurate enough. The value is 

stored in the DW in a session variable such that it is available 

for the table function. 

C. Reading Data with the Table Function

The consumer driver itself does not read rows from the

catalyst. Instead the DW reads rows through a table function, 

i.e., a stored procedure that returns a set of rows with a

structure like rows in a table in the DW. The table function

takes as arguments the name of the memory table to read data

from and the minimal and maximal row ID of rows to read.

When the table function wants to read rows from the catalyst,

it also gives the catalyst a time stamp that defines how fresh

the data must be (as explained in Section IV). Although the

row ID arguments can be used to limit the result set in other

ways, the normal usage of the minimal row ID is to avoid that

the catalyst retums rows that are already materialized when

the query begins. This value is defined such that rows with

lower row IDs have already been rnaterialized and should be

read from the DW. Only from the found value and up, the

rows should be read from the catalyst. The normal usage of

the maximal row ID is to avoid that the catalyst retums rows

that are not committed when the query begins. lt is defined

to mean that rows with a greater row ID are not committed 

yet. If this value is read once and reused, it does not affect 

the query if more rows are committed later. 

Example 5.1 (Use of tlie minmax fable): Consider again 

the state of the minmax table after the materialization in 
Example 3.6 and assume that the producer inserts and 
commits two rows that get the row IDs 3 and 4, respectively. 

In the minmax fable, the min value is then 3 and the max 

value is 4. 
A consumer driver now reads these values from the minmax 

table and successfully registers them. When the fable function 
is given these values, it reads the two new rows from the 

catalyst. Rows with a row 1D less than 3 should not be read 

since they were already in the DW table when the query 

started. Now assume that the consumer's query is expensive 

and involves reading data from the memory table twice. After 

the first time data is read, but before the second time, the 

producer inserts and commits some new rows that get row 
IDs greater than 4. These rows did not exist when the query 
started. To avoid that the query sees them, the table function 
is still given the previously read values (i.e., min = 3 and 
max= 4). 

Finally, assume that while the consumer's query is execut

ing, the producer performs a materialization such that all 
the new rows also become available in the DW fable. The 
consumer query is still able to read the rows from the catalyst 
(since they are registered as used and thus cannot be deleted). 

The consumer query does not get the same rows from the DW 
table (since it is running in REPEATABLE READ mode and 
the rows were not in the DW when the query began). So the 

consumer sees every row that existed when the query began 
exactly once. The rows that were committed after the query 

began are not seen. 

D. Transparency

To make these things transparent to the end user, a view

over a DW table and its associated memory table can be 

defined. If the view definition uses the minmax table directly, 

we find the same rows in the view every time the view is used 

within one query (recall that the consumer connection is put 

in REPEATABLE READ mode). So for each DW table for 

which a memory table also exists, a view should be defined 

as 

CREATE VIEW v AS 
SELECT * FROM dwtable 
UNION ALL 
SELECT * FROM tablefunction('dwtable', 

(SELECT min FROM minmax), 
(SELECT max FROM minmax)) 

If the view v is used instead of dwtable in queries, the 

end user does not have to think about if rows are read from 

the tables in the DW or frorn the catalyst. Since the consurner 

driver behind the scenes is using the REA PEATABLE READ 

isolation level, a single query that uses the view many times 

sees the same values from the minmax table and thus the same 

set of rows in the view. But the consumer driver starts a new 
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transaction for each query and some rows might have been 

updated when a query is re-executed. In other words, non
repeatable reads are possible such that the isolation level in 
effect is READ COMMITTED as promised by the driver. 

VI. PERFORMANCE STUDY

A. Setup

We now present a performance study of the RiTE prototype.
The prototype (www.cs.aau.dk/~chr/RiTE) consists of 1) Java 
JDBC database drivers for producers and consumers, 2) the 
catalyst (Java), and 3) a C implementation of a PostgreSQL 
table function. The prototype shows a working solution for 

a DW based on PostgreSQL [3] version 8.1 running on 
a Linux x86 platform. However, the applied principles are 
general and could be used for most DBMSs. The catalyst is 
completely DBMS-independent while the JDBC drivers have 

few (marked) PostgreSQL dependencies. The table function is, 

of course, highly dependent on the hosting DBMS platform. 

The experiments have been carried out on a 3GHz Pentium 

4 PC with 3.2GB RAM and four SATA disks of which one 
is used for DW data, one for PostgreSQL's write-ahead logs, 

one for source data and one for binary executables and swap 
area. The PC is running Ubuntu Linux 6.10, Java 6SE, and 
PostgreSQL 8.1.4. The PostgreSQL configuration can be found 
at www.cs.aau.dk/~chr/RiTE. We simulate a producer filling 

a fact table. The source data originales from TPC-H [4], with 
the schema modified to a star schema. Rows are inserted into 
the typical fact table lineitem with 6 integer colurnns (custkey, 

datekey, orderkey, partkey, suppkey, and quantity). 

B. Long Transactions

We first consider the performance when inserting many rows
into one table with insert statements. We consider a producer 
application, both when using RiTE and the traditional JDBC 
driver, and compare this to applications that load the same 
data set by doing multirow inserts with JDBC batches and 

bulk loading, respectively. Prepared statements are used where 

applicable. The values to insert are read from a text file. The 
producer runs in one lang transaction and commits after the 
last insert. The same producer application is used throughout, 
with only the lines setting up the DW JDBC connection and 

doing the final commit changed. A suitably modified JDBC 

application is used to test JDBC batches with a batch size 

of 10,000 rows. Bulk loading is done by letting a modified 
application write the data to a comma separated file and then 
!et the PostgreSQL server read the file directly.

The graph shown in Figure 2(A) shows the results, which
are 9,646 rows/second (traditional JDBC driver), 17,088
rows/second (JDBC batches), 49,878 rows/second (RiTE
with materialization), 56,846 rows/second (bulk loading), and

98,723 rows/second (RiTE without materialization). As the
systems scales linearly, the speeds are based on the line slopes.
The best throughput is obtained when using RiTE without
materialization. The throughput is then 74% higher than for
bulk loading.

C. Short Transactions

The experiment is now repeated, but with commits for every

10,000 rows. As bulk loads do not commit during the load, 
they are not used. The results plotted in Figure 2(B) show that 

JDBC's performance is not affected. For JDBC batches, the 
throughput drops slightly (to 16,841 rows/second). With RiTE, 

the producer can now insert 47,686 rows/second with ma

terialization and 90,356 rows/second without materialization. 
Similar results are obtained for commits for every 100,000 
rows. 

D. lnfluence from a Consumer

The 10,000 row commit experiment is repeated, but 
now a consumer application simultaneously performs the 

query SELECT SUM(quantity) (reading all rows) on the 
lineitem table (which has a memory table when using RiTE). 
The query is re-executed right after retuming its results, so the 
system is constantly loaded. The results plotted in Figure 2(C) 
show that the JDBC application can insert 7,451 rows/second 

whereas JDBC with batches can insert 10,862 rows/second. 
For RiTE, the producer can insert 22,437 rows/second with 
materialization and 54,111 rows/second without materializa
tion. Thus, performance is affected, but the relative advantage 

of RiTE remains. 

E. Read Performance

We now compare how fast data can be read from a DW

table and a memory table. The data sets used in the previous 
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experiments are loaded once (into a memory table or a DW 
table, depending on what is being tested). Then all rows are 
read 6 times from PostgreSQL's terminal and the time usages 
measured. The first recorded time usage is not considered 
as this is used to let PostgreSQL buffer the data to make 
fair comparisons. The performance results are plotted in the 
graph shown in Figure 3. From the slopes of the lines, we 

35 
Memory table � 

� 

30 
O-d1nary table _ _.,._ 

25 

20 § 1/' 0 

15 (J, 
1// 

10 

5 

Million rows 

Fig. 3. Read performance results 

estimate that the system reads 219,168 rows/second from a 
non-memory (but buffered) table whereas it reads 182,786 
rows/second from a memory table. The difference is due to that 
when data is read from a memory table, type conversions from 
Java types to the host machine's native types are performed 
and data is transferred from the catalyst to the DBMS. There 
is thus a small overhead for RiTE reads. 

F Lazy Commit Delays 

We now consider a producer that constantly inserts rows 
and commits once per second. The producer uses lazy commit 
and its flush policy is to flush when the system load is below 
70% or 20 seconds have passed since the last flush. While 
the producer runs, a load simulator generates randomness in 
the CPU load. In the graph shown in Figure 4, the dotted 
line shows the CPU load (to be read relatively to the left 
Y axis) at different times while a cross at (x, y) shows that 
data committed at time x waits y seconds before it is flushed 
(where y should be read relatively to the right Y axis). The 
solid horizontal line shows where 70% is on the left Y axis 
and where 20 seconds is on the right Y axis, i.e., it shows the 
"limits" for the policy. 
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Fig. 4. Lazy commit delays and CPU load 

lt is seen that at first, the CPU load is below 70% and data is 
flushed with no delay after a commit. After appx. 12 seconds, 
the load gets higher than 70% and there are up to 20 second 
delays between commit and flush. When a flush is done, all 
committed data is flushed (notice how the crosses lie on lines 
with a negative slope). After appx. 82 seconds, the CPU load 
gets below 70% and data is flushed before 20 seconds have 
passed since the last flush (see the short line of crosses around 
80 seconds). Also when the producer terminales, it flushes all 
data, so the delay is below 20 seconds. 

G. Summary

From the experiments it is clear that RiTE provides a
significant performance increase: between 4 and 10 times for 
inserts and 2 to 6 times for inserts with concurrent reads. 

VII. RELATED WüRK 

The issue of moving data from one place to another has 
a long tradition in both research and industry. The ETL 
process may be implemented in a materialized or virtual 
way. Linking external data sources into a target system is 
discussed in the context of federations. Using wrapper-like 
technologies [5], DW systems gain access to the underlying 
data. Selection and transformation routines are directly applied 
to the external data; the result directly goes into the DW 
tables. Materialization implies the physical movement of data 
into the target system. Techniques are ranging from import of 
flat files to (a)synchronous replication [6]. While replication 
may conceptually provide functionality somewhat similar to 
RiTE, current replication techniques are (unlike RiTE) limited 
to simple transformations and certain ( cooperative) source 
systems, and put additional overhead on the data sources. In 
comparison, RiTE takes advantage of the special characteris
tics of right-time DWs, and provides quickly-available data at 
bulk-load insert speeds. This can be provided for any type 
of source system and any type of transformation, as these 
parts are handled by the ETL code. With RiTE, the producer 
decides when to make data available to all consumers and 
when to move data around (by using the commit materialize 
and operations, respectively). 

From a conceptual point of view, incorporating external data 
into a single DW database requires a consistent global view. 
Starting with database snapshots [7], significant research was 
devoted to that problem in recent years under the notion of 
materialized views [8]. Initial work like [9], [10] investigated 
methods to establish a consistent view over multiple sources 
or updating multiple views with data coming from a single 
source [11]. All these mechanism are orthogonal to RiTE 
and may be applied on top of our middleware. More closely 
related is research documented in [ 12] rolling global DW 
states forward to certain points in time. However, this approach 
requires an explicit trigger while our approach is fully demand
driven. A similar approach with implicit instructions based on 
the notion of policies is outlined in [13]. In addition the work 
of Guo et al. [14] documents a project to control consistency 
and currency of data for a given query. In contrast, we focus 
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on the efficient implementation (catalyst) in combination with 

a transactionally consistent view on the data source and thus 

go much further. 

The state of the art of continuous loading is summarized 

in [15]. Compared to that, RiTE gives the producer full control 

over the units of work to commit together and is flexible with 

respect to persistency guarantees versus load speed. Further, 

RiTE is more flexible with respect to freshness of data and 

offers lazy commit which can make data available in the DW 

on demand. 

The MySQL [16] DBMS offers a memory storage en

gine for fast, but non-persistent, storage and access. Unlike 

MySQL, RiTE has functionality for migrating rows from 

memory to the database (i.e., materialization). The MySQL 

main memory storage engine also obviously does not scale 

to DW data volumes. Additionally, RiTE allows rows to be 

added while other rows are read, whereas MySQL uses table 

locking when rows are inserted into a memory table. MySQL 

also offers INSERT DELAYED syntax where many inserts can 

be bundled and written in one block when the target table is 

not in use. This holds back INSERT data similarly to RiTE, 

but in RiTE the producer controls when to make the rows 

available (at commit time). INSERT DELAYED is slower than 

normal INSERT if the target is not in use and should be used 

carefully. RiTE provides a speed-up for the producer also when 

no consumers exist. 

VIII. CONCLUSION AND FUTURE WORK 

Motivated by the need for a solution that makes inserted 

data available quickly, while still providing bulk-load insert 

speeds, this paper presented the middleware RiTE ("Right

Time ETL"). A data producer (ETL) can insert data that 

becomes available to data consumers on demand. To make 

this possible, RiTE introduces an innovative main-memory 

based catalyst and supports a number of policies that control 

the bulk movement of data based on user requirements for 

persistency, availability, freshness, etc. RiTE works completely 

transparently to both producer and consumers. A prototype has 

been integrated with an open-source DBMS, and experiments 

have shown that RiTE provides 'Tue best of both worlds", i.e., 

INSERT-like data availability, but with bulk-load speeds (up 

to 10 times faster). 

There are many interesting directions for future work. 

Logging could be added to the catalyst such that persistency 

guarantees can also be given without materialization. Possibil

ities for letting rules provide transparent updating and deletion 

of rows inserted into memory tables are also relevant. Fast 

inserts could then be performed on the fly and a data cleansing 

procedure could correct mistakes or delete bad rows before 

materialization. The catalyst could also be implemented as a 

module in the underlying DBMS since an even better per

formance could be obtained if no repetitive type conversions 

from Java types to the DBMS' native types would have to take 

place. A related task is to allow indexes and constraints to be 

declared on memory tables. 

ACKNOWLEDGMENTS 

This work was in part supported by the European Internet 

Accessibility Observatory (EIAO) project, funded by the Eu

ropean Commission under Contract no. 004526. 

REFERENCES 

[!] R. Kimball and M. Ross: 77ie Data Warehouse Too/kit, 2nd ed., Willey 
2002. 

[2] java. sun. com/javase/technologies/database. Last ac-
cessed Nov. 19 2007.

[3] pos tgresql. org. Last accessed Nov. 19 2007.
[4] tpc. org/ tpch/. Last accessed Nov. 19 2007.
[5] M.T. Roth and P.M. Schwarz: "Don't Scrap lt, Wrap lt! A Wrapper

Anohitecture for Legacy Data Sounoes". In Proc. of VIDB'97 pp. 266-
275.

[6] TM. Özsu and P. Valduriez: Principles of Distributed Database Systems
2nd ed., Prentice Hall, 1999. 

[7] M.E. Adiba and B.G. Lindsay: "Database Snapshots". In Proc. of 
VIDB'80 pp. 86-91. 

[8] A. Gupta and I.S. Mumick: "Maintenance of Materialized Views: 
Problems, Techniques, and Applications". IEEE Data Eng. Bull. 18(2):
3-18 (1995).

[9] Y. Zhuge, H. Garcia-Molina, and J.L. Wiener: "The Strobe Algorithms
for Multi-Sounoe Warehouse Consistency". In Proc. of PDIS'96 pp. 146-
157. 

[10] L.S. Colby, A. Kawaguchi, D.F. Lieuwen, I.S. Mumick, and K.A. Ross: 
"Supporting Multiple View Maintenance Policies". In Proc. of SIG
MOD'97 pp. 405-416. 

[11] N. Folkert, A. Gupta, A. Witkowski, S. Subramanian, S. Bellamkonda, 
S. Shankar, T. Bozkaya, and L. Sheng: "Optimizing Refresh of a Set of 
Materialized Views". In Proc. of VIDB'05 pp. 1043-1054. 

[12] K. Salem, K.S. Beyer, R. Cochrane, and B.G. Lindsay: "How To Roll 
a Join: Asynchronous Incremental View Maintenance". In Proc. of 
SIGMOD'00 pp. 129-140.

[13] H. Engström, S. Chakravarthy, and B. Lings: "A Heuristic for Refresh
Policy Selection in Heterogeneous Environments". In Proc. of ICDE'03
pp. 674-676.

[14] H. Guo, P.-Ä. Larson, and R. Ramakrishnan: "Caching with 'Good
Enough' Currency, Consistency, and Completeness". In Proc. of 
VIDB'05 pp. 457-468.

[15] G. Luo, J.F. Naughton, C.J. Eilmann, and M.W. Waltzke: "Transaction
Reordering and Grouping for Continuous Data Loading". In Proc. of 
BIRTE'06 pp. 34-49. 

[16] mysql. com. Last accessed Nov. 19 2007. 

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". S. 456-466. 
ISBN 978-1-4244-1836-7 

https://doi.org/10.1109/ICDE.2008.4497454

10 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden


	RiTE_Providing_On-Demand_Data_for_Right-Time_Data_Warehousing_PPerstelltmei.pdf
	RiTE_Providing_On-Demand_Data_for_Right-Time_Data_Warehousing_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Christian Thomsen, Torben Bach Pedersen, Wolfgang Lehner
	RiTE: Providing On-Demand Data for Right-Time Data Warehousing




