
An Architecture for Query Optimization

in Sensor Networks

Ixent Galpin, Christian Y.A. Brenninkmeijer, Farhana Jabeen, Alvaro A.A. Fernandes, Norman W. Paton

School of Computer Science, University of Manchester

Manchester M13 9PL, United Kingdom
{ixent,brenninkmeijer,jabeen,alvaro,norm}@cs.man.ac.uk

Abstract— We present a novel sensor network query processing
architecture that (a) covers all the query optimization phases
that are required to map a declarative query to executable
code; and (b) does so for a more expressive query language
than has heretofore been supported over sensor networks. The
architecture is founded on the view that a sensor network truly is
a distributed computing infrastructure, albeit a very constrained
one. As such, we address the problem of how to develop a
comprehensive optimizer for an expressive declarative continuous
query language over acquisitional streams as one of finding
extensions to a classical distributed query processing architecture
that contend with the peculiarities of sensor networks as an
environment for distributed computing.

I. INTRODUCTION

This paper addresses the problem of optimizing the evalu-

ation of declarative queries over sensor networks (SNs) [1].

Viewed as a particular type of distributed computing in-

frastructure, SNs are constrained to an unprecedented extent,

and it is from such constraints that the challenges we have

addressed arise. We present the SNEEql (for Sensor NEt-

work Engine query language) optimizer architecture, shown

in Fig. 1, an extension of the classical two-phase optimization

approach [2] from distributed query processing (DQP), well-

established in the case of robust networks, and demonstrate

that it can be adapted to be effective and efficient over SNs.

Like the two-phase optimization approach, SNEEql query

optimization is decomposed into a single-site phase (compris-

ing Steps 1-3, in gray boxes), and a subsequent multi-site phase

(comprising Steps 4-7, in white, solid boxes), each of which is

further decomposed into finer-grained decision-making steps.

We make no specific claims regarding the novelty of the

single-site phase, which generates a query execution plan

(QEP) in physical-algebraic form (PAF), since the techniques

used to implement these steps are well-established. As with

classical DQP, for distributed execution, in the multi-site phase

the PAF is broken up into fragments for evaluation on specific

nodes in the network. In a SN, consideration must also be

given to (i) routing, which determines the paths by which

tuples travel between sites within the network, which may

have a huge impact on the cost of a QEP, given that in SNs,

communication events are overly expensive: they have energy

unit costs that are typically an order of magnitude larger than

the comparable cost for computing and sensing events; and

(ii) the timing of QEP fragments to facilitate duty cycling

(when nodes transition from being active, and in power-

saving modes) and the co-ordination required between sites

for wireless communications. These challenges are addressed

by the introduction of Steps 4 and 7 respectively. Finally,

the Code Generation phase grounds the execution on the

concrete software and hardware platforms available in the

network/computing fabric and is performed in a single step,

Step 8 (in a white, dashed box). Note that optimizer decisions

are informed by metadata such as the SN topology, resources

on SN sites such as memory available, and also predictive cost

models, which compute the worst-case upper-bounds for the

output size and time taken for operations.

routing

logical−algebraic form (LAF)

physical−algebraic form (PAF)

abstract−syntactic tree (AST)

parsing/type−checking

translation/rewriting

algorithm selection

2

1

3

(query expression, QoS expectations)

M
E

T
A

D
A

T
A

4

routing tree (RT)

where scheduling

when scheduling

code generation

6

7

8

RT

RT

nesC configuration

5
partitioning

nesC components

PAF

RT fragmented−algebraic form (FAF)

distributed−algebraic form (DAF)

DAF agenda

Fig. 1. SNEEql Compiler/Optimizer Stack

978-1-4244-1837-4/08/$25.00 © 2008 IEEE ICDE 20081439

Schema metadata:

river (id, time, rain, depth)

Sites (5,6,7,9)

hilltop (id, time, rain)

Sites (4)

Query:

SELECT RSTREAM

river.time, hilltop.rain, river.depth

FROM river[NOW],

hilltop[AT NOW - 15 MINUTES]

WHERE hilltop.rain > 500

AND river.rain < hilltop.rain

Quality of Service Expectations:

ACQUISITION RATE = EVERY 15 MINUTES

MAX DELIVERY TIME = 24 HOURS

Fig. 2. Example Application Requirements

II. ARCHITECTURE COMPONENTS

We illustrate the step-by-step progression of the multi-

site compilation of the SNEEql query with associated QoS

expectations and schema metadata presented in Fig. 2, for a

SN with topology depicted in Fig. 3. The syntax is inspired by

CQL [3], an expressive stream querying language, but has been

extended significantly for the SN context. These application

requirements are inspired by (but not actually occurring in)

the Crowden Brook SN deployment, an environmental moni-

toring system “to assess the hydro-dynamics of surface water

drainage [by observing] soil moisture, temperature and rainfall

on a number of vertical slope transects” [4]. The goal of this

query is to obtain, every 15 minutes, timestamped readings

of the current rainfall and river depth, and the rainfall at

the hilltop 15 minutes previously, in cases where the rain at

the hilltop is above a certain threshold, and it is currently

raining less at the river than it was at the hilltop 15 minutes

ago (to reduce the likelihood that any increase in river depth

was caused by rain on the river itself). Note that the query,

being continuous, is repeatedly evaluated at each acquisition,

and that the user considers a delay of up to 24 hours to be

acceptable in receiving query results. The compilation of the

single-site phase results in the PAF depicted in Fig. 4.

0

sink

1
2

3 4

6

5

7
8

9

river sensor

hilltop sensor

Fig. 3. Connectivities and Modalities

Routing Step 4 determines a routing tree (RT) for communi-

cation links that the data flows in the PAF can then rely on.

DELIVER

ACQUIRE

[time,rain]

rain > 500

hilltop EVERY 15 min

TIME_WINDOW

[t-900 000, t-900 000, 900 000]

NL_JOIN

river.rain<hilltop.rain

ACQUIRE

[time,rain,depth]

true

river EVERY 15 min

Fig. 4. Physical-Algebraic Form of query in Fig. 2

This is achieved by computing a steiner tree, i.e., a tree of

minimal cost derived from the network topology graph with

a required set of nodes, using any additional nodes which are

necessary. The resulting RT is shown in Fig. 5; it consists of

the source nodes for the river and hilltop extents, the

sink node where the data is to be delivered, and nodes 2 and

3 used solely to relay results.

0

sink

1
2

3 4

6

5

7
8

9

river sensor

hilltop sensor

Fig. 5. Routing Tree for the Query in Fig. 4

Partitioning This step breaks up the QEP into fragments by

inserting exchange operators [5], using semantic criteria

such as operator sensitivity, and also identifying edges in the

PAF with lower output sizes. Fig. 6 shows that the PAF has

been partitioned into four fragments, denoted F1...F4.

Where-scheduling Step 6 decides which QEP fragments are

to run on which RT nodes. This step is carried out using

a heuristic algorithm that places fragments with the aim to

reduce the amount of data transmitted. This step results in

the distributed-algebraic form (DAF) of the query shown in

Fig. 6, in which each fragment is allocated to a set of sites,

listed under the corresponding fragment identifier.

When Scheduling Step 7 stipulates execution times for each

fragment (seldom a specific concern in classical DQP). The ap-

proach adopted is to build an agenda that, insofar as permitted

by the memory available at the site, and given the acquisition

rate and the maximum expected delivery time for the query,

buffers as many tuples as possible before transmitting. This

1440

F1
 {0}

F3
 {4}

F2
 {4}

F4
 {5,6,7,9}

DELIVER

ACQUIRE

[time,rain]

rain > 500

hilltop EVERY 15 min

TIME_WINDOW

[t-900 000, t-900 000, 900 000]

exchange

NL_JOIN

river.rain<hilltop.rain

exchange

ACQUIRE

[time,rain,depth]

true

river EVERY 15 min

exchange

Fig. 6. Distributed-Algebraic Form of Fig. 4

Time
Sites

6 3 9 7 5 4 2 0

00:00:00.000 F41 F41 F41 F41 F31

00:15:00.000 F42 F42 F42 F42 F32

00:30:00.000 F43 F43 F43 F43 F33

...

08:30:00.000 F435 F435 F435 F435 F335

08:45:00.000 F436 F436 F436 F436 F336

08:45:00.064 tx3 rx6 tx7 rx9

08:45:00.658 tx5 rx3

08:45:01.250 tx5 rx7

08:45:02.439 tx4 rx5

08:45:04.783 F2

08:45:04.908 tx2 rx4

08:45:07.095 tx0 rx2

08:45:07.158 F1

Fig. 7. Agenda for the Query Plan in Fig. 6

step is carried out using a heuristic algorithm that repeatedly

schedules the acquisitional (leaf) fragments until the maximum

possible level of buffering is reached, and schedules remaining

tasks according to the precedence constraints implied by the

DAF and RT. The aim is to be economical with respect to both

the time in which a site needs to be active and the amount of

radio traffic that is generated. The agenda for the example

query is shown in Fig. 7. In an agenda, there is a column for

each site and a row for each time when some task is started.

A task is either the evaluation of a fragment (which subsumes

sensing), or a communication event, denoted by tx n or rx

n, i.e., respectively, tuple transmission to, or tuple reception

from, site n. Note that in the example, leaf fragments F3 and

F4 are repeated 36 times in each agenda evaluation, and that

the agenda repeats every 9 hours. Such decisions are reached

in light of the QoS specified by the user.

Code Generation Step 8 generates executable code for each

site based on the distributed QEP, RT and the agenda. The

current implementation of SNEEql generates nesC [6] code

for execution in TinyOS [7], a component-based, event-driven

runtime environment designed for wireless SNs. nesC is a C-

based language for writing programs over a library of TinyOS

components.

III. CONCLUSIONS

In this paper we have described the architecture of SNEEql,

a SN query optimizer based on the two-phase optimization

architecture prevalent in DQP. In light of the differences be-

tween SNs and robust networks, we have identified additional

decision-making steps which are required. We have imple-

mented the SNEEql query stack in 15K lines of Java. The

staged decision-making approach in SNEEql offers several

benefits, including: (1) The ability to pose queries using a

rich, expressive language based on classical stream query

languages. This is beneficial as environments in which there

are less expressive languages are likely to incur greater in-

network processing costs, conveying data to offline nodes

for subsequent analysis; (2) The ability to schedule different

workloads to different sites in the network, enabling more

economical use of resources such as memory, and potentially

support for heterogeneity in the SN; (3) The ability to em-

power the user to trade-off conflicting qualities of service such

as network longevity and delivery time.

The effectiveness of the SNEEql approach of extending a

DQP optimizer has been studied through an empirical evalu-

ation, in which the performance of query execution was ob-

served to be well-behaved under a range of circumstances, and

compared well with TinyDB [7], the seminal first-generation

SN database. These benefits suggest that, potentially, much can

be learned from DQP optimizer architectures in the design of

SN optimizer architectures.

ACKNOWLEDGMENT

This work is part of the DIAS-MC project funded by the

UK EPSRC WINES programme under Grant EP/C014774/1.

We are grateful for this support and for the insight gained

from discussions with our collaborators in the project. C.Y.A.

Brenninkmeijer thanks the School of Computer Science, and

F. Jabeen, the government of Pakistan, for their support.

REFERENCES

[1] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor

Networks. John Wiley and Sons, 2005.
[2] D. Kossmann, “The State of the Art in Distributed Query Processing,”

ACM Comput. Surv., vol. 32, no. 4, pp. 422–469, 2000.
[3] A. Arasu, S. Babu, and J. Widom, “CQL: A Language for Continuous

Queries over Streams and Relations,” in DBPL, 2003, pp. 1–19.
[4] I. W. Marshall, M. C. Price, H. Li, N. Boyd, and S. Boult, “Multi-sensor

Cross Correlation for Alarm Generation in a Deployed Sensor Network,”
in EuroSSC 2007, 2007, pp. 286–299.

[5] G. Graefe, “Encapsulation of Parallelism in the Volcano Query Processing
System.” in SIGMOD Conference, 1990, pp. 102–111.

[6] D. Gay, P. Levis, J. R. von Behren, M. Welsh, E. A. Brewer, and D. E.
Culler, “The nesC language: A holistic approach to networked embedded
systems,” in PLDI, 2003, pp. 1–11.

[7] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An Acquisitional Query Processing System for Sensor Networks,” ACM

Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

1441

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
