arXiv:0711.3375v1 [cs.DB] 21 Nov 2007

An Inflationary Fixed Point Operator in XQuery

Loredana Afanasie¥ Torsten Grust Maarten Marx® Jan Rittingef Jens Teubnét

® ISLA, University of Amsterdam, Amsterdam, The Netherlands
© Technische Universitat Minchen, Munich, Germany
E-mail: |lafanasi,marx@science.uva.nl|, |grust,rittinge,teubnerj@in.tum.de|

Abstract <!ELEMENT curriculum (course)x*>
<!ELEMENT course prerequisites>
<VATTLIST course code ID #REQUIRED>

We introduce a controlled form of recursion in XQuery, <!ELEMENT prerequisites (pre_code)*>

inflationary fixed points familiar in the context of rela- <!ELEMENT pre_code #PCDATA>

tional databases. This imposes restrictions on the express

ible types of recursion, but we show that inflationary fixed ~ Figure 1. Curriculum data (simplified DTD).

points nevertheless are sufficiently versatile to capture a

wide range of interesting use cases, including the senmsntic

of Regular XPath and its core transitive closure construct.
While the optimization of general user-defined recursive

functions in XQuery appears elusive, we will describe how

inflationary fixed points can be efficiently evaluated, pro-

vided that the recursive XQuery expressions exhiliisa

tributivity property. We show how distributivity can be as- . :
) . ., rect or indirect, of courséc1". For a given sequenckx
sessed both, syntactically and algebraically, and provide S
of course nodes, functiorfix(-) calls out torec(-) to

experimental evidence that XQuery processors can substan:,) - .
.) S . : . . find their prerequisites. While new nodes are encountered,
tially benefit during inflationary fixed point evaluation.

fix (-) calls itself with the accumulatecburse node se-

Example 1.1 The DTD of Figure 1l (taken from [22]) de-
scribes recursive curriculum data, including coursesy the
lists of prerequisite courses, the prerequisites of the lat
ter, and so on. The XQuery program of Figlide 2 uses
the course element node with codeéc1" to seed a com-
putation that recursively finds all prerequisite coursés, d

guence. (This is not expressible in XPath 2.0.) <

1. Introduction Note thatfix(-) implements a generic fixed point com-
putation: only the initializationlet $seed := ---) and

The backbone of the XML data model, namelglered, the payload functiorrec (-) are specific to the curriculum

unranked trees of nodgs inherently recursive and itis nat- ~ problem. This motivates the introduction of a syntactiarfor
ural to equip the associated languages with constructs thathat can succinctly accommodate this pattern of computa-
can query such recursive structures. To get from the re-tion (Sectiori).
cursive axes in XPathe.g, ancestor anddescendant, Most importantly, however, such computation in IFP
to XQuery’s [7] recursive user-defined functions, language form is susceptible to systematic optimization, provided
designers took a giant leap, however. User-defined func-that the payload (obody) of the recursion exhibits a spe-
tions in XQuery admigarbitrary types of recursion—a con- cific distributivity property.
struct that largely evades optimization approaches beyond Unlike the general user-defined XQuery functions, this
“procedural” improvements like tail-recursion elimirati account of recursion puts the query processor into control
or unfolding. in that it can decide whether the optimization may be safely
This paper embarks on a journey that explores a con-applied. Distributivity may be assessed on a syntactical
trolled form of recursion in XQuery, thimflationary fixed level—a non-invasive approach that can easily be realized
point (IFP), familiar in the context of relational databases on top of existing XQuery processors (Secfion 3). Further,
[1]. While this imposes restrictions on the expressible/p though, if we adopt a relational view of the XQuery seman-
of recursion, IFP embraces a family of widespread use casedics (as in[15]), the seemingly XQuery-specific distributi
of recursion in XQuery, including many forms of horizontal ity notion turns out to be elegantly and uniformly tractable
or vertical structural recursion and the pervadiamsitive on the familiar algebraic level (Sectibh 4).
closureproblem (IFP captureRegular XPatH25], in par- Compliance with the restriction that IFP imposes on
ticular). query formulation is rewarded by significant query runtime

http://arxiv.org/abs/0711.3375v1
|
|

An extension to general sequences of typem () * is pos-

1 declare function rec ($cs) as node()*) .
2 { $cs/id (./prerequisites/pre_code) sible and entails the replacement of XQuery’s node set op-
3 X erations @nion, except) with appropriate variants.
4 1
5 |declare function fix ($x) as node()* ! Definition 2.1 (Inflationary Fixed Point) Let ey..q and
6 L let $res ;2 rec (9x) | ($x) be XQuery expressions of typede () *. Thein-
7 | return if (empty ($x except $res)) I Erec(9X i Yy p ympde () *. |
g ! then $res ! flationary fixed point (IFP) ok,..($x) seeded by..q is
9 | else fix ($res union $x) i an XQuery expression represented by the following syntac-
o tic form:
11
12 let $seed := doc ("curriculum.xml") .
13 /course [0code="c1"] with $x seeded by eseeq Tecurse ep.($x) . (1)
14 t fix (($seed)) . . .
reTin Sk irec tvsee The payload expression,.. is called thebody, eseeq iS
_ - called theseed and$x is called therecursion variableof
Figure 2. Prerequisites for the course el

the inflationary fixed point operator.

The semantics of the IFP @f...($x) seeded byegecq
is the sequence of nodess, if it exists, obtained in the
following manner:
savings that the IFP-inherent optimization hook can offer.

We document the effect for the XQuery processidien- reso — erec(Csced)

etDB/XQueny[8] and Saxon[2Q] in Sectior . This is pri- resiy1 4= epec(res;)unionres; , i >0

marily due to a substantial reduction of the number of items
that are fed into the recursion’s payload function (theveai
implementation of Example_1.1 feeds already discovered
course element nodes back inigec (-)).

In Section 6, we stop by relgted W_ork on recursion on Note that if expression, .
the XQuery as well as the relational side of the fence, and
finally wrap-up in Sectiohl7.

(Z___tmarks the fixed point computation).

wherek > 1 is the minimum number for whiches, =
resi—1. Otherwise, the IFP of,..($x) seeded by,eq iS
undefined <

doesnotinvoke node construc-

tors .9, element {-} {-} ortext {-}), such that the query

operates over a finite domain of nodes, IFP will always be

) . . defined. Otherwise, the invocation of node constructors in

2. An Inflationary Fixed Point in XQuery the recursion body might yield an infinite node domain and
IFP might be undefined.

The subsequent discussion will revolve around the re-
cursion pattern embodied by functidax () of Figure[2, Example 2.2 In terms of the newrith - - - seeded by---
known as theinflationary fixed point (IFP)I]. We will recurse syntactic form, we can now express the transitive
introduce a new syntactic form to introduce IFP on the closure query from Example 1.1 in a quite concise and ele-
XQuery language level and then explore its semantics ingant fashion:
the XQuery context, application, and optimization.

In the following, we regard an XQuery expressien
containing a free variablgx as a function ofx. We write
e1(ez) to denotee; [€2/$x], i.e., the consistent replacement
of all free occurrences dfx in e; by e5. Functionjfu(e) g
returns the set of free variables of expressiolVe further

introduceset-equality(=), a relaxed notion of equality for Obviously, the new formiith- - - seeded by - - recurse
XQuery item sequences that disregards duplicate items andg mere syntactic sugar as it can be equivalently ex-

n n i n n
ordere.g, (1,"a") = ("a",1,1). . pressed via the recursive user-defined function template
To streamline the discussion, in the following we assume ¢34 (.) (shown inC__" in Figure[2). Since the syntac-

computations over sequences of typele ()* as trees are yic form is a second-order construct taking an XQuery
th_erecurswe_z data structure in the XQuery Dta Model. In \5riable name and two XQuery expressions as arguments,
this case, withX, X, of typenode () *, we hav function £ix(-) has to be interpreted as a template in
which the recursion bodyec(-) needs to be instanti-
ated (XQuery 1.0 does not support higher-order functions).

Here and in the following,£s:ddo(.) abbreviates the functon ~ CGiven this, Expressiori]1) is equivalent to the expression
fs:distinct-doc-order(-) of the XQuery Formal Semantids|[9]. let $x := €40eq return fix (rec ($x)).

with $x seeded by doc ("curriculum.xml")
/course[Q@code="c1"] (Q1)
recurse $x/id (./prerequisites/pre_code)

X;£ X, & fs:ddo(X;) = fs:ddo(Xs) .

Using IFP to Compute Transitive Closure. Much like in

the relational contextransitive closuras an archetype of
recursive computation over XML instances. Regular XPath
[25], for example, defines the transitive closure of XPath lo
cation steps to obtain powerful primitives that express hor
izontal and vertical structural recursion. We can natyrall
extend this definition to any XQuery expression of type
node () *.

Definition 2.3 (Transitive Closure)Let e be an expression
of typenode () *. Thetransitive closure=* of e is

()

if the resulting node sequence is finite. Otherwistjs
undefined <

eunion e/eunione/e/eunion --- |

Given simple restrictions ofy see Sectiop 311, with the new
IFP forme* is (*.” denotes the context node):

with $x seeded by . recurse $x/e .

IFP in SQL:1999. IFP has found its way into SQL in
terms of thewITH RECURSIVE clause introduced by the
ANSI/ISO SQL:1999 standard [21]. To exemplify, consider
the tableC(course, prerequisite) as a relational repre-
sentation of the curriculum XML data (Figuré 1). The pre-
requisitesP(course_code) of the course with codec1’
then are:

WITH RECURSIVE P(course_code) AS
(SELECT prerequisite

FROM C seed
WHERE course = ’c1’)
UNION ALL
(SELECT C.prerequisite
FROM P, C body

WHERE P.course_code C.course)

SELECT DISTINCT * FROM P;

Analogous to the XQuery variant, tabkeis seeded with
the direct prerequisites of course1’ before the join with
tableC in the body is iterated to also add all indirect prereg-
uisites untilP does not grow further.

The SQL:1999 standard dictates quite rigid syntactical
restrictions for thewITH RECURSIVE form (the body, in
particular, must bdinear: P may occur only once in its
FROM clause). We will return to this in Sectidn 8.2 ddd 6.

2.1. Algorithms for IFP

The semantics of the inflationary fixed point in XQuery,
i.e., the specification of the node sequenes, of Defini-
tion[2.1, can be straightforwardly turned into an iterative
algorithm to compute IFP. Figufe 3[a) shows the resulting

res <— e'rcc(eseed); Tes <— ercc(eseed);
A < res;
do
A 4 erec(A) except Tes;
res < A union res;
while res grows ;

do

Tes 4 €erec(TeS) Union res;
while res grows ;

(a) AlgorithmNaive (b) Algorithm Delta

Figure 3. Algorithms to evaluate the IFP of
€rec QIVEN egeeq. RESUIL IS res.

declare function delta ($x,$res) as node()*
{ let $delta := rec ($x) except $res
return if (empty ($delta))
then $res
else delta ($delta,$delta union $res)

};

Figure 4. An XQuery formulation of Delta.

procedure, commonly referred to Blsivein the literature
[5]. In thedo- - - while loop body, the procedure calls out
to the recursion’s payload functien,. () to determine the
next portion of nodes that will augment the current interme-
diate result. Only ife,..(-) cannot contribute new nodes,
the procedure returns the current.

Sinceres grows, this feeds the same nodes over and over
again intoe,..(-). Dependent on the nature of the pay-
load, e,..(-)'s answer might include nodes which we have
seen before. Ultimatel\aiverisks to initiate a substantial
amount of redundant computation.

A now folklore variation of Naive is the Delta algo-
rithm [17] of Figure[3(H). In this variant, the payload is
invoked only for those nodes that have not been encoun-
tered in earlier iterations: node sequedcss the difference
betweere,..(-)’s last answer and the current resut. In
generalge,.. () will thus process fewer nodes.

Deltaintroduces a significant potential for performance
improvement, especially for large node sequences and
computationally expensive payloads (Sectldn 5). Fig-
ure [4 shows the corresponding XQuery user-defined
function delta(-,-) which, for Example[1]1 and thus
Query[Q1], can serve as a drop-in replacement for func-
tion fix (-)—line 14 then needs to be replacediyturn
delta (rec ($seed), O).

Is this replacement afix (-) by delta(.,-) alwaysa valid
optimization? For XQuery, the answerris.

Example 2.4 Consider the following expression:

let $seed := (<a/>,<c><d/></c>)
return with $x seeded by $seed
recurse if (count ($x/self::a))
then $x/* else ()

(Q2)

Leta, b, ¢, andd denote the tree fragments constructed by

the seed’s subexpressiora/>, <c><d/></c>,
<c><d/></c>, and<d/>, respectively. Thug)/*isc and
c/*1isd.

Note how [B) resembles thdistributivity property of
functions defined on sets. Such a functiois distributive
if, for all non-empty setsY, e(X) = U,y e({y}). This
property suggests a divide-and-conquer evaluation glyate

The table below illustrates the progress of the iterations in which e is applied to subsets (singletons)Xfonly. We

performed by algorithmNaiveandDelta. While the former
computes(a,b,c,d), the latter return€a,b,c).

Iteration Naive Delta
res res A
0 (a,b) (a,b) (a,b)
1 (a,b,c) (a,b,c) (o
2 (a,b,c,d) (a,b,c) QO
3 (a,b,c,d)

<

What then is an effective characterization of those paydoad
for which Naive may safely be traded fddelta?

3. Trading Naivefor Delta

We will now see that a simple notion afistributivity

for XQuery expressions suffices to let an XQuery proces-

define the correspondirdistributivity property for XQuery
as follows:

Definition 3.1 Distributivity property for XQuery.Lete be
an XQuery expression in which varialdle may occur free.
Expressiore is distributive for$x if, for any item sequence
X # O and fresh variablgy,

for $y in X return e($y)

In particular, Equality[(B) is a straightforward conseqeen
if we know that the recursion body... is distributive for its
free variable. Overall, we arrive at the following sufficien
condition for the applicability oDelta:

Theorem 3.2 Consider the expressionith $x seeded
bY €seed Tecurse eq.. If e is distributive for$x, then

sor safely switch to a more efficient evaluation mode for algorithmDeltacomputes the IFP 6f,.. givene.cq.

with $x seeded by egeeq recurse €pec: whenever ex-
pressione,.. is distributive (in the sense defined below),

algorithmDelta (Figure[3(D)) preserves the desired IFP se-

mantics. While thalistributivity property is undecidable in

XPath Location Steps. XPath location steps are a preva-
lent example of distributive expressions in XQuery. Any

general, we present two safe and effective approximationsexpression of the forne($x) = $x/s is distributive for

of distributivity, one formulated on the level of XQuery lan

$x if the step subexpression neither containgi) free

guage syntax, and one cast in terms of an algebraic XQueryoccurrences ofx, nor (i) calls to fn:position() and
representation. The algebraic approximation will turn out fn:1last() that refer to the context item sequence bound

to be particularly simple and uniform (Sectidn 4).

3.1. Distributivity in XQuery

Obviously,Deltacomputes the IFP for given expressions

to $x, nor (iii) node constructors. To see this, note that
the XQuery Core equivalent][9] dfx/s is fs:ddo(for
$fs:dot in $x return s), and then rewrite the lhs of
Equation[(#) into its rhs, using the definitionf

€seed @Ndere if the algorithm produces the same result as Regular XPath. These observations about the distributiv-

Nalive on the same inputs. In particular, the algorithms are

equivalent if both yield equivalent intermediatesult se-
guences in each iteration of thelo - - - while loops.

In its first loop iteration Naive yields ;. (€rec(€seed))
union e, (€seeqd) Which is equivalent tdDelta’s first in-
termediate result(e c.(erec(€sced)) €xcept €rec(€sced))
union e,e(€seed). FOrthe second and further iterations, an

inductive proof can show the equivalence of all subsequent

intermediateresult sequences, if we may assume that, for
two item sequenceX’;, X», we have

3)

€rec(X1 union Xo) = €rec(X1) union €,e.(Xa) .

ity of XPath location steps extend to Regular XPath [25] and
thus also make this XPath extension susceptiblBetia-
based evaluation. Since any Regular XPath step subexpres-
sions is of the form prescribed bff) to (i) above and Reg-

ular XPath’s transitive closure’ is equivalently expressed
aswith $x seeded by . recurse $x/s (for the sim-

ple proof seel[2]), Theorem 3.2 asserts that we may indeed
use algorithnDeltato evaluates®.

In contrast, expressioa($x) = $x[1] is not distributive
for $x in general. With variabléx bound to the sequence
(ka/>,),$x[1] evaluates taa/>, whilefor $y in

For lack of space, we do not reproduce the straightforward$x return $y[1] yields (<a/>,). Effectively, this

equational reasoning behind the proof here but refer/to [2].

invalidates Equatiori{4).

3.2. Is Expressionge. Distributive? node () * [9]). Also note how Rulé€ BNCALL] recursively
(A Syntactic Approximation) infers the distributivity of the body of a called functiortfife
recursion variable occurs free in the function argument(s)
Whenever an XQuery processor plans the evaluation of In our context, whenever the XQuery processor is able
with $x seeded by es.q recurse e, knowing the to infer dsg, (e) for an input expressioa, then it is guaran-
answer to 1s e, distributive for$x?” is particularly valu- teed thate is indeed distributive fox. The proof of this
able: we may legitimately expePeltato be a significantly ~ implication, by induction on the syntactical structureeof
more efficient IFP evaluation strategy thsaive(Sectiois s to be found in[2].
will indeed make this evident). While, unfortunately, ther
is no complete procedure to decide this queBtistill we Distributivity Hints. Still, the inference rules of Fig-
can safely approximate the answer. Here, we will presenture[§ can only checkufficient syntactical conditiorfr
purely syntactic, sufficient conditions for XQuery distrib distributivity to hold. The processor might thus actu-
tivity. Sectior(4 approaches the same challenge on an algeally miss distributive expressions and will fail to infer
braic level. dsgy (count ($x) >= 1), for example. However, it is in-

Intuitively, we maynot apply a divide-and-conquer eval- teresting to note that we can support the XQuery processor
uation Strategy for an expressiemx), if any Subexpres_ in its d|Str|bUt|V|ty assessment, since every distribeitex-

Sion 0f€ inspects the Sequence boun(ﬁtoas a Who'e:e preSSion iS equivalent toa diStributiVity-Safe eXpreBSiO

is only evaluated afte$x has been divided into individual
items (see Equatidn 4). Obvious examples of such prob-
lematic subexpressions areunt ($x) and$x [1], but also

the general comparis@x = 10 (that involves existential
guantification over the sequence bound).

Subexpressions whose valueimglependenbf $x, on This is a direct consequence of RIe&? (Figure[) and
the other hand, are distributive. The only exception of this Definition[3.1. Thus, at the expense of a slight query refor-
rule are XQuery's node constructoesg, text {-}, which mulation, we may provide a “syntactic distributivity hirtty
create new node identities upon each invocation. \&ith the XQuery processor which effectively paves the way for
bound to(<a/>,), for example, IFP evaluation via algorithrbelta.

If expressiore($x) is distributive for$x, then it is set-
equal tofor $y in $x return e($y), for which
the rules of Figuré]5 will successfully infer distribu-
tivity safety dsg (+).

text{"c"} # for $y in $x return text{"c"} 4. Distributivity and Relational XQuery

since the rhs will yield a sequence of two distinct text nodes . . S :
In this section we will, literally, follow an alternative

The inference rules of Figufé 5 have been designed to im-yoyte to decide the applicability @elta for the evaluation
plement these considerations. The rules syntactically as-f the IFP of an XQuery expressien,.. We leave syntax
sess thadistributivity safetydss, (¢) of an arbitrary LiX- aside and instead inspeetational algebraic codéhat has
Query [19] input expression by traversinge’s parse tree peen compiled foe,..: the equivalent algebraic represen-
in a bottom-up fashion. LiXQuery is a sublanguage of tation ofe,.. renders the check for the inherently algebraic

XQuery that preserves Turing-completeness, removes allgjstributivity property particularly uniform and simple.
but the most basic types, and excludes selected, rather es-

oteric, language features. LiXQuery’s simplification oéth
verbose XQuery syntax and semantics have been designe
to make LiXQuery ideal for investigations of interesting
language properties, yet allow findings to be transposed to
full XQuery.

Ruled ORI and FoRZ] ensure that the recursion variable
$x occurs either in the body, or in the range expression
e; of afor-iteration but not both. This coincides with the
linearity constraint of SQL:1§)99. A similar remark applies XQuery semantics (including compositionality, node iden-
to Ruled SEPT and (in XQuery, the step operator tity, iteration and sequence order), arijl Yield relational

‘ /" essentially describes an iteration over a sequence of type - - .
/ y q yp plans which exclusively rely on regular relational query en

2If for two arbitrary expressions , e2 in which$x does notoccur free, gine technology (no specific operators or index structures

aelational XQuery. This alternative route is inspired by

e PathfinderprojecE which fully implements such a
purely relational approach to XQueryathfindercompiles
instances of the XQuery Data Model (XDM) and XQuery
expressions into relational tables and algebraic plans ove
these tables, respectively, and thus follows the dashdd pat
in Figure[6. The translation strategy built into the compile
has been carefully designed (o faithfully preserve the

an XQuery processor could assess whettfer(deep-equal (e1 ,e2)) are required, in particular) [15].
then $x else $x[1] is distributive for$x, it could also decide the
equivalence ot; andes (which is impossible). ®http://www.pathfinder-xquery.org/

http://www.pathfinder-xquery.org/

$x ¢ fu(e1) dssx (e2) dssx (e3) @€ {,, 1} dssx(er) dssx(e2)

ONS —(VAR) (ConcaT)
dssx () dssx ($v) dsgx (if (e1) then ez else e3)) dssx (e1 @ e2)
$x ¢ fu(e1) dssx (e2) dsgx (1) $x ¢ fu(e2)
dsgx (for $v at $p in e; return e2) dsgx (for $v in e1 return e2)
$x ¢ fu(e1) dssx (e2) dssx (€1) $x & fu(e2) dsso (e2) D)
dsgx (et $v := e1 return e2) dsgx (et $v := e1 return e2)
$x ¢ fv(el) .ds$x (Ci)izlwn«rl $x ¢ fv(el) d5$x (62)
typeswitch (e1) dsgx (e1/e2)
case 71 return ci
g dsgx (1) $x ¢ fu(ez) SEm
case T, return c, dssx (e1/e2)
default return cn41
declare function f($vi,...,$vn) {eo} ($x € fu(ei) = dsg« (€i) A dsgo, (€0))i=1...n —
d5$x (f(el PR :6n))
Figure 5. Distributivity-safety dsg, (-): A syntactic approximation of the distributivity property for
LiXQuery expressions.
XQuery Operator Semantics Push?
XDM XDM
' 0 Tay:by,....an:bn Project onto col.a;, renameb; intoa; ©
! i ob select rows with columib = true ©]
v ! X join with predicatep @
Tables-----------~-----3 Tables P .
Relational Algebra X Cartesian product @
) duplicate elimination[{ISTINCT) —
]) U union @
Figure 6. Relational XQuery (dashed path) \ disjoint difference EXCEPT ALL) _
faithfully implements the XQuery semantics. count,, /p aggregates (group Hy, result ina) -
@ai(by .. bn) n-ary arithmetic/comparison operator ©
#, unique row tagging (tag in) O]
Oa:(by,...bn)/p Ordered row numbering (byi,...,bn) —
aiin XPath step join (axig, node test) ®
The compiler emits a dialect of relational algebra that &7 node constructors -
fixpoint operators O]

mimics the capabilities of modern SQL query engines (Ta- “#
ble[d). Note that the non-textbook operators, liker &7,
merely are macros representing “micro plans” composed of
standard relational operators: expandifig. ., revealsx,,
wherep is a conjunctive range predicate that realizes the se-
mantics of an XPath location step along axisvith node
testn, for example. The row numbering operatodirectly 4.1. |s Expressiongec Distributive?
compares with SQL:199980W_NUMBER. The plans oper- (An Algebraic Account)

ate over relational encodings of XQuery item sequence held
in flat (LNF) tables with schemger|pos|item. In these ta-
bles, columnster andpos are used to properly refleebr-
iteration and sequence order, respectively. Coltitam
carries encodings of XQuery itemisg., atomic values or
nodes.

Table 1. Relational algebra dialect emitted by
the Pathfinder compiler.

An occurrence of the newith $x seeded by €seeq
recurse e, formin a source XQuery expression will be
compiled into a plan fragment as shown here
on the right. Operatou, the algebraic repre- ,---
sentation of algorithrVaive (Figurg3(@)), it-

Further details of Relational XQuery do not affect our erates the evaluation of the algebraic plan fog
present discussion of distributivity or IFP evaluation and e,.. and feeds its output back to its inputL
may be found in[15]. In the following, let:, denote the until the IFP is reached. If we can guarantee !
algebraic plan that has been compiled for XQuery expres-that the plan foe,.. is distributive, we may
sione. safely tradeu for its Delta-based variant®

Fi}@

|
|
|
|
!
x |
|
|
!

e

~+

>

| | closed plan fragments with single entry and exit points (en-

0 ° | 1 ‘ﬂ/ﬁ‘u‘—\———ﬁ‘ closed by ' in Figurel9). These templates embody al-
/U\ L i = i | i | gebraic implementations of basic XQuery construetg,
AA 2 T IR N the semantics af or-iteration or XPath location steps. As-

LU B A ‘ ‘ sessing the distributivity of such plan templatesis a aneti
I L L A A A A effort. Once this has been done, whenever a distributive
(a) Isee. distributive? (b) Taking abig step Pushing template is encountered, thepush up process may disre-

U through a plan template gard the template’s contents and instead perform a single

big stepacross the template (see Figpre ¥ (b)).

For the XQuery processor, this suggests the following sim-
ple procedure as a replacement fisg, (-) (Sectior 3.R) to
assess the distributivity @f...:

Figure 7. Algebraic distributivity assessment.

O)

u
5 e N
N ! ! N A A Start with the algebraic plan fer.. with its input L
replaced by(Yy ;
(a) Unary operators (b) Binary operatorsp while not allu have reacheé do
Perform abig stepor pushu up through its parent
Figure 8. Pushing U through unary (®) and operator, if possible. Otherwiseturn false;
binary (@) operators. return true;

Figure[® depicts the algebraic representations of the recur
which, in general, will feed significantly less items back in Sion bodies of the Querigs Q1 apd]Q2 (Secfion 2). For

each iteration (see Figure 3(b) and Sechibn 5). Query[Q1, to pustu through from.L to @, the distribu-
(gre 3(b) dibn 5) tivity check will succeed after it has performed two steps

In_ thi_s algebraic _setting, i th_e rec_ursion bOd*C_is dis- across the two peripheral projections plus one intermedi-
_trlbu_t|ve, Its relatlon_al plan ‘_N'”_Sﬁt'Sfy the qualltymhn . atebig stepacross theor-iteration that implements the se-
in Flgl.,lr.e@. This equality |s.the algebraic expression oo of thegx/id () lookup. For Query Qi2,) will be

of a d|V|ge—a?d—qonquer evaluation strategy é@ﬁa} (Sec— pushed throughiter item and then upwards the two branches
tlpn[ﬂ). evaluating... overa composite input (% L) of the DAG-shaped plan. In the right branch, the aggregate
yields the same re_sult as the union C.)f the evalua_mcmgf countieem /iter DIOCKS the process (Taklé 1) which indicates
over a partitioned input (rhs). Effectively, the union oper that the processor mayot use algorithnDelta (or the i

tor U has been completely pushed up through all branches Ofvariant of the fixed point operator) to evaluate OUery 02
the DAG-shaped algebraic plan fer... Zooming in from P P) Query Q2.

the plan to the operator level, Figurk 8 depicts hovis

pushed up through unary and binary §) operators. Col- ajgebraic vs. Syntactic Approximation. Compared to
umn ‘Push?" of Tablgll indicates whethemay indeed be ¢ syntactic approximatiods (), this algebraic account of
validly pushed through a given operator. Note that this push gisyributivity draws its conciseness from the fact that the
throughiis prohibited by exactly those operators that ®equi ather involved XQuery semantics and substantial number
to consume theicompleténput to produce the result. This ot pjilt-in functions nevertheless map to a small number of
affects,e.g, aggregates, difference, and the row numbering g gebraic primitives (given suitable relational encodiig
operator. As before, the occurrence of node constructorshe xpwm). Further, for these primitives, the algebraic dis-
renders:,.. non-distributive. tributivity property is readily decided.

Because our primary goal is distributivity assessment (as To make this point, consider this slight yet equivalent

opposed to quergvaluatior—but see Sectiohl5), we may variation of Query QL in which variablgx now occurs free

actually employ simplified variants @f... in this context. in the argument of functiond (-):

In particular, since the definition of distributivity digrards

duplicates and order (Definitidn_3.1), the compiler may with $x seeded by doc ("curriculum.xml")

choose to remove code froay.. that is used to eliminate /course [@code="c1"]

duplicate nodes after XPath location steps as well as omit recurse id ($x/prerequisites/pre_code)

those parts of the plan that realize the proper XQuery order

semantics [14]. If we unfold the implementation of the XQuery built-in
Further, the plans generated by the XQuery compiler function id(-) (effectively, this expansion is performed

typically contain numerous instantiationsglén templates ~ when Rulé ToNCALLIrecursively invokeglsg, (-) to assess

TTiter:outer,item

| ! (f
I
| . .
| |nner=|ter\ | R
‘ L@ g
: Tliter,item:ref | [? child:: |
| | S
1 X !
N T item=id—— |
} } I id ref
a 1dq:: |
:O Tinner, ! Chllda‘ | !- |
L outer:iter :% pre_‘co | I
L I I
i f
i B o] : :
}] child:: | I
i : prerequisites| l
,,,,,,,,,,) |
] I
I
: Titer:inner,item |
I
i
‘ |
Lo Feee T ‘
Tliter,item Triter,item
(@) erec Of Queny[Q1 (b) erec of Queny[Q2?

Figure 9. Relational representations of the re-
cursion bodies e, of Queries Q1 hnd

the distributivity of the function body ofd (-)), we obtain

with $x seeded by doc("curriculum.xml")
/course[Q@code="c1"]
recurse
for $c in doc("curriculum.xml")/course
where $c/@code = $x/prerequisite/pre_code
return $c

The syntactic approximation will flag the recursion body
as non-distributive because of the general comparispn (
in the where clause (Sectioh 3.2). While the algebraic ap-

proach would be unaffected by the variation, the rule set of x\ark Bidder Network.

Figure[® would need a specific rule fod (-) to be able to
infer its actual distributivity.

5. Practical Impact of Distributivity and Delta

declare variable $doc := doc("auction.xml");

declare function bidder ($in as node()*) as node()*

{ for $id in $in/@id

let $b := $doc//open_auction[seller/@person =
/bidder/personref

return $doc//people/person[@id = $b/@person]

};

$idl

for $p in $doc//people/person
return <person>
{ $p/eid }
{ data ((with $x seeded by $p
recurse bidder ($x))/@id) }
</person>

Figure 10. XMark bidder network query.

and (i) to implement the algebraic distributivity check. All
gueries in this section were recognized as being distxbuti
by Pathfinder To demonstrate that any XQuery processor
can benefit from optimized IFP evaluation in the presence of
distributivity, we also performed the transition froxzive

to Delta on the XQuery source level and I8axon-SA 8.9
[20] process the resulting user-defined recursive querfes (
Figures[2 and4). All experiments were conducted on a
Linux-based host (64 bit), with two 3.2 GHz Intel Xe8n
CPUs, 8 GB of primary and 280 GB SCSI disk-based sec-
ondary memory.

Table[2 summarizes our observations for four query
types, chosen to inspect the systems’ behavior for growing
input XML instance sizes and varying result sizes at each re-
cursion level (the maximum recursion depth ranged from 5
to 33).

To assess scalability, we com-
puted a bidder network—recursively connecting the sell-
ers and bidders of auctions (Figlird 10)—over XMark [24]
XML data of increasing size (from scale factor 0.01, small,
to 0.33, huge). IDeltais used to compute the IFP of this
network,MonetDB/XQuery2.2 to 3.3 times faster) as well

Recasting a recursive XQuery query as an inflationary asSaxon(1.2 to 2.7 times faster) benefit significantly. Most

fixed point computation imposes restrictions. Such recast-importantly, note that the number of nodes in the network

ing, however, also puts the query processor into control grows quadratically with the input document size. Algo-

since the applicability of a promising optimization, tradi yithm Delta feeds significantly less nodes back in each re-

Naive for Delta, becomes effectively decidable. This sec- cyrsjon level which positively impacts the complexity of

tion provides the evidence that significant gains can indeedihe value-based join inside recursion payladdder (-):

be realized, much like in the relational domain. for the huge networkDelta exactly feeds those 10 million
To quantify the impact, we implemented the two podes intobidder(-) that make up the resultNaive re-

fixed point operator variantg. and p® (Section[4ll) peatedly revisits intermediate results and processesetim
in MonetDB/XQuery 0.148], an efficient and scalable 35 many nodes.

XQuery processor that consequently implements the Re-
lational XQuery approach (Sectigh 4). Its algebraic com-
piler front-endPathfinderhas been enhanced to pro-
cess the syntactic formith---seeded by---recurse,

Romeo and Juliet Dialogs. Far less nodes are processed
by a recursive expression that queries XML markup of

Query MonetDB/XQuery Saxon-SA 8.9 Total # of Nodes Fed Back Recursion

Naive Delta Naive Delta Naive Delta Depth
Bidder network (small) 362 ms 165 ms 2,307ms 1,872 ms 40,254 ,3199 10
Bidder network (medium) 5,010 ms 1,995 ms 15,027 ms 7,284 ms 83,285 122,532 16
Bidder network (large) 40,785 ms 13,805 ms 123,316 ms 52486 5,694,390 961,356 15
Bidder network (huge) 9m46s 176,890 ms 32m40s 12m04s 8528 9,799,342 24
Romeo and Juliet 6,795 ms 1,260 ms 1,150 ms 818 ms 37,841 5,638 33
Curriculum (medium) 183 ms 135 ms 1,308 ms 1,040 ms 12,301 443,0 18
Curriculum (large) 1,466 ms 646 ms 3,485 ms 2,176 ms 127,992 9,780 35
Hospital (medium) 734 ms 497 ms 1,301 ms 1,290 ms 99,381 60,00 5

Table 2. Naive vs. Delta: Comparison of query evaluationti mes and total number of nodes fed back.

Shakespeare’s Romeo and JHlies determine the max- 6. More Related Work
imum length of any uninterrupted dialog. Seeded with
SPEECH element nodes, each level of the recursion ex-

pands the Cu”e”t'Y considered dialog_sequences by & Sing ¢ore research matter on various levels of the language.
gle SPEECH node given Fhat the assomatsHEAKEl_is are While the efficient evaluation of the recursive XPath axes
found to alternate (horizontal structural recursion along (e.g, descendant or ancestor) is well understood by now

the following-sibling axis—we do not reproduce the 1 7a the optimization of recursive user-defined funatio
query here for space reasons.) Although the recursion isp,q heen found to be tractable only in the presence of re-

shallow (depth 6 on average), Taljl> 2 ShOWS_ how both, gyjetions: [23] 18] propose exhaustive inlining of fulocts
quetDB/XQuer)and Saxon completed evaluatl_o_n up o _ but require that functions arstructurally recursive (use
5 times faster because the query had been specified in a disgy a1 114 anddescendant to navigate into subtrees only)
tributive fashion. overacyclicschemata to guarantee that inlining terminates.
Note that, beyond inlining, this type of recursion does not
come packaged with an effective optimization hook compa-
rable to what the inflationary fixed point offers.

The distinguished use case for inflationary fixed point

Bringing adequate support for recursion to XQuery is

Transitive Closures. Two more queries, taken directly
from related work([22, 11], compute transitive closure prob oS " .
(2111} P P computation is transitive closure. This is also reflected by

lems (V\,'e genera_lted the dqta instances with th_e help of TOX_the advent of XPath dialects like Regular XPath [25] and the
gene[[6]). The first query implements a consistency CheCkincIusion of a dedicatedvn: c1 () construct in the
over the curriculum data (cf. Figuré 1) and finds courses that S yn:c.osure C .

. L . . EXSLT function library [10]. We have seen applications in
are among their own prerequisites (Rule 5 in the Curriculum -

. D . .
Case Study in Appendix B of [22]). Much like for the bid- Sectior[b[[22/111] and recent work on data integration and

. -~ XML views adds to this[[12].
der network query, the larger the query input (medium in-
stance: 800 courses, large: 4,000 courses), the Ddtiae In the domain of relational query languagéive is the
etDB/XQuerandSaxorexploitedDelta. most widely described algorithmic account of the inflation-

ary fixed point operatof [5]. Its optimizedelta variant, in
focus since the 1980’s, has been coidetta iteration[17],
semi-nave [5], or wavefront]18] strategy in earlier work.
Since our work rests on the adaption of these original
ideas to the XQuery Data Model and language, the large
“relational body” of work in this area should be directly
query. transferable, even more so in the Relational XQuery con-
text. In particular, optimization techniques likéagic Set

We believe that this renders this particular controlled e, \riting [4] should apply (this has not been investigated i
form of XQuery recursion and its associated distributivity present paper).

notion attractive, even for processors that do not impleémen . i) i))
a dedicated fixed point operator (ligaxor). The adoption of inflationary fixed point semantics by Data-

log and SQL:1999 with it$ITH RECURSIVE clause (Sec-
tion [2) led to investigations of the applicability &felta
4nttp://www.ibiblio.org/xml/examples/shakespeare/ for these recursive relational query languages. For strati

The last query in the experiment explores 50,000 hospi-
tal patient records to investigate a hereditary diseadge 11
this case, the recursion follows the hierarchical striectfr
the XML input (from patient to parents), recursing into sub-
trees of a maximum depth of 5. AgaiDgelta makes a no-
table difference even for this computationally ratherhiiy

http://www.ibiblio.org/xml/examples/shakespeare/

fied Datalog programs$ [1Deltais applicable inall cases: supported by the German Research Foundation (DFG) un-
positive Datalog maps onto the distributive operators of re der grant GR 2036/2-1. We thank Massimo Franceschet for
lational algebra#, o, x, U, N) while stratification yields inputin an early stage of this work.
partial applications of the difference operatorR in which
Risfixed (f(z) = = \ R is distributive). References

SQL:1999, on the other hand, imposes rigightacti-
cal restrictions [[21] on the iterative fullselect (recursion [1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
body) insideWITH RECURSIVE that makeDeltaapplicable: Databases Addison Wesley, 1995.

rouping, ordering, usage of column functions (aggregates [2] L. Afanasiev. Di_stribL_Jtivity for XQuery Expressions_.e&’h-
grouping, g 9 ggrega nical report, University of Amsterdam, 2007. Available at

and nested subqueries are ruled out, as are repeated refer- http://staff.science.uva.nl/"lafanasi/Publications/2007/dist
ences to the virtual table computed by the recursion. Re- [3] S.Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Kowgja

placing this coarse syntactic check by an algebraic distrib and D. Srivastava. Structural Joins: A Primitive for Effitie

tivity assessment (Sectiéh 4) would render a larger class of ,, XML Query Pattern Matching. Iroc. ICDE 2002.

. . .) . . [4] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic
queries admissible for efficient fixed point computation. Sets and Other Strange Ways to Implement Logic Programs.

In Proc. PODS$1985.

_ [5] F. Bancilhon and R. Ramakrishnan. An Amateur’s Intro-
7. Wrap Up duction to Recursive Query Processing StrategiertrT.
SIGMOD 1986.
: ; . [6] D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons.
Thls paper may be read in tv.vo W"?‘ys' . . ToXgene: A template-based Data Generator for XML. In
(i) Asa proposalto add an inflationary fixed point con- Proc. SIGMOD 2002.
struct, along the lines afith - - - seeded by---recurse, [7] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
to XQuery (this has actually been discussed by the J. RObie\}VZ?:d;i]' Siméon-dXQuer%/Olo-?i An XML query lan-
W3C XQuery working group in the very early XQuery days guage. ecommendation, :
of 200§but}tlhen dis?n?ssetgJ because i/he r{)uQaim)éd f)(;r a [8] P.Boncz, T. Grust, M. van Keulen, S. Manegold, J. Ritéing
. ; > group and J. Teubner. MonetDB/XQuery: A Fast XQuery Proces-
first-order language design at that time). sor Powered by a Relational Engine. Rmoc. SIGMOD
(i) As a guideline for query authors as well XQuery 2006.

processor designers to check for and then exploit distribu- [°] E- ggz%erMp'Rzznlf]hasljifféb P\A'aEdFsrﬁggleezr' A)\('Q'\{ljzlrt;/()tlr%

tivity during the evaluation of_regurs_lvg queries. and XPath 2.0 Formal Semantics. W3C Recommendation,
We have seen how such distributivity checks can be used 2007.

to safely unlock the optimization potential, namely algo- [10] EXSLT: A Community Initiative to Provide Extensions to

rithm Delta, that comes tightly coupled with the inflation- | \>/(VS";T- h';tlg//‘;wwke’j?ltﬁggp{k siotsidis. SMOOE
ary fied point semanticsMonetDB/XQuerymplements (11 WiFar,© Beetis X e, anc k. Kementeiids ShoQ
this distributivity check on the algebraic level and signifi VLDB, 20086.

cantly benefits whenever tligelta-based operatqr® may [12] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewri
be used for fixpoint computation. Even if the approach is ing Regular XPath Queries on XML Views. Rroc. ICDE,
realized on the coarser syntactic lewal top ofan existing 2007.

. . [13] M. Grinev and D. Lizorkin. XQuery Function Inlining for
XQuery processor, feeding back less nodes in each recur- Optimizing XQuery Queries. IRroc. ADBIS 2004.

sion level yields substantial performance improvements. [14] T. Grust, J. Rittinger, and J. Teubner. eXrQuy: Ordeifin

o . . ference in XQuery. IfProc. ICDE, 2007.
Remember that the distributivity notion suggests a divide- [15] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In

and-conguer evaluation strategy (Secfiom 3.1) in whictspar Proc. VLDR 2004.
of a computation may be performed independently (before [16] T. Grust, M. van Keulen, and J. Teubner. Staircase Join:
a merge step forms the final result). Beyond recursion, \T/?_ESJQ 30'?63?1&“0”&' DBMS to Watch its (Axis) StepsPhoc.

this may lead to improved XQuery compilation strategies

.) 17] U. Guntzer, W. Kieling, and R. Bayer. On the Evaluation
for back-ends that can exploit such independeaag set- 7] g y

of Recursion in (Deductive) Database Systems by Efficient

oriented relational query processors (cf. loop-lifting]las Differential Fixpoint Iteration. IfProc. ICDE, 1987.

well as parallel or distributed execution platforms. [18] J. Han, G. Z. Qadah, and C. Chaou. The Processing and
Evaluation of Transitive Closure Queries. Pnoc. EDBT,
1988.

Acknowledgments. Loredana Afanasiev is supported [19] J. Hidders, P. Michiels, J. Paredaens, and R. Vercammen

. L LiXQuery: A Foundation for XQuery Researcl&sIGMOD
by the Netherlands Organization for Scientific Research Record 3(4), 2005.

(NWO) under project number 612.000.207. Jan Rittinger is [20] M. Kay. The Saxon XSLT and XQuery Processor.

http://saxon.sf.net/.
Shttp://www.w3.org/TR/2001/WD-query-semantics-20010607/ [21] J. Melton and A. R. SimorSQL: 1999 - Understanding Re-

(Issue 0008). lational Language Componentdorgan Kaufmann, 2002.

10

http://www.w3.org/TR/2001/WD-query-semantics-20010607/
http://staff.science.uva.nl/~lafanasi/ Publications/2007/distr-report.pdf
http://www.exslt.org/
http://saxon.sf.net/

[22]

(23]

(24]

(25]

C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit: A Consistency Checking and Smart Link Generation
Service. ACM Transactions on Internet Technolod(2),
2002.

C.-W. Park, J.-K. Min, and C.-W. Chung. Structural Func
tion Inlining Technique for Structurally Recursive XML
Queries. IrProc. VLDB 2002.

A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
|. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. IiProc. VLDB 2002.

B. ten Cate. Expressivity of XPath with Transitive Qlos.

In Proceedings of POD$ages 328—-337, 2006.

11

	. Introduction
	. An Inflationary Fixed Point in XQuery
	. Algorithms for IFP

	. Trading Naïve for Delta
	. Distributivity in XQuery
	. Is Expression erec Distributive? (A Syntactic Approximation)

	. Distributivity and Relational XQuery
	. Is Expression erec Distributive? (An Algebraic Account)

	. Practical Impact of Distributivity and Delta
	. More Related Work
	. Wrap-Up

