

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-792738

Matthias Böhm, Dirk Habich, Wolfgang Lehner, Uwe Wloka

DIPBench Toolsuite: A Framework for Benchmarking Integration
Systems

Erstveröffentlichung in / First published in:

IEEE 24th International Conference on Data Engineering. Cancun, 07.-12.04.2008. IEEE, S.
1596-1600. ISBN 978-1-4244-1836-7

DOI: https://doi.org/10.1109/ICDE.2008.4497630

https://doi.org/10.1109/ICDE.2008.4497630

DIPBench Toolsuite: A Framework for

Benchmarking Integration Systems

Matthias Böhm # 1
, Dirk Habich •2, Wolfgang Lehner •3

, Uwe Wloka #4

Databa.se Group, Dresden University of Applied Sciences
01069 Dresden, Germany

1
mboehm@informatik.htw-dresden.de
4
wloka@informatik.htw-dresden.de

* Database Technology Group, Dresden University of Technology
01187 Dresden, Germany

2dirk.habich@inf.tu-dresden.de
3wolfgang.lehner@inf.tu-dresden.de

Abstract- So rar the optimization of integration processes
between heterogeneous data sources is still an open challenge.
A first step towarcls sufficlent techniques was the speclfication of
a universal benchmark for Integration syste.ms. This DIPBench
allows to compare solutions uncler controlled conclitions and
woulcl help generate inleresl in this research area. However,
we see lhe requlrement for provicling a sophisticated toolsuile
in order to minimize the effort for benchmark: execution. This
demo illustrates the use of the DIPBench toolsuite. We show
the macro-architectu1·e as weil as the micro,archltecture of each
tool. Furthermore, we also present the first reference benchmark
implementation using a federated DBMS. Thereby, we discuss the
impacl of lhe defined benchmark scale ractors. Finally, we want
to give guidance on how to benchmark othe1· Integration systems
and how to extend the toolsuite with new distribulion functions
or olher funclionalities.

I. lNTRODUCTION

The importance of heterogeneous systems integration is
continuously increasing because new application types and
technologies are emerging. This results in a multiplicity of
different integration systems. The authors of the Lowell Report
[1] already pointed out the need for further work on the
optimization of information integrators. In this report, they
encouraged the generation of a testbed and a collection of inte
gration tasks. The presented testbed and benchmark THAUA
[2], [3] realizes this but addresses the functional comparison,
using the number of correctly answered benchmark queries,
rather than the comparison of the integration performance.
There are benclunarks available which partly contribute to
heterogeneous systems integration. First, the newly standard
ized TPC-DS benchmark [4], [5], [6) i.ncludes a server-centric
Extraction Transformation Loading (ETL) process execution.
In order to separate DIPBench from this, it should be noticed
that only flat flies are imported into the data warehouse.
Thus, it addresses the DBMS performance rather than the
performance of a real integration system. Second, there are
very specific ETL benchmarks available which mainly address
the raw data throughput and are thus not sufficient for a
universal benchmarking of integration systems. An example
of such a specific benchmark is the so-called "RODIN High

Performance Extract/Transform/Load Benchmark" [7). That
means, there is currently no performance benchmark for
integration systems available. However, in order to evaluate
the integration performance of such solutions, a standardized
universal performance benchmark is sorely required.

Therefore, we developed a scalable benchmark, called DIP
Bench (Data Intensive Integration Process Benchmark) [8),
[9], for evaluating the performance of integration systems.
Figure 1 depicts our domain-specific benchmark scenario. In
addition to the global scenario, we specified a mix of 15
conceptual process types representing typical integration tasks.
The practical relevance of this specific benchmark design
was verified within several industry integration projects. The
benchmark spedfication further comprises the three scale
factors datasize d"' , time tz and distriburion .fY. Aside from
these scale factors, we defined the benchmark schedule and
performance metrics.

In contrast to existing benchmarks for XML data man
agement [10], (11], (12], the execution of an integration
benchmark is much more complex. This is caused by the
lack of a platform-independent and declarative description
for integration processes. In order to reach the necessary
benchmark simplicity, according to the benchmark design
principles (domain-specific, portable, scalable) mentioned in
[13), we provide a sophisticated toolsuite to minimize the
effort for benchmark execution. The Workload Driver of the
TPoX benchmark [12) follows similar aims in another XML
Benchmark context.

The availability of such an integration benchmark allows
comparing existing integration systems with regard to their
performance. In addition to that, it will generate more research
interest in the area of integration technologies. Therefore,
our motivation of this demonstration proposal includes the
presentation of reference benchmark implementations as weil
as explanations on how to extend the toolsuite with new
integration system connedions; we also discuss further re
search aspects. This will guide research as well as industrial
groups on how to use our toolsuite for benchmarking novel
implementations within the field of integration.

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". IEEE, S. 1596-1600. ISBN 978-1-4244-1836-7
https://doi.org/10.1109/ICDE.2008.4497630

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Data Marts
(partitioned br

Joca1ion)

Data Warehouse
(C011l10llclet$d and

cieeneddata)

Fig. 1. DIPBench ETL Scenario

B
} P11

PI•

Our DIPBench specification of an integration benchmark
and the presentation of the correlated toolsuite are first steps
towards more extensive research on optimization techniques in
the context of integration processes. So, the significance of the
contribution is based on the preparation of preconditions for
integration system comparison and further research on infor
mation integration optirnization techniques. The contribution
mainly consists of two parts: first, the conceptual discussion
of the novel DIPBench benchmark specification and second,
the presentation and explanation of the related toolsuite.

The remainder of the paper is structured as follows: In the
following section, \1,,e give a short overview of our benchmark
including the general benchmark scenario, the process type
groups, as weil as the specified scale factors. In Section
3, we discuss the DIPBench toolsuite architecture in detail,
including its macro- and micro-architecture. Demonstration
details are described in Section 4. Finally, the paper closes
with a conclusion and future work.

II. DIPBENCH ÜVERVIEW

The technical context of the DIPBench comprises different
types of integration tasks, which are typical for physical
integration processes within an ETL environment. This bench
mark addresses data manipulating integration systems rather
than read-only information systems. In contrast to functional
integration benchmarks, we focus on a real-life scenario rather
than comprising all possible types of syntactic and semantic
heterogeneities. The benchmark scenario, illustrated in Fig
ure 1, is divided into four layers, and different process types
are specified for each layer.

• Layer A - Source System Management: The first layer
represent.s all regionally separated source systems, in
cluding applications, Web services and different RDBMS.
Fwiher, three integration tasks are specified.

• Layer B - Data Consolidation: The second logical layer
consists of a consolidated database (CDB). lt represents
the staging area of the whole ETL benchmark scenario.
Basically, seven different integration tasks between the
source systems and the CDB are defined.

• Layer C - Data Warehouse Update: Layer three repre
sents the actual data warehouse (DWH) system. Only
clean and consolidated data is loaded into this system,
based on a defined time schedule. We have defined two
i.ntegration processes between the CDB and the DWH.

• Layer D - Data Mart Update: In order to realize physical
optimizations, workload reduction as weil as a location
based partitioning, the fourth layer comprises three in
dependent data marts. So, there are also 2 integration
processes between the D\VH and the data marts.

The internal processing of the whole benchmark will be
influenced by the three scale factors da.tasize (d"'), time W)

and distribution (!Y). The continuous scale factor daiasize

(d"") allows for scaling the amount of data to be integrated.
Thus, the dataset size of the extemal systems. and in some
cases the number of process instances, depends on it. The
continuous scale factor time (f") allows the scaling of time
intervals between process-initiating events by influencing the
benchmark scheduling. Moreover, the scale factor time has an
impact on the degree of concurrency. The discrete scale factor
distribution (!11) is used to provide different data characteris
tics from uniformly distributed data values to specially skewed
data values.

III. DIPBENCH TOOLSUITE ARCH ITECTURE

In this section, we describe the architecture of our de
veloped DIPBench toolsuite. First, we present the overall
macro-architecture and its position within the whole bench
mark execution enviromnent. Second, we describe the micro
architecture of the demonstrated tools in short. Figure 2 illus
trates the mentioned macro-arch.itecture. Fundamentally, the
tools Client, Initializer and Monitor are provided.
These tools, which were implemented in Java and are thus
platform-indepe.ndent, could be accessed using an API or via
a developed GUI. The benchmark execution runtime comprises
one computer system for all external sow·ce and target systems
and one computer system for the actual integration system.

-ly,lom 2(iragration l)'Nm)

.,,..,...., s,,,ww (IIUT)

ElBEJEH3
tduM!Jmdl'IM tahoil

ElEJEJEJEl---- - ""' *-"""'""._,,.

oamr,utar !)'!IMl 3 (clllnt 9)'918m)

Fig. 2. Toolsuite Macro-Architectu.ce

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". IEEE, S. 1596-1600. ISBN 978-1-4244-1836-7
https://doi.org/10.1109/ICDE.2008.4497630

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 3. Client Micro-Architecture

In the following, we want to discuss the architecture of the
single tools and point out solved challenges and problems.
Figure 3 shows the micro-architecture of the Client tool,
which is used for scheduling integration processes. Thereby,
it handles the co1IDections to the integration system (system
under test). From an abstract point of view, this tool is
comparable to the TPoX [12) Workload Driver. The tool could
be accessed using the weil defined interface IClient. The
Schedu le r initializes and manages the execution of the four
Scheduled Streams, which are in fact multi-threaded
event streams. If an event occurs, the ConnectionFactory
is used to invoke the integration system in a generic manner.
Tlrns, for benchmarking one's own system prototype, only one
such co1IDection-inhelited from AISConnect ion-has to
be provided and registered at the ConnectionFactory.

In order t o reach a sufficient number of statistics, the
benchmark execution phase comprises 100 benchmark periods.
After each period, the extemal systems have to be reinitialized.
The Client uses the Ini t iali zer tool, whose architec
ture is shm\111 in Figure 4. Thi.s tool allows schema creation
and universal data initialization for relational data sources
as well as XML-based systems. In analogy to the Client,
this tool realizes the IIn it ial i zer interface. Basically, the
schemas are specified with TableMetadata objects. These

1n1na11zer OÄO
(Data Access ooJect)

-71Ul)!e 1
wewriS

DFuniron 1
OF11onna

'I OFP01sso
I OFLOgNo

OFParet

1
1 Piattorm 1

L_ __ �I

Fig. 4, Initiali zer Micro-Architecture

DIIQl'lm
Pl01'0r 11111111111111111

--

Fig, 5. Monitor :Micro-Architecture

metadata objects also refer to foreign-key spedfications, value
domains, special IDBuckets and several types of constraint
specifications. With these definitions, e.g., ranges of numbers
could be applied for the different external systems but also
single-column, rnulti-column, multi-table constraints can be
specified. Furthennore, this tool allows multi-threaded data
generation. The metadata objects are passed to the specific
Data Generator and the generated tuples are di.rectly put
out into special tuplestreams. The aligned data connection
could statt to inse1t tuples while the data generation is not yet
finished. By limiting the tuplestream to a maximum number
of buffered tuples, the generation is realized with awareness
of main memory restr ictions. The very generic separation of
the different data distdbution functions and data connections
makes it easy to extend the given tool. However, the cun-ent
version even supports the specification of data properties
(average, variance, skewness and null-values). Note that the
cardinalities can be specified with the scale factor datasize as
weil as with the ScaleTable in order to separate linear and
sub-linear scaling tables.

The Monitor tool is used by the Client and allows
collecting, analyzing and plotting performance statistics. Fig
ure 5 shows its micro-archi.tecture, which is quite similar
to the architecture of the already described tools. Thus,
it implements the interface IMonitor. The core System
Monitor comprises an Event Buffer where performance
events are collected. These events are represented by a data
st ructure, which includes the event ID (EID), the process
type ID (PTID), the start time (To) and the end time (T1).
The whole Event Buffer is incrementally flushed to disk
during benchmark execution. After the benchmark execution
has been finished, the whole statistics are loaded and analyzed
by the Statistics Analyzer. The result of this analysis
is represented by the specific performance metrics [8] for
each process type ID. In this area, a major challenge was the
cost normalization. Finally, these results are flushed to disk
in order to generate a performance plot with the Diagram
Plotter using the jgnuplot library [14). One might judge the
event management as performance bottleneck. However, due
to the fact that there are no side effects between the measured
performance metric and the management of events, this can
be disregarded.

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". IEEE, S. 1596-1600. ISBN 978-1-4244-1836-7
https://doi.org/10.1109/ICDE.2008.4497630

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

IV. DEMONSTRATION DETAILS

After the presentation of the DIPBench toolsuite and its
architecture, we use this section to outline features we would
lik:e to present at ICDE. In general, the demonstration features
can be classified into seven aspects.

General Toolsuite Presentation: First, we want to demon
strate the usage of the toolsuite by presenting the graphical
user interface and explaining the provided API. Furthermore,
configuration parameters and the benchmark setup are dis
cussed in general. Second, this abstract presentation is used
to illustrate the general DIPBench approach and to discuss
benchmark-related aspects.

Data Generator Explanation: Considering the aspect of
data generation, we will demonstrate the impact of our differ
ent data distribution functions. Especially the poisson ctistribu

tion function-which allows different types of skewed data
will be explained in detail. Furthermore, we will demonstrate
the different correlation types one-column, between colurrms
of one zahle and between columns of mulliple tables.

Referenre Implementation Illustration: Further in-depth
aspects are reference implementations for federated DBMS, an
ETL tool, a subscription system as weil as a WSBPEL process
engine. First, the reference implementations are demonstrated.
Second, implementation aspects and optimization possibilities
are also discussed.

Scale Factor Impact Demonstrntion: After we have shown
the GUI facilities for specifying the scale factor values,
we demonstrate their impact using the mentioned reference
implementations. So, for example, we show the impact of the
scale factors datasize d';, time tz and distribution fY.

Data Generator Implementation Guidance: As already
mentioned, the Initializer tool could be extended with
new data generators. This could be useful if new data distri
bution functions are needed or if special corTelations should
be implemented. So, we will use the demo to give guidance
on how to extend the toolsuite with such data generators.

Benchmark Implementation Gu idanre: The c 1 i e nt tool
could be extended with new integration system connections.
This is necessary in order to realize a benchmark implemen
tation. Thus, this is the extension point where research groups
have to customize the toolsuite in order to benchmark their
own system. With the intent of minimizing the effort of such
customization tasks, we will give guidance on how to integrate
their own connections.

Benchmark Discussion: Since we believe in the importance
of such a benchmark, we would like to discuss open issues
and challenges related to this benchmark. Further, we see some
potential for more challenging integration tasks, including all
types of syntactic and semantic heterogeneities. So, in the
end, there is room to discuss future versions of the DIPBench
specification and further research aspects like the model-driven
generation and optimization of integration processes.

To summarize, the demo at ICDE comprises an in-depth
explanation of all necessary aspects of our benchmark, includ
ing its reference implementations. Furthermore, visitors of our

demonstration desk will get a more in-depth understanding of
the benchmark and its further application areas.

V CONCLUSIONS

We specified the DIPBench benchmark, because of the
absence of an independent performance benchmark for data
intensive integration processes. In order to reach the highest
possible simplicity within this complex context of integra
tion processes, there was the need for the provision of a
sophisticated toolsuite to minimize the effort necessary for
new benchmark implementations. In this paper, we presented
the DIPBench toolsuite, which could be used as a frame
work for benchmark integration systems. Thereby, the core
toolsuite comprises three tools: c lient, Ini tiali ze r and
Monitor. In addition to this, the number of adjusting screws
within the toolsuite causes the significance of the demo. Thus,
it is highly recommended to demonstrate and discuss the
impact of special configurations but also to explain how one's
own benchmark implementations could be realized with mini
mal effort. Finally, we want to use the demonstration program
as a forum for discus.sing the benchmark specification.

ACKNOWLEDGMENT

We want to thank the slltdents Katrin Braunschweig, Ro
main Treboux and Dirk Alsfaßer for their efforts on extending
and enhancing the Initi ali zer tool.

REFERENCES

[1] S. Abiteboul., R. Agrawal, P. A. Bemstcin, M. J. Ca.rey, S. Ceri, W. B.
C.roft, D. J. DeWitt, M. J. Fraukliu, H. Garcia-Moliua, D. Gawlick,
J, Gray, L. M. Haa.s, A. Y. Halevy, J, M. HeUe.rstein, Y. E. Joannidis,
M. L. Kersteu, M. J. Pazzaui, M. Lesk, D. Maier, J. F. Naughton, H.-J.
Schek, T. K. Sellis, A. Silberschatz, M. Stonebral::er, R. T. Suodgrass,
J. D. llllman, G. Weikum, J. Widom, and S. B. Zdonik, "The lowell
databa.se research seif assessmeut," CoRR, vol. cs.DB/0310006, 2003.

(2) J. Hammer, M. Stonebraker, and 0. Topsakal, "Thalia : Test haruess for
the assessmenl of legaC}' information inlegmtion approaches," University
of Florida," Technical Report, 2005.

(3) -, "Thalia: Test harness for lhe assessmenl of legacy inforroat.ion
integraüon approaches." in TCDE, 2005, pp. 485-486.

(4) R. Othayot.h and M. Poess, "The making of tpc-ds." in VWB, 2006, pp.
1049-1058.

(5) M. Pöss, B. Smith, L. Kofüir, and P.-A. Larson, "Tpc-ds, t.aking decision
support benchmarldng to the next level." in STGMOD Co11ference, 2002,
pp. 582-587.

(6) TPC-DS - ad-hoc, decision supporl benchmark, Transaction Processing
P erformance Council, 2007.

(7) High Perfonnance &tract/lrarisform/Load Benchmark, RODIN Data
Asset Ma11agement, 2002.

[8] M. Böhm, D. Habich. W. Lehnet and U. Wloka, 'Tupbench: An inde
pendeut benchmark for data iutensive integration processes," Dresden
Universily of Applied Sciences," Technical Report, 2007.

(9) DIPBen.ch, Dresden UniveJSity of Technolog); Datab ase Technology
Group, http://wwwdb.inf.tu-dresden.de/research/gcip/, 2007.

(10) T. Böhme and E. Rahm, "Xmach-1: A benchmark for xml data man
agement.." in B1W, 2001, pp. 264-273.

(11) -, "Mnlti-user evaluatiou of xml data management systems with
xmach-1." in EEXIT, 2002, pp. 148-158.

(12) M. Nicola, 1. Kogau, and B. Schiefe.r, "Au xml transaction processing
benchmark." in SIGMOD Conference, 2007, pp. 937-948.

(13] J. Gray and A. Reute.r, Transaction Processing : Co11cepts
atui Techni.ques (Morgan Kaiifmann Series i11 Data Management
Systems). Morgan Kaufmann, October 1992. [Online]. Available:
http://www.amazou.de/exec/obidos/ASIN/1558601902

(14] Java library for inteifacing with the gnuplot p/otting pad:age, jguuplot
project, http://jgnuplot.sourceforge.ne.V, 2007.

Final edited form was published in "IEEE 24th International Conference on Data Engineering. Cancun, 2008". IEEE, S. 1596-1600. ISBN 978-1-4244-1836-7
https://doi.org/10.1109/ICDE.2008.4497630

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	DIPBench_Toolsuite_A_Framework_for_Benchmarking_Integration_Systems_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Matthias Böhm, Dirk Habich, Wolfgang Lehner, Uwe Wloka
	DIPBench Toolsuite: A Framework for Benchmarking Integration Systems

	DIPBench_Toolsuite_A_Framework_for_Benchmarking_Integration_Systems_PPerstellt.pdf

