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Abstract—

Failures of Internet services and enterprise systems lead to user
dissatisfaction and considerable loss of revenue. Since manual
diagnosis is often laborious and slow, there is considerable
interest in tools that can diagnose the cause of failures quickly
and automatically from system-monitoring data. This paper
identifies two key data-mining problems arising in a platform
for automated diagnosis called Fa. Fa uses monitoring data to
construct a database of failure signatures against which data from
undiagnosed failures can be matched. Two novel challenges we
address are to make signatures robust to the noisy monitoring
data in production systems, and to generate reliable confidence
estimates for matches. Fa uses a new technique called anomaly-
based clustering when the signature database has no high-
confidence match for an undiagnosed failure. This technique
clusters monitoring data based on how it differs from the failure
data, and pinpoints attributes linked to the failure. We show
the effectiveness of Fa through a comprehensive experimental
evaluation based on failures from a production setting, a variety
of failures injected in a testbed, and synthetic data.

I. Introduction

Recent studies show that popular services routinely suffer
user-visible problems like slow responses, blank pages or error
messages being displayed, items not being added to shopping
carts, unexpected database slowdowns, and others [18]. Wal-
mart.com was unavailable for 10 hours during the peak U.S.
2006 holiday season. Other services like Amazon.com, PayPal,
Microsoft.com, U.S. Airways, and Wall Street Journal have
faced similar problems [18]. Such problems cause systems to
violate service-level objectives (SLOs) that specify acceptable
levels of service. For example, an SLO for an online brokerage
may require all transactions to complete within 1 second.

When a system meets all specified SLOs, it is in a healthy
state. SLO violations indicate failures that can cause huge
losses. Brokerages and banking firms can lose up to $75,000
per minute of downtime. A 22-hour outage at eBay cost the
company more than $3 Million in customer credits and $4
Billion in market capitalization. The true cost of system failure
is much higher: lost or dissatisfied customers, damage to the
company’s reputation, impact on the company’s stock price,
and lost employee productivity [18].

While quick failure diagnosis and system recovery is crit-
ical, database and system administrators continue to struggle
with this problem. The spectrum of possible causes of failure is
huge: performance problems like resource contention, crashes
due to hardware faults or software bugs, misconfiguration by
system operators, and many others. The scale, complexity,
and dynamics of modern systems make it laborious and time-
consuming to track down the cause of failures manually [8].

We show in this paper that conventional data-mining tech-
niques like clustering and classification have a lot to offer to
the hard problem of failure diagnosis. These techniques can
be applied to the wealth of monitoring data that operational
systems collect. However, some novel challenges need to
be solved before these techniques can deliver an automated,
efficient, and reasonably-accurate tool for diagnosing failures
using monitoring data; a tool that is easy and intuitive to use.

Let D denote the (historic) monitoring data collected from a
system over a period of time. Let F' denote the monitoring data
from the same system during a recent failure (or just before the
failure in the case of a system crash). A common approach
in diagnosis is to use D to build a baseline of the system
behavior, and to characterize how F' differs from this baseline
(i.e., how is F' anomalous?). Unfortunately, this approach fails
in dynamic systems—e.g., where workloads or configurations
change over time—which can have multiple distinct states
with very different (baseline) behavior. This hurdle can be
overcome using a clustering algorithm to partition D into
clusters that each represent a distinct baseline.

The conventional approach to clustering (e.g., K-means or
subspace-clustering algorithms like locally adaptive clustering
(LAC) [11]) uses metrics that measure the similarity among
instances in D. Diagnosis results are then computed based on
how F' differs from the clusters found. Unfortunately, this ap-
proach can generate (i) clusters that lead to incorrect diagnosis,
or (ii) many useless clusters that confuse administrators.

We address this problem using a new clustering metric that
considers how instances in D differ from the specific failure
instances F' to be diagnosed. This new twist on clustering,
called anomaly-based clustering, ensures that the right clusters
to diagnose F' are generated. This approach leads to accurate
diagnosis results, but it is nontrivial to develop efficient
algorithms. We propose novel algorithms for anomaly-based
clustering that blend accuracy with efficiency, and can pinpoint
causative attributes for real failures in production systems.

While the baselining-based approach to diagnosis is useful
and general-purpose, it has two drawbacks. First, the “sus-
picious attributes” in the monitoring data whose distribution
differs between D and F' may not always identify the root
cause of the failure unambiguously. For example, a database
failure may be attributed to increased lock acquisition times
observed in F, but the root cause may be frequent update
statements from a new application. Hence, baselining may
need to be supplemented with some (expensive) manual effort
to find the root cause or a fix for the failure.

Second, [5] reports that typically 50%, and sometimes as
much as 90%, of all software problems reported by users today
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Fig. 1. Sample monitoring data

are recurrences of known problems, i.e., those whose cause
has already been ascertained or is under investigation. The
implication is that if we do diagnosis from scratch for each
observed failure, then we are likely to incur a terrible waste
of past diagnosis effort.!

To exploit both the above observations, we can first check
whether F' matches the data from a previously-diagnosed
failure in D. Simple solutions seem to apply, e.g., find the
nearest neighbor(s) of F' in D. However, there is a nontrivial
hurdle to be overcome. Failure data in real systems contains
various types of errors: (i) natural system variability injects
Gaussian noise; (ii) failures often corrupt readings; and (iii)
rapid system state transitions cause readings from different
states to get mixed up.

These errors, where the true value differs from the observed
value in arbitrary ways, mislead conventional solutions; which
motivated us to develop a new solution that generates a robust
database of failure signatures from the historic monitoring data
D. This database can match F' with the right failure signature
even when D and F contain some degree of error. We
demonstrate that our signature database remains competitive
and has much slower drop of accuracy compared to competing
techniques as error in the monitoring data increases.

A. Our Contributions

The work reported in this paper was done in the context
of the Fa system for mining the large volumes of high-
dimensional and noisy monitoring data generated by databases
and other systems. Fa periodically collects monitoring data
from a running system, and stores this data in a relational
database. The data has schema of the form 7, x1, 2o, ..., 2.,
where 7 is the monitoring time interval, and each z; is a
system performance metric. Over time, the monitoring data
collected by Fa will contain three types of instances:

e Healthy data H is monitoring data collected when the
system was in a healthy state. Recall that a system is in a
healthy state when it experiences no SLO violations; and
in a failure state otherwise.

e Annotated failure data L is monitoring data collected
from failure states of the system where the cause of failure
has been diagnosed. A successful diagnosis can happen any
time after the failure occurs. Upon diagnosis, information

1[5] is from IBM; similar sentiments have been echoed by practitioners of
Oracle and Microsoft SQL Server.

about the cause of failure is attached as an annotation (or
metadata) to the corresponding monitoring data.

e Unannotated failure data U is monitoring data collected
from failure states of the system where the cause of failure
has not been diagnosed so far.?

Example 1.1: Figure 1 displays the historic data collected

by monitoring a database server at one-minute intervals. In
each monitoring interval (t i ne), attribute | ock_t i ne is the
average wait time to acquire locks; numi o is the number of
disk 1/Os; f ai | ur es denotes whether the average response
time of database transactions in that interval exceeded a
threshold (causing SLO violations) or not; and annot ati on
records the cause of each diagnosed failure.
When the monitored system experiences a failure, an adminis-
trator or system-management software can diagnose the cause
of the failure by posing a diagnosis query to Fa of the form
Q=Diagnose(F,HU LUU):

e F' is monitoring data from the system during the failure
(or just before the failure in the case of a system crash).

e H U LUU is the historic data collected so far.

This paper identifies two new problems posed by the pro-
cessing of diagnosis queries, and develops efficient and fairly-
accurate algorithms for these problems.

Problem | (Diagnose(F, H)): Can the cause of the failure
be characterized succinctly as attributes whose values in F
deviate from their values in the data representing the healthy
states of the system?

Solution and Challenges: Figure 2(b) illustrates Fa’s solution
to this problem. We have developed anomaly-based cluster-
ing that gives special attention to F while clustering H,
to identify a minimal set of healthy system states needed
for accurate diagnosis of F' (i.e., low false positives and
negatives). Anomaly-based clustering outperforms classic (K-
means [22]) and recent clustering algorithms (LAC [11]) on
both efficiency and diagnosis accuracy. On high-dimensional
and noisy monitoring data, Fa produces very concise attribute
sets that characterize the deviation of F' from healthy states.

Problem 1l (Diagnose(F, L)): Is the failure represented by F'
the same as a previously-diagnosed failure in L?

Solution and Challenges: Figure 2(a) illustrates Fa’s solution to
this problem. A database of failure signatures SD is generated
offline from L. The signature sig in SD that matches F' the
best is found, along with a confidence estimate for this match.
If the confidence estimate is larger than a threshold, then the
annotation associated with sig is returned as the root cause
of the failure. Two important challenges that we address are
(i) dealing with errors in the failure data, and (ii) generating
reliable confidence estimates and the threshold automatically.

Figure 2 illustrates how Fa combines the solutions for
Diagnose(F, L) and Diagnose(F, H) to process a given di-
agnosis query. Diagnose(F, L) is done first since it is efficient
(most of the work is offline) and has a high chance of finding
the real root cause of the failure. (Recall that 50-90% of

°The use of U in Fais the subject of a separate paper [14].
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failures are recurrences of previously-diagnosed failures [5].)
If Diagnose(F, L) cannot produce a match with confidence
greater than the automatically-generated threshold, then Fa
invokes the general-purpose, but costlier, Diagnose(F, H).
Note the importance of reliable confidence estimates and the
threshold: low thresholds may reduce diagnosis accuracy while
high thresholds may invoke Diagnose(F, H) unnecessarily.

We will begin in Section Il by describing Fa’s solution
for Diagnose(F, H). Section Ill describes Fa’s solution for
Diagnose(F, L). Section IV demonstrates the effectiveness of
Fa through a comprehensive experimental evaluation based on
failures from a production setting, a variety of failures injected
in a testbed, and synthetic data.

Il. Processing Diagnose(F',H) using Anomaly-based
Clustering

The goal of this phase is to determine how the failure
instances F' to be diagnosed differ from the instances H
representing the system in healthy states. We will first illustrate
the main ideas using a series of examples. Suppose H consists
of the instances in Figure 3(a) shown using the “x” symbol.
Each instance has two attributes, x (denoting | ock_ti ne)
and y (denoting numi o), plotted along the horizontal and
vertical axes respectively. The figure also shows the failure
instances F', indicated using the “+” symbol.

It is clear from the figure that there are two distinct healthy
states of the system: (i) C; with = € [10,30] and y € [65, 80],
differing from F' primarily along the « attribute; and (ii) Cs
with = € [60,80] and y € [15, 30], differing from F' primarily
along the y attribute. A conventional clustering algorithm like
K-means or LAC [11] can identify these clusters in H, and
link both attributes = and y to the failure.

Next, suppose H (“X”) and F' (“+”) are as shown in Figure
3(b). A conventional clustering algorithm will now group the
instances in H into three distinct clusters (Cy, C2, and C3
in Figure 3(b)). Since each of these clusters differs from F
along both the x and y attributes, both attributes will be linked
to this failure as well. However, a closer look at Figure 3(b)
indicates that this answer is incorrect. Both the failure data and
the healthy data have similar distribution along the y axis, and
differ along the x axis only. So, the correct answer should link
the failure to x only.

What went wrong in the second example? While cluster-
ing H, conventional clustering algorithms ignore how the
instances in H differ from the failure instances F. Thus,
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the clusters generated by these algorithms are independent
of the failure instances to be diagnosed, causing two major
weaknesses: (i) generating clusters that do not give the correct
diagnosis (as in our example), and (ii) generating many more
clusters than needed, which can mislead the system adminis-
trator.® Section I1V-B validates these observations empirically.

We have developed a new clustering methodology, called
anomaly-based clustering, where H is clustered with consid-
eration of the instances F to be diagnosed.* (That is, the same
H may be clustered differently for a different F.) Intuitively,
anomaly-based clustering will place two instances hi, hy € H
into the same cluster iff they have similar deviations from F.
This strategy gives the right answer for the example in Figure
3(b), generating a single cluster for H, and linking the failure
to attribute = only. We now describe anomaly-based clustering.
A. Diagnosis Vectors and Margin Classifi ers

Fa processes a Diagnose(F, H) query by first clustering
the healthy data H into a set of clusters Cy, Cs, ..., C;, and
then outputting the deviation of F' from these clusters in the
form { (w1, C4), (W2, C2), ... (Wi, C;)} as the diagnosis result.
[ depends on the query, and is not a predetermined constant.
CyUCyU---UC; need not include all the instances in H.
Thus, outlier instances in H will be ignored.

Each @ € {wi,...,w;} is called a diagnosis vector. @
has the form: & = (w;,ws,...,w,), where each attribute
xj € (x1,T2,...,2,) i given a weight w; such that —1 <
W <1 and 2?21 |w7| = 1. Intuitively, w; € {IUl,.../Lm}
specifies the weighted list of attributes to which the failure can
be localized by comparing the instances in C; to the failure
instances F'. From a usability perspective, C; serves as the
evidence why j; is reported in the diagnosis result.

Computing the Diagnosis Vector: Since we are dealing
with high-dimensional data, a most desirable property of each
(w, C) is to make 7 as concise as possible. That is, the weights
of all attributes that do not help differentiate between C and F
should be zero. This property enables the system administrator
to zoom in quickly on likely causes of the failure without
being misled by false positives. Fa achieves this property [16]
by finding the linear combination Z}l:lea:j of attributes
(x1,...,2,) that produces the maximum separation between
C and F. This maximum separation is called the margin
between C and F.

Example 2.1: Consider query Q=Diagnose(F, H) from Ex-
ample 1.1 and Figure 4. Let C = H — {h9}. (h9 is an

3Semi-supervised or constraint-based clustering do not solve these prob-
lems; see Section V.
4We assume that instances in F' belong to the same type of failure.
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erroneous observation generated while the system transitioned
from a healthy state to a failure state.) The margin between C'
and F' is produced between the two dotted lines in Figure 4:
the line | ock_ti me = 51.9 and the line | ock_ti me = 70.0.
Thus, margin = 18.1. Since the margin is produced along
| ock_ti me, the diagnosis vector @ = (w1, wsy) (correspond-
ing to (I ock_ti nme, numi o)) that produces the margin is
w1=—1 and we = 0. (1,0) also produces the same margin.

We can write a linear program to compute (i) the margin
between C and F, and (ii) the diagnosis vector that produces
the margin. We call this program a margin classifier, denoted
MC(F,C) [16]. Section IV-B.3 empirically validates how
MC(F, C) produces concise and correct diagnosis vectors.

B. Strawman: Margin-based Agglomerative Clustering

We begin with a strawman algorithm, called margin-based
agglomerative clustering (MAC), for anomaly-based clustering
of H. MAC was proposed originally in [16] for analyzing
cancer-related microarray data, and we have extended it to
process diagnosis queries. The distinctive feature of MAC is
an agglomerative hierarchical clustering [22] of the instances
in H where the margin from the failure instances F' is used
as the metric for clustering. Note that conventional clustering
schemes use distance-based metrics like Euclidean distance.

MAC starts by placing each instance in H in its own
active cluster. In each successive iteration, MC(C; U Cj, F)
is computed for each pair (C;,C;) of clusters among the
remaining active clusters. MAC then picks the cluster pair
(Cy,Cyr) that gives the maximum margin with respect to
F, and merges them together to form a single combined
cluster. The merged clusters C;/, C;: are no longer considered
active. This process is repeated until all instances are merged
into a single cluster. The sequence of cluster merges can be
represented as a dendogram, which is a tree with the instances
in H as leaves, and each new cluster as a nonleaf node.

Example 2.2: Figure 5 shows the dendogram generated by
MAC for the healthy data in Example 1.1 and Figure 4. The
margin (computed after normalizing the data) and diagnosis
vector for the cluster at each nonleaf node are also shown.

We can generate clusters from the dendogram by selectively
deleting nonleaf nodes, which will partition the dendogram
into a forest of trees. The instances comprising the leaves of
each tree form a cluster C' that will be output as a («, C) pair
in the diagnosis result (after computing @ using MC(F, C)).

Consider a node P in the dendogram with child nodes L and
R. Let the clusters corresponding to these three nodes be C,,
C;, and C,. respectively. (Note that C; and C,. were merged to
form C,, in the dendogram, i.e., C,, = C;UC,..) Let the margin
and corresponding diagnosis vector for these three clusters be

(mp, Wp), (my, ), and (m,, w,) respectively. Note that @, is
the diagnosis vector that gives the margin for the combination
of C; and C,. Intuitively, if the margin of C; (C,) along ),
is significantly less than the margin of C; (C,.), then merging
C; with C, will dilute the “clusteredness” of C; (C,) with
respect to the failure instances F'.

Exploiting this intuition, we will delete P if any of the
following conditions is satisfied: (i) Margin(C;, F,w,) <
(1 — a)my, or (ii) Margin(C,, F,w,) < (1 — a)m,. Here,
Margin(C, F,w) denotes the margin (separation) of a cluster
of instances C' from the failure instances F' along the diagnosis
vector w. « is a small positive constant, e.g., a« = 0.2.

Example 2.3: When the dendogram in Figure 5 is par-
titioned, the nonleaf node Ng will be deleted, to generate
two output clusters {h1, h2, h3, hd, h5, h6, h7, h8} and {h9};
precisely what we expect based on Figure 4.

C. Partition-Check-Merge (PCM) Algorithms

MAC can give good diagnosis accuracy, but it scales poorly
with |H|. Note that MAC requires O(| H |?) invocations of MC
since MAC starts by invoking MC({t1,t2}, F') for every pair
of instances t1,¢s in H.

We now propose an algorithmic framework that combines
the good features of MAC (accurate, but inefficient) with those
of conventional Distance-based Partitional® Clustering (DPC)
algorithms like K-means and LAC (efficient, but less accurate).
This new framework is called Partition-Check-Merge (PCM)
because it has the following structure:

1. One or more partitioning phases that use an efficient DPC
algorithm to partition the data progressively into more and
more clusters until the check in Step 2 is satisfied. This
progressive cluster refinement is achieved by increasing
the input parameter & to the DPC algorithm that specifies
the number of clusters to generate.

2. One or more checking phases that perform checks, namely,
evaluating the current partitioning of instances to see
whether this partition is good enough to be the set of
clusters produced during an intermediate stage of MAC. If
a check succeeds, then PCM moves to the merging phase;
otherwise, partitioning is redone, possibly with a larger k.

3. A merging phase where the current set of clusters are
merged progressively, like in MAC, to possibly consoli-
date several small clusters into a minimal set of clusters
(representing diagnosis vectors and evidence) that can be
output in the diagnosis result.

Observation: A degenerate case of PCM is one where the
check never succeeds, so the partitioning phase eventually
places each instance into a separate cluster. In this case, the
merge phase will resemble running MAC from scratch.

However, for most monitoring datasets, the check will succeed
much earlier—e.g., once k& becomes equal to or larger than
the best & for the data—avoiding the O(|H|?) complexity of
MAC. If the partitioning phase generates more clusters than
optimal, then the merging phase will glue back clusters that

SIntuitively, partitional algorithms work in a top-down fashion, while
agglomerative agorithms work bottom-up.



should not have been split; at some loss of efficiency. In
effect, PCM can be as accurate as MAC, while leveraging
the efficiency of DPC. The challenge in PCM is in the
implementation of the check phase. Next, we discuss two
concrete instantiations of PCM.

D. PCM-Conservative (PCM-C)

PCM-Conservative (PCM-C) (Figure 6) uses a conservative
implementation of check to process a Diagnose(F, H) query.
For each instance ¢ € H, PCM-C first computes m;, the
individual margin between ¢ and the failure instances F.

PCM-C uses an efficient DPC algorithm to partition the
data instances into clusters. (For example, Fa uses the LAC
algorithm [11] in Line 7 in Figure 6.) Suppose the clusters
{C4,...,Cy} are produced by a partitioning step. For each
C e {Cy,...,Ck}, let (me,We) be the margin and corre-
sponding diagnosis vector for C and F'. PCM-C’s check phase
lists an instance ¢ € C' as covered by C' if Margin({t},F,wc¢)
> (1 — a)my. (Recall from Section I1-B that Margin({t},
F, @) < my, since my is t’s maximum margin across all
vectors.) That is, ¢ is covered by the cluster C' that ¢ was
assigned to by DPC if ¢’s margin along C’s diagnosis vector
is close enough to ¢’s individual margin.

If t is covered by C, then (i) ¢ will not be considered again
during partitioning (Line 21), and (ii) ¢ will be associated with
C in the input to the merge phase. PCM-C iterates through the
partitioning and merge phases until all instances get covered.
If check finds that the current set of clusters {C1,...,Cx} do
not cover a significant fraction of the remaining instances, then
partitioning is redone with a larger k; currently, we double k
when this situation arises (Lines 16-17). Thus, while PCM-C
starts with a small default value of k, & will get incremented
automatically if required.

Once a set of DPC-generated clusters have covered all
instances in H, these clusters are input to the merge phase.
Merge does MAC-style agglomerative clustering—starting
with these clusters as the leaves of the dendogram, instead of
the |H| individual instances—to generate the diagnosis result.

E. PCM-Eager (PCM-E)

We found empirically (Section 1V-B) that PCM-C tends to
generate many clusters as input to the merge phase. While
merge can glue back clusters split more than needed, PCM-C’s
merge remains inefficient because of the quadratic dependence
on the number of input clusters. PCM-E tackles this problem.

Recall that PCM-C’s check phase will list a instance ¢ as
covered only if ¢’s margin along the diagnosis vector of the
cluster C that ¢ was assigned to by DPC is close enough to t’s
individual margin. PCM-Eager (PCM-E) relaxes this condition
as follows: PCM-E’s check lists ¢ as covered if ¢’s margin
along the diagnosis vector of any of the clusters generated
by DPC so far is close enough to ¢’s individual margin. As
before, if ¢ is covered by C, then ¢ will be assigned to C in
the input to the merge phase. (Note that DPC may not have
assigned ¢t to C.) Intuitively, PCM-E reduces DPC’s role to
identifying significant diagnosis vectors « from the data. The
Margin({t}, F, @) > (1 — «)m, condition is used to associate

Algorithm Partition-Check-Merge-Conservative (PCM-C)

Input: Diagnose(F, H) query; a Distance-based Partitional
Clustering algorithm (DPC) like K-means/LAC; o (default is 0.2)
Output: Result in the {(w1, C1), (W2, Ca), ... (Wi, Ci)} format
/* First compute the individual margin of each instance t € H */
Compute (my, W) = MC({t}, F') for each instance ¢t € H;

k = default value; /* DPC's number of clusters parameter */
3. Rem_pts = H; [* instances not assigned to clusters yet */
4. Coverings = ¢; /* assignment of instances to clusters */
5. While (Rem_pts # ¢) {

6. [* Partitioning phase */
7
8
9

NP

Partition Rem_pts with DPC into clusters {C1,...,C};
Outliers = ¢;
. [* Check phase: Lines 10-22 below */
10.  For (each instance ¢ € Rem_pts) {
11 Let C; be the cluster that ¢ was assigned to by DPC;
12. If (Margin({t}, F,@c,) > (1 — a)my)
13. Mark ¢ as covered by C;;
14. Else Add ¢ to Outliers;
15.  } /* end for */
16, If (JFeersd > 0.9)
17. k =k x 2; I* increase k, Rem_pts is unchanged */
18. Else {
19. For (each cluster C; € {C1,...,C\} that covers instances)
20. Add C; and the instances C; covers to Coverings,
21. Rem_pts = Outliers; /* remove covered instances */

22, } * endese*/

23. } [* end while */

24. [* Merge phase */

25. Initialize a partially-built dendogram with the clusters in
26. Coverings as the leaves of the dendogram;

27. Proceed with MAC using this partialy-built dendogram;

Fig. 6. PCM-Conservetive (PCM-C)

instances with each «j, creating clusters that are input to the
merge phase. The rest of PCM-E is similar to PCM-C.

F. Filtering and Ranking Diagnosis Results

Fa takes the set of (w;,C;) pairs generated by anomaly-
based clustering, and outputs the final diagnosis result as a
filtered and ranked list.

e Filtering: Fa removes (w;, C;) pairs where the cluster size
|C;| does not satisfy a minimum support threshold; similar
to support thresholds in frequent-itemset mining. Clusters
composed of outliers get eliminated here.

e Ranking: The remaining (uw;,C;) pairs are ranked in
decreasing order of cluster size |C;]|.

I1l. Generating and Using a Robust Signature Database

to Process Diagnose(F',L)

So far we described how Fa implements the baselining-
based approach to diagnosis. We now move on to how Fa
checks whether the failure to be diagnosed is the same as a
failure that has already been diagnosed in the past (thus its
root cause is known). We are given L, the subset of historic
data with annotations about m distinct failures, denoted A1,
As, ..., A,,. Fa generates a signature database from L that
contains entries of the form (sig, A;) where sig is a signature
for failure A;. Instances F' from an undiagnosed failure can
be matched against this database (recall Figure 2(a)).

We will first illustrate our ideas using a series of examples.
Suppose L is as shown in Figure 7(a). Each instance has two
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Sg=1if0.36*x +y > 61, otherwise 0

S5 =1if x> 80, otherwise 0
s, =1ify <20, otherwise 0
Fig. 8. Signature databases: (a) SD2, (b) SD3

attributes, = and y, and one of four distinct annotations A,
(cross), Ao (plus), As (triangle), or A4 (circle).

Clustering: One way to generate the signature database is
by clustering the data in L using a technique like K-means.
Figure 7(a) shows the clusters per failure type. The centroids
of these clusters—represented by blue stars (“x”) in Figure
7(a)—become the signatures for the corresponding failure
type, giving a signature database SD;.

Suppose f1 = (32,41) in Figure 7(a) is a failure instance

that we want to diagnose. f; can be matched with SD; to
find the centroid (signature) nearest to f;; which happens to
be a centroid for Failure A; (cross) given the data distribution.
However, this diagnosis is incorrect since it is obvious from
Figure 7(a) that f; is an instance of Failure A, (plus). This
example shows the drawbacks of clustering-based signatures.
(They work poorly on real data in our experiments.)
Separating functions: Suppose we identify separating func-
tions s1(x,y) to s4(z,y) that separate each type of failure
instances from the others. These functions can take many
forms. To convey our ideas while keeping the example simple,
we will use a simple form, namely, separating lines in the 2D
plane. Figure 7(a) shows s;—s4 as dotted lines. For example,
s1(x,y) separates the instances of Failure A; from the others,
and has the form: s;(z,y)=1 if y > 45, otherwise 0.
Matrix: Figure 8(a) shows a signature database SD, gener-
ated using s;—s4. S D5 is a matrix with each row representing
the signature of some failure. For example, the signature
of Failure A; is (si(z,y) = 1,s2(z,y) = 0,s3(z,y) =
0, s4(x,y) = 0), denoted (1,0, 0,0). Each column represents
a separating function. For example, the first column repre-
sents s1(x,y) which maps instances of Failure A; to 1, and
instances of all other failures to 0.

To match instance f = (z,y) with SD5, we compute 5(x,y)
= (s1(z,y), s2(x,y), s3(x,y), sa(x,y)) and find the signature
nearest to 5(x, y) in SD. For example, 5(32,41) is (0,1, 0, 0)
for f1 = (32,41). ({0,1,0,0) matches Failure As’s signature
perfectly.) For now, we will measure distances in terms of
the Hamming distance, namely, the number of bits that are
different. Thus, the distances of 5(32, 41) to the four signatures
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in Figure 8(a) are respectively 2, 0, 2, 2. Since 35(32,41) is
nearest to A,’s signature, f; is diagnosed correctly.

Handling errors: Now consider f2=(39,41) in Figure 7(b).
fo is of failure type As, but has higher error in the x dimension
than the instances in L. If we match f; against SDs, 5(39,41)
is (0,0,0,0). Since 5(39,41) is equidistant from all signatures
in SDs, fo will not be diagnosed correctly by SDs.

Now suppose we use the signature database SDs; from
Figure 8(b) to diagnose f2. SD3 contains two new separating
functions: s5(z,y), ss(x,y). s5 separates instances of Failures
Ay and A, from those of A3 and A4, and sg separates in-
stances of A; and A3 from those of A; and Ay; as represented
by the s5 and sg columns in Figure 8(b). The separating
planes for s5 and sg are shown in Figure 7(b). Now, 5(z,y) =
(s1(z,y), -+, se(z,y)). For f2, §(39,41) = (0,0,0,0,1,0).
5(39,41) has least Hamming distance to A.’s signature in
Figure 8(b), so f> will now be diagnosed correctly.

Why did SDs diagnose f> correctly, while SD, did not?
The reason can be understood from an analogy to error correc-
tion in telecommunications. The idea here is to transmit some
selected extra bits along with regular data so that the receiver
can reconstruct the original data in the presence of errors
caused by noise or other impairments during transmission.

For f>, so predicts O instead of the correct 1; causing
a 1-bit error. SD3 is robust to 1-bit errors, but SDy is
not. The Hamming distance between any two signatures in
SDs is > 3. Thus, even though 5(39,41) was computed as
(0,0,0,0,1,0)—a 1-bit error from the ideal (0, 1,0,0,1,0)—
5(39,41) still remained nearest to A5’s signature. However,
the Hamming distance between any two signatures in SDs is
> 2. Thus, a 1-bit error in 5(39, 41) leaves it in an ambiguous
position for SD5; causing incorrect diagnosis.

The previous example shows that selected redundancy in the
set of separating functions can overcome incorrect predictions
by some of the functions. Learning more functions increases
the cost of generating the signature database. However, this
work is mostly done offline, and can be made efficient with
parallel learning of functions. The more pressing issue is that
some functions are less reliable than others, and their presence
can hurt diagnosis accuracy (and confidence) significantly.

s and sz are two less reliable functions in our example.
Note that the data for each type of failure in Figure 7(a) shows
larger spread along the z axis than the y axis. Intuitively,
there are larger chances of error in the x values. Since ss
and s3 separate exclusively along the z axis, they are likely to
get their predictions wrong when errors in x arise (like what
happened for f5). We can drop s2 and s3, and generate a new



signature database SD, that has the functions s;, sy4, s5, and
sg only (Figure 7(c)). SD, gives a perfect match for fs.
Takeaway points: Our series of examples show that the fol-
lowing is a powerful representation of the signature database
to achieve both good accuracy and robustness to errors:

e Binary matrix M: The ith row in M, denoted M (i,:), is
the signature of failure A;,1 < ¢ < m. The jth column in
M, denoted M (:, j), corresponds to the separating function
s;(Z). The number of columns d depends both on m and
the built-in error tolerance desired.

e Separating functions s (Z)—sq(Z): Each function separates
one or more types of failure instances from the others.
These functions can take many different forms, e.g., Clas-
sification and Regression Trees (CART) [22].

e \Weights 3,—04 for the respective functions: For robust-
ness to errors, the prediction s;(Z) from a less reliable
separating function s; is given a smaller weight while
computing the distance of 3(#) to the signatures. For
example, reasonable weights for s1—sg in SD, are {1, 0,0,
1, 1, 1} because so and s3 are less reliable.

Next, we describe the offline generation of the signature
database, its use for diagnosis, and online maintenance.

A. Generating the Binary Matrix
There are four rules to generate a valid matrix M

() Each row should be distinct since no two failures can have
the same signature.

(1) Columns that contain all 0s or 1s should be excluded,
since they do provide no differentiation among failures.

(111) Two columns cannot be the same or complementary since
they derive the same separating function. (A 0-1 exchange
in a column generates its complementary.)

(IV) The radius r of M, defined as half the minimum
Hamming distance over all (M (i,:), M(j,:)) pairs, i # j,
should be above a given threshold. Intuitively, the higher
the radius, the higher the error-correction ability of M.
For a failure instance #, s(Z) can be matched with the
correct signature even when up to r—1 separating functions
produce wrong predictions for Z.

We use a random search algorithm to generate M given a

threshold R, on M'’s radius. The algorithm is as follows:

1. Generate m random binary vectors of length d = R,(2 +
0). 0 is a positive integer (we set 6 =1). The expected
Hamming distance between each pair of vectors is d/2.

2. Remove columns containing all 0s or 1s (Rule II).

3. For any identical or complementary column pair, retain
one column only (Rule I1I).

4. If the matrix generated by Steps 1-3 has a radius smaller
than the threshold R;, then go to Step 1.

This simple algorithm is surprisingly effective. The radius
threshold R, is a design choice best left to the administrator.
R, balances diagnosis accuracy and robustness against the
time to generate the signature database—higher R; means
more columns (functions), and hence longer time to generate
the database. Based on our empirical observations, R, =
5loga(m) is a balanced choice, and is Fa’s default.

B. Generating the Separating Functions

For each column M (:, ), Fa learns the separating function
sj(Z) as a binary classification tree (CART) separating the
instances with annotation M (i, j) = 1 from the instances with
annotation M(i,7) = 0. In separate work [13] with many
types of functions from statistical machine-learning, we found
CARTSs to best balance prediction accuracy and learning time.
C. Weighting the Separating Functions

Suppose the jth separating function s, (&) has weight 3;,
and the overall weight vector is ﬁ = (b1, B2, .-, Ba). A
failure instance & whose true annotation is A; will be matched
with A;’s signature M (¢, :) if the following condition holds:

min{Dist((), M (k. ); 3) — Dist(5(), M(4,:); 3)} > 0
()
Here, Dist is the weighted Euclidean distance:
Dist (i, v: ) = \/ijl Bj(u; —v;)2. For binary vectors
i# and ¥, the Euclidean distance is the square root of the
Hamming distance.

The larger the difference in Equation 1, the higher the
chances of matching & to the correct signature when errors
cause variations in 5(Z). Thus, to make the signature database
robust, we want to choose the weight vector ﬁ = {f1, ...,
Ba) that maximizes this difference over all instances (Z, A;)
in the annotated failure data L. Under the condition that
18] 12(= ijl /37) is fixed, this optimization is:

-,

{Dist(5(F), M (k,:); 3)—Dist(5(Z), M(i,:); B)}

max min
3 (T Ai)EL ki

This optimization problem can be mapped to the problem of
learning Support Vector Machines (SVMs) [22]. Fa uses an
SVM learning algorithm from [20] to solve this problem and
learn the weights ﬁ; details are in the technical report [15].
D. Online Use and Maintenance

So far we discussed how the signature database is generated
offline from L. We now discuss the online use of the database
for diagnosis, and its maintenance as new instances and
annotations are added to L. When the database is queried
with an undiagnosed failure instance Z, Fa first computes 3(Z)
= (51(&), ..., sa(Z)), and then finds the signature nearest to
§(), namely, the signature that minimizes Dist(s(%), M (i,
);0),1 < i < m. As shown in Figure 2(a), a confidence
estimate conf is generated for this match and compared with
the confidence threshold C;. If conf > C, then the annotation
of the matched signature is returned as the diagnosis result;
otherwise diagnosis proceeds to Diagnose(F, H).

Confi dence estimate: When 7 is matched with the signature
M (i,:), we define the confidence in this match as:

-,

conf = r]?;?{nist(g(f), M(k,:); B) —Dist(3(Z), M (i,:): )}

)
Intuitively, conf is high when the second-nearest neighbor N,
of 5(&) is far from the first-nearest neighbor Ny, indicating an
unambiguous match to Ni. As the gap between N; and Ns
shrinks, the ambiguity in the match to /V; increases, and the
confidence decreases.



To make the confidence estimate easier for administrators
to understand, Fa converts it into a value in [0,100]. This
conversion is done using an equi-depth histogram (quantiles)
with 100 buckets generated from the distribution of confidence
estimates over all instances of L. Let pg, 0 < k < 100, denote
the quantiles of this distribution. For a confidence estimate
conf from Equation 2, Fa finds i such that p; < conf < p;y1;
and reports 7 as the confidence estimate.

Setting the confi dence threshold G: The value of C, is crit-
ical because a low C; can lead to incorrect diagnosis, while a
high C; can invoke the more expensive Diagnose(F, H) more
often than needed. (Recall that compared to Diagnose(F, L),
Diagnose(F, H) involves higher run-time overhead and more
effort from administrators to interpret diagnosis results.) Fa’s
approach is to let the administrator specify the minimum
diagnosis accuracy she wants from the signature database.
Then, Fa automatically derives the appropriate C; that gives
this diagnosis accuracy while minimizing the chances of
invoking Diagnose(F, H).

The main idea is to generate an accuracy-confidence curve
(AC-Curve) for the signature database. Point x, 3 in this curve
means when the confidence threshold is C; = x, the signature
database has an expected accuracy of y% for matches having
confidence > x. Also note that when C; = z, there is an 2%
chance that a Diagnose(F, L) query will return with a confi-
dence < 2%; thus, the chances of invoking Diagnose(F, H)
is % per diagnosis query when C; = .

Figure 7(d) is a sample graph from our experiments which
plots the AC-Curves for both Fa’s signature database (FA)
and the clustering-based signature database (CLUS). If the
administrator desires a diagnosis accuracy of 95%, then Fa’s
C; = 20 while CLUS’s C; = 80. That is, Fa is four times less
likely to trigger Diagnose(F, H) than CLUS. We will revisit
AC-Curves in the experimental evaluation in Section V.

Fa has fully-automated procedures for generating the AC-
Curve and confidence threshold C; for a signature database,
as well as maintaining all data structures incrementally as new
instances and annotations are added to L. The details are given
in the technical report [15].

IV. Experimental Evaluation
A. Experimental setting
We present a comprehensive experimental evaluation of
Fa based on failures from a production setting, a variety
of failures injected in a testbed, and synthetic data. Table I
summarizes our datasets and failure scenarios.

Real failures in a production system: Software aging—
the progressive degradation in performance caused by, e.g.,
memory leaks, unreleased file locks, and fragmented storage
space—is a common cause of system failure [21]. The Dolphin
and ECE datasets were collected from two production servers
at Duke over the course of two months. This data records OS
metrics at 10-minute intervals. Both servers crashed once or
more during this period due to aging of different resources, as
found by a previous study [21]. We validate Fa’s automated
diagnosis results with the results from this manual study.

Failures injected in a testbed: We have implemented a
testbed that runs Rubis [19]—a multitier auction service mod-
eled after eBay—on a JBoss application server and a MySQL
DBMS. 1t is reported that software problems and operator
errors are the common causes of failure in Web services [17].
We inject such failures into a running Rubis instance using a
comprehensive failure-injection tool [6]. This setting makes
it easy to study the accuracy of Fa’s diagnosis algorithms
because we always know the true cause of each failure.
Specifically, we can inject 3 causes of failure—software
bugs, data corruption, and uncaught Java exceptions—into
any of the 25 Java modules (enterprise Java beans (EJBs))
that comprise Rubis. Using this mechanism, we can inject 75
distinct single-EJB failures and any number of multiple-EJB
failures (concurrent single-EJB failures). Intuitively, multiple-
EJB failures are harder to diagnose. The Rubis-bug, Rubis-jndi,
Rubis-60, and Rubis-complex monitoring datasets in Table |
are from this setting. These datasets contain the number of
times each distinct EJB procedure call is invoked per minute.
We can also inject failures caused by contention for CPU,
memory, and disk resources. The OLTP-single and OLTP-
multi monitoring datasets in Table | are collected from a
MySQL DBMS running an OLTP workload, where we in-
jected resource contention to cause failures. The datasets
record OS metrics (e.g., CPU utilization, paging), DBMS
performance counters (e.g., number of index accesses and
table scans), and transaction-level performance metrics (e.g.,
average transaction response time) per minute.
Synthetic data: Synthetic is a complex dataset (PENDIGITS)
from the UCI machine-learning repository.

B. Evaluation of Diagnose(F, H) Processing

Queriess We begin by evaluating the processing of
Diagnose(F, H) queries. For datasets 1-6 listed in Table I, H
contains the historic healthy monitoring data and F' contains
5-10 instances from the listed failures. For Dolphin and ECE,
F contains 5 instances collected just before each server’s first
crash. We consider two cases for OLTP-multi, one where F'
contains failure instances from CPU contention, and the other
where F' contains failure instances from disk contention. We
can evaluate the accuracy of diagnosis results since the cause
of failure in each case is known.
Algorithms and Defaults: We compare four algorithms: (i)
MAC (Section 11-B), (ii) PCM-C (Section II-D), (iii) PCM-
E (Section 1I-E), and (iv) LAC-Silhouette (LAC-S). LAC-S
applies the LAC algorithm from [11] on H after computing
the number-of-clusters parameter & that maximizes a valid-
ity index called Silhouette [4]. Silhouette aims to maximize
the inter-cluster distances (the average distance of pairs of
points from different clusters) and minimize the intra-cluster
distances (the average distance of pairs of points from the
same cluster). For each cluster C C H generated by LAC,
LAC-S outputs (w, C’) computed using MC(F,C).

1) Comparing Running Times. Table Il shows the run-
ning time of our algorithms on the different datasets. Each
reported time was averaged over 10 runs. For LAC-S, the time



Name a i Description of data and failures

1. Dolphin, 2. ECE | 43 4881 | OS-level data collected for 55 days from two heavily-used departmental servers at Duke
3. Rubis-bug 110 900 Data access by the BuyNow EJB gets null result occasionally (bug in application logic)

4. Rubis-jndi 110 | 1500 | JNDI naming-directory entry of the SB_SearchitemsByRegion EJB gets corrupted

5. OLTP-single 42 3660 | Occasional CPU contention caused by an application on OLTP server (no disk contention)
6. OLTP-multi 28 696 Both CPU and disk contention caused separately by an application on the OLTP server

7. Rubis-60 110 | 8184 | Contains annotated data about 60 distinct single-EJB failures injected in our testbed

8. Rubis-complex 110 | 1797 | Contains annotated data about 14 distinct multiple-EJB failures injected in our testbed

9. Synthetic 16 | 10992 | Synthetic annotated data about 10 distinct failures; patterns in the data are complex

TABLE |
MONITORING DATASETS USED IN THE EVALUATION. COLUMNS @ AND ¢ ARE THE NUMBER OF ATTRIBUTESAND INSTANCES RESPECTIVELY

shown is the time to compute silhouette indices for 10 different
values of k. This time is an optimistic estimate of the running
time of LAC-S because we expect that more than 10 choices of
k will have to be explored before finding the & that maximizes
the silhouette index. We currently try all values of k € [2, 30].
The best & is reported in LAC-S’s column in Table I1.

Because of its poor scalability, we had trouble running MAC
on the full version of all but the smallest dataset (OLTP-multi)
in Table I. Therefore, the times for MAC are for scaled-down
versions of the datasets. The scaled-down size is shown in
MAC’s column in Table Il. The times for PCM-C and PCM-
E are split into the time for the partitioning and checking
phases, denoted T, in Table Il, and the time for the merge
phase, denoted 7;,,. The following trends are clear in Table II.

e MAC is very inefficient because of O(|H|?) MC calls.

e PCM-E is by far the most efficient algorithm. Note that
PCM-E’s T,, is usually significantly better than that of
PCM-C. This trend is because PCM-E’s aggressive strategy
to map points to clusters leads to a much lower number
of clusters being input to the (quadratic) merge phase.
PCM-E’s T, is also better because PCM-E’s aggressive
strategy gets all points covered in fewer iterations of the
partitioning and checking phases.

e PCM-E typically matches or outperforms LAC-S, which
is because the silhouette computations in LAC-S perform
O(|H|?) distance computations.

2) Comparing Diagnosis Accuracy: Table 111 summarizes
the diagnosis accuracy of our algorithms on the datasets.
Numbers like 1st and 2nd in Table Il indicate the smallest
rank of a cluster C' whose diagnosis vector gives non-zero
weights to attributes relevant to the failure (therefore, smaller
rank means higher diagnosis accuracy). Non-zero weights in
this diagnosis vector are shown for PCM-E, with weights for
attributes relevant to the failure shown in bold font. Each cell
also shows the % size of C' with respect to the number of
historic points | H|, and the number of (&, C') pairs in the result
after filtering with a support threshold of 2%. The following
trends are clear in Table IlI.

e PCM-C and PCM-E give the best accuracy in all cases.

e MAC gives good accuracy in most cases. Recall from
Section IV-B.1 that MAC uses only a subset of the full
historic data because of scalability problems.

e LAC-S gives poor accuracy in many cases.

As shown in Table I11, the diagnosis accuracy of LAC-S is poor
for the Dolphin dataset when we use k£ = 19 for which the
silhouette cluster validity index is maximized. We tried LAC

| Dataset [ LACS| MAC | PCM-C | PCM-E |
Dolphin 260.3 | 5137.0 874 32.7
k=19 | (|H|= | Tp=235 | T,=18.8
1000) | 7’,=63.9 | T,,=13.9
ECE 2296 | 51879 89.1 26.1
k=2 (|H|= | Tp=189 | T,=17.2
1000) | 7,=70.2 | T,,=8.9
Rubis-bug 283 | 13185 458 34.7
k=3 (|H|= | Tp=40.1 | T,=288
600) T,=57 | T,»=59
Rubis-jndi 751 | 1399.6 108.2 95.8
k=2 (|H|= | Tp=926 | 1,=87.0
600) | 7,,=15.6 | 7,,=8.8
OLTP-single 2145 | 5116.0 1733 88.1
k=2 (|H|= | T,=137.4 | T,=70.6
1000) | 7,=35.9 | T,,=17.5
OLTP-multi,F'= 7.2 1526.1 71 3.8
CPU contention | k=15 T,=4.3 T,=3.2
Tm=2.8 | T,,=0.6
OLTP-multi,F'= 6.2 1516.1 74 41
Disk contention | k=14 T,=3.3 T,=3.6
Tm=41 | T,,=0.5
TABLET

COMPARING RUNNING TIMES (SECONDS)

on this dataset with different values of & ranging from 2 to 30.
In most cases, the relevant attribute—the attribute measuring
available swap space, since the failure in Dolphin is because of
swap space exhaustion—was not part of the diagnosis result.
In the few cases where the relevant attribute was part of the
diagnosis result, it appears in some lowly-ranked cluster (as
for £ =19 in Table I11) and/or as one among many attributes
with nonzero weight in a diagnosis vector. Furthermore, as we
increase k, LAC reports more and more clusters in the result,
each cluster with its own diagnosis vector; so we cannot be
confident about any of the output clusters or diagnosis vectors.

On the other hand, note from Table 111 that both PCM-C and
PCM-E report the relevant attribute (as one of two attributes) in
the diagnosis vector of the top-ranked cluster, which contains
close to 40% of the total historic data. This result illustrates
the power of PCM’s anomaly-based clustering. The Dolphin
data contains many patterns because of the general effects of
software aging, causing LAC to generate clusters that are not
relevant to the failure points to be diagnosed.

We have also compared PCM-E with two correlation-based
techniques [7], [8] and two baselining-based techniques [3]
proposed in previous work. The results of PCM-E are superior
to all these techniques [15].

3) Evaluation of PCM-E’s Diagnosis Vectors: The last
column of Table Il gives the diagnosis vector of the relevant



Dataset/Result LAC-S | MAC | PCM-C | PCM-E | Diagnosis vector for PCM-E

Dolphin 8th, 5%, 14 Not found 1st, 39%, 8 | 1dt, 37%, 7 | 2 nonzero weights, (0.77,0.23)

ECE Not found 2nd, 9%, 2 1st, 68%, 3 | 1dt, 73%, 4 | 2 nonzero weights, (0.75,0.25)

Rubis-bug 2nd, 25%, 3 | 1st, 14%, 7 | 1st, 19%, 3 | 1st, 21%, 6 | 2 nonzero weights, (0.61,0.39)

Rubis-jndi Not found 1st, 43%, 2 1st, 21%, 2 1st, 48%, 5 1 nonzero weight, 1

OLTP-single Not found 2nd, 10%, 2 | 1<, 33%, 4 | 2nd, 26%, 5 | 4 nonzero weights, (0.3, 0.34, 0.11, 0.25)

OLTP-multi,CPU | 3rd, 10%, 15 | 2nd, 25%, 4 | 2nd, 19%, 4 | 2nd, 26%, 5 | 3 nonzero weights, (0.49, 0.43, 0.08)

OLTP-multi,Disk | 1st, 20%, 14 | 1st, 69%, 4 | 1st, 70%, 4 | 2nd, 74%, 4 | 3 nonzero weights, (0.55, 0.24, 0.19)
TABLE 1l

COMPARING DIAGNOSISACCURACY (SEE SECTION |V-B.2)

cluster produced by PCM-E. Note that PCM-E’s diagnosis
vectors have very few attributes of nonzero weight, even for
high-dimensional datasets. This property makes it easy to
interpret results. For example, PCM-E’s diagnosis vector for
Rubis-bug contains only 2 attributes (out of 110) with nonzero
weights: one with weight 0.39, and the other with weight 0.61.
(Sum of absolute weights is 1.) The latter attribute pinpoints
the buggy Java bean. PCM-E’s diagnosis vector for Dolphin
contains only 2 attributes (out of 41) with nonzero weights:
one with weight 0.77 and the other with weight 0.23; both
pinpoint the swap space exhaustion problem causing the crash.

While there are no false negatives in PCM-E’s diagnosis
results (which is most important), there are some false pos-
itives in four cases. This problem shows the drawback of
Diagnose(F, H) processing over Diagnose(F, L) processing:
getting from the Diagnose(F, H) result to the root cause may
require manual effort.

C. Evaluation of Diagnosis(F, L) Processing

Queries: We now consider Diagnose(F, L) queries over the
Rubis-60, Rubis-complex, and Synthetic datasets. By default,
L contains 60% of the failure instances in each dataset, and is
used to generate the signature database. The remaining 40% of
the failure instances are used to query the signature database
to compute its diagnosis accuracy (% of times the correct
annotation is returned).

Techniques: We compare three techniques: (i) CLUS, sig-
nature database implemented using K-means clustering with
10 clusters per annotation®; (ii) FA, Fa’s signature database;
and (iii) CART, a multi-class classifier implemented using
classification and regression trees. By treating each annotation
in L as a distinct class label, a multi-class classifier learned
from L can predict the annotation of a new failure instance.
We chose CART over other multi-class classifiers for three
reasons: (i) CARTSs are being used for diagnosis in production
settings like eBay.com [7]; (ii) CARTs provide a principled
way to compute confidence estimates; and finally, (iii) Fa uses
CARTSs as separating functions in its signature database.

1) Comparing Accuracy-Confi dence Curves: The goal
of Diagnose(F, L) is to provide high diagnosis accuracy while
invoking Diagnose(F, H) only when required. The Accuracy-
Confidence Curves (AC-Curves) in Figure 9 show how well
each technique meets this goal. Recall the definition of confi-
dence estimates, confidence thresholds, and AC-Curves from
Section I11. To diagnose a failure instance, CARTs compute a

6We also tried LAC clustering [11], and got similar results.
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Fig. 9. AC-Curves for (a) Rubis-60, (b) Rubis-complex

probability distribution over annotations, and output the most-
likely annotation. The confidence estimate is the difference in
probabilities between the first and second most-likely annota-
tion, mapped to [0, 100] as discussed in Section I11-D.

Suppose the administrator wants a diagnosis accuracy of
90%. Then, Figure 9(a) for Rubis-60 shows that the confidence
thresholds (C}) for FA and CLUS can be set to 20 and 80
respectively. Since FA’s C; is 4 times less that of CLUS,
FA is four times less likely to invoke Diagnose(F, H) at the
same accuracy level. More interestingly, CART is unusable
when required accuracy is 90%. FA maintains its superior
performance for Rubis-complex, while CLUS now becomes
unusable when the required accuracy is over 90%.

Figure 9 used our default setting where for each query
instance (Z, A), the signature database contains at least one
signature for annotation A. That is, we evaluated how good
the signature database is in diagnosing previously-seen failures
(which does not mean previously-seen instances). This setting
is practical because up to 90% of all software failures reported
by users today are previously-seen failures [5]. We now con-
sider query instances whose correct annotations are not in the
signature database. An accurate response from Diagnose(F, L)
now is an answer with confidence below the threshold C;;
thereby forcing the invocation of Diagnose(F, H).

To create this setting, we divide the instances in Rubis-
60 into two groups with nonoverlapping annotations: Group
Gy with 40 annotations and Group G, with the remaining
20 annotations. A subset of the instances from G, are used
to construct the signature database. The remaining instances
in G1 (previously-seen failures) and the instances in G2 (new
failures) form the set of query instances. Figures 10(a) and (b)
show the diagnosis accuracy of different techniques in these
two cases. The behavior of signature databases (FA and CLUS)
remain similar to Figure 9(a). However, CART performs
poorly on the new failures, which shows a key advantage
of using signature databases for Diagnose(F, L) rather than
multi-class classifiers. Intuitively, signature databases have a
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better chance of detecting when a failure does not have the
symptoms of any previously-seen failure.

2) Comparing Robustnessto Error: Our monitoring data
contains two types of errors: Gaussian and non-Gaussian.

e Gaussian error is caused by natural variability in real
systems. If we take multiple observations of an attribute
from a particular system state, a goodness-of-fit test to a
normal distribution will often be positive.

e Two main causes of error in our monitoring data cannot
be modeled by Gaussian distributions: (i) the presence or
onset of failure corrupts readings of some attributes (seen
with JBoss application server and MySQL); (ii) readings
from different states get mixed up in the same instance
due to rapid system state transitions, or due to delays in
measuring different attributes under system overload.

The query instances used so far to compute the accuracy of our
diagnosis techniques were taken directly from the monitoring
data. We now inject errors into these query instances to study
how accuracy degrades as error increases. The technical report
[15] gives the full details of error generation as well as our
verification of the presence of Gaussian and non-Gaussian
error in the monitoring data. Intuitively, we define an error
level parameter e € [1,4] that controls the scale of errors.
For an attribute z: (i) Gaussian error of level e means that
observations of = have a variance of 10e% from their true
value; and (ii) non-Gaussian error of level ¢ means that each
observation of x has a 10e% chance of being an arbitrary value
from the range of values of x.

Figure 11 shows the AC-Curves for level 2 of Gaussian and
non-Gaussian error in Rubis-complex. (Note that Figure 9(b) is
the AC-Curve at error level 0.) It is clear from comparing these
graphs that the gap between FA and CLUS/CART increases as
the error increases. CLUS is highly sensitive to non-Gaussian
errors. Further evidence is provided by Figure 12 which shows
the accuracy of different techniques as the error level, both for
Gaussian and non-Gaussian, increases from 0 to 4 for Rubis-
complex. (Rubis-60 has similar behavior [15].) These graphs
validate FA’s robustness to error.

3) Scalability with Number of Annotations: Figure 13
shows the trend as the number of annotations—i.e., different
types of failure—is increased from 20 to 80. Since we can
generate at most 75 distinct single-EJB failures (recall Section
IV-A), the 80-failure dataset contains 5 multiple-EJB failures
as well. The gap between FA and CLUS/CART increases as
the number of failures increases.

In the offline phase of signature database generation, FA is
less efficient than CART or CLUS. If the separating functions
are not learned in parallel, then FA can take an order of
magnitude more time to generate the database than CART or
CLUS. However, these offline efforts make FA much better in
the online phase because: (i) FA is comparable to CLUS and
CART in the time for Diagnose(F, L); and (ii) FA invokes the
more expensive Diagnose(F, H) much less often.

V. Related Work

Fa differs from previous work on automated diagnosis in
three significant ways: (i) integration of Diagnose(F, L) (di-
agnosing recurrent failures) and Diagnose(F, H) (diagnosing
failures not seen previously); (ii) considering robustness of
diagnosis to errors in the monitoring data; and (iii) providing
reliable estimates of confidence in diagnosis results.
Diagnose(F,H): Previous work on Diagnose(F, H) predom-
inantly takes one of the correlation-based (e.g., [7], [8]) or
baselining-based approaches (e.g., [3]). [7] applies decision-
tree learning techniques to rank different system components
based on their correlation with system failures. [8] applies
Bayesian-network learning techniques to correlate perfor-
mance metrics with high-level system behavior. [3] proposes a
heuristic to represent the baseline behavior of a Web service;
and applies anomaly detection techniques to categorize devia-
tion from the baseline. We have compared PCM-E (anomaly-
based clustering) empirically on real monitoring datasets with
the algorithms in [7], [8], [3]. PCM-E outperformed the others
due to the noisy and dynamic nature of the monitoring data.
The experimental results are reported in [15].

Fa’s Diagnose(F, H) processing is very different from semi-
supervised clustering (using annotated data to improve cluster-
ing) and clustering with constraints [2]. We have to cluster H,
and not HUF'. Note that H has no annotations. (F' has no an-
notations either, and typically, very few instances.) Moreover,
our true benefits come from making clustering “diagnosis-
aware” using a novel clustering metric that accounts for how
F' differs from instances in H. Recall from Section II-A
that this metric is computed using a linear program (margin
classifier). It is nontrivial to specify this metric as constraints
or to incorporate it into a distance-based clustering algorithm
like K-means (e.g., as in metric learning [2]).
Diagnose(F,L): Automated diagnosis of recurrent problems
has been considered in previous work, e.g., [24], [5], [23],
[9]. [24] builds a multi-class classifier on system event traces
to classify previously-solved problems. We have empirically
shown the advantages of signature databases over multi-
class classifiers, especially in terms of robustness. [23] gives
signature-generation techniques assuming that symptoms of
each failure have been identified in the monitoring data; which
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is impractical in our settings where only raw monitoring data
is available. [5] considers a very different type of monitoring
data—function call stacks from system failures—and gives
stack matching and indexing algorithms. [9] extracts indexable
signatures from failure data by finding metrics that differenti-
ate a failure state from the healthy states. Instead, Fa captures
the difference of one or more failure states from other failure
states using annotation information which is ignored in [9].

In effect, Fa’s signature database solves a multi-class classi-
fication problem using an ensemble of binary classifiers (e.g.,
see [1]). However, with dynamic systems, high-dimensional
monitoring data, and sparse failure data, there is a high
chance that the errors in the failure data F' are not present
in the historic data; such errors confuse conventional mining
algorithms because these errors are in the “test data” but not
in the “training data”. [25] shows the impact of such errors
on accuracy. In Diagnose(F, L) processing, Fa is unique in
its focus on robustness to such errors, reliable confidence
estimates, and on the reliability and weighting of separating
functions (Section 111-C).

An early version of Fa [12] used probabilistic models

(e.g., Bayesian networks) for diagnosis. These models need
too many training samples and learning time on our high-
dimensional monitoring datasets. Real-life failure data is very
sparse since systems are mostly in healthy states. We discon-
tinued the use of probabilistic models in favor of Fa’s cur-
rent design (simpler models, redundancy, weighting, anomaly-
based clustering).
Failure diagnosis in database systems. Oracle’s recent
ADDM tool [10] shows the growing interest among database
vendors in automated diagnosis of failures. Fa differs from
ADDM in three ways: (i) ADDM relies on a static knowledge
base gathered by Oracle experts over the years, while Fa
automates the process of generating the signature database
from monitoring data; (ii) Fa uses historic monitoring data in
a principled way and enables reuse of past diagnosis results;
and (iii) Fa targets a broader class of systems (e.g., multitier
services). ADDM and Fa can complement each other.

4

VI. Conclusion

We showed how Fa makes five new contributions to address
the challenges in building an automated diagnosis tool:

e Noisy data: Our empirical evaluation (Sections IV-C.2 and
IV-B.2) showed how Fa maintains high diagnosis accuracy
in the presence of errors in the monitoring data.

o High dimensionality: Even with 50-100 attributes, Fa iden-
tifies the 1-2 attributes related to a failure (Section 1V-B.3).
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Dynamic systems: Both Fa’s signature database genera-
tion and anomaly-based clustering can deal with multiple
healthy and failure states and rapid state transitions.
Reuse: Fa’s signature database increases reuse of previous
diagnosis results by giving high accuracy while minimizing
costly invocations of Diagnose(F, H) (Section IV-C.1).
Trust: Our empirical evaluation showed how Fa’s confi-
dence estimates and diagnosis vectors are very reliable.
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