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Abstract— Consider multiple users searching for a hotel room,
based on size, cost, distance to the beach, etc. Users may
have variable preferences expressed by different weights on the
attributes of the searched objects. Although individual preference
queries can be evaluated by selecting the object in the database
with the highest aggregate score, in the case of multiple requests
at the same time, a single object cannot be assigned to more
than one users. The challenge is to compute a fair 1-1 matching
between the queries and a subset of the objects. We model
this as a stable-marriage problem and propose an efficient
technique for its evaluation. Our algorithm is an iterative process,
which finds at each step the query-object pair with the highest
score and removes it from the problem. This is done efficiently
by maintaining and matching the skyline of the remaining
objects with the remaining queries at each step. An experimental
evaluation with synthetic and real data confirms the effectiveness
of our method.

I. INTRODUCTION

Consider a booking system, where users search and reserve

objects or services (e.g., hotel rooms), based on preference

functions. Typically, different users have variable preferences

expressed by different weights on the attributes of the searched

objects. For a single user, the system returns the best objects

with respect to his/her preference function. In this paper we

study the problem where multiple preference queries are issued

simultaneously (e.g., at a popular online hotel reservation site).

In this case, different users may compete for the same objects.

For example, a given hotel room could be the top-1 choice of

many users, while it can only be assigned to one of them. As

a result, the system must look for a fair 1-1 matching between

the queries and a subset of the objects.

Fair 1-1 assignments can be based on the classic stable

marriage problem (SMP) [1]. To compute a fair assignment

between a set of preference functions F (i.e., queries) and a

set of objects O, the pair (f, o) in F ×O with the largest f(o)
value is found and established (i.e., the user corresponding

to f is assigned to o). Then, f and o are removed from F

and O respectively, and the process is iteratively repeated until

either F or O becomes empty. This 1-1 matching model based

on stable pairs has been also adopted by previous work on

spatial assignment problems [2]. Accordingly, the algorithm

proposed in [2] can be adapted to solve our matching problem

by replacing the progressive NN search by incremental top-k

search (e.g., using the method of [3]). Specifically, assuming

that the set of objects O is indexed by an R-tree (using the

object attributes as dimensions), we can apply an incremental

top-k search for each function in F to retrieve their best (i.e.,

most preferred) objects. Then, the function-object pair (f, o)
with the largest aggregate score is guaranteed to be stable.

Although this method is a possible solution to our problem,

it is expected to suffer by the large number of top-k queries

performed on the complete set of objects.

We propose an alternative approach based on the obser-

vation that only objects in the skyline [4] of O need to be

considered at each step of the assignment process. The skyline

of O contains all objects in O, for which there does not exist an

equal or better object in O with respect to all attributes. Thus,

we can avoid accessing and examining objects unnecessarily

by maintaining the skyline of O and iteratively matching it

with the function set F . Our method includes an efficient

skyline maintenance module and a fast method for identifying

matching pairs between the skyline of O and F .

II. PROBLEM STATEMENT

We consider a set of user preference functions F over a

set of multidimensional objects O. Each object o ∈ O is

represented by D feature values o1 . . . oD. Every function

f ∈ F is defined over these D values and maps object

o ∈ O to a numeric score f(o). F may contain any monotone

function; i.e., if for two objects o, o′ ∈ O, oi ≥ o′i,∀i ∈ [1, D],
then f(o) ≥ f(o′),∀f ∈ F . For ease of presentation, however,

we focus on linear functions; i.e., each function specifies D

weights f.α1 . . . f.αD, one for each dimension. The weights

are normalized, such that
∑D

i=1 f.αi equals 1. This assures

that no function is favored over another. Given an object

o ∈ O, its score with respect to an f ∈ F is:

f(o) =

D∑

i=1

f.αi · oi, (1)

Our goal is to find a stable 1-1 matching [1] between F and

O, subject to the convention that function f prefers o to o′ if

f(o) > f(o′) and, symmetrically, object o prefers f to f ′, if

f(o) > f ′(o).
Similar to SMP, the matching can be computed by iteratively

reporting the (f, o) pair with the highest score in F ×O, and
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removing f and o from F and O, respectively. During any

process that outputs matching pairs in this order, it holds:

Property 1: A function-object pair (f, o) in F×O is stable,

if there is no function f ′ ∈ F, f ′ 6= f, f ′(o) > f(o) and there

is no object o′ ∈ O, o′ 6= o, f(o′) > f(o), where F and O are

the sets of the unassigned (remaining) functions and objects.

III. ALGORITHMS

In this section, we describe a naı̈ve solution and then sketch

our proposed approach. Both techniques are progressive, i.e.,

stable function-object pairs are output as soon as they are

identified. We assume that F is kept in memory while O

(which is typically persistent and much larger than F ) is

indexed by an R-tree on the disk. The main concepts of

our approach, however, apply to other indexes and alternative

storage configurations.

A. Brute Force Search

Our assignment problem can be solved by iterative sta-

ble pair identification and removal, according to Property 1.

However, unlike finding closest pairs in the spatial version of

SMP (as in [2]), identifying stable function-object pairs may

require substantial effort. A brute force approach is to issue

top-1 queries against O, one for every function in F . This will

produce |F | pairs. The pair (f, o) with the highest f(o) value

should be stable, because (i) o is the top-1 preference of f and

(ii) f ′(o) cannot be greater than f(o) for any function f ′ 6= f

(since (f, o) is the pair with the highest score).

This method requires numerous top-1 queries to be initiated;

one for each function in F . Assuming that O is indexed by

an R-tree RO, these queries can be implemented similarly to

NN queries, as shown in [3]. In addition, after the pair (f, o)
with the highest f(o) value is added in the query result, o

must be removed from RO, and if o was the top-1 object

for some other function f ′ 6= f , top-1 search must be re-

applied for f ′. In the worst-case, where top-1 search must be

re-applied for all remaining functions after the identification

of each stable pair, this algorithm requires O(|F |) deletions

from RO and O(|F |2) top-1 searches in RO. Deletions and

top-1 searches have logarithmic costs. We now describe a

more efficient algorithm for this function-object assignment

problem.

B. Skyline-based Search

An important observation is that, if F contains only mono-

tone functions, then the top-1 objects of all preference func-

tions should be in the skyline of O. Recall that the skyline

Osky of O is the maximum subset of O, which contains only

objects that are not dominated by any other object. In other

words, for any o ∈ O, if o is not in the skyline, then there

exists an object o′ in Osky , such that any function f ∈ F

would prefer o′ over o.

Based on this observation, we propose an algorithm,

which computes and maintains the skyline Osky , while stable

function-object pairs between Osky and F are found and

reported. Algorithm 1 is a high-level pseudocode for this

skyline-based (SB) approach. First, we compute the skyline

Osky of the complete set O (e.g., using the algorithm of [5]).

Then, while there are unassigned functions, the function-object

pair (f, o) with the highest f(o) score is found, f and o are

removed from F and O respectively, and Osky is updated by

considering O − o only.

Algorithm 1 Skyline-Based Stable Assignment

SB(set F , R-tree RO)
1: Osky:=∅
2: while |F | > 0 do . more unassigned functions
3: if Osky =∅ then
4: Osky:=ComputeSkyline(RO)
5: else
6: UpdateSkyline(Osky, o, RO) . o = last deleted object

7: (f, o):= BestPair(F, Osky)
8: Output (f, o)
9: F := F − f ; O := O − o; Osky := Osky − o

We illustrate the SB algorithm using an example. In Figure

1(a), we have 2 linear preference functions (shown as lines)

and 13 objects (shown as 2-dimensional points). The top-1
object of each function is the first one to be met if we sweep

the corresponding line from the best possible object (top-right

corner of the space) towards the worst possible (origin of the

axes). In the figure, we can observe that e is the top-1 object

for both functions.

SB first computes the skyline of O: Osky = {a, e}. From

this fact, we know that only a and e may be the top-1 objects

for f1 and f2. Therefore, it is only necessary to compare 4

object-function pairs (instead of 13 · 2 = 26) in order to find

the highest f(o) score. In this example, pair (f1, e) is the first

stable pair output by the algorithm. Osky is then updated to

Osky = {a, c, d, i}, as shown in Figure 1(b), and Lines 7-9

are repeated to identify the next highest score pair (f2, d); this

pair is reported as stable and SB terminates.
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Fig. 1. Example of Skyline-Based Stable Assignment

The efficiency of SB relies on appropriate implementations

of the BestPair and UpdateSkyline functions. In the next

section, we propose optimized methods for these modules. In

addition, we show how SB can be further enhanced to report

more than one stable pairs at each loop.
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IV. IMPLEMENTING SB EFFICIENTLY

A. Best Pair Search

At each loop, the SB algorithm seeks for the best pair in the

cross product F ×Osky . A brute force implementation of this

process is not efficient, as it requires |F | · |Osky| comparisons.

This number can be reduced by indexing either F or Osky .

We choose to index F , since only one deletion is performed

in it at each loop (while multiple new objects may enter Osky

after an object deletion). This set is anti-correlated, therefore,

organizing the function coefficients (i.e., preference weights)

with a multidimensional index is inefficient. We propose to

index the functions as sorted lists, one for each coefficient.

Then, for each object in Osky we can apply a reverse top-1
search on the lists, where the roles of objects and functions

are swapped, by adapting the threshold algorithm (TA) [6].

Consider D ordered lists L1, L2, . . . , LD (where D is the

dimensionality), such that list Li holds the (f.αi, f) pairs of

all functions f ∈ F (where f.αi is the i-th coefficient of f ),

sorted on f.αi in descending order.

Assume that we seek the best function for an object o ∈
Osky , accessing the sorted lists in a round-robin fashion. For

each visited function f , we compute f(o), while maintaining

the function fbest with the highest aggregate score on o.

Assume that the last values seen in the lists in sorted order

are {l1, l2, ..., lD}. Then, the threshold T can be calculated

as
∑D

i=1 li · oi. Nevertheless,
∑D

i=1 li could be larger than

1, which violates our assumption that the functions should

be normalized (the coefficients should sum to 1). Therefore,

our goal is to find a tighter threshold Ttight given a set of

coefficients β such that
∑D

i=i βi = 1 and βi ≤ li,∀i ∈ [1, D].

The threshold is calculated as Ttight =
∑D

i=1 βi · oi. The set

of coefficients β (and, concordantly, Ttight) is computed as

follows.

First, we rank the dimensions in descending order based on

o’s corresponding values. Next, we consider each dimension

i in this order. Starting with B = 1, we set βi = min{B, li},

update B = B − βi and proceed to the next dimension. We

continue until all βi values are set; note that if at some point B

drops to 0, we directly set the remaining βi to 0 and terminate.

It can be easily seen that the Ttight threshold derived by the

above βi coefficients is a valid upper bound of the score for

all functions that have not been encountered in any sorted list.

B. Incremental Skyline Maintenance

Apart from finding the best pair, another costly module of

the SB algorithm is the maintenance of the skyline after an

object in it has been assigned to a function. Re-computing the

skyline from scratch is unacceptably expensive; if |F | pairs are

found in total, we would have to execute a skyline algorithm

on RO |F | times.

As suggested in [5], incremental skyline maintenance can be

achieved if we run the exact skyline R-tree traversal algorithm,

but prune all entries whose MBRs are dominated by current

skyline objects. This reduces the maintenance cost to accessing

only the fraction of the tree that is not dominated by the current

skyline. Still, this approach requires a tree traversal each time

we update the skyline. As a result, some of the objects and

non-leaf entries may be accessed multiple times.

In order to minimize the tree traversal cost during skyline

maintenance, we keep track of the pruned entries and objects

during the first run of the skyline computation algorithm of

[5]. In other words, for every R-tree entry E pruned during the

first run of the skyline algorithm, because E is dominated by

a skyline object o, E is added in the pruned list o.plist of o.

Therefore, after the computation of the skyline, each skyline

object may contain a list of entries (non-leaf entries and/or

objects) that it dominates. Note that, in order to minimize the

required memory, each pruned entry E is kept in the plist of

exactly one skyline object o (although E could be dominated

by multiple skyline objects).

Skyline maintenance now operates as follows. Once a

skyline object o is removed, we scan o.plist. For each entry

E there, we check whether E is dominated by another skyline

object o′; in this case, we move E to o′.plist. Otherwise, E is

moved to a skyline candidate set Scand. Note that all objects

and non-leaf entries in Scand are exclusively dominated by the

removed skyline object o. The entries of Scand are organized

in a heap, based on their distance to the best corner of the

search space. The algorithm of [5] is then applied, taking as

input Scand and the existing skyline objects.

C. Finding Multiple Pairs per Loop

At each loop, SB finds the best function in F for each

object in the skyline Osky . After the best object-function pair

(f, o) is identified and reported, we remove o from Osky ,

necessitating skyline maintenance. We can reduce the number

of loops required (and, thus, the number of calls to the skyline

maintenance module), if we output multiple stable object-

function pairs at each loop.

To achieve this, we use Property 1; if for an object o the

best function is f and o is the best object for function f ,

then (f, o) must be stable. We take advantage of this property,

as follows. At each loop, let Fbest be the subset of F that

includes for every object o ∈ Osky , the function o.fbest that

maximizes f(o). For each f ∈ Fbest, we record the object

f.obest ∈ Osky that maximizes f(o). Then, we identify and

report all those pairs that satisfy Property 1. Specifically,

we scan Fbest and for each f therein, we check whether

(f.obest).fbest = f . If so, (f, f.obest) is a stable pair and

the corresponding function/object are removed from F , O and

Osky . Note that at least one pair is guaranteed to be output

(i.e., the pair (f, o) in F ×Osky with the highest f(o) score).

If more than one pairs are output, then multiple skyline objects

are removed from Osky . This does not affect the functionality

of the UpdateSkyline module in Algorithm 1; all entries in

the plist of these objects are either placed in the plist of a

remaining skyline object (if dominated by it) or otherwise en-

heaped and processed by the incremental skyline maintenance

algorithm discussed in IV-B.
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V. EXPERIMENTS

In this section, we empirically evaluate the performance of

our skyline-based (SB) algorithm, comparing it with Brute

Force and Chain. Brute Force is described in Section III-

A. Chain is an adaptation of [2], where the functions are

indexed by a main memory R-tree (built on their weights),

and the nearest neighbor module to either O or F is replaced

by top-1 search in the corresponding R-tree [3]. All methods

are implemented in C++ and experiments are performed on

an Intel Core2Duo 2.66GHz CPU machine with 4 GBytes

memory, running on Fedora 8.

We generated two types of synthetic datasets according to

the methodology in [4]. In independent datasets the feature

values are generated uniformly and independently. In anti-

correlated datasets, objects that are good in one dimension

tend to be poor in the remaining ones. These types of data

are common benchmarks for preference-based queries [4],

[5]. Our dataspace contains D dimensions (in the range from

3 to 6). We also experimented with a real dataset. Zillow

(www.zillow.com) is a web site with real estate information,

containing 2M records with five attributes: number of bath-

rooms, number of bedrooms, living area, price, and lot area.

Each dataset is indexed by an R-tree with 4Kbytes page size.

We use an LRU memory buffer with default size 2% of the

tree size. The preference functions are linear with weights

generated independently.

In Figure 2, we compare the algorithms for uniform and

anti-correlated synthetic object sets (O) of size 100K, matched

with 5K functions, for various values of the problem dimen-

sionality D. SB incurs 2 to 3 orders of magnitude fewer I/Os

than the runner-up, i.e., Brute Force. The reason for this vast

advantage of SB is the efficiency of its skyline maintenance

module (UpdateSkyline), juxtaposed with the huge number of

top-1 queries required by its competitors. Brute Force, on the

other hand, is more efficient than Chain, as it performs fewer

top-1 searches. The I/O cost increases with D for all methods,

because the effectiveness of the object R-tree degrades (a

fact known as the dimensionality curse). SB outperforms its

competitors in terms of CPU cost too. Chain is the slowest

method because it performs even more top-1 searches than

Brute Force, while the efficiency of the function R-tree it

uses is limited, as the functions are anti-correlated. Note that

the Brute Force measurements for anti-correlated objects for

D = 6 are missing because its space requirements exceed the

available memory.

In Figures 3(a) and 3(b) we use as O random subsets of

Zillow with varying cardinality from 10K to 400K, and match

them with sets of 5K functions. The I/O cost results verify the

superiority of SB over alternative approaches. Interestingly,

the improvements in CPU time are even larger compared to

the synthetic data experiments; Zillow is highly skewed and

this worsens the performance of Brute Force and Chain (due

to their top-1 searches), but not that of SB (due to its skyline-

based nature).
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Fig. 3. Results on a Real Dataset

VI. CONCLUSION

In this paper we address a stable marriage problem between

a set of preference functions F and a set of objects O. The

functions specify weights defining their requirements from the

objects, and our task is to compute a fair 1-1 assignment

between functions and objects. Our method progressively

forms stable pairs drawing objects from the skyline of O.

To efficiently update the skyline, we propose an incremental

maintenance technique. Our solution is experimentally shown

to outperform adaptations of existing approaches by orders of

magnitude.
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