STAR: Steiner Tree
Approximation in
Relationship-Graphs

Gjergji Kasneci, Maya Ramanath,
Mauro Sozio, Fabian M. Suchanek,
Gerhard Weikum

MPI-1-2008-5-001 May 2008

Authors’ Addresses

Max-Planck-Institut fir Informatik
Campus E1 4

Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Acknowledgements

We would like to thank Gerard de Melo for the thorough proof reading of
this report and his helpful comments.

Abstract

Large-scale graphs and networks are abundant in modern information sys-
tems: entity-relationship graphs over relational data or Web-extracted en-
tities, biological networks, social online communities, knowledge bases, and
many more. Often such data comes with expressive node and edge labels that
allow an interpretation as a semantic graph, and edge weights that reflect the
strengths of semantic relations between entities. Finding close relationships
between a given set of two, three, or more entities is an important building
block for many search, ranking, and analysis tasks. From an algorithmic
point of view, this translates into computing the best Steiner trees between
the given nodes, a classical NP-hard problem. In this paper, we present a
new approximation algorithm, coined STAR, for relationship queries over
large graphs that do not fit into memory. We prove that for n query entities,
STAR yields an O(log(n))-approximation of the optimal Steiner tree, and
show that in practical cases the results returned by STAR are qualitatively
better than the results returned by a classical 2-approximation algorithm.
We then describe an extension to our algorithm to return the top-k Steiner
trees. Finally, we evaluate our algorithm over both main-memory as well
as completely disk-resident graphs containing millions of nodes. Our ex-
periments show that STAR outperforms the best state-of-the art database
methods by a large margin, and also returns qualitatively better results.

Keywords

Steiner Tree, Algorithm, Ontology

Contents

1

Introduction

1.1 Motivation and Problem
1.2 Contributions and Outline

Related Work

The STAR algorithm
3.1 First phase
3.2 Second Phase . . .

3.2.1 Fixed Nodes and Loose Paths

3.2.2 Observations

3.2.3 Finding an approximate Steiner tree
3.3 Approximation Guarantee

3.4 Time complexity .

3.5 Approximate Top-k Interconnections

Evaluation

4.1 Comparison of STAR and DNH
4.2 Comparison of STAR and BLINKS
4.3 Comparison of STAR and BANKS

4.4 Summary of results

Conclusion

21
21
23
24
26

28

1 Introduction

1.1 Motivation and Problem

Many data-intensive applications need to query and analyze large graphs and
networks that do not fit into main memory. Applications include business
and customer networks managed in relational databases, entity-relationship
(ER) graphs over products, people, organizations, and events that are au-
tomatically extracted from Web pages, metabolic and regulatory networks
in biology, social networks and social-tagging communities, knowledge bases
and ontologies in RDF or ER-flavored models, and many more. Often the
data exhibits semantics-bearing labels for nodes and edges and can thus be
seen as a semantic graph, with nodes corresponding to entities and edge
weights capturing the strengths of semantic relationships. An example of
such a graph is the YAGO knowledge base [24], which has been constructed
by systematically harvesting semi-structured elements (e.g., infoboxes, cat-
egories, lists) from Wikipedia. The resulting entities and relation instances
have been integrated with the WordNet thesaurus/ontology [8]. Figure 1.1
shows an excerpt; the entire YAGO graph consists of more than 1.7 million
nodes (entities and entity classes) and 14 million edges (facts that connect
two entities or classes). Another well-known graph with a simpler structure
is the IMDB movie database with movies, actors, producers, and other en-
tities as nodes and the movie cast (information about directors, producers,
composers, etc.) as edges.

Such graphs can be represented in relational or ER models, XML with
XLinks, or in the form of RDF triples. Correspondingly, they can be
queried using languages like SQL, XQuery, or SPARQL. An important class
of queries is relationship search: Given a set of two, three, or more enti-
ties (nodes), find their closest relationships (edges or paths) that connect
the entities in the strongest possible way. Here, a “strong” interconnection
should reflect the informativeness of the answer. For example, when asking
“How are Germany’s chancellor Angela Merkel, the mathematician Richard

classes

|politician| | actor I I state |

type| 0.95

| Max Planckl

type| 0.95 typs/0.95 type | 0.95

7 I Arnold Schwarzeneggerl

chancellorof J

Figure 1.1: Example of an entity relationship graph

individuals

Angela Merkel

Courant, Turing-Award winner Jim Gray, and the Dalai Lama related?”; a
compact and informative answer would be that all four have a doctoral de-
gree from a German university (honorary doctorates in the last two cases).
On movie/actor graphs, the game “siz degrees of Kevin Bacon”! entails sim-
ilar search patterns. On biological networks such as the KEGG pathway
repository?, the closest relationships between the two specific enzymes and a
particular gene would be of interest [18, 23, 25]. Similar queries are needed
to analyze business networks between companies, their executive VPs, board
members, and customers, or to discover connections in intelligence and crim-
inalistic applications.

All the above scenarios aim at information discovery (as opposed to mere
lookup), so queries should return multiple answers ranked by a meaningful
criterion. Each answer can be naturally defined as a tree that is embedded
in the underlying graph and connects all given input nodes. A reasonable
scoring model then is some aggregation of node and edge weights over this
tree. This query and ranking model has originally been proposed for schema-
agnostic keyword queries over relational databases [4, 14, 2, 12]; a number
of variations have appeared in the literature (see Section 2). The formal
problem that underlies these models is to compute the k lowest-cost Steiner
trees: Given a graph G(V, E), with a set of nodes V' and a set of edges F,
let w: E — R, denote a non-negative weight function. For a given node
set V! C V, the task is to find the top-k minimum-cost subtrees of G that
contain all query nodes of V', where the cost of a subtree 7" with nodes V(T')
and edges E(T) is defined as }_ . pp) w(e).

Given the NP-hardness of the problem and notwithstanding the results

Thttp://en.wikipedia.org/wiki/Six_Degrees_of Kevin_Bacon
2http://www.genome.ad.jp/kegg/pathway.html

on fixed-parameter tractability [5], as well as the tractability results on the
approximate enumeration of the top-k approximate results [16], most prior
works have resorted to heuristics, and, in fact, have typically modified the
ranking model for the sake of efficiency. For example, instead of minimizing
the Steiner tree cost, they minimize the sum of shortest paths between all
pairs of input nodes (e.g., [17, 10]). This is unsatisfying as it mixes arguments
about query and ranking semantics with arguments about efficiency.

This paper overcomes these problems by staying with the original, most
natural semantics while computing near-optimal Steiner trees with practi-
cally viable run-times. In fact, the approximation algorithm developed in
this paper even outperforms those prior methods that have worked with re-
laxed semantics.

1.2 Contributions and Outline

The main contributions of this paper are the following.

e We present STAR, a new efficient algorithm to the Steiner tree problem,
which exploits taxonomic schema information when available to quickly
produce results for n given query entities.

e We generalize STAR to an algorithm that is capable of computing
approximate top-k relation trees for a given set of query entities.

e We prove that STAR has a worst case approximation ratio of O(log(n)).
This improves the previously best-known approximation guarantees of
O(y/n) or even O(n) for practically leading database methods (see
[5]). In our experiments on real-life datasets, STAR achieves better
results (i.e. trees of lower weight) than the ones returned by the 2-
approximation algorithm presented in [17].

e We compare STAR to the best state-of-the-art database methods in
comprehensive experiments with large graphs. STAR outperforms the
opponents by an order of magnitude and sometimes even more.

The remainder of this paper is organized as follows. Section 2 gives an
overview on related work. In Section 3, we present our algorithm and a
detailed analysis of its runtime complexity and approximation ratio. Fur-
thermore, we generalize our algorithm to a top-k approximation algorithm.
The evaluation of our approach is presented in Section 4.

2 Related Work

Relationship queries — queries which ask for relationships between two or
more entities — occur in many different applications. For example, keyword
proximity search over relational databases [2, 11, 12, 4, 14, 5, 10|, graph
search over ER, RDF and other knowledge bases [3, 1, 15], entity relationship
queries on the Web [19, 9], etc. Such applications have to deal with large
graphs (sometimes with millions of nodes and edges) in general, and require
not only qualitatively superior solutions, but also implementations that are
efficient. Our focus in this paper is on a particular kind of relationship query
which requires the system to find top-k connections between two or more
entities. Formally, the problem of determining the closest interconnections
between two, three, or more nodes in a graph is the Steiner tree problem.

The Steiner tree problem can be stated as follows. Given a weighted
graph G = (V, E) and a set of nodes V' C V| called terminals, find a tree
in G of minimal weight such that it contains all the terminals. It has been
shown that the Steiner tree problem is NP-hard. And so, there has been a lot
of research on finding approximate solutions to this problem. The quality of
an approximation algorithm is measured by the approrimation ratio. That
is, the ratio between the weight of the tree output by the algorithm and the
optimal Steiner tree. The Steiner tree problem can be generalized to the
Group Steiner tree problem (GST): Given a weighted graph G = (V, E) and
a set of groups Vi, ..., Vi where each V; contains nodes from V', find a tree in
G of minimal weight such that it contains at least one node from each group.

In this paper we describe and evaluate a top-k Steiner tree algorithm for
large graphs stored on disk. We give a brief overview of the related literature
in the following and compare it with our work.

Algorithms for Steiner Tree Computation Existing approaches can
be categorized according to their strategies: i) distance network heuristic
(DNH), ii) span and cleanup, iii) dynamic programming, and iv) local search.
DINH: This heuristic, introduced in [17], builds a complete graph on the

terminals. The edge weights reflect the shortest distance between two termi-
nals in the underlying graph. By a minimum spanning tree (MST) heuristic
this complete graph can be used to construct a 2-approximation to the op-
timal Steiner tree. This heuristic was refined by Mehlhorn [21] for a fast
2-approximation solution to the Steiner tree problem, and has been emu-
lated by further approaches for the top-k Steiner tree computation [4, 14].
Span and cleanup: This heuristic (see [13]) aims at constructing the MST
on the terminals by starting from an arbitrary terminal and spanning the
tree stepwise until it covers all terminals. Redundant nodes are deleted in a
cleanup phase. [20] exploited this heuristic by means of two different spanning
strategies. In contrast to the original heuristic each terminal is a starting
point for a tree yielding a possible MST. While the first spanning strategy
chooses the edge with a minimum weight to span a tree (minimum edge-
based spanning), the second strategy chooses the tree the spanning of which
results in a minimum cost tree (balanced MST spanning).

Dynamic programming: The first dynamic programming approach to the
Steiner tree problem was introduced by Dreyfus and Wagner [6]. It proceeds
by computing optimal results for all subsets of terminals. Then the optimal
result is computed for all the terminals. In [5], this heuristic is modified to
a faster method for the optimal solution in the GST case. While the former
work proved the fixed parameter tractability of the Steiner tree problem, the
latter proved it for the GST variant.

Local search: This heuristic has been used in the realm of the Euclidean
Steiner tree problem [22, 7] and of the parallel Steiner tree computation. In
the first phase an interconnecting tree is built based on the distance network
heuristic introduced by [17]. In the second phase the current tree is iteratively
improved by considering different nodes in the underlying graph that may
improve the cost of the current tree.

Algorithms for Top-k Steiner Tree Computation Top-k Steiner tree
computation has been previously studied in the context of keyword search
on relational databases (see BANKS [4, 14] and BLINKS [10]). We briefly
describe these two algorithms and then compare them to STAR.

The first BANKS paper [4] (referred to as BANKS I), addresses the GST
problem on directed graphs. It emulates the DNH heuristic by running single
source shortest paths iterators from each node in each of the V;s, where Vj is
the set of nodes which contain the keyword k;. The iterators follow the edges
backwards. As soon as the iterators meet, a result is produced. This tech-
nique is improved in BANKS II [14] by (1) reducing the number of iterators,
(2) allowing forward expansion on edges in addition to backward expansion,

(3) using a heuristic of spreading activation which prioritizes nodes with low
degrees and edges with low weights during the expansion of iterators. How-
ever, the performance of both BANKS I and BANKS II can significantly
degrade in the presence of high-degree nodes during the expansion process.

The recently proposed BLINKS [10] makes use of the backward search
strategy of BANKS, but based on cost-based expansion. The authors prove
that this expansion strategy, which picks the cluster with the smallest car-
dinality to expand next, has a bound on the worst case performance. Two
kinds of indexes are built to speed up the search. First, a keyword-node index
is built which stores, for each keyword w, a list of nodes that can reach w
along with the distance of each node from w. Second, a node-keyword index
is built which stores, for each node, the set of keywords reachable from it
and its distance to each keyword. However, since the proposed indexes can
be too large to store and too expensive to compute, the graph is partitioned
into blocks. The blocks are formed by partitioning the graph using node sep-
arators, also called portals. A high level keyword-block index is built, and
more detailed indexes are built at the block level. Multiple cursors are used
to perform the backward search within blocks. Whenever a portal of the
block is reached, new cursors are created to explore the remaining blocks
connected to this portal node. Experiments show that BLINKS performs an
order of magnitude better than BANKS II.

In contrast to the backward expansion approach of BANKS and BLINKS,
STAR’s first step is to quickly construct an initial tree using a taxonomic
DAG when available. This tree is then iteratively refined to improve the cost
until no more improvements can be made. As we show in the experimental
evaluation, the construction of the initial tree improves the running time by
an order of magnitude. Furthermore, STAR returns trees, while BLINKS
returns (r, {n;}) pairs, where r is the root of the result tree and n; is a set
of nodes containing the query keywords. Hence, it is difficult to reconstruct
the result trees. Moreover, BLINKS needs to have the graph in memory
to partition and construct the indexes, while our graph can be stored in a
database and only database indexes are used. Finally, the performance of
BLINKS is dependent on the number of portals (i.e. nodes that belong to
more than one block) and the strategy for choosing them. This is because
BLINKS needs to use separate cursors not just for each keyword cluster,
but also each block that it has to traverse. Hence for dense graphs, the
performance of BLINKS suffers because of the large number of blocks that
have a portal in common.

3 The STAR algorithm

As described in the introduction, we are given an undirected graph G(V, F)
with a set of nodes V' and a set of edges F, and a non-negative weight function
w : F — R, intuitively representing the connection strength between the
two nodes of an edge. For any subgraph G’ of G we denote the set of nodes
of G’ by V(G’), and the set of edges of G’ by E(G'). Furthermore, we extend
the weight function w on G' by w(G') = >~y w(e).

Given a set V' C V| we are interested in finding a subgraph T" of G that
contains all nodes from V', such that the weight of T" is minimal among all
possible subgraphs of G that contain all nodes from V’. Note that inevitably,
such a subgraph 7" has to be a tree. Furthermore, we are interested in finding
top-k such trees in the order of increasing weights.

Many real world graphs come along with semantic annotations such as
node labels, representing entities, and edge labels, representing relations.
Furthermore, these graphs may have taxonomic substructures indicated by
the labels of the corresponding edges. Our local search algorithm STAR can
exploit such taxonomic substructures, when available, to efficiently find an
approximate solution to the above problem. It runs in two phases. In the
first phase, it tries to quickly build a first tree that interconnects all nodes
from V’. In the second phase it aims to iteratively improve the current tree
by scanning and pruning its neighborhood. In the following, we present both
phases in detail.

3.1 First phase

In order to build a first interconnecting tree, STAR relies on a similar strategy
as BANKS I [4]. It runs single source shortest path iterators from each node
of V’. As soon as the iterators meet, a result is constructed.

Unlike BANKS I, in this phase STAR may exploit taxonomic information
(when available) to quickly build a first tree, by allowing the iterators to

follow only taxonomic edges, i.e. edges labeled by taxonomic relations such
as type or subClassOf (see Figure 3.1). This way, STAR can quickly find
a taxonomic ancestor of all nodes from V’. Consider the sample graph of
Figure 1.1. Suppose that V'={Max Planck, Arnold Schwarzenegger,
Germany}. In the first phase, STAR would construct the tree depicted in
Figure 3.1.

Figure 3.1: Taxonomic interconnection

In case that no taxonomic information about the underlying graph is
available, STAR’s strategy is the same as that of BANKS I.

In the following, we describe how we gradually improve the tree returned
by the first phase of our algorithm.

3.2 Second Phase

In the second phase, STAR aims at improving the current tree iteratively by
replacing a certain path in the tree by a new path of lower weight from the
underlying graph. In the following we define which paths can be replaced.

3.2.1 Fixed Nodes and Loose Paths

Let T be a tree interconnecting all nodes of V'. We denote the degree of a
node v in 7' by deg(v). A node v € V' is called a terminal node, all other
nodes of 71" are called Steiner nodes.

Definition 1 (fixed node) A fized node is a terminal node or a node v that
has degree deg(v) > 3 in T.

Intuitively, a fixed node is a node that should not be removed from T
during the improvement process.

Definition 2 (loose path) A path p in T is a loose path iff its end nodes
are fized nodes and all intermediate nodes (if any) are Steiner nodes of degree
two.

Intuitively, a loose path is a path that can be replaced in T' during the
improvement process.

It follows immediately that a minimal Steiner tree with respect to V' is
a tree in which all loose paths represent shortest paths between fixed nodes.

3.2.2 Observations

In the following, for a tree T', we denote the set of loose paths of a tree T" by
LP(T). Removing a loose path Ip from T splits T" into two subtrees T} and
T,. In Figure 3.2, the removal of the loose path that connects the nodes a
and b from T, would return two subtrees interconnecting the terminals u, w
and x,y, z, respectively. Replacing a loose path [p by a new, shorter path,
means computing the shortest path between any node of T} to any node of
T,. Note that since the end nodes of the loose path Ip are fixed nodes, they
are not removed when [p is removed. This means that removing a loose path
that ends into a fixed node v of degree three turns v into an unfixed node,
and the two remaining loose paths that had v as an end node are merged
into one single loose path. In Figure 3.2, the removal of the loose path that
connects a and b turns b into an unfixed node and d into a fixed node. The
loose paths connected to b are merged into a single loose path. On the other
hand, inserting a loose path that ends into an unfixed node v turns v into a
fixed node, and the loose path that passes through v is split into two loose
paths. In Figure 3.2, the loose path that went through d is split into two
loose paths. Hence, the number |LP(T")| of loose paths in an improved tree
T is |[LP(T)| — 2 < |LP(T")| < |LP(T)| + 2. It can be shown that the
number of loose paths in a given tree T'is |V'| — 1 < |LP(T)| < 2|V'| — 3.

3.2.3 Finding an approximate Steiner tree

In the second phase, STAR keeps on iteratively improving the current tree
T'. In each iteration our algorithm removes a loose path [p of the current tree
T. Consequently, in each iteration 7" is decomposed into two components 7T}
and T,. The new tree T is obtained by connecting 7} and 75 through a path
that is shorter than Ip (see Figures 3.2, 3.3, and 3.4). Hence, the inherently
difficult Steiner tree problem is reduced to the problem of finding shortest
paths between subsets of nodes. Heuristically, in each iteration we remove
the loose path with the maximum weight in 7". A high-level overview is given
in Algorithm 1.

Speaking abstractly, the above algorithm greedily scans and prunes the
neighborhood of T for better trees. Paths that exceed the weight of the loose

10

initial T: weight 27

improved Tg: weight 25

b
. b b
=
' a
a
C
d
u W X v u W X v
. terminals . fixed nodes @ other nodes
Figure 3.2: After first iteration
T,*: weight 21
T, weight 25 after 3 iterations
b
a
c
d
u W X
I terminals @ fixed nodes @ other nodes
Figure 3.3: After third iteration
T, : weight 21 T, weight 14
after 3 iterations after 4 iterations
° b b
IR — o
a . ‘ a T
“ c
*
.
d
u w y u w X

I terminals

@ fixed nodes

@ other nodes

Figure 3.4: After fourth iteration

11

Algorithm 1 improveTree(T, V')
1: priorityQueue () = LP(T) //ordered by decreasing weight
2: while Q.notEmpty() do
3: Ip = Q.dequeue()

4: T« Replace(lp,T)

5. if w(T") < w(T') then

6: T=T

7: Q = LP(T) //ordered by decreasing weight
8: end if

9: end while
10: return T

path upon which the current tree is being improved are pruned. Note that
this method leads only to a local optimum. However, we show in Theorem 1
that this local optimum is relatively close to the global optimum.

As an example we show how STAR would improve the taxonomic tree
returned by the first phase of the algorithm (see Figure 3.1). In the first iter-
ation the algorithm would remove the loose path from the fixed node labeled
with Germany to the fixed node labeled with person. The improved tree
is depicted in Figure 3.5. Note that since STAR aims to find closest relations
between entities, it views the edges in Figures 3.5 and 3.6 as undirected.

—chancellorof
Angela Merkel

Figure 3.5: Result of the first iteration.

In the second iteration the path connecting the fixed node labeled with
Arnold Schwarzenegger to the fixed node labeled with physicist is re-
moved. The improved tree is at the same time the final tree, since no loose
path can be improved.

The method Replace(lp, T) (line 4 of Algorithm 1) removes the loose
path [p from T'. This removal splits 1" into two subtrees 77 and 75. Then
the shortest path in G that connects any node of T} to any node of 75 is
determined and combined with 7} and T3 into a new tree 7" of lower weight.

12

Figure 3.6: Result of the second iteration.

For this purpose Replace(lp,T) calls another method, called findShortest-
Path(V(11),V(T3),lp), which runs one single source shortest path iterator
from each of the node sets V(7}) and V(73). This method is presented in
Algorithm 2. In the beginning, each of the iterators ()1, Q2 contains all the
nodes from V(T3) and V (T3), respectively (lines 5, 6). The variables current
and other (lines 7 and 8) represent the subscript indices of)1 and Q. As
presented in lines 10 to 12, Qeyurrent points to the iterator that has minimal
total sum of node degrees. Intuitively, Q .y rent TEPresents the iterator that is
currently expanded. This expansion heuristic is similar to the one used by
BANKS II [14], which prioritizes nodes with low degrees during the expan-
sion. However, the difference is that we consider the whole node collection in
an iterator as a single node. Each iterator aims at reaching a node from the
starting set (source) of the other iterator, represented by V (Tpiper) in line 27.
Hence, in case that Quurent points to the iterator that started from V(77),
the set V(Tpiner) points to V(Ty) and vice versa. During the expansion, for
each node v’ visited by the current iterator, we maintain its current prede-
cessor, that is, the node v from which the iterator reached v’ (line 23). Again
the predecessor is dependent on the current iterator. The current predeces-
sor of v’ is chosen such that the distance deyyrens 0f v/ from the source of the
current iterator is minimized (lines 21-23). We maintain this distance for
each visited node v’ (line 22). Maintaining the predecessor of a visited node
v, helps us to rebuild the path from v’ to the source. However, the iterator
does not expand a node v (line 14) that has a distance greater than or equal
to the weight of the loose path Ip, upon which we are aiming to improve the
current tree.

Now we move on to proving the approximation guarantee of the STAR
algorithm.

3.3 Approximation Guarantee

The proof proceeds as follows. We define a mapping between each loose
path in the tree returned by the algorithm, and a more expensive path in the
optimum solution. Such a mapping has the property that at most 2[log N'| +
2 loose paths are mapped onto a same path. Moreover, each edge in the

13

Algorithm 2 findShortestPath(V (11),V (T3), lp)

1:

2
3
4
)
6
7
8
9

for all v € V do
if v € V(T1) then d;(v) =0 else d;(v) =

00
if v € V(1) then dy(v) = 0 else dy(v) = 00

: end for

. PriorityQueue Q@1 = V(T) //ordered by inc. distance dy
. PriorityQueue Qa3 = V (13) //ordered by inc. distance do
. current=1

. other=2

: repeat

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:

if degree(Qotner)<degree(Qeurrent) then
swap(current, other)

end if
v = Qeurrent-dequeue()
if deyrrent(v) > w(lp) then
continue
end if
for all (v,v') € E do
if v’ has been dequeued from Qeurren: then
continue
end if
if dcurrent() > dcurrent (U) () then
dcurrent(v) - dcurrent(v) ()

v'.predecessorayrrent = v

end if

Qcurrent-enqueuve(v')
end for
until Ql = @ V Q2 = @ Ve V(Tother)
return path of v

optimum solution occurs in the range of the mapping at most twice. Hence,
summing over all paths in the range of the mapping gives an upper bound
(of 4[log N| +4) on the cost of the tree yielded by the algorithm.

The process of finding such a mapping consists of two phases. First, we
identify a collection of paths in the optimum tree that do not overlap too
much. Then, we go back to the tree yielded by the algorithm, trying not to
assign too many loose paths to the same path in the optimal tree. Lemma 1

deals with this non-trivial task.

Before diving into the proof, we need some auxiliary notations. We shall
denote an ordered pair with (,7) (this means that (i, 7) # (4,4)), while an

14

unordered pair will be denoted with {4, j}. For any graph G, dg(u, v) denotes
the distance between v and v in G. In a tree, we denote with uv the (unique)
path between u and v.

Our input is an undirected graph G = (V,FE) and a set of terminals
V' C V that are to be connected. Let N = |V’| (in what follows we assume
N > 2). Let Tp be an optimal Steiner tree with respect to the set V' of
terminals in the input. Let T4 be the Steiner tree yielded by the STAR
algorithm.

Lemma 1 Let L(Ty4) be the set of loose paths in Ty. For any circular
ordering vy, ...,vyx of the terminals in Ta, there is a mapping p : L(Tx) —

V' x V' such that:

1. p is defined for all loose paths in Ta;

2. for each loose path P with end points u and v, let Ty and Ty be the two
trees obtained by removing from Ty all nodes in P (and their edges),
except u and v; then, u(P) = {v;,vis1} for some i =1,..., N and one
of the nodes v;, v;y1 belongs to Ty, while the other one belongs to Ts;

3. for each pair of terminals {v;, v;11} there are at most 2[log N'| 42 loose
paths mapped into {v;, viy1}.

Proof For convenience of presentation, we root Ty at any arbitrary terminal
node and direct edges from the root towards the leaves. Then, we denote
with v — v a path where u is closer to the root than v. Furthermore, for
any subtree T of Ty we shall denote with 7(T) the set of terminals belonging
to T'. The first step in defining the mapping is to find a labeling with good
properties, as follows.

For each loose path P = u — v let T,, and T, be the subtrees of T4
rooted at w and v, respectively. Let v; and v; be the two terminals having
the minimum absolute difference |i — j| among all pairs v;, v;, satisfying the
constraints v; € 7(T,) and v; € 7(T3,) \ 7(T,). Label P with the ordered pair
(i, 7). Iterate this procedure for all loose paths.

We now study some properties of this labeling. Let v; be any terminal
and let P; be the path connecting the root with v;. Consider the set of labels
occurring in P; of the kind (4, 5), where j > 4; let (i,i4 j1), ..., (i,i+ ji) be
the sequence of such pairs, ordered by non-decreasing j,’s. We prove that
Jra1 = 29n, h=1,... k — 1, which together with the fact that j,’s are not
larger than N implies k£ < [log N + 1.

Suppose by contradiction that there is h such that 5,1 < 2j, — 1. Let
P = u — v be the loose path closest to the root, between the loose paths

15

labeled with (i,7 + jn) and (i,i 4+ jn11). By the definition of the labeling,
{vis vigjp, Viggna b € T(Ty). There are two cases, either P is labeled with
(4,7 + jp) or P is labeled with (7,7 + jp41). In the former case, vy, ¢ 7(T5,)
and jpi1 — jn < jn. Hence, P would have been labeled (i 4+ jni1,7 + jn)-
In the latter case, viy;, , ¢ 7(T%) and ju11 — jn < Jja, which implies that P
would have been labeled (i + jp, i+ jn41). Therefore, in both cases we obtain
a contradiction.

In other words, we just proved that in the path between the root and any
terminal v;, the number of labels of the kind (7, j), where 7 > i, is at most
[log N + 1. From the way the labeling has been defined, as well as from
the fact that there is exactly one path between the root and any terminal, it
follows that in the whole tree Ty such labels can occur at most [log N + 1
times. Symmetrically, we can show that the number of labels of the kind
(1,7) where j < i, is bounded by the same quantity.

In order to obtain the desired mapping the labeling is refined in the
following way. Replace each label (i,7) with (i,4 + 1) if j > ¢ and with
(7,4 — 1) otherwise. Now, drop the ordering of the pairs, that is, turn each
label (4,7 + 1) into {4,7 + 1}. This implies that each label can occur at most
2[log N1 + 2 times. Finally, for each loose path P, define pu(P) = {v;,v;}
where {i,j} is the label of P. It is straightforward to see that the claimed
three properties are satisfied. [l

Theorem 1 The STAR algorithm is a (4[log N'| + 4)-approzimation algo-
rithm for the Steiner Tree problem.

Proof Consider a walk on Ty that uses each edge exactly twice and that
visits all nodes in Tp. Such a walk gives a circular ordering vy,...,vy of
the terminals, ordered according to their first occurrence in such a walk. We
have that

N
> dr, (vk, ver1) = 2w (To). (3.1)
k=1

Using Lemma 1, we define a mapping p with respect to the circular order-
ing vy, ...,vy. From property 2 of the mapping y and from the termination

condition of the STAR algorithm, it follows that for any loose path P = uw
n TA

dr, (u,v) < dr, (p(uv)), (3-2)

where dg, (u(uv)) is the distance, in the optimum solution, between the
two entries of p(uwv). Finally, we can write

16

w(Ta)= > dr,(u,0) (3.3)

uvELP(Ty)
< > dryp(uv) (3.4)
wv€LP(Ty)
N
< " (2Mlog N + 2]) dr,, (v, vks1) (3.5)
k=1
< (4[log N1+ 4) w(Tp). (3.6)

O

where inequality (3.4) follows from Equation 3.2, inequality (3.5) follows
from property 3 of the mapping u, and inequality (3.6) follows from Equa-
tion 3.1.

3.4 Time complexity

The algorithm as it has been presented might have exponential running time.
In fact, the cost of the tree might decrease at each step by an infinitesimally
small amount. Fortunately, this can be solved by using a relatively simple
“trick”, which guarantees that at each step a significant improvement on the
cost of the current tree is made.

Given € > 0, we introduce the improvement-quarantee rule, which is de-
fined as follows. Let P be a loose path, and let P’ be the path selected by
the algorithm to replace P; replace P’ if and only if w(P') < %. The
algorithm is then iterated until no loose path can be improved.

Let wpax and wpin be, respectively, the maximum and minimum cost of
the edges in the input graph. The following theorem shows that the STAR
algorithm with the improvement-guarantee rule is a pseudopolynomial algo-
rithm, namely its running time is polynomial if the ratio % is polynomial
in the size of the input. Let n,m, N denote, respectively, the number of ver-
tices, the number of edges, and the number of terminals in the input graph.

Lemma 2 Given ¢ > 0, the STAR algorithm with the improvement-

guarantee rule is guaranteed to terminate in O G%m) steps.
min

Proof Let T be the initial tree. We have that w(T) < mwpay. At any step
of our algorithm, let P be a loose path and let P’ be the path selected by the
algorithm to replace P. By the improvement-guarantee rule, it follows that

17

w(P) —w(P") > (1+e)w(P') —w(P') > ewnpin. (3.7)
Hence, the cost of the tree decreases at each step by at least ew,;,. This

gives a bound on the number of steps k, as follows

1 max
MWpax — kEWpin > 0 & k < Y m. (3.8)
€ Wmin

O

The next theorem shows a tradeoff between the approximation guarantee
of the STAR algorithm and its running time.

Theorem 2 Given ¢ > 0, the STAR algorithm with the improvement-
guarantee rule is a (1 + €)(4[log N| + 4)-approzimation algorithm for the
Steiner Tree problem. Its running time is O(1“=22m N (nlogn +m)).

Proof The time-complexity bound follows from Lemma 2 and from the fact
that at each step the STAR algorithm might invoke Dijkstra’s algorithm at
most 2N times (one for each loose path). To prove the approximation ratio,
it suffices to replace Equation 3.2 in Theorem 1 with

dTA (u’ U) < (1 + E)dTo (/L(UU)), (39)

and change the remaining equations accordingly. We include all steps for
completeness. We have that

= > dn(uv) (3.10)

wveL(Ta)

< Z 1 + €)dr, pu(uv) (3.11)
weL(Ta)
<> (1+¢€) (2[log N+ 2) dr,, (v, ves1) (3.12)
k—1
< (1+¢€) (4[log N| +4) w(Tp). (3.13)

O

18

3.5 Approximate Top-k Interconnections

As demonstrated in Algorithm 2, the weight of the loose path Ip upon which
the current tree T' is being improved serves as an upper bound for the weights
of new interconnecting paths between the subtrees of T that result from the
removal of [p from T'. The final result of the STAR algorithm, as given by
Algorithm 1, is a tree T" in which there is no loose path upon which 7T can
be improved.

In order to generalize STAR to an algorithm that can compute approxi-
mate top-k interconnections, we start from the final tree T returned by the
original STAR algorithm, which is stored in a priority queue (see lines 1-3
of Algorithm 3). While the size of this priority queue is smaller than k, we
keep on generating new trees from an artificial relaxation of the loose path
weights of the current tree.

Algorithm 3 getTopK (T, k)

. Q) : priority queue of trees

T = improveTree(T,V')

: Q.enqueue(T)

while).size < k do
T" = relax(T€)
T" = improveTree' (1", V')
T = reweight(T")
Q.enqueue(T)

end while

As shown in Algorithm 4, we artificially relax the weights of each loose
path [p in the current T' by adding a tunable value ¢ > 0. We denote
the tree with the relaxed loose path weights by 7’. We use these artificial
loose path weights as upper bounds for the weights of new interconnecting
paths between subtrees of the current tree 7" that result from the removal
of the corresponding loose path from 7. Then, in line 6 of Algorithm 3,
we call a modification of the method improveTree (see Algorithm 1) on the
input (77, V'). This modification takes care that during the improvement of
T’ upon one of its loose paths Ip the new interconnecting path is not the
same as [p. Note that this would always happen since the weight of Ip was
artificially increased, and in the underlying graph G the path Ip would still
be the shortest path connecting the two corresponding subtrees of T”. For
this purpose, we consider only interconnecting paths that are edge-disjoint
to Ip.

The method reweight (line 7) reweights the result of improveTree'. That

19

is, the weight of loose paths of 77 which were also loose paths in the previous
tree T is set back to its original value.

Algorithm 4 relax(T), ¢)

T = T.copy

for all Ip € LP(1") do
w'(Ip) = w(lp) + €

end for

return T"

20

4 Evaluation

We compare the STAR algorithm with the most well-known algorithms for
Steiner tree approximation. The algorithm [17] was the first to achieve a
2-approximation of the optimal Steiner tree. We refer to it as DNH (for
“distance network heuristic”). The second algorithm is BLINKS [10], which is
the newest and experimentally best algorithm in this field. We compared the
algorithms both in terms of the quality of the returned results and in terms
of their performance. The third algorithm is BANKS [4] and its improved
version BANKS II [14], which are state-of-the-art algorithms for keyword
proximity search on relational data. All experiments were performed on a 1.8
GHz Pentium machine with 1 GB of main memory and an Oracle Database
(version 9.1) as the underlying persistent storage for all on-disk experiments.
All implementations are in Java.

4.1 Comparison of STAR and DNH

The goal of the DNH algorithm is to compute a good approximation to the op-
timal Steiner tree for a given graph and given terminal nodes. The algorithm
has an approximation ratio of 2(1 — %), where n is the number of terminal
nodes. STAR, by contrast, has an approximation ratio of 4log(n)+4. These
bounds, however, are theoretical bounds for the worst case. Therefore, we
studied how the two algorithms perform in practice.

Datasets We use DBLP! for our experiments. The DBLP data can be
viewed as a graph, whose nodes represent entities (like author, publication,
conference etc.), etc. and whose edges represent relations (like cited_by, au-
thor_of, etc.). Since the DNH algorithm is designed to deal only with graphs
that can be loaded into main memory, we extracted a subgraph of the DBLP
graph with 10,000 nodes and 300,000 edges (dataset DBLP-1). Since the

!Data downloadable from http://dblp.uni-trier.de/xml

21

Method | # teminals | Avg. result | Avg. time (ms)
weight

STAR 3 7.3 67.7
DNH 7.5 3729.3
STAR 5) 11.95 303.9
DNH 12.45 16137.4
STAR 7 16.67 742.15
DNH 17.0 56421.6

Table 4.1: DBLP-1: Quality of answers and efficiency for STAR and DNH

original DBLP does not provide any edge weights, we used uniform weights
for DBLP-1. As the qualitative performance of DNH can be different in
weighted and unweighted graphs, we constructed a second dataset (DBLP-
2) with the same nodes and edges as DBLP-1 and with randomly chosen
edge weights between 0 and 1.

Queries We constructed three query sets with 3,5 and 7 terminals, re-
spectively. Each query set consists of 20 queries with the same number of
terminals. The terminals were chosen randomly from the graph.

Metrics We compare the weight of the top-1 tree returned by STAR (with-
out taxonomic information) to the weight of the tree returned by DNH. We
also measured the running times of the algorithms.

Results Table 4.1 shows the results of our experiments on DBLP-1. Col-
umn 3 shows the average weight of the result over the 20 queries in the query
sets returned by STAR and DNH. The average weight of the tree returned
by the STAR algorithm is consistently below the average weight of the tree
returned by DNH (for the same number of terminals) and thus consistently
better. We validated the statistical significance of the superiority of STAR
using a t-test at level a = 0.05 and conclude that despite its worse approxi-
mation ratio, STAR returns better results than DNH for these practical cases.
Column 4 shows the average runtime of the algorithms in milliseconds.

Table 4.2 shows that STAR outperforms DNH also in the case of weighted
edges.

22

1 2 3 4
Method | # terminals | Avg. result | Avg. time (ms)
weight
STAR 3 4.29 83.2
DNH 4.798 3854.05
STAR) 6.18 256.1
DNH 6.65 13022.2
STAR 7 8.10 783.35
DNH 8.84 58151.0

Table 4.2: DBLP-2: Quality of answers and efficiency for STAR and DNH

4.2 Comparison of STAR and BLINKS

BLINKS uses indexes in order to significantly speed up the query processing
time. However, in order to build these indexes and to subsequently use
them during run time, BLINKS requires the entire graph in main memory.
For this reason, we used again the DBLP dataset for the comparison. We
experimented with different block sizes and chose a block size of 100 nodes,
since this gave the best results. We used an implementation of BLINKS that
was kindly provided to us by the authors.

Metrics Since BLINKS wuses a different weight metrics (the match-
distributive semantics) and returns only the root nodes of the output trees,
we could not compare STAR and BLINKS by the weight of the output trees.
Hence, our comparison with BLINKS is only with the runtime of the algo-
rithms.

Queries Unlike DNH, BLINKS computes the top-k results for a query —
like the STAR algorithm. Hence, we compared the algorithms for different
values of k. Again, we constructed 3 query sets, each containing 30 random
queries with different numbers of terminal nodes (3,5,7). For each of the
query sets, we report the average runtime for retrieving the top 1, top 5 and
top 10 results.

Results Table 4.3 presents the runtime performance of STAR and BLINKS
on the DBLP-1 dataset. The results show that STAR outperforms BLINKS
in all cases by an order of magnitude. The reason for this is that the DBLP
dataset is relatively dense with an edge to node ratio of 30. This means

23

terminals | Avg. time Avg. time
STAR (ms) | BLINKS (ms)
top-1
3 69.2 870.53
5 314.53 2007.8
7 727.43 5189.37
top-5
3 787.67 5347.9
5 1808.03 13315.9
7 4419.9 32277.8
top-10
3 8363.6 36501.03
5 21463.0 89719.33
7 55013.2 257040.5

Table 4.3: DBLP-1: Efficiency of STAR and BLINKS

that the index structure of BLINKS may have a large number of partitions
with the same portal p. Whenever such a portal is reached, the number
of new cursors required to continue the search is equal to the number of
blocks for which p is a portal. Hence, if the dataset is very dense, it is
likely that a large number of cursors are required to complete the query
processing. The overhead of maintaining these cursors negatively affects the
overall performance.

By contrast, STAR has to maintain only two iterators per improvement
step. Furthermore, these iterators do not visit nodes that have a distance
from the source that is higher than the upper bound given by the loose path
to be replaced. Hence, a combination of a tight upper bound to prune the ex-
ploration as well as limited overhead in iterators allows STAR to outperform
BLINKS by such a large margin.

4.3 Comparison of STAR and BANKS

BANKS [4, 14] is a state-of-the-art algorithm in the field of proximity search
on relational data. Unlike the DNH algorithm and BLINKS, BANKS can be
applied efficiently and directly to graphs that do not fit into main memory.
Since such large graphs are also realistic scenarios for the Steiner tree prob-
lem, we decided to use a disk-resident dataset for the comparison of BANKS

and STAR.

24

3 terminals 6 terminals
top-1 STAR | STAR(BI) | BANKSI | BANKS II STAR | STAR(BI) | BANKSI | BANKS II
Avg. score 0.22 0.27 0.260 0.234 0.337 0.324 0.385 0.368
Avg. # acc. edges 6981 85931 84171 81462 9559 375523 372634 365004
Avg. run time (ms) | 12440.6 | 133917.2 131313.6 104148.5 15733.1 | 394794.4 391601.0 385401.5
top-3 STAR | STAR(BI) | BANKSI | BANKS II STAR | STAR(BI) | BANKSI | BANKS II
Avg. score 0.428 0.431 0.488 0.454 1.085 1.131 1.193 1.255
Avg. #acc. edges 18027 124566 153078 132141 27085 397004 460521 409414
Avg. run time (ms) | 34814.7 | 139462.3 190547.7 156535.3 41187.3 | 417303.1 483328.4 427276.3
top-6 STAR | STAR(BI) | BANKS T | BANKS II STAR | STAR(BI) | BANKSTI | BANKS II
Avg. score 2.102 2.309 2.453 2.441 3.315 3.541 4.148 4.031
Avg. # acc. edges 43474 138852 159130 175045 76259 447813 503054 491786
Avg. run time (ms) | 71058.2 | 159571.3 197543.7 205359.6 91157.2 | 475242.5 511811.0 491785.5

Table 4.4: YAGO: Quality of results and efficiency of STAR, STAR(BI),
BANKS I & 11

Dataset We chose the graph of the YAGO knowledge base [24]. It contains
1.7 million nodes and 14 million edges. Each edge corresponds to a fact in
YAGO, and has a confidence score between 0 and 1 associated with it. In
order to convert confidence scores into distance measures?, we weighted each
edge with —log(c) where c is the confidence of the edge. We store the graph
in an Oracle database with the simple schema

EDGE(source, target,weight)

To the best of our knowledge, this is the largest graph ever studied for the
Steiner tree problem.

YAGO contains a DAG-shaped taxonomy of type and subClassOf edges
(see Figure 1.1), which can be used by STAR in its first phase to construct
the initial tree. To give BANKS a fair chance, we ran STAR both with this
taxonomic information and without (STAR(BI)).

We implemented both BANKS I [4] and its improved version BANKS 1T
[14] in Java following their descriptions for main-memory procedures. When-
ever the algorithm explores a new edge, we loaded the edge from the database.
This way, BANKS and STAR were treated uniformly as far as the overhead
for database calls is concerned.

Queries We generated 2 sets of queries with 3 and 6 terminals each. Each
query set consisted of 30 queries with randomly chosen terminal nodes. We

2That is, an edge with high confidence should have correspondingly low weight since
the result trees returned are trees with low weights.

25

measured the performance of the algorithms for the top-1, top-3 and top-6
results.

Metrics We measured both the quality of the output trees and the ef-
ficiency of the algorithms. As for the quality of the trees, we report the
average weight of the top-k results. As for efficiency, we report the running
times and also the number of edges accessed during the query executions.

Results Table 4.4 shows the results for the performance of STAR, STAR
(BI) with BANKS T heuristics for initialization, BANKS I, and BANKS II.
Concerning the quality of the output trees, STAR and STAR(BI) return
better results across all values for k and all sets of queries.

As for the efficiency of the algorithms, we note that STAR is an order of
magnitude faster than the other algorithms. This is also reflected directly in
the number of edges accessed by each algorithm: STAR access an order of
magnitude fewer edges than its competitors. This clearly shows the enormous
gains that can be made by exploiting the taxonomic structure of the tree to
construct the initial result.

But even if the taxonomic structure is not exploited (STAR(BI)), our
algorithm accesses far fewer edges than both BANKS I and BANKS II for
k > 1. For k=1, STAR(BI) is essentially BANKS I. However, in all other
cases (i.e. k > 1), STAR(BI) is faster than its competitors. The main
reason for the drastic increase of the number of visited edges by BANKS I
and BANKS II with growing number of terminals is that the single-source-
shortest-path iterators of BANKS I and BANKS II visit all possible edges
in a breadth-first manner. There is no upper bound on which the number of
visited edges can be pruned. In the case of STAR and STAR(BI), the weight
of the loose path upon which the current tree is being improved serves as a
tight upper bound for new interconnecting paths, and prunes the number of
visited edges effectively.

4.4 Summary of results

We compared STAR to 3 different state-of-the-art algorithms. Some of these
algorithms come with specific constraints: The DNH algorithm, for example
can only handle graphs that fit into main memory and can produce only top-
1 results. BLINKS uses indexes and a different metrics and hence cannot
give an approximation guarantee. In all experiments, STAR outperforms its
competitors.

26

In summary, we have shown that the results returned by STAR are not
only better than those returned by BANKS I and II, but also better than the
results returned by a 2-approximation algorithm. We have also shown that
STAR has superior runtime performance in memory compared to BLINKS.
The reason for this efficient performance is three-fold: i) STAR uses the
taxonomic structure of the graph when possible to quickly return an initial
result which is then improved, ii) STAR requires only two iterators per im-
provement step (independent of the number of terminals), and iii) STAR uses
fairly tight upper bounds on the length of the paths and prunes the possible
paths that can be included in the result tree.

27

5 Conclusion

This paper has addressed the problem of efficiently answering relationship
queries over large entity-relation-style data graphs. The STAR algorithm
can exploit taxonomic structures that are inherent in many knowledge-base
graphs (e.g., the isA hierarchy) for fast computation of an initial seed so-
lution. However, it does not depend on this option, and can use other ini-
tializations as well. Its main power for efficiency and result quality comes
from iteratively improving the seed tree by a very fast all-pairs shortest-path
algorithm for subtrees defined by the notion of loose paths.

We proved that STAR is an O(logn) approximation for the optimal
Steiner tree, which is significantly better than the worst-case approximation
quality given by prior database methods [4, 14]. While the DNH method for
in-memory graphs has a much better worst-case approximation guarantee
than STAR, our experiments give evidence that STAR achieves at least the
same result quality (Steiner tree weight) as DNH and all database methods
or better on practically relevant datasets.

As for run-time, STAR outperformed all opponents by a large margin,
often by an order of magnitude. This holds for both the in-memory case and
on-disk graphs with a size that could be handled only by a subset of the prior
methods.

The motivation for this database-algorithmic work has been to support
graph-based information retrieval and knowledge queries over large datasets
in the spirit of [15]. Our future work will look into more complex search
patterns over this kind of rich relationship-graphs, using STAR as a key
building block.

28

Bibliography

1]

[10]

A. Adya, J. A. Blakeley, S. Melnik, and S. Muralidhar. Anatomy of
the ado.net entity framework. In SIGMOD Conference, pages 877-888,
2007.

S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for
keyword-based search over relational databases. In Proc. of ICDE, 2002.

K. Anyanwu, A. Maduko, and A. P. Sheth. Sparq2l: towards support for
subgraph extraction queries in rdf databases. In WWW, pages 797-806,
2007.

G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using BANKS. In Proc.
of ICDE, 2002.

B. Ding, J. Yu, S. Wang, L. Qing, X. Zhang, and X. Lin. Finding top-k
min-cost connected trees in databases. In Proc. of ICDE, 2007.

S. Dreyfus and R. Wagner. The steiner problem in graphs. In Networks,
1972.

O. Faroe, D. Pisinger, and M. Zachariasen. Local search for final place-
ment in vlsi design. In ICCAD, pages 565-572, 2001.

C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
1998.

J. Graupmann. The SphereSearch Engine for Graph-based Search on
heterogeneous semi-structured data. PhD thesis, Universitat des Saar-
landes, May 2006.

H. He, H. Wang, J. Yang, and P. Yu. BLINKS: Ranked keyword searches
on graphs. In Proc. of SIGMOD, 2007.

29

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

V. Hristidis, L. Gravano, and Y. Papakonstantinou. FEfficient ir-style
keyword search over relational databases. In Proc. of VLDB, 2003.

V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in
relational databases. In Proc. of VLDB, 2002.

E. Thler. Bounds on the quality of approximate solutions on the
group steiner tree problem. In 16th International Workshop on Graph-
Theoretic Concepts in Computer Science, 1991.

V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In Proc. of VLDB, 2005.

G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum.
NAGA: Searching and Ranking Knowledge. In 24th International Con-
ference on Data Engineering (ICDE 2008). IEEE, 2008.

B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers
in keyword proximity search. In PODS, pages 173-182, 2006.

L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner
trees. volume 15, pages 141-145, June 1981.

U. Leser. A query language for biological networks. Bioinformatics,
21(2):33-39, 2005.

W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Retrieving and or-
ganizing web pages by “information unit”. In WWW, pages 230-244,
2001.

W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Query relaxation by
structure for retrieval of logical web documents. In IEEFE Transactions
on Knowledge and Data Engineering, 2002.

K. Mehlhorn. A faster approximation algorithm for the steiner problem
in graphs. Inf. Process. Lett., 27(3):125-128, 1988.

R. B. Muhammad. A parallel local search algorithm for euclidean steiner
tree problem. In SNPD-SAWN °06: Proceedings of the Seventh ACIS In-
ternational Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, pages 157-164, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

30

[23] C. Plake, T. Schiemann, M. Pankalla, J. Hakenberg, and U. Leser. Ali
baba: Pubmed as a graph. Bioinformatics, 22, 2006.

[24] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic
Knowledge. In Proc. of WWW, 2007.

[25] S. Trissl and U. Leser. Fast and practical indexing and querying of very
large graphs. In Proc. of SIGMOD, 2007.

31

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85

66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-2008-5-001 G. Kasneci, M. Ramanath, M. Sozio,

F. M. Suchanek, G. Weikum
T. Hillenbrand, C. Weidenbach

STAR: Steiner Tree Approximation in
Relationship-Graphs

MPI-1-2007-RG1-002 Superposition for Finite Domains

MPI-I1-2007-5-003

F.M. Suchanek, G. Kasneci,

Yago : A Large Ontology from Wikipedia and WordNet

G. Weikum
MPI-I-2007-5-002 K. Berberich, S. Bedathur, A Time Machine for Text Search
T. Neumann, G. Weikum
MPI-1-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim, NAGA: Searching and Ranking Knowledge
M. Ramanath, G. Weikum
MPI-1-2007-4-008 J. Gall, T. Brox, B. Rosenhahn, Global Stochastic Optimization for Robust and
H. Seidel Accurate Human Motion Capture
MPI-1-2007-4-007 R. Herzog, V. Havran, K. Myszkowski, Global Illumination using Photon Ray Splatting
H. Seidel
MPI-1-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt, GPU Marching Cubes on Shader Model 3.0 and 4.0
H. Seidel
MPI-1-2007-4-005 T. Schultz, J. Weickert, H. Seidel A Higher-Order Structure Tensor
MPI-1-2007-4-004 C. Stoll A Volumetric Approach to Interactive Shape Editing
MPI-1-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A Nonlinear Viseme Model for Triphone-Based Speech

Synthesis

MPI-1-2007-4-002 T. Langer, H. Seidel Construction of Smooth Maps with Mean Value
Coordinates
MPI-1-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered Stochastic Optimization for Object

Recognition and Pose Estimation

MPI-1-2007-2-001 A. Podelski, S. Wagner A Method and a Tool for Automatic Veriication of
Region Stability for Hybrid Systems

MPI-1-2007-1-002 E. Althaus, S. Canzar A Lagrangian relaxation approach for the multiple
sequence alignment problem

MPI-1-2007-1-001 E. Berberich, L. Kettner Linear-Time Reordering in a Sweep-line Algorithm for
Algebraic Curves Intersecting in a Common Point

MPI-1-2006-5-006 G. Kasnec, F.M. Suchanek, Yago - A Core of Semantic Knowledge

G. Weikum
MPI-I-2006-5-005 R. Angelova, S. Siersdorfer A Neighborhood-Based Approach for Clustering of

MPI-I-2006-5-004

. Suchanek, G. Ifrim, G. Weikum

Linked Document Collections

Combining Linguistic and Statistical Analysis to
Extract Relations from Web Documents

MPI-1-2006-5-003 V. Scholz, M. Magnor Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns
MPI-1-2006-5-002 H. Bast, D. Majumdar, R. Schenkel, IO-Top-k: Index-access Optimized Top-k Query
M. Theobald, G. Weikum Processing
MPI-1-2006-5-001 M. Bender, S. Michel, G. Weikum, Overlap-Aware Global df Estimation in Distributed
P. Triantafilou Information Retrieval Systems

MPI-1-2006-4-010

MPI-I-2006-4-009

MPI-I-2006-4-008

MPI-1-2006-4-007

MPI-I-2006-4-006

MPI-I-2006-4-005
MPI-1-2006-4-004

MPI-1-2006-4-003

MPI-I-2006-4-002

MPI-1-2006-4-001

MPI-I-2006-2-001

MPI-1-2006-1-007
MPI-I-2006-1-006

MPI-I-2006-1-005
MPI-1-2006-1-004

MPI-I-2005-5-002

MPI-I-2005-4-006

MPI-I-2005-4-005

MPI-1-2005-4-004

MPI-1-2005-4-003

MPI-I-2005-4-002

MPI-1-2005-4-001

MPI-1-2005-2-004

MPI-1-2005-2-003
MPI-I-2005-2-002
MPI-1-2005-2-001
MPI-I-2005-1-008

MPI-1-2005-1-007

MPI-I1-2005-1-003

MPI-I-2005-1-002
MPI-1-2005-1-001

A. Belyaev, T. Langer, H. Seidel

J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

1. Albrecht, M. Kipp, M. Neff,
H. Seidel

O. Schall, A. Belyaev, H. Seidel

C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

A. Belyaev, H. Seidel, S. Yoshizawa
V. Havran, R. Herzog, H. Seidel

E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

A. Efremov, R. Mantiuk,
K. Myszkowski, H. Seidel

T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

H. Bast, I. Weber, C.W. Mortensen
M. Kerber

A. Eigenwillig, L. Kettner, N. Wolpert

S. Funke, S. Laue, R. Naujoks, L. Zvi
S. Siersdorfer, G. Weikum
C. Fuchs, M. Goesele, T. Chen,

H. Seidel
G. Krawczyk, M. Goesele, H. Seidel

C. Theobalt, N. Ahmed, E. De Aguiar,

G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

T. Langer, A.G. Belyaev, H. Seidel
O. Schall, A. Belyaev, H. Seidel
M. Fuchs, V. Blanz, H. Lensch,

H. Seidel

Y. Kazakov

H.d. Nivelle

P. Maijer, W. Charatonik, L. Georgieva

J. Hoffmann, C. Gomes, B. Selman

C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

I. Katriel, M. Kutz

S. Baswana, K. Telikepalli

I. Katriel, M. Kutz, M. Skutella
D. Michail

MPI-I-2004-NWG3-001 M. Magnor

Mean Value Coordinates for Arbitrary Spherical
Polygons and Polyhedra in R3

Interacting and Annealing Particle Filters:
Mathematics and a Recipe for Applications

Gesture Modeling and Animation by Imitation

Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

Skeleton-driven Laplacian Mesh Deformations

On Fast Construction of Spatial Hierarchies for Ray
Tracing

A Framework for Natural Animation of Digitized
Models

GPU Point List Generation through Histogram
Pyramids

Design and Evaluation of Backward Compatible High
Dynamic Range Video Compression

On Verifying Complex Properties using Symbolic Shape
Analysis

Output-Sensitive Autocompletion Search

Division-Free Computation of Subresultants Using
Bezout Matrices

Snap Rounding of Bézier Curves

Power Assignment Problems in Wireless
Communication

Automated Retraining Methods for Document
Classification and their Parameter Tuning

An Emperical Model for Heterogeneous Translucent
Objects

Photometric Calibration of High Dynamic Range
Cameras

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

Analysis and Design of Discrete Normals and
Curvatures

Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

Reflectance from Images: A Model-Based Approach for
Human Faces

A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

Using Resolution as a Decision Procedure
Bounded Model Checking of Pointer Programs
Bottleneck Behavior in CNF Formulas

Cycle Bases of Graphs and Sampled Manifolds

A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

Reachability Substitutes for Planar Digraphs
Rank-Maximal through Maximum Weight Matchings

Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-1-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

