1084-4627/09 $25.00 © 2009 IEEE
DOI 10.1109/ICDE.2009.79

IEEE International Conference on Data Engineering

Efficient Distribution of Full-Fledged XQuery

Ying Zhang

Nan Tang

Peter Boncz

CWI, Amsterdam, The Netherlands
{Y.Zhang, N.Tang, P.Boncz}@cwi.nl

Abstract— We investigate techniques to automatically decom-
pose any XQuery query into subqueries, that can be executed
near their data sources; i.e., function-shipping. In this scenario,
the subqueries being executed remotely may have XML node-
valued parameters or results, that must be shipped in some
way. The main challenge addressed here is to ensure that the
decomposed queries properly respect XML node identity and
preserve structural properties, when (parts of) XML nodes are
sent over the network, effectively copying them.

We start by precisely characterizing the conditions, under
which pass-by-value parameter passing causes semantic differ-
ences between remote execution of an XQuery expression and
its local execution. We then formulate a conservative strategy
that effectively avoids decomposition in such cases. To broaden
the possibilities of query distribution, we extend the pass-by-
value semantics to a pass-by-fragment semantics, which keeps
better track of node identities and structural properties. The
pass-by-fragment semantics is subsequently refined to a pass-by-
projection semantics by means of a novel runtime XML projection
technique, which safely eliminates most semantic differences
between the local and remote execution of an XQuery expression,
and strongly reduces message sizes.

The proposed techniques are implemented in XRPC, a simple
yet efficient XQuery extension that enables function-shipping
by adding a Remote Procedure Call mechanism to XQuery.
Experiments on MonetDB/XQuery establish the performance
potential of our XQuery decomposition techniques.

I. INTRODUCTION

In this paper, we study ways to decompose any XQUERY
query that consults multiple XML documents residing on
multiple peers into subqueries that can be executed on those
peers, in other words, function shipping. In principle, we do
not want to restrict the form of these queries in any significant
way: the full-fledged XQUERY language is our decomposition
starting point. The goal of this paper is to be able to exploit
the computational power of (heterogeneous) XQUERY engines
on the Web to jointly execute XQUERY queries.

Note that XQUERY already allows queries over distributed
sources through its support for W3C standards, in particular,
the ability to open any document on the Web through its
fn:doc(uri) built-in function. However, the execution model
implied by those W3C standards (such as HTTP) is data
shipping, i.e., the transportation of a full XML document from
a remote to the querying peer. This means that all query
execution happens locally, i.e., at the query originator. It is
well known that in many cases this is suboptimal.

Decomposing queries to address multiple data sources is a
well-studied optimization problem in relational [28], object-
oriented [13], [17], and semi-structured databases [24], [25].
While it is natural (and true) to assume that many of the

565

existing techniques can be carried over, the XML data model
and the XQUERY language introduce a number of particular
challenges not met elsewhere, that revolve around XML node
identity and structural (rather than value-based) relationships
between nodes. Previous work on distributed XML [6], [7], [26]
only focused on a restricted set of XQUERY queries, and did
not address the problem of transparent query decomposition,
such that these challenges did not play a role.

Shipping XML Messages. Without loss of generality, we view
the subexpressions to be executed by remote peers as XQUERY
functions, that may have parameters and produce a result.
During remote function execution, the calling peer (e.g., query
originator) will send a request message containing parameters
to a remote peer, which executes the subexpression, and sends
back a response message containing the result. To illustrate the
challenges of distributing XQUERY, yet preserving XML node
identity, consider a subexpression f($a,$b) with two parameters
$a and $b of the type node(), that is executed remotely. Com-
plications may arise, for instance, if the subexpression f() tests
structural XML relationships among its parameters, such as
“$a/parent::bis $b”. It therefore depends on the characteristics
of the subexpressions f as well as on the way parameters are
marshaled in and out of the network messages whether f will
behave correctly, that is, identical to local XQUERY execution
(note that blindly copying all parameters into the message does
not work in this example).

When XML nodes must be shipped over the network,
this means that unless one chooses to ship the entire un-
derlying XML document in order to preserve all structural
relationships (which defeats the purpose of function shipping),
pieces/snippets of the underlying XML document must some-
how be copied into the messages, changing the “holistic” struc-
tural properties and identity of the nodes, which may affect
the semantics of XQUERY execution on such shipped nodes.
Naively, when shipping a node, one would ship its descendants
(XML subtree), but other solutions are also possible, and will
in fact be proposed in this paper (in particular the idea to use
XML projection techniques).

XRPC. While our problem statement covers distributed
XQUERY in general, this research stems from the particular
context of the XRPC project [30], [31]. XRPC adds the concept
of Remote Procedure Call to XQUERY by introducing a single
new statement: execute at {Expr}{FunApp(ParamList)}, where
Expr specifies the URI (either a constant or a computed one)
of the peer, on which FunApp() will be executed. It also
supports an xrpc:// scheme in the URI parameter of the fn:doc()

IEEE
computer
psoaety

function to serve over HTTP the remote document D, given the
URL xrpc://host/D. Another feature is bulk RPC, that allows to
handle multiple calls to the same function (but with different
parameters) in a single network interaction. Bulk RPC is
exploited when a query contains a function call nested in
an XQUERY for-loop, which in a naive implementation would
lead to as many synchronous RPC network interactions as loop
iterations. XRPC is implemented in MonetDB/XQuery [4], an
open source XQUERY engine, which we use for experimental
evaluation.

Figure 1 shows a query (. that performs a single XRPC
function call to fcn(), with a single parameter (a node $n
from some document D). To make an XRPC call, the local
peer formulates a SOAP request message (Simple Object
Access Protocol is the XML-based message format used for
webservices [11], [12], [19]), which contains a deep copy P of
the node $n. That is, XRPC follows the previously mentioned
approach of copying the XML subtree of a node parameter;
this implies a pass-by-value parameter passing strategy. The
message is sent as a synchronous HTTP POST request. The
remote peer runs a HTTP server, which parses the request
message and constructs a separate XML fragment for each node
parameter (in this example a single fragment P’). The remote
peer then evaluates the function and again serializes the result
into a response message (here, a deep copy of the result node,
denoted R). Finally, the local peer parses the response message
and constructs a separate XML fragment for each node-typed
result (here R'), which is the result of Q..

Problem Statement. Our goal is to rewrite an XQUERY () that
uses XML documents with xrpc:// URIs stored at remote peers,
into an equivalent @)’ that uses XRPC calls to execute parts of
the query (expressed as XQUERY functions) on those remote
peers. For a query @, Q(D) denotes the result of evaluating @
over a (possibly distributed) database D. Two queries @ and
Q' are equivalent, if Q(D) = Q'(D) for any given database
D (the XQUERY deep-equal semantics).
We illustrate XQUERY decomposition as follows:
for $e in doc(“employees.xml”)//emp

where $e/@dept = doc(“xrpc://example.org/depts.xml”)//dept/ @ name
return $e

the URL xrpc://example.org/depts.xml implies that the remote
peer example.org supports XRPC, to which the predicates could
be pushed as:

declare function fcn($n as xs:string) as xs:boolean
{ $n = doc(“depts.xml”)//dept/ @name };

for $e in doc(“employees.xml”)//femp
where execute at { “example.org” } { fcn($e/@dept) } return $e

In this example, the parameter and return value of the function
fen() are of atomic types. In more complex cases, nodes may
be involved, such that potential semantic differences due to
pass-by-value should be considered (discussed in Section II),
which is our main challenge.

Contributions & Roadmap. Section II identifies the semantic
differences of remote XQUERY pass-by-value function eval-
uation with respect to standard, local, function evaluation.

Qe : execute at {Expr}

{fen(Sn) }

SOAP request /response HTTP server
|

Y

/‘ Shred
D\ | request message
Serialize
request message Local Function Evaluation
Shred 7 Serialize
response message \ response message
XRPC Client \ XRPC Server
’
Result of Q.

Fig. 1. XQUERY Remote Procedure Execution under Pass-by-value

Section III describes an XQUERY CORE based query decompo-
sition framework. This leads in Section IV to a conservative
XQUERY decomposition strategy that avoids semantic prob-
lems simply by refraining from decomposition in all problem
cases. To make our rewrites more effective and robust against
syntactic variation, we also describe normalization and code
motion rewrite strategies. As a second contribution, Section V
extends the pass-by-value semantics with a new pass-by-
fragment message format, which conserves more structural
relationships between nodes passed in a message, and allows
more predicates to be distributed. Section VI then introduces a
new runtime XML projection technique, which we use to gen-
erate messages that conserve all needed structural relationships
between transferred XML nodes, and thus allow even more
freedom in query decomposition. As a runtime technique, it is
able to prune XML data much more than previously described
compile-time projections [3], [5], [15]. An evaluation of the
performance benefits of our techniques is given in Section VII.
Finally, we discuss related work in Section VIII and conclude
in Section IX with outlook on future work.

declare function makenodes() as node()

{Ua) (o) (e/)(/b)(/a)/b }; > node (b)(c/){/b) has parent::a

declare function overlap($! as node(), $r as node()) as boolean
{ not(empty($I//+ intersect $r//x)) }; > are $l and $r related?

declare function earlier($l as node(), $r as node()) as node()
{ if (l<$r) then $I else $r };

let $bc := makenodes(),
$abc := $bc/parent::a
return (for $node in ($bc, $abc)
let $first := earlier($bc, $abc)
where overlap($first, $node)
return $node)//c

> $bc has a parent $abc

> always $abc
> always overlap
> returns only one (c/)

TABLE I
EXAMPLE QUERY Q1

II. SEMANTIC DIFFERENCES OF PASS-BY-VALUE

There are well-defined semantic differences [30] between
evaluating an XQUERY expression locally and executing it
remotely under pass-by-value parameter passing. We discuss
these differences with a query ()1 in Table I. This query
evaluates three functions: makenodes(), overlap() and earlier().

Problem 1: Non-downward XPATH steps. Reverse and
horizontal XPATH axis navigation (e.g., parent, ancestor,
preceding(-sibling) and following(-sibling)) from remote func-
tion parameters always produces empty results, as pass-by-
value node serialization only includes the descendants of a
node inside the message. Consider the following:

566

let $bc := execute at {“example.org”} {makenodes()},
$abc := $bc/parent::a

here, $abc evaluates to the empty sequence, instead of the
correct a-node (a)(b){c/){/b)(/a).

It is possible to evaluate downward XPATH steps on a
sequence of remote nodes, but only if we are sure that these
nodes are ordered and non-overlapping (otherwise, the results
of such XPATH steps will fail to respect node identity and
order, as described below).

Problem 2: Node identity comparisons. If a remote function
returns a sequence with two identical nodes, or two identi-
cal nodes are passed as function parameters, pass-by-value
represents them as two different copies. This leads to the
duplicate elimination problem described just above, and any
node identity comparison will always yield false. For instance:

where execute at {“example.org”}{overlap($first, $node)}

yields false, while the local query evaluation gives true.

Problem 3: Document order. The parameters of a function call
on a remote peer are serialized into the message in parameter
order, in separate XML fragments. Even if the parameter nodes
are disjoint (making Problem 2 irrelevant), the relative order
between these XML fragments may differ from their original
order. Thus, inter-parameter node comparisons (“<”, “>>")
may behave differently from the local semantics. Consider the
usage of earlier() in ()1 as:

let $first := execute at{“example.org”} {earlier($bc,$abc)}

In both iterations, the variable $first binds to a copy of $bc,
instead of $abc, although $abc is the parent of $bc.

Problem 4: interaction between different calls. Additional
semantic differences can occur when XQUERY subexpressions
(sequences) may contain nodes that were obtained as results
from different remote function calls, and these function calls,
directly or indirectly, accessed the same XML document on
some peer. Node sequences can become intermixed by any
XQUERY construct that accepts multiple inputs, namely: se-
quence construction, and the built-in functions union, except,
and intersect. A special source of call-mixing is the return
clause of a for- loop in which remote function evaluation
is performed, because the return clause implicitly creates a
sequence that concatenates the expression result of all loop
iterations (each of which performed a semantically separate
remote function call). The result of such “mixed-call expres-
sions” is that nodes returned by different calls may in fact stem
from the same document; however node identity and ordering
between nodes from different calls is not preserved, leading to
semantic differences. For example, even if a downward XPATH
step is applied on an input sequence containing nodes obtained
from different remote calls, the result can have the wrong order
(placing the results from the first call always before those of
the second call) and will fail to properly eliminate duplicates:
(for $node in ($bc, $abc)

let $first := execute at {“example.org”}{earlier($node,$abc)}
return $node)//c

The above two XRPC calls produce nodes belonging to sepa-

1. Expr i:= ExprSingle | ExprSeq
2: ExprSeq = “()" | ExprSingle (%,” EzprSingle)+
3: EuprSingle = Literal | VarRef | ForExpr | LetExpr | IfExpr
| Typeswitch | CompExpr | OrderExpr | StepExpr
| NodeSetEzpr | Constructor | FunCall
4: VarRef = “$7Var
5. Var = QName
6: ForExpr = “for” “§”Var “in” ExprSingle “return” ExprSingle
7: LetExpr = “et” “$”Var “=" ExprSingle “return” EzprSingle
8: IfExpr “if” “(” Expr “)” ThenBElse
9: ThenFElse “then” ExprSingle “else” ExprSingle
10: Typeswitch “typeswitch” “(”Expr*)” CaseClause+

“default” “$”Var “return” EzprSingle
“case” “$”Var “as” SequenceType “return” EzprSingle
12: CompExpr ExprSingle (ValueComp | NodeCmp) EzprSingle
13: ValueComp = “=7 | 4=" | “<” | “<=7 | 57| >=?
14:NodeCmp = “is” | “«7 | “>7
15: OrderExpr = EzprSingle “order by” OrderSpecs
16: OrderSpecs ::= ExprSingle (“ascending” | “descending”)(, OrderSpecs) *
17: NodeSetExpr ::= Ezpr NodeSetOp Expr
18: NodeSetOp “uni “intersect” | “except”
19: Constructor = (“document” | “text”) “{” Expr “}”
| (“element”| “attribute”) (QName | “{”Expr“}”) “{”Expr}”
“/7 | AwisStep “:” NodeTest
RevAwis | FwdAwis | HorAwis

11: CaseClause

20: StepExpr
21: AzisStep

22: RevAwis “ancestor” | “ancestor-or-self” | “parent”

23: FwdAwis “self 7| “child” | “attribute”
“descendant” | “descendant-or-self”

24: HorAwis “preceding” | “preceding-sibling”

“following” | “following-sibling”
“node()” | “text()” | @Name | “”
QName “(7 (EzprSingle (%" ExprSingle) x)? “)”

TABLE II
GRAMMAR OF EXTENDED XCORE RULES

25: NodeTest
26: FunCall

rate XML fragments. Under pass-by-value, evaluating //c pro-
duces two separate copies of ¢ nodes, while in local execution
the nodes returned from earlier() are from the same XML
fragment, such that XPATH steps return a duplicate-free result.

Problem 5: XQUERY built-in functions. Various problems may

occur when evaluating certain built-in functions remotely.

1) static-base-uri(), default-collation() and current-datetime():
depend on the static XQUERY context.

2) base-uri() and document-uri(): depend on the dynamic con-
text of node expressions.

3) root(): accesses the document root.

4) id() and idref(): return all nodes in a document with certain
id/idref values.

Class 1 of above built-in functions is handled by extending
the XRPC message format with extra attributes such that the
remote side can declare identical values for these context
attributes. Class 2 is dealt with by adding these proper-
ties as attributes in the XRPC nodes (such as xrpc:element)
that enclose serialized parameter/result nodes in the SOAP
messages. Use of the fn:base-uri() and fn:document-uri() in
XRPC is substituted by xrpc:base-uri() and xrpc:document-uri()
wrappers that take these attributes into account when invoked
on XRPC parameter nodes. As solutions for Class 1-2 are
available, the main problem with built-in functions is posed
by Classes 3-4, which return non-descendants of parameter
nodes, and thus cannot be supported with pass-by-value.

In the remainder, we present decomposition techniques and
extensions to enhance the pass-by-value semantics, that solve
these problems.

III. XQUERY CORE REWRITE FRAMEWORK

XQUERY CORE [8] (abbreviated XCORE) is a subset of
XQUERY, in which all implicit operations are made explicit.

567

We adopt a subset of XCORE expressions in Table II, which
is sufficient to capture XPATH 1.0 and XQUERY FLWOR
expressions [8]. We use a representation of XPATH paths in our
XCORE grammar that keeps consecutive steps together, rather
than nesting each step in a separate for-loop (when allowed
— the use of position() precludes this). Such an optimization
is common in XQUERY engines, and is part of XQUERY
normalization, further described in Section IV. Additionally,
we define two new rules for the XRPC extension [30]:

27: XRPCExpr
28: XRPCParam ::

“excute at” “{”EzprSingle“}” “function” XRPCParam “{”Expr‘}”
“O07 | “(7 “§"Var “=" VarRef (*.” XRPCParam)?)"

Rule 27 identifies an xrpc:// URI in expression ExprSingle, and
declares a new anonymous function that is to be executed
remotely. It is noticeable that these grammar rules lack the
expressive power to define recursive functions. This does
not matter for XQUERY decomposition, as our decomposition
strategies will not generate recursive functions. We also note
that the syntax defined by rules 27 and 28 differs from the
actual XRPC syntax (execute at {Expr}{FunApp(ParamList)}).
The syntax used here is only for presentation purpose, to
avoid the need to define all rules concerning declaration of
user-defined functions. Thus, our simple XCORE rule without
explicit user-defined function declarations allows to express
all queries in a single Expr, which in turn can be mapped to a
query graph. This simplifies the formulation of analysis steps.

A. XCore Dependency Graph

We introduce a dependency graph (d-graph) for an XCORE
query. Consider the XQUERY query (o in Table III, which
asks for the grade in course42 of students having a tutor who
is also a student, and its XCORE equivalence ()5.

A dependency graph is a directed, ordered and connected
graph G with vertices V(G) and edges F(G). Each vertex v is
denoted as v;:rule[val], where v; is a unique vertex identifier,
rule is the grammar rule represented by v;, and val is an
optional value indicating the right-hand-side of rule. There
is a single root vertex without incoming edges. F/(G) consists
of parse edges F,(G) and varref edges F,(G). Each parse
edge is an ordered vertex pair (u,v), where u corresponds to
a parsing rule r,, that directly causes the use of another parsing
rule r,,. A varref edge is an ordered vertex pair (w, «) denoting
a variable usage. When a VarRef rule is used, an additional
edge is created between the VarRef vertex and the Var vertex
that defines the variable.

Example 3.1: Figure 2 shows the d-graph of Q)5 in Table II1.
Solid and dashed lines represent parse and varref edges,
respectively. For instance, the variable binding in the first
let expression corresponds to vertices va, . .., vy, and vertices
vg, - , U39 depict its return clause. The edge (v4,v5) is a
parse edge. The edge (vso,vg) is a varref edge, as the variable
used by v3g is a reference of variable $c introduced by vy.
Thus, a d-graph is in essence a parse-tree with additional
(dashed) edges to indicate variable usages.

We define three types of dependency relationships upon the
reachability between two vertices z,y in V(G): (1) = “parse-

568

vy:/person

vs:/people
v :FunCallfdoc]

vy : Literal|
/students.zml]

Fig. 2. D-graph

basic XQUERY query
(let $s := doc(“xrpc://A/students.xml”)/people/person,
$c := doc(“xrpc://B/coursed2.xml’),
$t := $s[tutor = $s/name]
for $e in $c/enroll/exam
where $e/@id = $t/id
return $e)/grade

@2

XCORE variant
(let $s := doc(“xrpc://A/students.xmI”)/child::people/child::person return
let $¢ := doc(“xrpc://B/course42.xml”) return
let $t := for $x in $s return
if ($x/child::tutor = $s/child::name) then $x else ()
return for $e in $c/child::enroll/child::exam return
if ($e/attribute::id = $t/child::id) then $e else ())/child::grade
normalized XCORE variant
(let $t := (et $s := doc("xrpc:/7A/students.xmI")/child::people/child::person
return for $x in $s return
if ($x/child::tutor = $s/child::name) then $x else ())
return for $e in (let $c := doc(“xrpc://B/course42.xml” Q2
return $c/child::enroll/child::exam)
return if ($e/attribute::id = $t/child::id) then $e else ())/child::grade

TABLE 11T
EXAMPLE QUERY Q2

Q3

depends on” y, denoted as = 2 y, if y is reachable from x
via only parse edges; (2) z “varref-depends on” y, denoted as
T~ y, if y is reachable from x via at least one varref edge;
and (3) x “depends on” y, denoted as z~-y, if either % y or
x~>1 holds. The compositional nature of XQUERY means that
x ~»y concisely captures all semantic dependencies between
subexpressions.

Consider Figure 2, wis L v1g, since (vis,v16) IS a
parse edge; vis s v3, as vz 18 reachable from w5 via
(U157 1)16)7 (1}16, 1)3) and (1)16, Ug) is a varref edge.

For a d-graph G and a vertex r; € V(G), we use the
term subgraph to mean the vertex-induced subgraph of rg,
including r, and all v € V(G) where ry $ouy 1y is called
the root of the subgraph. For instance, the subgraph rooted at
vertex vog contains vertices vqg, - - - Usg, but does not contain
vertices v13, . .., vas. Throughout this paper, we use the terms
(sub)graph and (sub)query interchangeably, as a (sub)query is
represented by the induced subgraph rooted at some vertex.

B. XRPCExpr Insertion

We can decide to evaluate a certain subgraph G rooted
at rs remotely over XRPC, by inserting a v, :XRPCExpr node
above it. This should only be done if we can ensure that the
result of the rewritten query is identical to the original query.
Such an insertion means that a new function will be defined
that contains G as its body. In the main query graph, G
is replaced by a remote XRPC call to this function, which
receives as parameters all variable references in G that resolve
to variable bindings outside G:

1) Insert a vertex v,:XRPCExpr, a parse edge (vs;,7s), and
replace each incoming edge (vj,,7s) with a new edge
('U’ina Uw>~

2) For each outgoing varref edge from vertex v; € V(Gs) to
v; € VIG\V(Gs), where edge (v;,vj) € E,(G) is a varref
edge as (v;:VarRef[$gnamel, v;:Var[$gname]), we insert
a new vertex vy, a new parse edge (v, v) and replace the
varref edge (v;,v;) by (v;,vg) and (vg,v;). Here, vy has
the form vy, :XRPCParam[$p:=$gname], which introduces
a new variable $p and binds it to $gname in v;.

3) If there are no outgoing edges as stated in step 2, we insert
a vertex v; with the form v;:XRPCParam[()] (i.e., empty
parameter), and a parse edge (v, v;).

Example 3.2: Consider the d-graph in Figure 2. Suppose that
the subgraph rooted at vog is identified for an XRPCExpr
insertion (Figure 3). First, insert vertex vyy and replace edge
(v12,v26) by (v12,v40) and (vao, vae). For the outgoing varref
edge (v30,v9), vertex vy is inserted below vyo and the varref
edge is replaced by two new varref edges: (v3o,va1), (Va1,vg).
The outgoing varref edge (vsg, v13) is processed similarly.

IV. CONSERVATIVE DECOMPOSITION

By-value insertion conditions. Given a d-graph G and a
subgraph G5 of G rooted at r;, under the pass-by-value
semantics, vertex 7, is in the set I(G) of valid decomposition
points (d-points), iff 7, satisfies all of the following conditions:

i fn € V(G) n.rule € {RevAxis, HorAxis} A
(useResult(n, r5)V useParam(n,rs));

ii. In € V(G) n.rule €{NodeCmp, NodeSetExpr}A
(useResult(n, r5)V useParam(n,rs));

iii. 7n € V(G) n.rule = AxisStep AIm € V(G)
m.rule € {ForExpr, OrderExpr, ExprSeq, NodeSetExpr,
AxisStep\ {parent, preceding-sibling, following-sibling, self,
child, attribute}} A((useResult(n,rs) A rs~>m)V (Jv €
VIG)\V(Gy) : 75 Son~mv~mm));

iv. In € V(G): n.rule=FunCall A n.val &fn:root(), fn:id(),
fn:idref()} A(useResult(n,rs)V useParam(n,rs)).

where we impose these restrictions symmetrically both on
expressions that use the result of the remote expression 7,
as well as on the way remote expressions (below) use their
shipped parameters:

useResult(n,rs) < n~>r;
useParam(n, r,) < e V(G)\V(Gy) : s n~-v

v40: X RPC Expr
Vg
v41: X RPC Param

[$dotl :=S$c] @
02 X RPC Param| ™
Lo [$dot2 := $t] -

T
Fig. 3. XRPCEXpr Insertion

Conditions i, ii guard against using any node comparison as
well as horizontal and reverse XPATH steps on shipped nodes,
avoiding Problems 1, 2, and 3 described in Section II. Con-
dition iii avoids using (downwards, per Condition i) XPATH
steps on shipped nodes stemming from expressions that might
be so-called “mixed-call sequences” (ExprSeq, NodeSetExpr),
avoiding Problem 4. It also guards against sequences not
in node order (ForExpr, OrderExpr) or with nodes that may
be overlapping (the restrictions on NodeSetExpr and XPATH
steps). This ensures that downwards XPATH steps can be used
on shipped node sequences. Condition iv states that shipped
nodes may not be used as parameters of the listed built-in
functions (Problem 5).

Example 4.1: In the d-graph of example query QS (Figure 2),
we mark in gray colors the d-points identified by the conser-
vative decomposition strategy. The XPATH step /grade that is
performed on the result of a for-loop, matches condition iii and
causes all vertices that depend on v14 and vsg (the For Exps)
as well as all their descendants to be excluded from 1(QG),
leaving v, and the subgraphs rooted at vs, vg as d-points.

Interesting decomposition points. While a d-point may be
semantically valid, remote evaluation of the subquery below
it might be senseless. Consider the d-point vy, which contains
only a fn:doc() function call in its subgraph. Executing this
function remotely provides no performance gain, as it only
demands the shipping of a whole document. Similarly, remote
execution of expressions that do not involve any XML docu-
ments should be avoided. Therefore, we filter d-points by first
annotating each vertex v, € V(G) with the URI dependency set
D(v,). Here, D(v,) represents the set of URIs that are used as
parameters of fn:doc() in vertices that the vertex v, can reach
via parse edges:
D(v,) = {uri:: vy |[{vy,v.} € E(G) : uri = v,.val A v, S v,
Avy.rule=FunApp A vy.val = “doc” A v..rule= Literal}

Note that we tag each uri with the vertex v, where the
document is opened, to be able to distinguish the use of the
same document through multiple fn:doc() calls. This definition
does not cover the case that the parameter of fn:doc() is
an expression instead of a literal. In those cases, we use
a wildcard symbol “x” as wri. In this paper, the built-in
function fn:collection() is treated as a fn:doc(*), and an element
construction is assigned an artificial unique URI fn:doc(v;::v;).

One can use the URI dependency set to partition the V(G)
in equivalence classes (i.e., those vertices with the same URI
dependency set belong to the same class). Using all vertices
in an equivalence class, we can consider its induced subgraph
in G, and try to handle it in a single XRPC subquery. Thus,

569

we define interesting decomposition points (i-points) I'(G) as
those valid insertion points that (a) are a root vertex in their
induced subgraph' (b) contain at least one fn:doc() and (c)
execute at least one XPATH step on the fn:doc() function:
I'(G) = {ve|ve €I(Q) : vy : vy L ve AD(vs) = D(vy)
ATV, @ vy 2 vs Avs.rule = AxisStep
A3Ixrpe:/furie D(v,)}

Example 4.2: In Figure 2, the two subtrees rooted at vs
and vy, that together form the d-points corresponding to two
different equivalent classes D(v3) = {xrpc://A/students.xml ::
vz} and D(ve) = {xrpc://B/coursed2.xml :: vi1}. Since the
subtree of vg lacks an XPATH step, it does not have any i-
points per restriction (c). The vertices in I'(G) (colored dark
gray) are vy (the highest non Var vertex in the subtree rooted
at vs) and the root vi. Thus, I'(G) = {v1,v4}.

Normalization. Rewriting algorithms that operate on the
XCORE level are vulnerable to syntactic variation. In the
case of our decomposition strategy, an important vulnerability
comes from the behavior of the strategy to ship with XRPC
subgraphs consisting of parse-edges only. That is, varref-edges
are not pushed, rather become parameters to the function.
The syntactic freedom one has in XQUERY of defining a
certain subexpression inline or via a variable reference to a
previous let-binding, therefore affects our strategy. For this
purpose, as part of XCORE normalization, we re-order let-
bindings, moving them as deep into the query as possible.
More specifically, let-bindings are moved to just above the
lowest common ancestor vertex (defined in terms of parse-
edges) of all vertices that reference its variable. The query)5
(Table III) can be normalized to Q%5 (Table III), which can
thus be rewritten as Q4 in Table IV.

The main achievement of normalization in above case is
to relate the doc(../course42.xml) call through parse-edges
(directly calling $c in Q%), instead of varref edges (referencing
$c in Q%), with its use in the /child::enroll/child::exam XPATH
steps. However, these being part of a ForExpr with the /grade
step on top, causes insertion condition ii to prohibit pushing
it. In the next section on pass-by-fragment, however, we will
see that normalization was not in vain, and the query can be
decomposed into Qg (Table IV).

Distributed code motion. The let-normalization phase has the
effect of pushing expressions that depend on the same docu-
ments downwards, potentially below an interesting insertion
point (which makes them be executed remotely). However,
it can happen that some of the expressions initially found
below an interesting insertion point can in fact better be moved
above it (to be executed locally). In particular, it is safe to
assume that expressions that solely depend on a parameter
of a function, can better be evaluated on the caller side.
Moving a subexpression out of a function can be done by
passing that subexpression as an additional parameter to the
function. With pass-by-value passing, such a rewrite may

!If the root node happens to be a Var vertex, we consider its value expression
instead as root.

()5: decomposed ()7 under pass-by-value
declare function fcn1() as node()*
{ doc(“xrpc://Alstudents.xml”)/child::people/child::person };

declare function fcn0() as node()*
{ (let $t := let $s := execute at{'A’}{fcn1()}
return for $x in $s return
if ($x/child::tutor = $s/child::name) then $x else ()
return for $e in (let $¢ := doc(“xrpc://B/course42.xml”) return
$c/child::enroll/child::exam)
return if ($e/attribute::id = $t/child::id) then $e else ())/child::grade };

execute at {} {fcn0()}

Q%: decomposed Q5 under pass-by-fragment
declare function fcn1() as node()*
{ let $s := doc(“xrpc://A/students.xml”)/child::people/child::person return
for $x in $s return if ($x/child::tutor = $s/child::name) then $x else () };

declare function fcn2($parai as node()) as node()*
{ for $e in (let $c := doc(“xrpc://B/course42.xml”) return
$c/child::enroll/child::exam)
return if ($e/attribute::id = $parai/child::id) then $e else () };

declare function fcn0() as node()*
{ let $t := execute at {‘A’}{fcn1()} return
(execute at {‘B’}{fcn2($t)})/child::grade };

execute at {} {fcn0()}

Applying Distributed Code Motion in Q£
declare function fcn2new($para2 as xs::string*) as node()*
{ for $ein (let - - - return - - -) return
if ($e/attribute::id = $para2) then $e else () };

declare function fcn0() as node()*
{ let $t := execute at {'A’}{fen1()} return
let $I := $t return (execute at {‘B’}{fcn2new($l/child::id) })/child::grade };

TABLE IV
QUERY DECOMPOSITION AND CODE MOTION

not always be safe, however if only d-points are moved,
the technique is semantically safe. Analogous to well-known
compiler technique of moving invariant statements out of the
loop (and its use in parallel processing [14]) we call this
technique distributed code motion.

Example 4.3: Consider the function fcn2(), we may observe
that the expression $paral/child::iid only depends on the func-
tion parameter $paral. Shipping full person nodes $paral
from peer A to B, only to extract the string value of its id
child at B, may waste bandwidth, especially if person carries
much more data than just an id. Instead, it would be better to
extract the string value of id at peer A and only ship the strings.
This optimization can be realized by adding a new parameter
$para2 to the function, and substituting $parai/child::id in the
body with it. In the function fcn0() that calls fcn2new(), we
save the original function parameter $t in a new let-binding $|,
and pass $l instead of $t. The additional function parameter is
passed as $l/child::id. Finally, the affected function parameter
Sparal is no longer used, so we remove it, arriving at the
result as the code motion part in Table 1V.

V. BY-FRAGMENT DECOMPOSITION

The node copying done by pass-by-value is the main
source of semantic differences. This, in turn, leads to serious
restrictions in the way the decomposition strategy can push
expressions remotely. For this reason, we extend the pass-by-
value message passing semantics into a new pass-by-fragment
message passing semantics that better preserves structural XML
relationships.

570

The basic idea is to avoid serializing the same nodes twice,
by grouping all node-valued data in the message in a preamble
element fragments. In principle, each node parameter is seri-
alized below a separate fragment child element. However, if a
sent node is a descendant of another one, it is not serialized
twice, as we can reuse the XML fragment of the other node.
We also ensure that the XML fragments are sorted in original
document order, which means that ancestor/descendant rela-
tionships in the same message, as well as node identity and
document order, are preserved.

Later in the message, where XQUERY sequences are seri-
alized (inside sequence tags), we just provide references to
the nodes that were previously serialized in the fragments. In
particular, element tags, which are used to contain as a child
the fully serialized copy of a node, now just carry two numeric
attributes, fragid and nodeid. Supposing $msg is the root of the
message, with $fragid and $nodeid numbers, we can identify
the referenced nodes as follows:?

$msg//fragment[$fragid]l/descendant::node()[$nodeid]

Example 5.1: Going back to @1 in Table I, Figure 4
shows the XRPC request message sent for the call execute
at {“example.org”} {earlier ($bc, $abc)} from the discussion of
Problem 3. Recall that the node $bc with value (b){c/){/b) is
contained in the $abc fragment (a)(b)(c/)(/b){/a). The lower
part of the figure shows an excerpt of the message as produced
for pass-by-fragment. Here, both node parameters $bc and
$abc are represented in element nodes with fragid and nodeid
attributes. The XQUERY engine handling the call will use these
attributes to evaluate:

$bc := $msg:fragment[1]/descendant::node()[2],
$abc := $msg:fragment[1]/descendant::node()[1]

such that earlier($bc,$abc) correctly returns $abc, because
$abc <« $bc, just like on the peer that invoked this function.
The upper part, with the changed part of the old pass-by-
value message (element call), shows that node parameters
were previously repeatedly serialized, causing node order and
identity relationships between parameters to be lost.

We made a conscious choice not to rely on ID/IDREF for
referencing nodes, since this would require adding ID attributes
to the XML data in the fragments. As XRPC is designed to
respect and conserve XML SCHEMA type information, this
would cause the XRPC message to no longer respect user-
defined schemas.

By-fragment insertion conditions. With the pass-by-fragment
semantics, we modify the pass-by-value decomposition con-
ditions listed in Section IV by restricting the prohibitions to
decompose a node r, formulated in Conditions ii and iii to
only those rs; for which the predicate hasMatchingDoc(rs)
holds. Here, hasMatchingDoc() is defined as:
hasMatchingDoc(v) < Yuri;::v; € D(v) : 3uriy:vj € D(v)
v # v A (uriy=uriy V urig=s+ V uri, =x*)
2Note that descendant::node() does not return attribute nodes. We use

the nodeid of its parent and include the name of the attribute in an attribute
element, so it can be found back with an additional attribute step.

571

Excerpt of a request message with pass-by-value
1l
<<z{:e>quence) (element) (b) (c) (/b) (/element) (/sequence)
</(se”c>1uence) (element)(a)(b){(c/){/b){/a)(/element)(/sequence)
ca

Excerpt of pass-by-fragment message for earlier($bc,$abc)
(env:Envelope ...)
(env:Body)
(request)
(fragments)
(fragment)(a) (b) (c/)(/b)(/a)(/fragment)
(/fragments)
(call)
(sequence) (element fragid=*“1" nodeid=*2")(/sequence)
(sequence) (element fragid=*“1" nodeid=*‘1"’) (/sequence)
(/call)
(/request)
(/fenv:Body)
(/fenv:Envelope)

Fig. 4. By-value vs. By-fragment Messages

This predicate now precisely isolates the problem of creating
result sequences with remote nodes from multiple calls, by
stating that an expression may not depend on two different
applications in the query of fn:doc() with the same URI (taking
into account computed URIs as wildcards). Additionally, we
also remove from Condition iii, the ForExpr restriction (a
special form of combining the results of multiple calls), since
Bulk RPC ensures that all iterations of the remote call nested
in the for-loop, are handled in a single message exchange
(where copy-by-fragment now ensures proper conservation of
node relationships). Finally, we remove from Condition iii
the restrictions that arbitrary ordering (OrderExpr) cannot be
used and that all pushed AxisSteps should be of the non-
overlapping kind (parent, preceding-sibling, following-sibling,
self, child, and attribute), as the copy-by-fragment message
passing is able to copy-by-fragment message passing is able to
properly conserve sequence order and the ancestor/descendant
relationships between transported nodes. The restrictions to
avoid horizontal and reverse XPATH steps on remote nodes
(Condition i) and on using built-in functions (Condition iv)
remain in place; but not for long.

VI. BY-PROJECTION DECOMPOSITION

The basic idea of using XML projection [18] is, for a given
XQUERY query) and an XML document D, to extract a
minimal part of data D’ needed to execute () such that Q(D) =
Q(D’). The projection technique conducts a compile-time path
analysis on (), to derive a set of simple path expressions that
over-estimate the nodes that () touches. These simple paths are
referred to as projection paths. Here, a projection path is an
XML path that starts from the document root, containing for-
ward navigation but not predicates (e.g., doc($uri)/a/b/Qid).
Projection paths consist of returned paths and used paths.
Returned paths describe the nodes that are returned by the
expression. Used paths estimate the nodes necessary to answer
the query but are never returned as results (e.g., predicates).

Based on the projected paths P of query) from path
analysis, a loading algorithm is applied to P and an XML
document (from a file or a stream) D. A projected XML
document (or stream) D’ is then generated which contains all

Excerpt of request message for makenodes()
(request
(projection-paths)
(used-path/)
(returned-path)parent::a(/xrpc:returned-path)
(/projection-paths)
(fragments/)

Excerpt of response message for makenodes()
(env:Envelope ...)
(env:Body)
(response)
(fragments)
(fragment) (a) (b) (c/)(/b)(/a)(/fragment)
(/fragments)
(call)
< (sequence)(element fragid=*1" nodeid=*2")(/sequence)
/call)
(/request)
(/fenv:Body)
(fenv:Envelope)

Fig. 5.

Pass-By-Projection Messages

used and returned nodes plus the descendants of the returned
nodes, and is queried with Q.

There are three reasons why projecting XML is extremely
interesting for distributed XML processing: (i) until now, when
sending nodes, we had to serialize all descendants — which
potentially contain huge subtrees that may remain untouched
on the other side. This amounts to wasted network bandwidth
as well as serialization and shredding effort. (ii) if documents
are projected into lean skeletons that only contain the relevant
portions, it becomes feasible to serialize XML fragments
from some lowest common ancestor on, possibly even the
document root. Even with pass-by-fragment, the execution of
reverse/horizontal XPATH axes on remote nodes is impossible.
By extending projecting XML with support for reverse and
horizontal axes, however, we get a tool to precisely identify
this lowest common ancestor of an XML document that needs
to be included to allow correct remote execution of those axes.
(iii) the projection technique can even be applied to support the
built-in functions fn:root() and fn:id()/fn:idref(), i.e., by taking
the lowest common ancestor of those, if a path contains one
of these functions.

For these reasons, we further refine the pass-by-fragment
message passing semantics into the so-called pass-by-
projection semantics. XML projection can be used in both
directions: to project the parameters in a request message, and
to project the function’s result sequence before shipping back
the response.

Insertion conditions. Pass-by-projection removes the by-
fragment insertion conditions (in Section V) i and iv, such
that only ii and iii, i.e., the application of node comparison,
node set operators and axis steps on top of multiple calls to
fn:doc() with the same URI, remains illegal.

Message extension: projection paths. We introduce an op-
tional element as a sub-element of a request tag: projection-
paths, which in turn has zero or more child elements returned-
path and used-path. In the new pass-by-projection semantics,
the absence or presence of this element determines whether
the response message should be in the original pass-by-value
or the new pass-by-projection format.

ProjectionPath ::=doc “(” Literal “:” Literal “)” (“/” SimplePath)*
SimplePath = Axzis NodeTest | SimplePath “/” Axzis NodeTest
Axis u= “self:” | “child::” | “attribute::”
| “descendant::” | “descendant-or-self::”
| “ancestor::” | “ancestor-or-self::” | “parent::”
‘ LLroot()77 ‘ LLid()77 ‘ uidref()ﬂ
NodeTest = ((NCNamelx) :)?(NCNamelx)| “node()” | “text()”
TABLE V

GRAMMAR RULE EXTENSION OF ProjectionPath (BOLD)

Example 6.1: 7o illustrate projected XRPC messages, the
upper part of Figure 5 shows part of the request message
for the call from Q1 (discussed in Problem 4):

let $bc := execute at {“example.org”} {makenodes()}

since the projection path analysis detects that $bc will sub-
sequently be used as context node by a parent step: $abc
:= $bc/parent::a, the request message specifies parent:a as a
returned path. Therefore, the response message contains the
Sull fragment {(a)(b){c/){/b){(/a) to which $abc then gets
correctly bound.

A. Extending Projected XML

We extend the path grammar rules [18] and path an-
notations, to handle full-fledged XQUERY involving re-
verse/horizontal XPATH steps and built-in functions. The ex-
tended grammar rule for ProjectionPath is given in Table V.

We denote path annotations in projected XML as follows:

Env(v;) - Expr = Paths: using Pathss
The notation Env(v;) is used to identify the path annotation
environment at a certain vertex v; in the XQUERY d-graph.

Such annotations are constructed bottom up by path analysis
rules that derive the used (UPaths) and returned (Paths)
paths for each XCORE expression in terms of used and
returned paths of its subexpressions. The basic path analysis
rules have been discussed in [18], such as literal values,
sequences, for and let expressions and XPATH steps, etc. Our
extension to include reverse/horizontal XPATH steps brings no
changes for the path analysis rules, but must be supported
by the loading algorithm, which is described in Section VI-
B. We complement the rules for built-in functions, which
apart from the unsolved cases mentioned under Problem 5 in
Section II (fn:root(), fn:id(), fn:idref()) also includes fn:doc(). The
description of the basic projection technique assumes a single
document. As in distributed query processing there are always
multiple documents, our paths always start with fn:doc(urr).

Path analysis rules. We provide one rule for fn:doc() with a
constant parameter and another for computed URIs:

(pocy) 0
Env(v;) -doc(Literaly) = doc(Literal::v;) using 0
(poca) Env(v;) b Exzpr; = Paths; using UPaths;
Env(v;) F doc(Expr;) = doc(x:w;) usingPaths; U UPaths;

As mentioned in Section IV, in the definition of D(v,)?, we
use a wildcard URI * if the document name is an expression.

3We use the doc(..) prefixes of the refurned paths annotations on v as a
more precise form of the D(v) property. Documents that were only used but
not returned were also be part of the original D(v), but these will not cause
semantic problems.

572

Also note that all paths start with doc(URrI::v;), thus identifying
both document URI as well as the vertex v; where it is loaded.
This notation facilitates the identification of situations where
the same URI is loaded twice (the function hasMatchingDoc()).
A similar rule can be formulated for XML element construc-
tion, producing a return path doc(;::v;) with an artificial unique
URI. The rule for fn:root() is:

(rROOT) Env(vj) b Expr; = Paths; using UPaths;

Env(v;) = fn:root(Expr;) = Upepathsjp/root() using U Paths;

The built-in function fn:root() with a single parameter is treated
in the path annotations much like XPATH axis steps, where the
parameter has become the path prefix. In this path notation,
functions remain easily recognizable by the parentheses. The
rules for the built-in functions fn:id()/fn:idref(), are highly
similar (only fn:id() provided):

Env(vj) & Expr; = Paths; using UPaths;
Env(vg) b Expr, = Pathsy, using UPathsy,

(ip)

Env(vi) & fn:id(Exprj, Expry) = Upe Paths, P/id()
using Paths; U U Paths; U U Pathsy,

The first parameter of fn:id() is ignored by the annotations,
as it contains string values, and the projection annotation
framework only allows for the estimation of node sets. This
has the consequence that our loading algorithm will conserve
all elements with an ID/IDREF attribute.

B. Runtime XML Projection

The extensions we made to XML projection, namely support
for reverse/horizontal XPATH axes and fn:root(), fn:id()/fn:idref(),
could not be trivially integrated in the loading algorithm
of [18]. However, in this case we are not really looking for
a loading algorithm that efficiently reads (shreds) an XML
file into a projected representation. Rather, the documents are
already present (and indexed) in the XQUERY engine, and
runtime message projection is a serialization task. Therefore,
we propose a new runtime approach for projection, targeted
at serialization, rather than at shredding. Whereas the original
loading algorithm starts at the document root, and evaluates
absolute used and returned paths, our runtime projection algo-
rithm starts in a run-time state, that is, with a real, materialized
context sequence (e.g., the parameter values that are about to
be serialized in a SOAP message), and executes only relative
paths on them. Because the node sequence bound at run-
time to a function parameter is only a subset of the node
set characterized by its compile-time path annotation (e.g., its
contents may well have been reduced by applying a selection
predicate), this runtime projection technique can be much more
precise than the original projection algorithm.

For these reasons, our runtime approach for projection
simply relies on the normal XPATH evaluation capabilities of
the XQUERY engine for fully evaluating all used and returned
path annotations one-by-one (and uniting them with union()).
Doing so, it produces a used node set U and a returned node
set R. These two sets are the input for the runtime projection
algorithm listed in Algorithm 1.

Algorithm 1: RUNTIMEXMLPROJECTION(U, R, D)

input : U- used nodes, sorted on document order
R- returned nodes, sorted on document order
D- the original XML document

output: D’- the projection of U and R on D

1 projection nodes P «— U U R and sorted on document order;
2 proj < first node in P;
3 cur «+ first node of D, i.e., root node;
4 while —P.end() do
5 if proj is a descendant of cur then
6 add cur to D’;
7 cur < next node in D;
8 else if proj = cur then
9 if proj is a returned node then
10 add cur and all descendants of cur to D’;
11 cur «— next following node of cur in D;
12 while proj.next is a descendant of proj do
13 | proj < proj.next > prune projection nodes;
14 end
15 else
16 add cur to D’;
17 cur < next node in D;
18 end
19 proj < proj.next > next projection node;
20 else
21 | cur «— next following node of cur in D;
22 end
23 end

24 cur < root node of D’;

25 while cur has only one child node N cur ¢{U U R} do
26 | cur « first child of cur;

27 end

The runtime projection algorithm identifies all projection
nodes in the XML tree representation of the original document,
by traversing the tree top-down depth-first. During traversal, if
the current node cur of the XML document is an ancestor of the
current projection node proj (line 5), cur is added to output
D’ and moved to the next node in document order. If a proj is
found (line 8), proj is added to D’; if this proj is a returned
node, all its descendants are also appended. Then cur is moved
to its next following node in the document. Otherwise, if the
current projection node proj is not a descendant of cur, the
subtree of cur can be skipped (line 21). Though this algorithm
is formulated on an abstract level that is independent of the
particular XML storage scheme used in an XQUERY engine, it
is safe to assume that skipping a subtree is fast (either O(1)
or O(log(|D|))). At the end of the algorithm (lines 24-27),
post-processing is performed to remove unnecessary nodes, as
we are only interested in the lowest common ancestor of all
input nodes in the projected document D’.

Example 6.2: Consider an XML document D in Figure 6(a).
Assume that the used node set U is {i}, and the returned node
set R is {d, k}. Figure 6(b) shows the projected document D’
of applying Algorithm I on U, R and D.

The algorithm starts with P — {d,i,k}, proj «— d and
cur < a. We traverse the tree using cur from a to d. Nodes
a, b and ¢ are added to D', since they are ancestors of the
current context node d. Nodes d,e and f are also added to
D', as d is a returned node. Then, cur is advanced to g (d’s
next following node). Because the next context node i is not in

573

(d) (k)

¢ vd B

(a) Original XML tree D

(b) Projected tree D’
Fig. 6. Runtime XML Projection Example

the subtree of g, the subtree is skipped by advancing cur to 1.
Recall that i is a used node, thus only i is added to D'. The last
context node is k. Our current document node cur traverses
from i to j, and then to k, where we can add nodes k, | and
m to D'. The traversal can be terminated, because there is
no more context nodes to process. However, the intermediate
result D' contains all common ancestors of {d, i, k}. The post-
processing removes node a from D', which produces the final
projected document D' as shown in Figure 6(b).

Relative projection paths. At compile time, the XQUERY
compiler builds a query graph (d-graph) with root v,,e¢,
normalizes it followed by decomposition and code motion.
For each inserted XRPCEXpr v, and for each XRPCParam
parameter VerteX Upqram, it then extracts the relative paths:

Uret(Vparam) = allSuffixes(R(vparam), U(Varpe))

Ryei(Vparam) = allSuffixes(R(vparam), R(verpe))

Uret(verpe) = allSuffixes(R(verpe), U(vroot))

Rrei(Varpe) = allSuffixes(R(varpe), R(Vroot)), with:
allSuffixes(Paths;, Paths;)={s;|pi/s; € Paths;: 3p; € Paths;}
At runtime, Uvaaram Urel (Upa'ra’m) and Uvaa,ﬂam R’rel (Upara'm)
are used to project the parameters in the outgoing XRPC
request message. The Use;(Vgrpe) and Ryei(vyrpe) are passed
in the projection-paths element such that the remote peer
can appropriately apply these paths to project the response
message.

Projecting a document with Algorithm 1 requires pre-
calculated used and returned node sets. These sets are simply
computed using the XPATH evaluation infrastructure of the
underlying XQUERY engine, by feeding the intermediate result
$CtXparam corresponding to Uparem as context sequence into
all suffix paths s; € Urei(Vparam) @esp. Rrei(Uparam)):

union($ctXparam/s1, UNion($ctxparam/s2,-..-
union($ctxXparam/sn—1, $ctxparam /sn)-..))
Paths $ctx/path;/root()/path; with function fn:root() are exe-
cuted as root($ctx) /path;. Similarly, $ctx/path; /id()/path; is
executed as root($ctx)/ /attribute()::(a1|..|ay)/../path;, where
ai,..,an are all ID attributes (resp. IDREF in case of idref()).

The request handler on the remote side wuses the
same method to evaluate the suffix paths Up,e;(vzrpe) and
Ry ci(Vzrpe) using the result sequence of the function as
$ctxzrpe during serialization of the response message.

In case of XML data with a user-defined XML SCHEMA, the
default projection algorithm is likely to throw away mandatory
elements and attributes. For this reason, the runtime projection
algorithm should be made schema-aware. A simple solution
is to ensure that only elements with a minoccurs declaration

574

of zero (i.e., optional elements) are removed. One can also
envision more advanced variants that further reduce the size
of a typed XML document.

VII. EVALUATION IN MONETDB/XQUERY

We have implemented the proposed algorithms in Mon-
etDB/XQuery [4], a purely relational XML database system that
uses the Pathfinder [10] XQUERY compiler. We use the XRPC
extension for remote function evaluation. The test platform
consisted of three 2GHz Athlon64 Linux machines connected
via 1Gb/s Ethernet. Each was equipped with a 2GB RAM.
The benchmark data used is XMark [23], a popular XML
benchmark for evaluating XQUERY efficiency and scalability.
The data set was generated using scalar factors 0.1, 0.2,
0.4, 0.8 and 1.6. A data set is stored on each remote peer.
We conducted three groups of experiments: bandwidth usage,
query execution time and runtime projection precision. Note
that, as there are no other comparative results exist, the main
goal of our experiments is to show the impact of the proposed
techniques in a step-by-step fashion.

We slightly modified the query Q5 (in Table III) so that it
conforms to the XMark schema as the following:

(let $t := let $s := doc(“xrpc://peer1/xmk_nn_MB.xml")
/child::site/child::people/child::person
return for $x in $s return if ($x/descendant::age < 40) then $x else ()
return for $e in (let $¢ := doc(“xrpc://peer2/xmk-nn_MB.auctions.xml”)
return $c/descendant::open_auction)
return if($c/child::seller/attribute::person = $t/attribute::id)
then $c/child::annotation else ())/child::author

All techniques discussed in this paper are applied on the above
query: (i) under the pass-by-value semantics, only the expres-
sion doc(“xrpc://peer1/xmk.nn_MB.xml”)/.../child::person can
be decomposed and executed on peeri; (ii) under the pass-
by-fragment semantics, we can decompose both the second
let clause (“let $s := ..”) and the second for-loop (“for $e in
.."), and execute them on peerl and peer2 respectively. The
variable $t becomes the parameter of the generated function
containing the second for-loop (see also Table IV); (iii) under
the pass-by-projection semantics, the query is decomposed
in the same way as using pass-by-fragment, however, when
serializing the request messages, a projection of $t/attribute::id
(parameter projection) and $c/child::annotation/child:author (re-
sult projection) is calculated. The test set thus contains four
queries in total, and each of them is executed on 2 documents
of sizes 10, 20, 40, 80 and 160MB.

Bandwidth usage. Figure 7 shows the bandwidth used by
each benchmark query on different set of documents, i.e.,
the total size of XML documents plus total size of XML
messages transferred among peers, in its y-axis. The x-axis
is the total size of the XML documents used by each query.
The pure data-shipping XQUERY query (the left most bar)
costs the largest bandwidth usage, as both documents have
to be shipped. By-value decomposition can push the XPATH
step doc(“xrpc://peer1/xmk_nn_MB.xml")/.../child::person to be
evaluated on peer1, which reduces the amount of data sent
from peer1 to the local peer. However, the second document

1000

data-shipping s
pass-by-value E===
pass-by-fragment =
pass-by-projection =—=

100000

100 10000

shred m—

local exec mm=m
(de)serialize ——
remote exec 1
network saas

data-shipping M
pass-by-value E
100000 t

pass-by-frag —
pass-by-projection ——1

1000

10000

1000

100

100

Total transferred data per query (MB)
(XML documents + SOAP messages)
Total execution time per query (ms)

0.1

Total execution time per query (ms)

20
Total size of documents used by each query (MB)

40 80 160 320 data-

shipping value

Fig. 7. Bandwidth Usage

“xmk_nn_MB.auctions.xml” still has to be sent fully. The by-
fragment passing semantics allows to push predicates to both
peers, achieving a distributed semijoin plan. Also, it strongly
reduces message size by avoiding duplicating the same XML
node multiple times. Pass-by-projection further brings down
message sizes due to reduced response message size. For
example, when sending the result of remote execution of
the second for-loop, the response message will only contain
annotation nodes with their author child nodes. In general,
we observe good scalability of pass-by-fragment and pass-by-
projection in bandwidth usage.

Execution time. Figure 8 shows the execution time breakdown
of all four queries on documents of 320MB in total. The
execution time is divided into five parts: shred is the time
to receive a document from the remote peer and shred it in
to the XML database; local exec is the execution time of the
query at local peer, including query parsing, module loading,
etc; (de)serialize is the time spent on generating/shredding the
XML messages and extracting parameter/result values from
the messages; remote exec is the time to execute the called
functions on remote peers; and network is the time spent
on sending/receiving the XML messages. From Figure 8, the
following observations can be made: (7) in the data-shipping
only query and the by-value decomposed query, data shredding
is the main bottleneck, either because the whole document
will be shipped (data-shipping), or an XML node might be
shredded multiple times (by-value). Especially in the data-
shipping query, more than 99% of the total execution time
(please note the y-axis has log scale) is spent on getting
the documents from remote peers and shred them; (i4) when
pass-by-fragment and pass-by-projection semantics are used,
the total execution times are significantly improved (about
84 ~ 94%, comparing with data-shipping and pass-by-value).
This is easily explained as these techniques reduce the amount
of data exchanged to be less than 10% of the original document
sizes. Even with the overhead introduced by remote execution
(i.e., ‘(de)serialize’+ ‘remote exec’), pass-by-fragment or pass-
by-projection are preferred over the data-shipping method.
(7i7) pass-by-projection performs even better than pass-by-
fragment (about 35% improvement), which is again explained
by the reduced bandwidth usage, as shown in Figure 7.
Please note that, in these experiments we used a fast network
(1GDb/s); but in a WAN environment, where much slower net-
work performance is common, pass-by-fragment and pass-by-
projection would allow queries over remote XML documents

575

pass-by-

Fig. 8. Query Time Breakdown (320MB data)

pass-by-
projection

pass-by-
fragment

20

40 80 160
Total size of documents used by each query (MB)

320

Fig. 9. Execution Time

to profit even more from reduced data size.

Figure 9 shows the execution time of all queries on doc-
uments of increasing sizes, which indicates that the two en-
hanced parameter passing techniques achieve good scalability.
Even on small documents (20MB), the proposed techniques
are preferred over the data-shipping methods.

1000

- v 1000
= Compile-time
C—— Runtime

== Compile-time
C—— Runtime

100

Size of projected document (KB)
Execution time (ms)

0.1 1
10 40 160 640

Document size (MB)
Fig. 10.

Selected Nodes

10 40 160 640
Document size (MB)

Fig. 11. Execution Time (ms)

Runtime projection precision. Our new runtime projection
technique combines intermediate query results with runtime
execution or relative XPATH paths. Due to selections (by e.g.,
predicates and value comparisons), the run-time projection
node sets obtained may be much smaller than suggested by
compile-time projection paths, used in [18]. We used our by-
projection benchmark query to compare runtime projection
with compile-time projection, on various sizes of the XMark
document “xmk_nn_MB.xml”. In this experiment, the compile-
time technique projects all person elements and their age,
while our runtime projection technique will only project those
person elements that have an age descendant larger than 45.
Figure 10 shows runtime projection to be 5 times more precise
in terms of the size of projected document. In the case of this
experiment, the investment in run-time XPATH evaluation pays
off due to the more precise results, as shown in Figure 11.

VIII. RELATED WORK

There are three main areas that are related to our proposal in
this paper: distributed query processing, query decomposition
and XML projection.

Much previous work in distributed query processing is
surveyed in [16], [29] and parts of the book [21]. In distributed
XML query processing, DXQ [9] depends on distributed query
plans, in terms of the internal Galax execution algebra, gen-
erated by the Galax optimizer. In this respect, XRPC dif-
fers with its focus on interoperability, as it acts as a pure
XQUERY rewriter (not making any assumptions on the system
internals of the participating peers). Galax Yoo-Hoo [20]
accesses web services using SOAP RPC as the communication

protocol, which lacks proper support for XML elements and
sequences; a problem addressed by XRPC using a specific
literal SOAP message encoding. Active XML (AXML) [1], [2]
is a declarative framework that harnesses web services for data
integration in a peer-to-peer architecture. Like XRPC, it also
used a (document/literal encoding) SOAP protocol to represent
XML subtree values. However, the focus in AXML has been
in adaptive call materialization strategies, not on automatic
query decomposition and the semantic challenges this brings
in XQUERY, such as distributed node identity. XQueryD [22],
like XRPC supports function shipping in XQUERY, but it does
not define an open network protocol.

Decomposing queries to address multiple data sources is by
now a well-studied problem in relational databases [28] and
object-oriented databases [13], [17]. Many of these ideas and
methods can be applied to XQUERY, yet we have shown here
that the issue of efficiently managing distributed node identity
and document order add interesting challenges. [24], [25]
discuss the decomposition of unstructured query languages
only on a semi-structured database (a rooted, labeled graph).
In XML data-bases, previous approaches require structural
information about peers for supervising decomposition [27].
Other works [6], [7], [26] only focus on a restricted set of
XQUERY queries.

XML projection [18] drastically reduces the size of the
data model representation using compile-time query charac-
terization. [5] introduces a precise XML pruning technique
for a subset of XQUERY FLWOR expressions, based on the
apriori knowledge of a data guide for underlying XML data.
However, it does not handle XPATH predicates, backward axes
and XQUERY-like languages. A type-based XML projection
technique [3] is studied to improve current solutions with
comparable or higher precision and less pruning overhead, as
well as supporting backward XPATH axes. However, a DTD is
required. [15] discusses runtime XML projection techniques.
Based on the static compilation of runtime lookup-tables and a
runtime-automaton from projection paths and a DTD, they can
filter the input XML document efficiently using string matching
algorithms. This technique, however, still lacks support for
reverse XPATH axes and XQUERY built-in functions.

IX. CONCLUSION

We have described a framework for distributed execution
of full-fledged XQUERY, focusing on the issue of providing
equivalent query decompositions, in the face of semantic
differences when (parts of) nodes are shipped across the
network in XML messages. We first carefully characterized
the problems that may occur regarding node identity and
structural XPATH relationships in such a distributed setting.
Then, we proposed a series of techniques such as pass-by-
fragment and the use of a novel runtime XML projection
method for serializing XML messages, that remove virtually
all semantic problems and strongly improve performance, as
shown by experiments on the open-source MonetDB/XQuery
XML database system (monetdb.cwi.nl).

Our main future work is an issue left out-of-scope here:
deciding on distributed query placement after decomposition.
In this area, we also contemplate using runtime methods to im-
prove optimization quality. Another direction is decomposition
of queries containing XQUF update expressions. The challenge
here is that updates are necessarily tied to execution on their
source peer, which restricts decomposition to cases where at
compile-time a single affected peer can be identified.

REFERENCES

[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and
N. Preda. Lazy Query Evaluation for Active XML. In SIGMOD, 2004.

[2] S. Abiteboul et al. A Framework for Distributed XML Data Manage-
ment. In EDBT, 2006.

[3] V. Benzaken et al. Type-Based XML Projection. In VLDB, 2006.

[4] P. Boncz et al. MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine. In SIGMOD, 2006.

[5] S. Bressan et al. Accelerating queries by pruning XML documents. Data
Knowl. Eng., 54(2), 2005.

[6] P. Buneman et al. Using Partial Evaluation in Distributed Query
Evaluation. In VLDB, 2006.

[7] G. Cong et al. Distributed query evaluation with performance guarantees.
In SIGMOD, 2007.

[8] D. Draper et al. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C
Candidate Recommendation 8 June 2006.

[9]1 M. Ferndndez et al. Highly Distributed XQuery with DXQ. In SIGMOD,

2007.

T. Grust et al. XQuery on SQL Hosts. In VLDB, 2004.

M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen.

SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommen-

dation 24 June 2003. http://www.w3.0rg/TR/2003/REC-soap12-part]-

20030624.

M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen.

SOAP Version 1.2 Part 2: Adjuncts. W3C Recommendation 24 June

2003. http://www.w3.0org/TR/2003/REC-soap12-part2-20030624.

V. Josifovski and T. Risch. Query decomposition for a distributed

object-oriented mediator system. Distributed and Parallel Databases,

11(3):307-336, 2002.

J. Knoop and B. Steffen. Code motion for explicitly parallel programs.

SIGPLAN Not., 34(8):13-24, 1999.

C. Koch et al. XML Prefiltering as a String Matching Problem. In

ICDE, 2008.

D. Kossmann. The state of the art in distributed query processing. ACM

Computing Surveys, 32(4), 2000.

H. Kozankiewicz, K. Stencel, and K. Subieta. Distributed query

optimization in the stack-based approach. In HPCC, 2005.

A. Marian et al. Projecting XML Documents. In VLDB, 2003.

N. Mitra. SOAP Version 1.2 Part 0: Primer. W3C Recommendation 24

June 2003. http://www.w3.0rg/TR/2003/REC-soap12-part0-20030624.

N. Onose and J. Siméon. XQuery at Your Web Service. In WWW, 2004.

M. T. Ozsu and P. Valduriez. Principles of distributed database systems

(2nd ed.). Prentice-Hall, Inc., NJ, USA, 1999.

C. Re et al. Distributed XQuery. In IIWeb, September 2004.

A. Schmidt et al. XMark: A Benchmark for XML Data Management.

In VLDB, 2002.

D. Suciu. Query decomposition and view maintenance for query

languages for unstructured data. In VLDB, 1996.

D. Suciu. Distributed query evaluation on semistructured data. ACM

Trans. Database Syst., 27(1), 2002.

K. Tajima and Y. Fukui. Answering XPath queries over networks by

sending minimal views. In VLDB, 2004.

L. T. T. Thuy, D. D. Duong, V. C. Bhavsar, and H. Boley. A bottom-up

strategy for query decomposition. In ICDIM, 2006.

E. Wong and K. Youssefi. Decomposition - a strategy for query

processing. ACM Trans. Database Syst., 1(3):223-241, 1976.

C. Yu and C. Chang. Distributed query processing. ACM Computing

Surveys, 16(4), 1984.

Y. Zhang and P. Boncz. XRPC: Interoperable and Efficient Distributed

XQuery. In VLDB, 2007.

Y. Zhang and P. Boncz. Distributed XQuery and updates processing

with heterogeneous XQuery engines. In SIGMOD, 2008.

[13]

[14]
[15]
[16]
[17]

[18]
[19

[20]
[21]

[22]
[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

576

