
GenerIE: Information Extraction
Using Database Queries

Luis Tari1, Phan Huy Tu1, Jörg Hakenberg1, Yi Chen1, Tran Cao Son2, Graciela Gonzalez3, Chitta Baral1

1Department of Computer Science and Engineering, Arizona State University
Tempe, AZ 85287, USA

2Department of Computer Science, New Mexico State University
Las Cruces, NM 88003, USA

3Department of Biomedical Informatics, Arizona State University
Phoenix, AZ 85004, USA

Abstract— Information extraction systems are traditionally
implemented as a pipeline of special-purpose processing modules.
A major drawback of such an approach is that whenever a new
extraction goal emerges or a module is improved, extraction has
to be re-applied from scratch to the entire text corpus even
though only a small part of the corpus might be affected. In
this demonstration proposal, we describe a novel paradigm for
information extraction: we store the parse trees output by text
processing in a database, and then express extraction needs using
queries, which can be evaluated and optimized by databases.
Compared with the existing approaches, database queries for
information extraction enable generic extraction and minimize
reprocessing. However, such an approach also poses a lot of
technical challenges, such as language design, optimization and
automatic query generation. We will present the opportunities
and challenges that we met when building GenerIE, a system
that implements this paradigm.

I. INTRODUCTION

Information extraction (IE) is typically realized by special-
purpose programs that perform a sequence of processing
modules, including sentence splitters, tokenizers, named entity
recognizers, shallow or deep syntactic parsers, and finally
extraction based on a collection of patterns. However, such
a framework is inflexible and expensive in face of dynamic
application needs. Consider a biology-oriented scenario when
the original information extraction goal is to extract interac-
tions among proteins from a corpus of text. Suppose later on
we are interested in finding gene-disease associations from
the same corpus. Existing approaches would have to develop
a new extraction system specifically for this new extraction
goal, and run that extraction system on the entire corpus from
scratch, which is very expensive. Consider another application
scenario where the extraction goal remains the same, but an
improved named entity recognizer becomes available. This
would also require extraction to be performed from scratch
on the entire corpus. However, we observe that only a portion
of the corpus is affected with newly recognized entities, as
the majority of the entities are overlaps between the original
and the improved recognizers. Such expensive re-computation
should be minimized. This is particularly true for extraction
in the biomedical domain, where a full processing of all 17
million Medline abstracts took about more than 36K hours of

CPU time using a single-core CPU with 2-GHz and 2 GB of
RAM. In this case, the Link Grammar parser [3] contributes
to a large portion of the time spent in text processing.

In this demonstration, we propose a new paradigm of infor-
mation extraction in the form of database queries. We present a
general-purpose information extraction system, GenerIE, in the
context of biomedical extraction, which can efficiently handle
diverse extraction needs and keep the extracted information up-
to-date incrementally when new knowledge becomes available.
The insight of GenerIE is that changes in extraction goals or
deployment of improved processing modules hardly affects all
sentences in the entire collection. Thus we differentiate two
phases of processing.

• Initial Phase: we perform a one-time parse, entity recog-
nition and tagging (identifying individual entries as belonging
to a class of interest) on the whole corpus based on current
knowledge. The generated syntactic parse trees and semantic
entity tagging of the processed text is stored in a parse tree
database (PTDB).
• Extraction Phase: Extracting particular kinds of relations
can be done by issuing an appropriate query to PTDB. As
query languages such as XPath and XQuery are not suitable
for extracting linguistic patterns [2], we design and implement
a query language called PTQL for pattern extraction which
effectively achieves diverse IE goals [6]. To ease the extraction
tasks for users, our system not only allows a user to issue
PTQL queries for extraction, but it can also automatically
generate queries for high-quality extraction based on user input
keyword-based queries and feedback.

There are several advantages of the proposed approach,
which have been demonstrated in our initial experimental
evaluation. First, using database queries instead of writing
individual special-purpose programs, information extraction
becomes generic for diverse applications and becomes easier
for the user. The user can express and analyze an extraction
pattern by issuing a database query. When a user has a new
extraction goal, the user only needs to write another query on
PTDB without developing and running new programs.

Second, upon new extraction goals, the two-phase approach



Fig. 1. Architecture of GenerIE. (A) Query-specified Extraction: evaluation of PTQL queries through filtering and translation to SQL queries. (B) Pseudo-
relevance Feedback Query Generation: generation of PTQL queries based on the common grammatical patterns among the top-ranked sentences relevant to
the user keyword-based queries.

avoids performing the initial phase again, an extremely expen-
sive phase that has be to performed by existing approaches.

Third, with the use of databases, GenerIE only needs to
perform extraction incrementally on the sentences that are
affected by an improved module, and thus it is much more
efficient than running the whole extraction programs from
scratch as required by existing systems. Suppose an improved
named entity recognizer that can discover a more extensive list
of protein names becomes available. We only need to perform
a delta extraction on the database with respect to the newly
recognized protein names using queries.

Indeed, the ability of expressing information extraction
and exploiting database optimizations for the process is also
observed in [7]. While [7] proposes to use Datalogs for ex-
tracting facts from “relational tables”, we focus on extracting
meaningful “tables” from “parse trees” of text documents. Due
to the variety of extraction needs, the existence of hierarchical
data structure and the lack of a relational schema, this involves
a new set of technical challenges as outlined in Section IV.

II. SYSTEM

Figure 1 illustrates the system architecture of our GenerIE
system. The Text Processor performs the Initial Phase for
corpus processing and stores the processed information in the
Parse Tree Database (PTDB). The extraction patterns over
parse trees can be expressed in our proposed parse tree query
language (PTQL). The PTQL query evaluator takes a PTQL
query and transforms it into keyword-based queries and SQL
queries, which are evaluated by the underlying RDBMS and
IR engine. The index builder creates an inverted index for the
corpus as part of the query evaluation by the IR engine.

The user interface provides two input modes: query-
specified extraction mode and pseudo-relevance-feedback ex-
traction mode. A user can directly specify PTQL queries for
extraction in query-specified extraction mode. The user inter-
face also provides the capability for users to input a keyword-
based query. When a user keyword query is issued, relevant
sentences are retrieved using an existing IR keyword search
engine. With the top-ranked sentences, their corresponding
grammatical structures are retrieved from PTDB. The PTQL
query generator then uncovers the common grammatical pat-
terns by considering the parse trees of the top-ranked sentences

to automatically augment the initial keyword-based queries
and generate PTQL queries. Extracted results are presented
to the users once the queries are evaluated. Furthermore,
an explainer module is available to illustrate the provenance
of query results by showing the syntactic structures of the
sentences involved in the extracted results. This helps the users
understand, and enhance their queries accordingly.

A. Text Parsing and Parse Tree Database (PTDB)

The Text Processor parses Medline abstracts with the Link
Grammar parser [3], and identifies entities in the sentences.
Each document is represented as a hierarchical representation
called the parse tree of a document. A parse tree is composed
of a constituent tree and a linkage. A constituent tree is a
syntactic tree of a sentence with the nodes represented by
part-of-speech tags and leafs corresponding to words in the
sentence. A linkage, on the other hand, represents the syntactic
dependencies (or links) between pairs of words in a sentence.
Each node in the parse tree has labels and attributes capturing
the document structure (such as title, sections, sentences),
part-of-speech tags, and entity types of corresponding words.
Figure 2 shows a sample parse tree of a sentence, where the
solid lines indicate parent-child relationships in the constituent
tree and the dotted lines represent the linkage. Each leaf node
in a parse tree has a value and a tag attribute. The tag
attribute indicates the entity type of a leaf node. The Parse
Tree Database is a relational database for storing parse trees
and semantic types provided by the Text Processor.

B. Information Extraction Using PTQL Queries

To perform information extraction, we propose a query
language, PTQL, to specify linguistic patterns on parse trees.
An example of a PTQL query is shown in Figure 3. A PTQL
query consists four components delimited by colons: (i) tree
patterns, (ii) a link condition, (iii) a proximity condition,
and (iv) a return expression. A tree pattern describes the
hierarchical structure and the horizontal order of the nodes
in a linguistic extraction pattern. XPath axis are used for
expressing node relationships. In the example for Figure 3,
the tree pattern specifies that there is a node labeled as S
as the root of a subtree that contains three nodes represented
by variables i1, v and i2. A link condition describes the



positively SNP VP NPADVPS E OTag=GENERAD53 regulates Tag=GENEDBF4U RB V U
Fig. 2. An example of a parse tree

//S{//?[tag=’GENE’](i1)=>//V[Value=’regulates’]
(v)=>//?[tag=’GENE’](i2)}: i1 !S v and

v !O i2 :: i1.value, v.value, i2.value

Fig. 3. An example of a PTQL query

linking dependencies between nodes. In the example for Figure
3, i1 !S v represents that the node denoted by i1 has to
be connected to the node denoted by v through an S link.
In other words, i1 is the subject and v is the corresponding
verb. Similarly, the link term v !O i2 indicates that i2 is the
object and v is the corresponding verb. A proximity condition
specifies words that are within a specified word distance in
the sentence. A return expression defines the list of elements
to be returned. In the example, i1.value, v.value,
i2.value indicate to return the bindings to the variables
i1, v, i2 (i.e. two interactors and the interaction verb) for
sentences that satisfy the query. The parse tree in Figure 2
satisfies the query. The details of the PTQL query language
and its implementation can be found in [6].

C. Pseudo-relevance Feedback Query Generation

To ease the the learning curve in issuing PTQL queries for
the users, GenerIE allows a user to issue simple keyword-based
queries, and automatically generates PTQL queries based on
the user keyword query.

To achieve this, it first performs an initial retrieval from
the inverted index of the corpus with the user keyword query.
Among the top-k% of the retrieved sentences Sk, the parse
trees of Sk are retrieved from PTDB to find the common
grammatical patterns among Sk. Intuitively, a sentence that
bears the common grammatical patterns among the top-ranked
sentences are likely to be relevant. Second, for each parse
tree of the relevant sentence GenerIE extracts the subtree
that is rooted at the LCA (lowest common ancestor) lca
of the query terms. Third, to efficiently compare and find
the common patterns, GenerIE generates m-th level string
encodings for each subtree [5]. When m = 0, the string
encodes the exact linguistic pattern in the subtree, and thus
the retrieved sentences have the exact pattern as the relevant
sentences, potentially with a high precision. With the increase
value of m, the string encodes a more generalized linguistic
pattern, and is likely to retrieve more sentences that leads to a
higher recall with possible compromise on precision. Fourth,
identical m-th level string encodings form clusters of common
grammatical patterns Cm. Finally, a PTQL query is generated
for each of the clusters in Cm.

D. Query Evaluation and Optimization

To evaluate PTQL queries on PTDB, the Query Translator
generates SQL queries from PTQL queries. Efficiency is
a key requirement for query evaluation. One of our opti-
mizations is that for each PTQL query, the Filter module
first generates an keyword-based query to efficiently prune
irrelevant sentences, and then the Query Translator generates
a SQL query equivalent to the PTQL query, and performs the
actual extraction only on relevant sentences. The keyword-
based query captures keywords in the PTQL query, while
the extraction query captures both the structural patterns and
keywords. The keyword-based and SQL queries are evaluated
using an IR engine and a relational database, respectively.
For efficient query processing, the Index Builder creates an
inverted index that indexes sentences according to the words,
named entities and entity types.

III. DEMONSTRATION

Fig. 4. A screenshot for the GenerIE system showing the query results that
share the same m-th level string encoding.

What will be shown in the demo? Our web-based demon-
stration , as shown in Figure 4, will illustrate how the GenerIE
system enables generic extraction.
• Query-specified Extraction. In the demonstration, the user
can input a PTQL query to express an extraction pattern or
select one of the PTQL query examples. We will show that
to perform extraction, a user no longer needs to write specific
extraction programs.
• Pseudo-relevance Feedback Query Generation. The user
can express extraction patterns in the form of keyword-based
queries. This scenario illustrates the feasibility of generating
PTQL queries from keyword-based queries through a mech-
anism inspired by the pseudo-relevance feedback approach
commonly found in IR. In addition, the user can achieve
extraction results for optimal precision or recall by adjusting
the value of m.
• Two Phase Extraction and Incremental Evaluation. We will
illustrate the efficiency of GenerIE when new extraction goals



or improved processing components emerge. For instance, as-
sume that NER1 is a currently deployed gene name recognizer,
and NER2 is an improved version NER1 to be adopted by
GenerIE. The user can browse the sentences that are affected,
i.e. sentences with genes that are recognized by NER2 but not
NER1, and vice versa. Then the user can see that the extraction
is incrementally performed on the affected sentences only, and
thus it is very efficient.
• Provenance of Query Results and Query Explanation. To
help users develop and test their queries, upon click, the prove-
nance of the query results will be displayed, which includes
the original sentence along with its parse tree. GenerIE also
illustrates the flow of every step of the query generation and
PTQL query evaluation.

IV. DISCUSSION

Significance of Our Approach. The significance of our
approach lies in three aspects.
• Novel Database-Centric Framework for Information Ex-
traction. Information extraction is traditionally realized by
writing special-purpose programs for each specific extraction
goal. In this demonstration, we will illustrate a new extraction
framework, where extraction is formulated as queries on a
database that stores the parsed data. The benefits of such a
framework for information extraction include: (i) incremental
evaluation is achieved in the presence of new extraction
goals and deployment of improved processing components;
(ii) database query optimization is leveraged for efficiency.
• Proven Success of Information Extraction in Biomedical
Domain with Promises to General Domains. The underlying
framework of the GenerIE system has been tested on infor-
mation extraction of biomedical literature [5], and performed
among the top in the BioNLP’09 shared task on event ex-
traction [4]. Our two-phase extraction framework and query
generation are not specific to only the biomedical domain, but
can be adapted to information extraction in general domain.
• Performing Diverse Extraction Goals without Training
Data. Typical IE systems, such as Snowball [1], adopt the
supervised learning approach that takes annotated data in
generating extraction patterns. However, training data is scarce
and it is known to be expensive to assemble. This can limit
the opportunity for a trained IE system to perform another
extraction goal. Our automated query generation approach
forms PTQL extraction queries by exploiting the linguistic
features of the top-ranked relevant results. Without the use
of training data, our approach is readily available to extract
different kinds of extraction goals. Such approach serves
diverse information needs among different users.

Database Challenges. Our general framework for two-phase
information extraction opens up a lot of new opportunities and
challenges for data management research.
• Languages for Information Extraction. The parse tree
database is complex, and extraction patterns involve traversals
of paths in constituent trees, as well as links and link types
between node pairs. Without user-defined functions, existing

query languages fail to specify required extraction patterns
due to missing axes (XPath, XQuery) or unable to traverse
linkages as a first class citizen (XPath, XQuery, LPath [2]).
The design of query languages for information extraction on
parsed documents demands investigation.
• Optimization Challenges for Query Optimization on Large-
scale Data. GenerIE handles 1.5 terabytes of parsed text data.
Thus efficiency and scalability are essential elements of the
system. During prototyping, we found that directly evaluating
SQL queries translated from PTQL queries was very slow due
to the complexity of the extraction patterns. In GenerIE, we
significantly improved the efficiency by leveraging keyword-
based queries for pruning. However, further query optimization
is essential to handle cases when only a small number of
sentences can be filtered by keyword-based queries.
• Automated Query Generation. Query generation is critical
so that casual users can specify their information needs without
learning a query language. Although our current attempts
of automated query generation already show promises, many
further technical challenges need to be addressed. For instance,
how to strike the balance of precision and recall when gen-
erating PTQL queries that may generalize the linguistic tree
patterns in relevant sentences? How to estimate the “quality”
of the generated PTQL queries before the execution?

GenerIE presents our attempts in providing a versatile
approach for information extraction. The elegance of our
approach is that unlike typical extraction frameworks, intro-
ducing new knowledge in our framework does not require the
reprocessing of all modules. Simple SQL insert statements
can be issued to store the new entities in PTDB. We believe
that studying fundamental database management issues on
information extraction – a well-known important problem –
opens up a lot of new opportunities and challenges.

V. ACKNOWLEDGMENTS

We appreciate the comments made by the reviewers. Au-
thors CB, JH, LT and PHT acknowledge the support from
NSF 0412000, 0950440, SFAZ CAA 0289-08 and an IARPA
contract. YC acknowledges the support of NSF through the
CAREER grant number IIS-0845647.

REFERENCES

[1] E. Agichtein and L. Gravano Snowball: extracting relations from
large plain-text collections. In ACM Digital libraries, 2000.

[2] S. Bird, Y. Chen, et. al. Designing and Evaluating an XPath
Dialect for Linguistic Queries. In ICDE, 2006.

[3] D. Grinberg, et. al.. A Robust Parsing Algorithm For LINK
Grammars. CMU-CS-TR-95-125, Pittsburgh, PA, 1995.

[4] J. Hakenberg, et. al. Molecular event extraction from Link
Grammar parse trees. In Proc. of BioNLP’09, 2009.

[5] L. Tari, et. al.. Querying parse tree database of Medline text to
synthesize user-specific biomolecular networks. In PSB’09, 2009.

[6] P. H. Tu, et. al.. Generalized text extraction from molecular
biology text using parse tree database querying. TR-08-004,
Arizona State University, 2008.

[7] S. Warren, et. al. Declarative IE using datalog with embedded
extraction predicates. In VLDB ’07, 2007.


