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Abstract— In this paper, we propose a non-blocking buffer
management scheme based on a lock-free variant of the
GCLOCK page replacement algorithm. Concurrent access to
the buffer management module is a major factor that prevents
database scalability to processors. Therefore, we propose a non-
blocking scheme for bufferfix operations that fix buffer frames
for requested pages without locks by combining Nb-GCLOCK
and a non-blocking hash table. Our experimental results revealed
that our scheme can obtain nearly linear scalability to processors
up to 64 processors, although the existing locking-based schemes
do not scale beyond 16 processors.

I. I NTRODUCTION

Recent hardware trends toward multithreading for improved
performance, including multi-core and multithreaded chipde-
sign, have raised critical challenges in software engineering
[1]. It has also presented issues to the database community
both in research [2], [3] and open source database develop-
ment. Open source DBMSs, such as PostgreSQL, MySQL and
Apache Derby [4], have had to face scalability problems with
the increases in the number of processors. The open source
DBMSs did not scale beyond four processors before revising
their synchronization mechanisms in the buffer management
modules.

In general, there are basically three approaches to cope with
concurrency issues of synchronization:

(a) Do not acquire locks, and use a data structure that does
not require locking [5]. The synchronization mechanism
that avoids acquiring locks is callednon-blocking syn-
chronization.

(b) Reduce lock granularity. Fine lock granularity reduces
lock contentions, although it may increase the overhead
of locks themselves, i.e., the total time for acquiring and
releasing locks.

(c) Use a more lightweight lock mechanism. Spinlock is
efficient if threads are only likely to be blocked for a
short period of time, as it avoids overhead from process
re-scheduling or context switching in operating systems.

The open source databases dealt with the scalability issues
by making improvements using (b) and (c). However, several
empirical studies have shown that they have scalability limits
of around 16 processors [6], [7], [8].

Database systems now demand a CPU scalability beyond
16 processors because the number of CPU cores per chip is

doubling for each CPU manufacturing process in about two-
year cycles. In addition, massively multithreaded processors,
e.g., Sun’s UltraSPARC T2 (64 processors) [9] and Azul
System’s Vega-2 7200 Series (768 processors) [10], have
already been released as industrial products.

Most of the past research efforts on database buffer man-
agement have focused on improving their efficiency with
respect to buffer hit rates on various workloads. Consequently,
the literature contains very little research focusing on the
concurrency of buffer management, and most of the difficulties
remain to be handled by individual developers’ empirical
knowledge. In this paper, we propose a scalable buffer man-
agement scheme that employs non-blocking synchronization
instead of acquiring locks. To the best of our knowledge, this
paper is the first attempt to adopt non-blocking synchroniza-
tion in buffer management.

One reason why concurrency in buffer management has not
been intensively discussed is that large-scale multiprocessors
have not been widespread, and also the main concerns were
improving buffer hit rates and minimizing I/Os. However, the
bufferfixoperation that fixes a buffer frame for a required page
[11] is not necessarily a IO-bound job. Although disk I/Os in
a bufferfixoperation certainly take place when synchronization
to disk is required for a replacement victim (i.e., the replaced
page that keeps its dirty flag on), modern DBMSs reduce
such disk I/Os bypreflushingdirty pages and preemptively
selecting non-dirty pages for the replacement victim [11].
This means that the number of page replacements due to
the bufferfix operation can be minimized if a large amount
of memory is available and a large buffer pool can be used. In
this case, thebufferfix operation becomes a CPU-bound task
and, therefore, the CPU scalability issue in buffer management
becomes particularly problematic in multiprocessor systems.
Actually, fix and unfix operations to a buffer frame are the
basic operations most frequently called in DBMSs. Thus,
the efficiency offix and unfix operations becomes extremely
important because they lead to frequent contentions in the
critical sections [12].

Several non-blocking algorithms for hash tables have al-
ready been proposed [13], [14]. In this paper, we focus on
concurrency of page replacement algorithms and utilize an
existingwait-freehash table for searching buffer frames. Then,
we propose our Nb-GCLOCK page replacement algorithm,
which is a non-blocking variant of thegeneralized CLOCK



Fig. 1. Typical organization of a buffer manager.

(GCLOCK) page replacement algorithm [15]. We also verify
the effectiveness of our non-blocking page replacement algo-
rithm with respect to its concurrency and throughput using Sun
UltraSPARC T2 [9]. The experimental results revealed that our
scheme can obtain nearly linear scalability to processors up to
64 processors, although the existing locking-based schemes do
not scale beyond 16 processors.

The rest of this paper is organized as follows. SectionII
introduces the background of the need for non-blocking page
replacement. We explain why existing buffer management
schemes cause scalability bottlenecks to processors. In Section
III , we describe the details of our non-blocking page replace-
ment algorithm. In SectionIV , we evaluate our proposed
scheme through experiments. We refer to related works in
SectionV and conclude the paper in SectionVI .

II. BACKGROUND

In this section, we explain the background of our research
to address open and known problems in buffer management
by giving examples. A buffer manager typically consists of
a buffer lookup tablefor searching buffer frames,buffer
descriptorsto manage a page replacement policy, and abuffer
pool as shown in Fig. 1. Thebuffer lookup tableis usually
constructed as a hash table [16], [11]. The purpose of the buffer
lookup table is to map a page identifier to the corresponding
memory page currently holding its contents. As for the page
replacement policy, LRU, CLOCK, and their refinements [17],
[18] are widely used. We refer to the module that manages a
page replacement policy thereplacement list.

A. Internal Locking in Buffer Manager

Access to a shared buffer cache has a significant scalability
problem, particularly on multiprocessor systems. When ac-
cessing a buffer management module, the operations to the
critical sections must acquire their mutual exclusions. For
example in Fig. 1, to look up a buffer in the buffer pool, a
shared lockis obtained in thebuffer lookup table. To alter the
page assignment of a buffer, anexclusive lockis acquired on
the buffer manager. This lock must be held while adjusting the
replacement listand changing thebuffer lookup table. This is
because the reference inbuffer lookup tablestill has a different
page identifier immediately after changing the page allocation
of a buffer frame.

Suppose then that concurrent requests from multiple users
are given. If one paging request causes a page fault and
holds an exclusive lock, the exclusive lock prevents the others

from holding either a shared or exclusive lock. Since system-
wide mutexestend to appear for each scan of pages, it would
cause “mutex ping-pong” in multiprocessor and multithreaded
environments. Moreover, high traffic access to a lock may
causes theconvoy phenomenon[12]. Convoyingoccurs when a
thread holding a lock is descheduled by some kind of interrupt,
e.g., by a page fault. Then, other threads that require the
lock will queue up, unable to progress. Even after the lock
is released, it may take some time to drain the queue, in an
analogous fashion that an accident can slow the flow of traffic
even after the debris has been cleared away.

PostgreSQL (version 8.2), MySQL (version 5.0.30) and
Apache Derby coped with the lock contention problems in
their buffer pools by adopting finer-grain locking schemes.
They took a conventional and conservative approach [11] for
refining the concurrency of a hash table, calledlock-striping,
which is a technique that divides a giant lock into clusters
so as to reduce contentions. On the other hand, we attempt a
more aggressive approach to synchronization toward massively
multithreaded environments, rather than using the conservative
one.

B. Revising Concurrency in Page Replacement Algorithms

We address here concurrency issues of page replacement
algorithms by taking three practical examples:Least Recently
Used (LRU), 2Q [17], andGeneralized CLOCK(GCLOCK)
[15].

LRU is typically arranged as a double-linked list to keep
the LRU chains as shown in Fig. 1: adding new items to
the head, removing items from the tail, and moving any
existing items to the head when referenced (touched). When
using LRU, thereplacement listalways needs to be locked
when it is accessed. Thus, the LRU algorithm is effective
for single-threaded applications but becomes very slow in
a multithreaded environment. CLOCK [19], which has an
approximately equivalent performance to LRU, is often used
as the substitution [20]. CLOCK does not require a giant lock
when an entry is touched. It needs only one atomic operation,
e.g., setting a reference bit on or incrementing a weighting
counter, on the touched entry.

GCLOCK is an efficient variation of CLOCK and uses a
weighting counter instead of the use-bit of a buffer page. The
references to a pagePi increment the corresponding counter
RC(i). In the basic GCLOCK,RC(i) is initialized to 1 upon
the first fetch ofPi and incremented by one every timePi

is touched. When a buffer fault occurs, a circular search is
initiated, decrementing stepwise the weighting counters until
the first entry with a value of 0 is found. GCLOCK improves
CLOCK concerning buffer hit rates because only GCLOCK
of them takes reference frequency into consideration.

Furthermore, LRU is known to be inefficient, in terms of
buffer hit rates, for sequential scans and largeInter-Reference
Gaps(IRGs) [20]. A burst of references to infrequently used
pages, such as sequential scans, may cause replacement of
commonly referenced pages in the cache. In [17], the authors
present the scan-resistant 2Q algorithm, which divides cache
items into hot and cold ones; the full version of the 2Q
algorithm uses three FIFOs for managing items. The buffer
manager in Oracle universal server employed a variation of



LRU that uses two separated hot/cold queues for the LRU
chain management [21]. 2Q and similar algorithms as well
as plain LRU management have a global contention point on
their replacement lists, which degrade the scalability of buffer
managers on multiprocessor systems.

To cope with sequential scans expected by database work-
loads, PostgreSQL 8.0 and us initially moved from LRU to the
2Q algorithm. However, as did the PostgreSQL community, we
finally realized that 2Q has an unavoidable synchronization
penalty on multithreaded systems. Therefore, PostgreSQL has
shifted to CLOCK mostly due to the contention penalty.
Similarly, we shifted to a GCLOCK refinement that employs a
novel non-blocking scheme instead of a lock-based one. These
facts imply that lock contentions affect the overall performance
on the current hardware though minimizing paging I/Os is
certainly a requirement. We provide detailed performance
evaluations of these algorithms in SectionIV .

C. Spinlock on SMT Environment

Conventional multiprocessor systems widely use spinlocks
to guardcritical sections. Both MySQL and PostgreSQL use
spin-wait loopswith backoff as their spinlock algorithms for
most hardware architectures.

There are several variations of the spinlock; and past studies
have shown that the Test-and-Test-and-Set (TTAS) lock with
exponential backoff or a queue lock is one of the most promis-
ing spinlock protocols [22]. Spinlock is generally effective
if threads are only likely to be blocked for a short period
of time, since the cost of acquiring and releasing a lock is
smaller than a sleep lock, though aspin-wait loopconsumes
one processor resource. However, a spin loop can be especially
wasteful where logical processors share execution resources.
When such loops are executed on a processor supporting Intel
Hyper-Threadingtechnology, they can induce an additional
performance penalty due to memory-order violations and con-
sequent pipeline flushes caused upon their exit. To ensure the
proper order of outstanding memory operations, the processor
incurs a severe penalty. In order to overcome this issue, Intel
recommended embedding a PAUSE instruction in a spin loop
[23]. PAUSE instruction introduces a slight delay in the loop
and de-pipelines its execution to prevent it from aggressively
consuming valuable processor resources. Zhou et al. discussed
the benefits and pitfalls of using SMT processors for (in-
memory) database operations in [24]. They used, in the spin-
loop waiting,PAUSEinstructions on Pentium 4.

In summary, a spinlock requires a special care (i.e., special
instructions) on each hardware architecture when database
operations are executed on SMT processors; on the other hand,
our non-blocking buffer management scheme does not acquire
any locks for searching and allocating buffer pages, and thus
it is free from such difficulties in spinlocks.

III. N ON-BLOCKING GCLOCK PAGE REPLACEMENT

ALGORITHM

This section explains our non-blocking buffer manage-
ment scheme based on a lock-free variant of the GCLOCK
page replacement algorithm, namedNb-GCLOCK. The key
idea of our algorithm is to make buffer management fully
non-blocking and optimistic including disk I/Os so that the

throughput of transaction processing can be maximized. Nb-
GCLOCK is entirely lock-free in both cache-hit and cache-
miss cases.

Our Nb-GCLOCK algorithm basically follows the prop-
erties of GCLOCK [15] except that it allows non-blocking
accesses. The reasons why we selected GCLOCK as the
baseline algorithm of our non-blocking page replacement are
as follows:

1) CLOCK variants are widely used due to their advan-
tages, i.e., low overhead and high concurrency.

2) The properties and performance of GCLOCK are well
analyzed and established [15], [25]. While the simple
CLOCK respects only therecencyof buffer references,
GCLOCK takesfrequencyas well asrecencyinto ac-
count.

3) The probability of contentions generated by concurrent
accesses to shared variables is low. The contention
indicates such a state that two or more processes con-
currently access the same memory location. A typical
CLOCK uses a single bitmap or few bitmaps to manage
reference frequency. When a bitmap is frequently up-
dated due to access skew, CLOCK becomes inefficient
on cache-coherent shared memory multiprocessors due
to false sharing. On the other hand, GCLOCK keeps
a weighting counter for each buffer frame, and thus
contentions rarely occur.

The unique feature of Nb-GCLOCK is that it adopts alock-
free linearizablepage replacement.Linearizability is a non-
blocking property: a pending invocation of a total method
is never required to wait for another pending invocation
to complete. Non-blocking algorithms have two important
properties [26]. If some operations are guaranteed to complete
within finite time, the algorithm is defined aslock-free. A lock-
free algorithm guarantees that at least one process keeps its
role progressing. If all operations are guaranteed to complete
within a finite time, the algorithm is defined aswait-free.
The first and second definitions guarantee thelivenessand
fairness properties, respectively. From this viewpoint, our
proposed buffer management scheme guarantees alock-free
operation. We prove in Appendix that our Nb-GCLOCK is
both linearizableand lock-free.

Our scheme takes a strategy that keeps trying its non-
blocking operation after temporarily abandoning its execution
and allows other threads to be executed when all buffer frames
in the buffer pool are pinned. Due to this decision, it is
impossible to guarantee that all processing will complete in
a finite time when we consider the case where all pages in
the buffer pool are pinned, although this is an extremely rare
case. The behavior depends on whether applications that uses
the cache allow failures at the buffer allocation. In a typical
buffer management, a transaction is aborted when all pages
are pinned [20], [11]. This abnormal condition had never been
reached through our experiments.

As mentioned in SectionII , we use an wait-free hash table
for a buffer lookup tableto achieve non-blocking synchroniza-
tion on the buffer management. The non-blocking linearizable
hash table has been actively developed in the literature [13],
[14]. We used an existing non-blocking hash table [27]; the



non-blocking hash table provides (almost1) wait-freedom—
every operation has a bound on the number of steps it will
take before completing. We utilized the wait-free hash table
for ensuring the overall lock-freedom of Nb-GCLOCK.

In fact, a wait-free hash table is important to ensure the
lock-freedom; however, it is not a dominant factor in terms
of the scalability and other concurrent hash tables including
blocking-ones can be the replacement because hash tables are
naturally parallelizable [26] or, using a more technical term,
disjoint-access-parallel[28], meaning that concurrent method
calls are likely to access disjoint locations, implying that
there is little need for synchronization. A certain concurrent
hashing scheme, e.g., concurrent cuckoo hashing [26] and
java.util.ConcurrentHashMap [29], use a (hash) bucket-level
synchronization scheme that divides locks into buckets, and
thus the contention is expected to be reduced. The point is then
that hash tables can be expected to be parallelized; however,
operations on replacement algorithm are generally serialized
as discussed in SectionII-B and [30].

A. Nb-GCLOCK Algorithm

While disjoint-access-parallelcan be expected for hash
tables, existingreplacement listsincluding LRU and CLOCK
variants are not naturally parallelizable. This section describes
our carefully-designed Nb-GCLOCK algorithm in Fig. 3 and
Fig. 4.

All operations to AtomicInteger and AtomicBoolean are
atomically executed by using synchronization primitives such
ascompare-and-swap(CAS) andLoad-Link/Store-Conditional
(LL/SC). In SPARC V9, such an atomic operation is achieved
by a native CAS instruction.

1) Organization of the Buffer Frame:The left half of Fig.
3 describes theFrame class that defines cached entries. A
Frame instance is associated with a single key, a single value,
and two other control variables. In buffer management, K
represents a page identifier and V represents a page itself.
A wcountinstance keeps a weighting count of the entry, and a
pinning instance is responsible for judging whether the frame
is currently in use. Playing a vital role, apinning instance
represents anevictedcondition when the value is -1.

The reason why we representevictedandpinnedstates with
a singlepinning instance as shown in Fig. 2 is to achieve an
atomic update on these states using a synchronization primitive
without acquiring a lock. We introduce the state for the Frame
instance whose pinning value is -1evicted(see Fig. 2).

Table I explains the roles of non-obvious methods in the
Frame class. Thepin and unpin operations follow FIX and
UNFIX operations of the FIX-USE-UNFIX protocol, which is
generally used in buffer management [11]. Thepin/unpin and
tryEvict/evictUnsharedmethods atomically change a pinning
value. The state of the pinning value changes by these four
methods as shown in Fig. 2. Thepin method increases the
pinning valueP only whenP is greater than or equal to 0.
“gt 1” in Fig. 2 represents the state where the pinning value
is greater than 1. As seen in the transition, the pinning state
does not change to the other states when once evicted. The

1The wait-freedom is violated when a hash table is resized, but buffer lookup
table is designed not to incur resizing.

-1 0 gt 1

pinnedevicted

pin

unpin

tryEvict

evictUnshared

1

Fig. 2. State machine of a pinning instance.

volatileGetValue returns the associated value after interleaving
memory barrier for volatile load. The memory
barrier is reduced to no-op in x86 or SPARC [31].

CASValue atomically sets the field valueV to the given
updated value if the current value is identical
to expected value.

tryEvict atomically sets the frame evicted if the frame
is not evicted, and returns true if successfully
evicted and otherwise returns false.

evictUnshared atomically sets the frame evicted.

TABLE I

ROLE OF NON-OBVIOUS METHODS IN THEFRAME CLASS.

pinning value is always one or more when anunpin operation
is carried out.tryEvict succeeds only when the pinning value
is 0.

2) Bufferfix Algorithm:The operation to fix a buffer frame
for a requested page is calledbufferfix in the literature [11].
The corresponding procedure to the bufferfix operation in our
Nb-GCLOCK is thefixEntry method, except that a caller is
responsible for the page fixing operation.

The right half of Fig. 3 describes theBufferCacheclass
and its algorithm.BufferCachecontains a wait-free hash table
instance HASHTBL and a replacement list CLOCKBUF as its
member variables. For readability, the algorithm of CLOCK-
BUF is separately described in Fig. 4. TheBufferCache
contains two methods:fixEntry for retrieving a page slot (i.e.,
buffer frame) andaddEntry for allocating a page slot for the
given key. In a Frame instance of Fig. 3, “key” is always stable
and never be changed. The “value” is changed only through
CASValue(null, page)in Fig. 6.CASValuesucceeds only when
another page on memory is not yet allocated to the frame.

The addEntrymethod is called when the condition in Line
50 of Fig. 3 becomes false, when a non-evicted page associated
with the specified page identifier does not exist in HASHTBL.
Buffer flushing is required when an evicted page has a dirty
flag on in the purge operation ofaddEntry. This I/O in the
purge operation is minimized in modern DBMSs as mentioned
in SectionI . The invocation offixEntry fixes a frame for the
specified key and increments the weighting count of the fixed
frame by one.

A buffer frame may be evicted at the instant callingpin
method. However, oncepin method succeeds, the buffer frame
never becomes inconsistent as long as its state is “gt 1” in
Fig. 2. Consequently, the following Theorem 1 supports the
physical stability of existing buffer frames. Moreover, a newly
allocated buffer frame is not shared and thus clearly consistent.

THEOREM 1: Every time an existing Frame instanceF
is returned by thefixEntry method, thepinning value ofF is
incremented by one.

Proof: [Proof of Theorem 1] An existing Frame instance
F is returned by the fixEntry invocation only when the



class Frame {
1 K key; V value;
2 AtomicInteger wcount = new AtomicInteger(1);
3 AtomicInteger pinning = new AtomicInteger(1);
4 Frame(K key, V value) {
5 this.key = key;
6 this.value = value;
7 }
8 V volatileGetValue() {
9 memory fence for volatile load

10 return value;
11 }
12 boolean CASValue(V expect,V update) {
13 return CAS(value, expect, update);
14 }
15 void incrWC() {
16 wcount.increment();
17 }
18 boolean decrWC() {
19 return wcount.decrement();
20 }
21 boolean tryEvict() {
22 return pinning.CAS(0, -1);
23 }
24 void evictUnshared() {
25 pinning.CAS(1,-1);
26 }
27 int pinCount() {
28 return pinning.get();
29 }
30 boolean pin() {
31 int x;
32 do {
33 x = pinning.get();
34 if(x <= -1)
35 return false;
36 } while(!pinning.CAS(x, x + 1));
37 return true;
38 }
39 void unpin() {
40 pinning.decrement();
41 }
} //end Frame

class BufferCache{
42 HashTable HASHTBL;
43 ClockBuffer CLOCKBUF;
44 BufferCache(int size) {
45 HASHTBL = new HashTable(size);
46 CLOCKBUF = new ClockBuffer(size);
47 }
48 Frame fixEntry(K key) {
49 Frame entry = HASHTBL.get(key);
50 if(entry != null && entry.pin()) {
51 entry.incrWC();
52 return entry;
53 } else {
54 return addEntry(key, null);
55 }
56 }
57 Frame addEntry(K key, V value) {
58 for(;;) {
59 Frame newEntry = new Frame(key, value);
60 Frame removed = CLOCKBUF.add(newEntry);
61 if(removed != null) {
62 if(HASHTBL.remove(removed.key, removed))
63 purge the removed page
64 }
65 Frame prevEntry = HASHTBL.putIfAbsent(key, newEntry);
66 if(prevEntry != null) {
67 if(!prevEntry.pin()) {
68 if(HASHTBL.replace(key,prevEntry,newEntry)) {
69 newEntry.setValue(prevEntry.getValue());
70 return newEntry;
71 }
72 newEntry.evictUnshared();
73 continue; //jump to Line 59
74 }
75 newEntry.evictUnshared();
76 prevEntry.incrWC();
77 return prevEntry;
78 }
79 return newEntry;
80 }
81 }
} //end BufferCache

Fig. 3. Pseudo code of the buffer cache.

condition in Line 50 or 67 of Fig. 3 becomes true or false,
respectively. Whenever these conditions are met, it is clearthat
the pinning value ofF was incremented by one according to
the pin specification.

COROLLARY 1: From Theorem 1, a Frame instance suc-
cessfully evicted byevictUnsharedis never used outside the
Frame class.

3) CLOCK-sweep Algorithm:Selecting and swapping a
replacement victim in the buffer pool of CLOCK is called
the clock-sweepoperation.

Fig. 4 describes theClockBufferclass which manages the
Nb-GCLOCK page replacement policy. It contains four mem-
ber variables: an atomic array “POOL” as the buffer pool, an
atomic “Free” counter responsible for managing the number
of free-slots in the buffer pool, an atomic “CLOCKHAND”
representing a circulating clock hand, and a “SIZE” field
representing the capacity of the buffer pool.AtomicArrayclass
used for POOL provides atomic operations to an array. A
method invocationCAS(index, expect, update)on AtomicAr-
ray atomically sets the existing value of a specified index toan
updated value if the current value is identical to the expected
one.

The ClockBuffer class has a single entry point on theadd
method. Theadd method fixes the given frame to the buffer
pool. The swap method is invoked when theadd method
replaces an existing frame with the new frame according

to GCLOCK page replacement policy. ThemoveClockHand
method moves the clock hand in a style of atomic add instruc-
tions. We used this “add” scheme because “set” instructions
to a clock hand are not robust for multithreaded accesses.
Therefore, we add a “delta” (i.e., an absolute difference).

We now provide theorems to give consistency to theadd
algorithm.

THEOREM 2: A given entry is always fixed to a free space
in the buffer pool whenever decrementing the FREE instance
succeeds in Line 15.

Proof: [Proof of Theorem 2] It is clear that at least
one free space is ensured at the instant when decrementing
the FREE instance succeeds in Line 15. However, another
thread may seize free space upon enteringswap in Line 14
immediately after the success. To cope with this case, theswap
method avoids using any free space and gives free space to
other threads in Line 28. Thus, theaddmethod fixes the given
entry to free space in the buffer pool in Line 19 whenever
decrementing the FREE instance succeeds.

THEOREM 3: On add method call, the same Frame in-
stance will never be returned to a different invocation.

Proof: [Proof of Theorem 3] Whenadd method call
returns a non-null value, theswapmethod is called to return
an evicted Frame instance. The evicted instance will never be
managed in thereplacement list(see Line 60 to 64 of Fig. 3).

Between Lines 27 and 47 in the for-loop ofswapmethod,



class ClockBuffer {
1 AtomicArray POOL;
2 AtomicInteger FREE;
3 AtomicCounter CLOCKHAND = new AtomicCounter(0);
4 int SIZE;
5 ClockBuffer(int size) {
6 this.POOL = new AtomicArray(size);
7 this.FREE = new AtomicInteger(size);
8 this.SIZE = size;
9 }

10 Frame add(Frame entry) {
11 do {
12 int free = FREE.get();
13 if(free == 0)
14 return swap(entry);
15 if(FREE.CAS(free, free - 1))
16 break;
17 } while(true);
18 int idx = CLOCKHAND.get();
19 while(!POOL.CAS(idx%SIZE, null, entry))
20 idx++;
21 CLOCKHAND.increment();
22 return null;
23 }
23 Frame swap(Frame entry) {
24 int numpinning = 0;
25 int start = CLOCKHAND.get();
26 for(int i=start%SIZE;;i=(i+1)%SIZE) {
27 Frame e = POOL.get(i);
28 if(e == null) continue;

29 int pincount = e.pinCount();
30 if(pincount == -1) { // evicted?
31 if(POOL.CAS(i,e,entry)) {
32 moveClockHand(i, start);
33 return e;
34 }
35 continue;
36 }
37 if(pincount > 0) { // pinned?
38 if(++numpinning>=size)
39 yield this thread and allow others to execute
40 continue;
41 }
42 if(e.decrWC() <= 0) {
43 if(e.tryEvict() && POOL.CAS(i,e,entry)) {
44 moveClockHand(i, start);
45 return e;
46 }
47 }
48 } //end for
49 } //end swap
50 void moveClockHand(int curr, int start) {
51 int delta;
52 if(curr < start)
53 delta = curr + size - start + 1;
54 else
55 delta = curr - start + 1;
56 CLOCKHAND.add(delta);
57 }
} //end ClockBuffer

Fig. 4. Pseudo code of the ClockBuffer.
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Fig. 5. State transitions in clock-sweep.

the state of a Frame instancee changes as shown in Fig. 5.
When e is returned through the state 32/44, acompare-and-
swapoperation removese from the buffer pool at the transition
(c). Therefore, the same Frame instance will never be returned
to a different invocation.

B. Optimistic and Concurrent I/Os

In certain scenarios, there are race conditions in which
multiple threads attempt the same I/O operation on a fixed
frame concurrently. A process of a conventional buffer man-
agement thus waits until theio in progress lock on a fixed
frame is released when someone else has already started I/O
on the buffer [11]. Though our Nb-GCLOCK makesbufferfix
operations non-blocking, thepage-inoperation to a fixed frame
seems to remain an open problem.

To make thispage-in operation non-blocking, our non-
blocking scheme acts optimistically as shown in Fig. 6.

1 Frame slot = PAGE_CACHE.fixEntry(pageId);
2 try {
3 V page = slot.volatileGetValue();
4 if(page == null) {
5 page = read-in a page of the pageId from disk
6 slot.CASValue(null, page);
7 }
8 do application logic for the page
9 } finally {

10 slot.unpin();
11 }

Fig. 6. Usage of a buffer in our scheme.

Existing I/O schemes acquire a lock before reading a page and
releases the lock after associating the page to a frame. Taking
a lock before reading a page from disk may be reasonable,
sincelseekandreadsystem calls also require mutex exclusion.
On the other hand, our scheme does not delay the concurrent
I/O. Our optimistic I/O scheme is non-blocking by utilizing
a pread system call (Line 5), a memory barrier (Line 3) and
a Compare-and-Swap instruction(Line 6). Thepread/pwrite
system calls enable efficient I/O to the same file descriptor
from multiple threads. They are even thread-safe and thus I/Os
using them do not need user-level locking mechanisms.

Note then that the following would fill in the background
of our concurrent I/O strategies.

• Current secondary storage systems including cheap SATA
disks and SSD storages have I/O command queuing fa-
cilities that allows optimally re-ordering the execution of
I/O commands. SATA II NCQ supports a command depth
of 32 and SCSI disks can queue up to 255 commands.

• I/O requests can be reordered based, for example, on a
famous elevator algorithm by I/O schedulers of modern
operating system kernels and are not directly passed to
device drivers.

Though detailed analysis using several storage systems and
operating systems is beyond the scope of this paper, we pro-
vide a performance evaluation between a traditional blocking
I/O scheme and our optimistic and concurrent I/O scheme in



SectionIV-A.2 .

IV. EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of Nb-GCLOCK, we
compared Nb-GCLOCK with LRU, GCLOCK [15], and the
full version of 2Q [17]. We need to clarify how much our
proposed technique improves the performance for CPU-bound
and I/O-bound jobs. One of the main factors in determining
whether a job is CPU-bound or I/O-bound is the number of
disk I/Os, which depends on the buffer hit rates as well as
the ratio of dirty pages in replacement victims. Therefore,we
focus on buffer hit rates at first in SectionIV-A.1 and then give
considerations to the scalability to the number of processors
when buffer hit rates change.

As for the workloads, we followed the example provided in
the paper [17] in which the authors tried a mixed workload
containing both random accesses withZipfandistributions and
scans because database workloads generally contain scans.
For the parameters of 2Q, we used 20% and 30% of the
buffer spaces forK1in and K1out, respectively. TTAS lock
with exponential backoff is used for the synchronization of
blocking algorithms.

We performed experiments on a real machine with a Sun
UltraSPARC T2 processor (Sun SPARC Enterprise T5120
box). The detailed specification is shown in Table II. The
processor has eight CPU cores, and each core is able to handle
eight threads concurrently. Thus, the processor is capableof
processing up to 64 concurrent threads. We used the Sun JDK
1.6 for the runtime environment in all of the experiments.

Operating System Solaris 10 8/07
Core (Threads/Core) 8 (8)
Processor frequency 1.2 GHz
Main memory 16 GB
Disk SAS (10000 rpm)
L2 cache per core 4M

TABLE II

SPECIFICATIONS OFSUN SPARC ENTERPRISET5120.

A. Experiments on Mixed/Zipfan Distributions

The experiments in this section used artificially generated
workloads using aZipfan input distribution [32] with parame-
tersα = 0.5 andα = 0.86. If there are N pages, the probability
of accessing a page numbered i or less is (i/N)α, a setting ofα
= 0.86 gives an 80/20 distribution, while a setting ofα = 0.5
give a less skewed distribution (about 45/20). When running
the Zipf simulator, we modified the workloads so that it would
occasionally start scans. We used mixed workload of Zipf with
20% scans of 100 pages, and the page size commonly used
throughout our experiments is 8 KB. To emulate a multi-user
scenario, the workloads are concurrently issued from multiple
threads in which each thread uses its own simulator and
workload. We simulated a database consisting of 4,000,000
pages (32GB) and used the buffer capacity ranging from 4,096
to 32,768 pages.

1) Relation to Buffer Hit Rate:Fig. 7 shows the relationship
between buffer capacities and the buffer hit rates when 64
threads concurrently ran the above mentioned 80/20 workload
on UltraSPARC T2. With decrease in the buffer capacity, 2Q
shows better buffer hit rates than others. This result is natural
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Fig. 7. Relationship between buffer capacity and buffer hitrate (64 threads).

because 2Q is effective for sequential scans and is expected
to provide better buffer hit rates than LRU/CLOCK [17].
Of course, enough buffer capacity minimizes the differences
as the result shows in Fig. 7; however, highly concurrent
accesses cause almost random access to buffers. 2Q has two
predetermined parameters (K1in andK1out), which need to be
carefully tuned. Tuning buffer regions with a little overhead
is crucial [17], and it becomes the reason that 2Q lost its
advantages where the buffer capacity is 32768.

We also evaluated here the batching and prefetching2 tech-
nique introduced in [30] for page replacement of LRU and 2Q.
We set the configuration parameters of Bp-Wrapper as follows:
the FIFO queue size to 64 and batch threshold to 32 as used in
[30]. Fig. 8 shows throughputs of the experiment varying the
buffer capacity andZipf distributions. The batching technique,
accumulating a set of page accesses to make corresponding
replacement operations within one lock-holding period, is
apparently efficient when all pages are cached as evaluated
in [30]. However, the scheme has a pitfall when the moderate
cache misses caused in Fig. 8 because a cache miss induces
the batching; the batching involves the larger lock holding
time, and thus, the serious contentions happened in the critical
section. It was much better to acquire a spin-lock to LRU/2Q in
our setting (much more processors and cache-misses than ones
of [30]) because thebufferfix operation takes a short period
of time and the spin-lock avoided overhead from process re-
scheduling or context switching. From our experience, Bp-
wrapper was beneficial in reducing lock acquisition cost of
sleep locks.

Since our Nb-GCLOCK basically follows GCLOCK, the
hit rate shows similar tendency to that of GCLOCK. We
focus, in the following experiments, on buffer hit rates because
throughput of GCLOCK variants apparently depends on buffer
hit rates.

2) I/O in Progress and Concurrent I/Os:As described in
SectionIII-B , our scheme utilizes non-blocking (at user-level)
I/O scheme using apread system call, a memory barrier
and aCompare-and-Swapinstruction. In a general blocking
scheme, redundant I/Os never happen; However, transactions
tend to be blocked. On the other hand, when our non-blocking
I/O scheme of Fig. 6 is utilized, it does not need to block
transactions; however it causes additional I/Os as shown in

2Thier scheme simply accesses the head nodes and the siblings oftouched
nodes in FIFO lists without CPU prefetching instructions.
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Table III. Then, it needs to be proven that
• to what extent contentions are expected on the critical

section (i.e., Lines 3 to 7 in Fig. 6), and
• which strategy is effective for (massively) parallel work-

loads.
Fig. 9 shows an experimental result on the 80/20 workload on
the UltraSPARC T2 comparing the proposed scheme with the
existing lock-based schemes. In Fig. 9, “non-blocking I/O”and
“blocking I/O” respectively denote our I/O scheme introduced
in SectionIII-B and a general blocking I/O scheme usinglseek
and read system calls.

To answer the first question, we counted CAS failures
generated at Line 6 of Fig. 6, and the results are shown in
Table III. From Table III and Fig. 9, our non-blocking scheme
is effective even when contentions occur at a probability of
1.7%, which lead us to expect that the proposed technique
becomes more effective as the buffer capacity increases while
a certain threshold may exist. The Nb-GCLOCK scheme
incurred more contentions in CAS operations compared to
those in other schemes in Table III because more failures
can be observed as the system throughput increases. This
increasing throughput without compromising buffer hit rates is
the ideal goal of caching database pages. On the other hand,
the long lock holding time of blocking I/Os leads to more
serious contentions that cause context-switches and process
rescheduling and overshadows the throughput.

It is notable that we used a single disk in the experiments,
and thus this approach could be more effective on a high-
throughput disk configuration such as RAID 0.

3) Scalability to Processors:We ran a series of experiments
that varies the number of processors. In the experiments, we
disabled/enabled processors by using thepsradm command
provided by Solaris.

The first experiment measured the scalability to processors
when all pages are resident in memory. This experiment
intended to see the scalability limit expected by each algorithm
in light of adopting the non-blocking scheme to high I/O
throughput configurations. The experimental results in Fig.
10 show that our non-blocking scheme denoted as “Nb-
GCLOCK(stripe)” is nearly scalable up to 64 processors.
The scalability of “Nb-GCLOCK(atomic)”, which uses an
AtomicInteger class for the CLOCKHAND in Fig. 4, declined
between 33 and 64 processors because the naive implementa-
tion of our Nb-GCLOCK(atomic) has a global contention point
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8 (1) 16 (2) 32 (4) 64 (8)

LRU 946267 917878 961255 695153

2Q 890992 819975 866009 662782

GCLOCK 1758605 1912000 1931268 1817748

Nb-GCLOCK(atomic) 3461203 7330622 14285105 8646410

Nb-GCLOCK(stripe) 3409819 7331722 14245524 25834449

oprs/sec

(log scale)

processors (cores)

Fig. 10. Scalability to processors when pages are resident in memory.

on the CLOCKHAND. The AtomicInteger usescompare-and-
swapoperations for each decrement/increment operation, and
thus the bus lock decreases its scalability. Moreover, the costful
write operations cause CPU store buffers to flush.

Our Nb-GCLOCK(stripe) employs a striped counter as
shown in Fig. 11, which scales beyond 32 processors. On the
other hand, it can be concluded that the existing locking-based
schemes did not scale more than 16 processors according to
the results in Fig. 10.

1 AtomicInteger cnt[];
2 int get() {
3 int sum = 0;
4 for(AtomicInteger i: cnt)
5 sum += i.get();
6 return sum;
7 }
8 void add(int x) {
9 int idx = hash value of current thread% cnt.length;

10 cnt[idx].add(x);
11 }
12 void increment() {
13 add(1);
14 }

Fig. 11. Internal design of AtomicCounter class.

We also conducted a performance measurement on varying
the number of processors when disk I/Os were performed
by usingpread. The results in Fig. 12 showed that only the
proposed scheme can obtain at least log-linear performance
relative to the number of processors up to 64 processors.
“E$Nb-GCLOCK” denotes the expected scalability to proces-
sors according to the result of Nb-GCLOCK on 8 processors.

Based on the above experimental results, we conclude that



buffer LRU 2Q GCLOCK Nb-GCLOCK
capacity Contention CPU time (sec) Contention CPU time (sec) Contention CPU time (sec) Contention CPU time (sec)

4096 10619 (0.04%) 1000 (26%) 5342 (0.03%) 894.3 (23.3%) 10177 (0.05%) 983.9 (25.6%) 88396 (1.7%) 3699.8 (96.3%)
8192 5650 (0.02%) 907.9 (23.6%) 3329 (0.01%) 831.9 (21.7%) 7993 (0.03%) 1068.1 (27.8%) 65034 (0.1%) 3690.3 (96.1%)

16384 2477 (0.01%) 720.6 (18.8%) 2077 (0.008%) 721.3 (18.8%) 6157 (0.01%) 1080.8 (28.1%) 53028 (0.06%) 3683 (95.9%)
32768 733 (0.002%) 544.3 (14.2%) 998 (0.003%) 648.8 (16.9%) 5538 (0.006%) 1059.2 (27.6%) 60447 (0.03%) 3561.1 (92.7%)

TABLE III

CONTENTIONS GENERATED BY PREAD.
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our non-blocking scheme is much more scalable than existing
schemes in certain situations and has a significant advantage
over the existing blocking schemes, as confirmed with Fig. 10
where all pages are resident in memory and Fig. 12 where
disk I/Os are performed by pread under adequate hit rates.

B. Experiments on x86-64 Architecture

In Section IV-A , our non-blocking scheme showed sig-
nificant performance improvement on a SUN UltraSPARC
T2. However, it still needs to prove its efficiency on other
architectures. We have thus conducted an experiment on two
different x86-64 architectures as listed in Table IV.

Operating System Linux 2.6.22 Linux 2.6.5
OpenSUSE 10.3 SuSE (SLES) 9

CPU model Quad core Xeon E5420 Dual Core Opteron 880
Architecture SMP ccNUMA
Core (Chips) 8 (2) 8 (4)
Processor frequency 2.5 GHz 2.4 GHz
Main memory 8 GB 32 GB
Disk SATA 2 Ultra320 SCSI

(7200 rpm, NCQ) (10000 rpm)
L2 cache per core 6 MB 1 MB

TABLE IV

SPECIFICATIONS OF EACHX86-64 MACHINE .

We compared our non-blocking buffer management scheme
using Nb-GCLOCK to the existing locking-based schemes
with respect to throughputs where all pages are resident in
memory and we assume eight concurrent accesses (i.e., the
same as the number of processors) to the module. We used
LRU and 2Q for the page replacement algorithms, as with
the existing locking-based schemes, and performed the 80/20
workloads for each algorithm.

Fig. 13 shows the results of the experiment. Our schemes
(all variations of Nb-GCLOCK) outperform the existing
locking-based ones by more than 5 and 4 times on the Xeon
SMP architecture and the Opteron ccNUMA architecture,
respectively. Note that this performance gain for 8 concurrent
accesses is similar to the one expected on the SUN Ultra-
SPARC T2 (at most 4.78 times in Fig. 10).
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Fig. 13. Experiment on X86-64 architecture (8 threads).

The clear differences appearing on Nb-GCLOCK between
the two architectures can be attributed to the greater num-
ber of contentions among chips performed on the Opteron
configuration as the throughput increases. Of course, CAS
incurs more latency on a four-chip configuration than a two-
chip configuration because CAS (i.e., cmpxchg) causes bus
locks. To reducefalse sharingin the Opteron configuration,
“Nb-GCLOCK3(opt)” striped the memory location of array
elements used for the buffer pool as depicted in Fig. 14.

Fig. 14. Expressing an array as a two-dimensional vector.

The “Nb-GCLOCK3” means that the maximum value of Nb-
GCLOCK’s weighting counter is restricted to 3. This effort
is introduced to reduce CAS instructions because CMPXCHG
is very costly on Intel x86 multiprocessor systems while an
UltraSPARC T2 processor has a very cheap CAS instruction.
UltraSPARC T2 and Opteron multiprocessor systems show
better CAS and CMPXCHG performance [33], [34].

Based on the above results, we conclude that even under
medium multithreaded environments of x86 architectures, our
proposed non-blocking scheme can provide better performance
than the existing lock-based schemes and is thus the algorithm
of choice.

C. TPC-C Benchmark on Derby

We have implemented our non-blocking buffer management
scheme on Apache Derby [4]3. Apache Derby is an open

3The source code is publicly available on http://code.google.com/p/derby-
nb/.
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source RDBMS written in Java and shows competitive per-
formance to other open source RDBMSs [35]. Apache Derby
used a striped hash table for the buffer lockup and takes
a standard CLOCK for the page replacement scheme. We
compared our non-blocking scheme (Nb-GCLOCK) on T5120
(see Table II), with varied number of threads, to Derby’s one
(Derby) with respect to transactions per minute C (tpmC); the
rating from the TPC-C benchmark [36] representing OLTP
workloads. As the scaling factor of TPC-C, we set the number
of warehousesW = 16, which gives 2.1GB databases. We
used 400MB that can hold 19 % of the database as the size
of the buffer pool. The evaluation result using a TPC-C 5.4
benchmark suite is shown in Fig. 15.

From this result, it can be concluded that our non-blocking
scheme does not decrease the throughput on the TPC-C set-
ting. On the other hands, Derby’s buffer management scheme
clearly decreases the system throughput when the number of
concurrent accesses grows beyond 16. There appeared only a
marginal increase in throughput beyond 16 threads because,
as discussed in [8], Derby decreases its throughput due to the
contentions on the shared latch of the root node of the B-
Tree index. It is known that revising other database modules
is indispensable toward a high-throughput transactional pro-
cessing [37], [6] because each module can reduce the overall
throughput, and we showed in SectionIV-A that Nb-GCLOCK
improves the largest bottleneck, according to [37], in buffer
management modules. Again, it is confirmed by Fig. 15 that
our Nb-GCLOCK does not reduce the throughput.

The throughput obtained in buffer manager actually matters
on the scalability; contentions on synchronization happenin
the buffer manager under high throughput accesses. If there
are few contentions and the throughput on 16 threads is low,
the difference in CPU scalability between CLOCK and Nb-
GCLOCK becomes slight. We assume it as the major reason
of the similar performance where the number of threads is 16.
We are considering from Fig. 15 that hit-rates were a major
dominant factor when less than 9 threads and contentions
become problematic when the number of threads is greater
than 16, concerning the original Derby with CLOCK page
replacement. This result is consistent with our conclusionin
SectionIV-A.3 that the existing locking-based schemes have
scalability limits on around 16 processors.

V. RELATED WORK

Tsuei et al. [38] designed experiments to investigate how the
database size, the buffer size, and the number of CPUs impact

database performance, in particular, throughputs and buffer
hit rates on Symmetric Multiprocessor (SMP) systems. They
investigated the impact of buffer size on performance using
the TPC-C workload and observed that an adequate mem-
ory buffer size is relatively small compared to the database
size. They also suggested a rule-of-thumb of 10-15% of the
database size to achieve more than an 80% buffer hit rate.
In fact, DBT-1 and DBT-2 of OSDL database test suite
[39], which derive TPC-W and TPC-C respectively, generates
high hit-rates (greater than 95%) on PostgreSQL 8.2 when
a moderate buffer space (256MB or more) to the database
size (6.8GB and 5.6GB) can be expected [30]. As shown
in our experiment in Fig. 9, Nb-GCLOCK becomes very
effective when the buffer hit rate is about 80% or more.
These requirements for buffer capacity can realistically be
considered acceptable because 64-bit processors, which have a
huge address space, have become widespread and, moreover,
DRAM has become dense and cheap.

To avoid lock contentions on the LRU chain, ADABAS [40]
splits the buffer pool into several physical regions, whereeach
region has its own LRU chain. This approach can reduce buffer
hit rates, especially when the distribution of hash values has
skew. Moreover it is unsuited for massively multithreading
settings because buffer hit rates apparently decrease when
dividing a LRU chain into more finer regions according to
a number to processors while it is mandatory for reducing
contentions. In addition, they did not discuss how buffer hit
rates change by dividing the LRU chain.

Bp-wrapper [30] introduced a batching technique to
database buffer management. The batching technique can
be categorized as a sort oflazy synchronization[41], [26];
postpones thephysicalwork (adjusting the buffer replacement
list) and immediately returns thelogical operation. Bp-wrapper
works with any replacement algorithm and eliminates lock
contention on buffer hits. However, according to the results
in [30], the advantage is limited to LRU variants and does
not accelerate throughputs of CLOCK variants because the
scheme does not avoid lock contention on buffer misses. If
one of concurrently accessed threads (e.g., 1/10) encounters a
buffer miss and acquire an exclusive lock, Bp-wrapper must
order a blocking operation. On buffer hits, CLOCK does not
need to acquire locks and thus their scheme did not accelerate
the current buffering scheme (CLOCK) of PostgreSQL. On the
other hand, our scheme is an effective replacement of CLOCK
variants on many-core settings.

We introduced, in SectionIV-A.3 , a striped counter for the
highly contending CLOCK hand. Shared counting on shared
memory multiprocessors has been studied, for example in [42],
[43].

Transactional memory is another approach to address the is-
sue of lock contention. While hardware transactional memory
has not been publicly available, various implementations of
software transactional memory (STM) exist. STM improves
system scalability through enabling optimistic concurrency
control in a similar way to non-blocking algorithms. However,
the overhead proposed by current STM implementations is
known to reduce system throughputs and overshadow their
promise [44], though STMs improve scalability. In contrast,
our lock-free scheme does not decrease system throughputs



as shown through the experiments. Recall that lock-freedom
guarantees a certain throughput: any active thread taking a
bounded number of steps ensures global progress.

To the best of our knowledge, OS community has not
yet been working on non-blocking synchronization on page
replacement policy though they developed a concurrent radix-
tree for searching a buffer frame and utilizedRead-Copy-
Update(lock-free on read operation but not completely lock-
free when write operation happened) data structures. Buffer
management strategies between database systems and oper-
ating systems are quite different in terms of requirements
for power-saving capability; operating systems must consider
mobile devices and laptop computers while database systems,
in general, run on server machines. We assume that improving
power saving capability of Nb-GCLOCK would be challeng-
ing and analyzing tradeoff between resource utilization ofthe
system and the power saving capability is interesting toward
a greener computing.

It is to be noted that describing a non-blocking implementa-
tion, including ours, in C-style requires a non-blocking malloc
and a safe memory reclamation scheme, e.g.,hazard pointer
[45] or a concurrent garbage collector, as used in [46].

VI. CONCLUSIONS

In this paper, we proposed a lock-free variant of the
GCLOCK page replacement algorithm, named Nb-GCLOCK.
We introduced a non-blocking scheme forbufferfixoperations
that fix buffer frames for requested pages without locks by
combining Nb-GCLOCK and a wait-free hash table. Our ex-
perimental results revealed that our scheme can obtain nearly
linear scalability to processors up to 64 processors, although
the existing locking-based schemes do not scale beyond 16
processors. We assume Nb-GCLOCK, in which a nonblocking
synchronization is firstly introduced to database buffer man-
agement, takes major step towards in development of database
systems for the many-core era. Lock-free algorithms, including
ours, generally works much better than blocking ones for
massively multithreading settings though it is hard to expect
the exact performance when processors become more than 64
because large difference in the numbers of processors causes
non-negligible changes in the computer architectures.

Gray et al. suggested in [11] that a future database system
might introduce its page replacement at random since it could
have a huge buffer pool. This can be a strategy of choice in a
certain situation, though the behavior of the worst case cannot
meet the needs of critical systems. Ensuring lock-freedom
operation, as in our scheme, is considered preferable for such
practical requirements.

The proposed scheme is effective not only for database
buffer management but also for general purpose caching that
requires synchronization. One example of such an application
would be scalable query result caching for web applications,
where the requests come from over 1000 clients simultane-
ously [47].
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APPENDIX

A. Linearizability Proof

We prove that our Nb-GCLOCK algorithm is linearizable
[48]. According to [49], [26], the definition of linearizability
is equivalent to the following:

• All function calls have a linearization point at some
instant between their invocation and response.

• All functions appear to occur instantly at their lineariza-
tion points, behaving as specified by the sequential defi-
nition.

Every execution path offixEntry (see Fig. 3) has at least
one linearization point. We chose the following linearizable
points for each execution path returning through Lines 54, 70,
77, and 79, respectively:

• Thepin operation for the returned Frame instance at Line
50,

• The replaceoperation at Line 68,
• Thepin operation for the returned Frame instance at Line

67, and
• The putIfAbsentoperation at Line 65.

All of the above methods are apparently linearized because
each of them incurs at least one compare-and-swap or LL/SC.

LEMMA 1: If entry is null or already evicted in Line 50,
thenpin fails; otherwise,pin succeeds and the execution steps
into Line 51.

LEMMA 2: If prevEntry does not exist in HASHTBL at
Line 68, thenreplace fails; otherwise,replacesucceeds and
the execution steps into Line 69.

LEMMA 3: If prevEntry is not evicted in Line 67, then
pin succeeds; otherwise,pin fails and the execution steps into
Line 75.

LEMMA 4: If and only if an entry associated with thekey
does not exist in Line 65,putIfAbsentreturns null and the
execution steps into Line 79.

Lemma 1, Lemma 2, Lemma 3, and Lemma 4 derive the
following theorem:

THEOREM 4: ThefixEntryalgorithm in Fig. 3 is lineariz-
able.

B. Lock freedom

The lock-freedom property for Nb-GCLOCK means that a
thread executing thefixEntry operation completes in a finite
number of steps unless other threads are infinitely making
progress. Conversely, Nb-GCLOCK is lock-free if each loop in
fixEntry starves (until some value of the looping conditionLC

changes) only when other threads are continually completing
their invocations with changing some value ofLC. The
processes that changeLC must complete their invocations.

We give a succinct proof of the lock-freedom by extracting
every possible loops in fixEntry and proving those loops
are interfered with the progress only by other terminating
processes. The following is the complete list of the possible
loops derived by successive calls of the fixEntry method: Line
58-80 of Fig. 3 and Line 26-48 of Fig. 4, referring to as
loop-in-addEntryand loop-in-swaprespectively. We have the
following theorems concerning the loops.

THEOREM 5: loop-in-addEntry retries the loop only
when another invocation of addEntry with the samekeyvalue
was concurrently succeeded.

Proof: [Proof of Theorem 5] Another invocation of ad-
dEntry has succeeded whenloop-in-addEntryenters Line 73
because the condition on Line 68 becomes false only when
other invocation of addEntry succeeded.loop-in-addEntry
always retries the loop through Line 73, and thus, it is proved
that loop-in-addEntry retries the loop only when another
invocation of addEntry with the samekey value concurrently
succeeded.

THEOREM 6: loop-in-swapinfinitely retries the loop only
when other invocations offixEntry are concurrently succeed-
ing.

Proof: [Proof of Theorem 6] From Theorem 2 and the
possible state transitions tocontinue in Fig. 5, it follows
that loop-in-swapinfinitely retries the loop only when other
invocations offixEntry are concurrently succeeding.4

The satisfaction of Theorem 5 and Theorem 6 derives the
following theorem:

THEOREM 7: The fixEntry algorithm in Fig. 3 is lock-
free.

4A CAS success is a local success, whereas a CAS failure means another
CAS succeeded; the state machine advances when the CAS is succeeded. It
is notable that the nonblocking property of lock-freedom does not rule out
starving in situations where it is explicitly intended (Line 40 of Fig. 4).


