Nb-GCLOCK: A Non-blocking Buffer Management
Based on the Generalized CLOCK

Makoto Yui®*, Jun Miyazaki, Shunsuke Uemufaand Hayato Yamarfa

* Research Institute of Information Technological Biolog¥aseda University, Japan
T Graduate School of Information Science, Nara Institute @é&ce and Technology, Japan
¥ Faculty of Informatics, Nara Sangyo University, Japan

Department of Computer Science and Engineering, Facultgaénce and Engineering, Waseda University, Japan
{mekot o- y|m yazaki |uemura}@s. nai st.j p, yamana@waseda.jp

Abstract—In this paper, we propose a non-blocking buffer doubling for each CPU manufacturing process in about two-
management scheme based on a lock-free variant of theyear cycles. In addition, massively multithreaded process
GCLOCK page replacement algorithm. Concurrent access to e.g., Sun’s UltraSPARC T2 (64 processors) [9] and Azul

the buffer management module is a major factor that prevents . .
database scalability to processors. Therefore, we propose a non SYS€m's Vega-2 7200 Series (768 processors) [10], have

blocking scheme for bufferfix operations that fix buffer frames already been released as industrial products.
for requested pages without locks by combining Nb-GCLOCK Most of the past research efforts on database buffer man-
and a non-blocking hash table. Our experimental results revealed agement have focused on improving their efficiency with
that our scheme can obtain nearly linear scalability to processors respect to buffer hit rates on various workloads. Consettyyen
up to 64 processors, although the existing locking-based SChemeSthe literature contains very little research focusing oe th
do not scale beyond 16 processors. y g om 1
concurrency of buffer management, and most of the diffiesiti
remain to be handled by individual developers’ empirical
knowledge. In this paper, we propose a scalable buffer man-

Recent hardware trends toward multithreading for improvégement scheme that employs non-blocking synchronization
performance, including multi-core and multithreaded atiép instead of acquiring locks. To the best of our knowledges thi
sign, have raised critical challenges in software enginger Paper is the first attempt to adopt non-blocking synchreniza
[1]. It has also presented issues to the database commufi@ in buffer management. _
both in research [2], [3] and open source database developOne reason why concurrency in buffer management has not
ment. Open source DBMSs, such as PostgreSQL, MySQL a#en intensively discussed is that large-scale multimsmrs
Apache Derby [4], have had to face scalability problems with@ve not been widespread, and also the main concerns were
the increases in the number of processors. The open soufggroving buffer hit rates and minimizing I/Os. Howevereth
DBMSs did not scale beyond four processors before revisiRgfferfixoperation that fixes a buffer frame for a required page
their synchronization mechanisms in the buffer managemd#d] is not necessarily a 10-bound job. Although disk 1/Os in

I. INTRODUCTION

modules. abufferfixoperation certainly take place when synchronization
In general, there are basically three approaches to cope W disk is required for a replacement victim (i.e., the replt
concurrency issues of synchronization: page that keeps its dirty flag on), modern DBMSs reduce

. such disk 1/0s bypreflushingdirty pages and preemptively
(@) Do not acquire locks, and use a data structure that dQ@gs ting non-dirty pages for the replacement victim [11].

not require locking [5]. The synchronization mechanistis means that the number of page replacements due to
that a}vou_:is acquiring locks is calleabn-blocking syn- the bufferfix operation can be minimized if a large amount
chronization : : . of memory is available and a large buffer pool can be used. In
(b) Reduce lock granularity. Fine lock granularity reducegq case " thepufferfix operation becomes a CPU-bound task
lock contentions, alth_ough it may i!'lcrease the _o_verhe d, theréfore, the CPU scalability issue in buffer managgm
of Iock_s themselves, i.e., the total time for acquiring an ecomes particularly problematic in multiprocessor syste
releasing IOCkS.' . . . Actually, fix and unfix operations to a buffer frame are the
© Uge_ a more lightweight IOCk. mechanism. Spinlock 'Basic operations most frequently called in DBMSs. Thus,
efficient if threads are only likely to be blocked for gy,q efficiency offix and unfix operations becomes extremely
. o : ?ﬁiportant because they lead to frequent contentions in the
re-scheduling or context switching in operating systemg,itical sections [12].
The open source databases dealt with the scalability issueSeveral non-blocking algorithms for hash tables have al-
by making improvements using (b) and (c). However, sevenalady been proposed [13], [14]. In this paper, we focus on
empirical studies have shown that they have scalabilitytdim concurrency of page replacement algorithms and utilize an
of around 16 processors [6], [7], [8]. existingwait-freehash table for searching buffer frames. Then,
Database systems now demand a CPU scalability beyomd propose our Nb-GCLOCK page replacement algorithm,
16 processors because the number of CPU cores per chigvigsch is a non-blocking variant of thgeneralized CLOCK

Buffer descriptor

from holding either a shared or exclusive lock. Since system
wide mutexegend to appear for each scan of pages, it would
cause “mutex ping-pong” in multiprocessor and multitheshd
environments. Moreover, high traffic access to a lock may
causes theonvoy phenomendf?2]. Convoyingoccurs when a
thread holding a lock is descheduled by some kind of interrup
e.g., by a page fault. Then, other threads that require the
lock will queue up, unable to progress. Even after the lock

Hash |-~

lookup and bucket
allocate a buffer

—* | Hash
bucket

g
Hash
bucket

Buffer lookp _ 1 puter is released, it may take some time to drain the queue, in an
table R o an exampie frame analogous fashion that an accident can slow the flow of traffic
Buffer pool even after the debris has been cleared away.
Fig. 1. Typical organization of a buffer manager. PostgreSQL (version 8.2), MySQL (version 5.0.30) and

. _Apache Derby coped with the lock contention problems in
(GCLOCK) page replacement algorithm [15]. We also verifyheir puffer pools by adopting finer-grain locking schemes.
the effectiveness of our non-blocking page replacemert-algrney took a conventional and conservative approach [11] for
rithm with respect to its concurrency and throughput usiag Srefining the concurrency of a hash table, calleck-striping
UltraSPARC T2 [9]. The experimental results revealed that oyhich is a technique that divides a giant lock into clusters
scheme can obtain nearly linear scalability to processpi® U g4 a5 to reduce contentions. On the other hand, we attempt a
64 processors, although the existing locking-based schélme ,ore aggressive approach to synchronization toward megsiv

not scale beyond 16 processors. multithreaded environments, rather than using the coatieev
The rest of this paper is organized as follows. Section 5.

introduces the background of the need for non-blocking page o _ _
replacement. We explain why existing buffer managemeBt Revising Concurrency in Page Replacement Algorithms

schemes cause scalability bottlenecks to processorsctioBe We address here concurrency issues of page replacement
lI', we describe the details of our non-blocking page replacgtgorithms by taking three practical examplésast Recently
ment algorithm. In SectioV, we evaluate our proposeduSed(LRU), 2Q [17], andGeneralized CLOCKGCLOCK)
scheme through experiments. We refer to related works [i15].
SectionV and conclude the paper in Sectivfh. LRU is typically arranged as a double-linked list to keep
the LRU chains as shown in Fig. 1: adding new items to
the head, removing items from the tail, and moving any
In this section, we explain the background of our researelxisting items to the head when referenced (touched). When
to address open and known problems in buffer managemesing LRU, thereplacement listalways needs to be locked
by giving examples. A buffer manager typically consists aihen it is accessed. Thus, the LRU algorithm is effective
a buffer lookup tablefor searching buffer framesbuffer for single-threaded applications but becomes very slow in
descriptorsto manage a page replacement policy, atmifier a multithreaded environment. CLOCK [19], which has an
pool as shown in Fig. 1. Théuffer lookup tableis usually approximately equivalent performance to LRU, is often used
constructed as a hash table [16], [11]. The purpose of tHebufas the substitution [20]. CLOCK does not require a giant lock
lookup table is to map a page identifier to the correspondimghen an entry is touched. It needs only one atomic operation,
memory page currently holding its contents. As for the pageg., setting a reference bit on or incrementing a weighting
replacement policy, LRU, CLOCK, and their refinements [17Lounter, on the touched entry.
[18] are widely used. We refer to the module that manages aGCLOCK is an efficient variation of CLOCK and uses a

Il. BACKGROUND

page replacement policy theplacement list weighting counter instead of the use-bit of a buffer pagee Th
. references to a pagg; increment the corresponding counter
A. Internal Locking in Buffer Manager RC(3). In the basic GCLOCKRC!(i) is initialized to 1 upon

Access to a shared buffer cache has a significant scalabititg first fetch of P, and incremented by one every tinig
problem, particularly on multiprocessor systems. When ais- touched. When a buffer fault occurs, a circular search is
cessing a buffer management module, the operations to thiéiated, decrementing stepwise the weighting counterts u
critical sections must acquire their mutual exclusionsr Fthe first entry with a value of 0 is found. GCLOCK improves
example in Fig. 1, to look up a buffer in the buffer pool, &LOCK concerning buffer hit rates because only GCLOCK
shared lockis obtained in théuffer lookup tableTo alter the of them takes reference frequency into consideration.
page assignment of a buffer, axclusive locks acquired on Furthermore, LRU is known to be inefficient, in terms of
the buffer manager. This lock must be held while adjustirg thouffer hit rates, for sequential scans and laiger-Reference
replacement liseand changing théuffer lookup tableThis is Gaps(IRGs) [20]. A burst of references to infrequently used
because the referencebnffer lookup tablestill has a different pages, such as sequential scans, may cause replacement of
page identifier immediately after changing the page allonat commonly referenced pages in the cache. In [17], the authors
of a buffer frame. present the scan-resistant 2Q algorithm, which dividetieac

Suppose then that concurrent requests from multiple uséesns into hot and cold ones; the full version of the 2Q
are given. If one paging request causes a page fault addorithm uses three FIFOs for managing items. The buffer
holds an exclusive lock, the exclusive lock prevents themsth manager in Oracle universal server employed a variation of

LRU that uses two separated hot/cold queues for the LRbroughput of transaction processing can be maximized. Nb-
chain management [21]. 2Q and similar algorithms as weHCLOCK is entirely lock-free in both cache-hit and cache-
as plain LRU management have a global contention point amss cases.
their replacement lists, which degrade the scalability uffdy Our Nb-GCLOCK algorithm basically follows the prop-
managers on multiprocessor systems. erties of GCLOCK [15] except that it allows non-blocking
To cope with sequential scans expected by database waskeesses. The reasons why we selected GCLOCK as the
loads, PostgreSQL 8.0 and us initially moved from LRU to thigaseline algorithm of our non-blocking page replacemeat ar
2Q algorithm. However, as did the PostgreSQL community, w& follows:
finally realized that 2Q has an unavoidable synchronization
penalty on multithreaded systems. Therefore, PostgreS3L h
shifted to CLOCK mostly due to the contention penalty. 2)
Similarly, we shifted to a GCLOCK refinement that employs a
novel non-blocking scheme instead of a lock-based one.eThes
facts imply that lock contentions affect the overall penfiance
on the current hardware though minimizing paging I/Os is
certainly a requirement. We provide detailed performance3)
evaluations of these algorithms in Sectidh.

1) CLOCK variants are widely used due to their advan-
tages, i.e., low overhead and high concurrency.

The properties and performance of GCLOCK are well
analyzed and established [15], [25]. While the simple
CLOCK respects only theecencyof buffer references,
GCLOCK takesfrequencyas well asrecencyinto ac-
count.

The probability of contentions generated by concurrent
accesses to shared variables is low. The contention
C. Spinlock on SMT Environment indicates such a state that two or more processes con-
currently access the same memory location. A typical
CLOCK uses a single bitmap or few bitmaps to manage
reference frequency. When a bitmap is frequently up-
dated due to access skew, CLOCK becomes inefficient
on cache-coherent shared memory multiprocessors due
to false sharing On the other hand, GCLOCK keeps

Conventional multiprocessor systems widely use spinlocks
to guardcritical sections Both MySQL and PostgreSQL use
spin-wait loopswith backoff as their spinlock algorithms for
most hardware architectures.

There are several variations of the spinlock; and pastesudi
have shoyvn that the Test-and-Test-_and-Set (TTAS) lock w!th a weighting counter for each buffer frame, and thus
exponential backoff or a queue lock is one of the most promis- tentions rarely occur
ing spinlock protocols [22]. Spinlock is generally effeeti con y '
if threads are only likely to be blocked for a short period The unique feature of Nb-GCLOCK is that it adoptkek-
of time, since the cost of acquiring and releasing a lock fige linearizablepage replacementinearizability is a non-
smaller than a sleep lock, thoughspin-wait loopconsumes blocking property: a pending invocation of a total method
one processor resource. However, a spin loop can be edpeciigl never required to wait for another pending invocation
wasteful where logical processors share execution ressurd® complete. Non-blocking algorithms have two important
When such loops are executed on a processor supporting i@lperties [26]. If some operations are guaranteed to cetepl
Hyper-Threadingtechnok)gy, they can induce an add|t|onaW|th|n finite time, the algorithm is defined &xck-free A lock-
performance penalty due to memory-order violations and cofee algorithm guarantees that at least one process keeps its
sequent pipeline flushes caused upon their exit. To ensare ffle progressing. If all operations are guaranteed to cetepl
proper order of Outstanding memory OperationS, the prmes@llthln a finite time, the algorlthm is defined asait-free
incurs a severe penalty. In order to overcome this issue| Infhe first and second definitions guarantee livenessand
recommended embedding a PAUSE instruction in a spin lo&@rness properties, respectively. From this viewpoint, our
[23]. PAUSE instruction introduces a slight delay in thegooProposed buffer management scheme guaranteleskefree
and de-pipelines its execution to prevent it from aggresgiv Operation. We prove in Appendix that our Nb-GCLOCK is
consuming valuable processor resources. Zhou et al. disdugPoth linearizableand lock-free
the benefits and pitfalls of using SMT processors for (in- Our scheme takes a strategy that keeps trying its non-
memory) database operations in [24]. They used, in the splHocking operation after temporarily abandoning its exiecu
loop waiting, PAUSEinstructions on Pentium 4. and allows other threads to be executed when all buffer fsame

In summary, a spinlock requires a special care (i.e., spedia the buffer pool are pinned. Due to this decision, it is
instructions) on each hardware architecture when datab#¥@ossible to guarantee that all processing will complete i
operations are executed on SMT processors; on the other handinite time when we consider the case where all pages in
our non-blocking buffer management scheme does not acquifte buffer pool are pinned, although this is an extremelg rar
any locks for searching and allocating buffer pages, and thease. The behavior depends on whether applications that use

it is free from such difficulties in spinlocks. the cache allow failures at the buffer allocation. In a tgpic
buffer management, a transaction is aborted when all pages
I1l. N ON-BLOCKING GCLOCK FAGE REPLACEMENT are pinned [20], [11]. This abnormal condition had nevembee
ALGORITHM reached through our experiments.

This section explains our non-blocking buffer manage- As mentioned in Sectioll , we use an wait-free hash table
ment scheme based on a lock-free variant of the GCLOJHr a buffer lookup tabld¢o achieve non-blocking synchroniza-
page replacement algorithm, nambii-GCLOCK The key tion on the buffer management. The non-blocking lineatizab
idea of our algorithm is to make buffer management fullpash table has been actively developed in the literaturg [13
non-blocking and optimistic including disk I/Os so that th§l4]. We used an existing non-blocking hash table [27]; the

non-blocking hash table provides (almQstvait-freedom— tryEvict
every operation has a bound on the number of steps it will 7T \
take before completing. We utilized the wait-free hasheabl
for ensuring the overall lock-freedom of Nb-GCLOCK.

In fact, a wait-free hash table is important to ensure the eviCtUNSRATSt -

lock-freedom; however, it is not a dominant factor in terms

. N . evicted pinned
of the scalability and other concurrent hash tables inolydi
blocking-ones can be the replacement because hash tables ar Fig. 2. State machine of a pinning instance.
nf’it,ura”y parallellzable [26] or, u;mg a more technicafrte volatileGetValue | returns the associated value after interleaving
disjoint-access-paralle]28], meaning that concurrent method memory barrier for volatile load. The memory
b duced [31]
i iQini i i i arrier is reduced to no-op in x86 or SPARC [31].

calls .are. “kely to access dISjQInt _Iocat|ons, |_mply|ng ttha CASValue atomically sets the field valu¥ to the given
there is little need for synchronization. A certain coneutr updated vac}ue Iif the current value is identical

i i to expected value.
.haShm.g scheme, e.g., concurrent cuckoo hashing [26] ar.%(rijvict atomically sets the frame evicted if the frame
java.util.ConcurrentHashMap [29], use a (hash) bucketile is not evicted, and returns true if successfully
synchronization scheme that divides locks into buckets, an . evicted and otherwise returns false.

L .. evictUnshared atomically sets the frame evicted.

thus the contention is expected to be reduced. The poingis th
that hash tables can be expected to be parallelized; however TABLE |
operations on replacement algorithm are generally seeidli ROLE OF NON-OBVIOUS METHODS IN THEFRAME CLASS.
as discussed in SectidirB and [30].
A. Nb-GCLOCK Algorithm pinning value is always one or more when w@ampin operation

i L is carried outtryEvict succeeds only when the pinning value
While disjoint-access-parallelcan be expected for hashig g

tables, existingeplacement listsncluding LRU and CLOCK 25 Bufferfix Algorithm: The operation to fix a buffer frame
variants are not naturally parallelizable. Th.IS segtms_cxdbes for a requested page is callédifferfixin the literature [11].
our carefully-designed Nb-GCLOCK algorithm in Fig. 3 anerhe corresponding procedure to the bufferfix operation in ou

Fig. 4. _ _ _ Nb-GCLOCK is thefixEntry method, except that a caller is
All operations to Atomiclnteger and AtomicBoolean ar¢esponsible for the page fixing operation.

atomically executed by using synchro'nization primiti_/qshs The right half of Fig. 3 describes thBufferCacheclass
ascompare-and-swafCAS) andLoad-Link/Store-Conditional gnq its algorithmBufferCachecontains a wait-free hash table
(LL/SC). In SPARC V9, such an atomic operation is achieveflstance HASHTBL and a replacement list CLOCKBUF as its
by a native CAS instruction. ~ member variables. For readability, the algorithm of CLOCK-
1) Organization of the Buffer FrameThe left half of Fig. BUF is separately described in Fig. 4. THBufferCache
3 describes thérame class that defines cached entries. Aontains two methoddixEntry for retrieving a page slot (i.e.,
Frameinstance is associated with a single key, a single valugyffer frame) ancaddEntryfor allocating a page slot for the
and two Other Contl’0| Val’iab|es. In buﬁer management, ﬁven key In a Frame instance of F|g 3' “key“ is a|WayS stabl
represents a page identifier and V represents a page itsgHg never be changed. The “value” is changed only through
A wcountinstance keeps a weighting count of the entry, and@ASValue(nuIl, pageh Fig. 6. CASValuesucceeds only when
pinninginstance is responsible for judging whether the framgyother page on memory is not yet allocated to the frame.
is currently in use. Playing a vital role, ginning instance The addEntrymethod is called when the condition in Line
represents amvictedcondition when the value is -1. 50 of Fig. 3 becomes false, when a non-evicted page assciate
The reason why we represesttictedandpinnedstates with ith the specified page identifier does not exist in HASHTBL.
a singlepinning instance as shown in Fig. 2 is to achieve aByffer flushing is required when an evicted page has a dirty
at.omic updat_e_on these states using asynchronizationtimémiﬂag on in the purge operation @ddEntry This 1/O in the
without acquiring a lock. We introduce the state for the Feanpyrge operation is minimized in modern DBMSs as mentioned
instance whose pinning value is eVicted(see Fig. 2). in Sectionl. The invocation offixEntry fixes a frame for the

Table | explains the roles of non-obvious methods in thgyecified key and increments the weighting count of the fixed
Frame class. Thepin and unpin operations follow FIX and frame by one.

UNFIX Operations of the FIX-USE-UNFIX prOtOCOI, which is A buffer frame may be evicted at the instant Ca|||pg]

generally used in buffer management [11]. T#e/unpinand method. However, onggin method succeeds, the buffer frame
tryEvictevictUnsharedmethods atomically change a pinninthever becomes inconsistent as long as its state is “gt 1” in
value. The state of the pinning value changes by these fqtjfy. 2. Consequently, the following Theorem 1 supports the
methods as shown in Fig. 2. Then method increases thephysical stability of existing buffer frames. Moreover, ewty
pinning valueP only when P is greater than or equal to O.allocated buffer frame is not shared and thus clearly cterstis

“gt 1” in Fig. 2 represents the state where the pinning ValueTHEOREM 1: Every time an existing Frame instande

is greater than 1. As seen in the transition, the pmnmgﬁst?ﬁ_‘retumed by thdixEntry method, thepinning value of F is

does not change to the other states when once evicted. Ihe. mented by one.

1The wait-freedom is violated when a hash table is resizedhldter lookup . Proof: [Proof of Theo_rem 1] An eXiS_ting Frame instance
table is designed not to incur resizing. F is returned by the fixEntry invocation only when the

cl ass Frame { cl ass BufferCache {
1 K key; V val ue; 42 HashTabl e HASHTBL;
2 Atomiclnteger wcount = new Atomiclnteger(1); 43 d ockBuf f er CLOCKBUF;
3 Atom clnteger pinning = new Atoniclnteger(1); 44 BufferCachéi nt si ze) {
4 Framé¢ K key, V value) { 45 HASHTBL = new HashTabl e(si ze);
5 this.key = key; 46 CLOCKBUF = new O ockBuf f er (si ze);
6 this.value = value; 47 }
7} 48 Frame fixEntry(K key) {
8 V volatileGetValu¢) { 49 Franme entry = HASHTBL. get (key);
9 memory fence for volatile load 50 if(entry !'= null & entry.pin()) {
10 return val ue; 51 entry.incrWC();
11} 52 returnentry;
12 bool ean CASValud V expect, V update) { 53 } else {
13 return CAS(val ue, expect, update); 54 return addEntry(key, null);
14} 55
15 voi d incrwC() { 56 }
16 wcount.increnent(); 57 Franme addEntrf K key, V value) {
17 } 58 for(;;) {
18 bool ean decrWq) { 59 Frame newkntry = new Frane(key, value);
19 return wcount. decrenent(); 60 Franme renpved = CLOCKBUF. add(newEntry);
20 } 61 if(renmoved != null) {
21 bool ean tryEvict() { 62 i f (HASHTBL. r enpve(renoved. key, renoved))
22 return pinning. CAS(0, -1); 63 purge the removed page
23} 64 }
24 voi d evictUnsharefl) { 65 Frane prevEntry = HASHTBL. put | f Absent (key, newEntry);
25 pinning. CAS(1,-1); 66 if(prevEntry != null) {
26 } 67 if(!prevEntry.pin()) {
27 int pinCount) { 68 i f (HASHTBL. r epl ace(key, prevEntry, newentry)) {
28 return pinning.get(); 69 newent ry. set Val ue(prevEntry. get Val ue());
29 } 70 return newent ry;
30 bool ean pin() { 71 }
31 int x; 72 newEntry. evi ct Unshared() ;
32 do { 73 continue; //junp to Line 59
33 X = pinning.get(); 74 }
34 if(x <= -1) 75 newEntry. evi ct Unshared();
35 return fal se; 76 prevEntry.incrWC();
36 } while(!pinning. CAS(x, x + 1)); 77 return prevEntry;
37 return true; 78 }
38} 79 return newent ry;
39 voi d unpin() { 80 1}
40 pinning. decrenent(); 81
41} } //end BufferCache
} //end Frane

Fig. 3. Pseudo code of the buffer cache.

condition in Line 50 or 67 of Fig. 3 becomes true or false¢p GCLOCK page replacement policy. TmoveClockHand

respectively. Whenever these conditions are met, it is ¢hedr method moves the clock hand in a style of atomic add instruc-
the pinning value off” was incremented by one according tdions. We used this “add” scheme because “set” instructions
the pin specification. B to a clock hand are not robust for multithreaded accesses.

COROLLARY 1: From Theorem 1, a Frame instance Suc‘[herefore, we a.dd a ‘delta” (i.e., an absolyte difference).
We now provide theorems to give consistency to #ukel

cessfully evicted byevictUnshareds never used outside the lqorith
Frame class. algorithm.

3) CLOCK-sweep Algorithm:Selecting and swapping a. THEOREM 2: A given entry is always_ fixed to afree_space
replacement victim in the buffer pool of CLOCK is called" the buffer pool whenever decrementing the FREE instance
the clock-sweemperation. succeeds in Line 15. _

Fig. 4 describes th€lockBufferclass which manages the Proof: [Proof of Theorem 2] It is clear that at least
Nb-GCLOCK page replacement policy. It contains four men2"€ free space is ensured at t.he |_nstant when decrementing
ber variables: an atomic array “POOL” as the buffer pool, dhe FREE instance succeeds in Line 15. However, another

atomic “Free” counter responsible for managing the numbiléad may seize free space upon entesngpin Line 14
of free-slots in the buffer pool, an atomic “CLOCKHAND” immediately after the success. To cope with this cases\tlap

representing a circulating clock hand, and a “SIZE” fieldi€thod avoids using any free space and gives free space to
representing the capacity of the buffer posfomicArrayclass Other threads in Line 28. Thus, tield method fixes the given
used for POOL provides atomic operations to an array. 7y t0 free space in the buffer pool in Line 19 whenever
method invocatiorCAS(index, expect, updateh AtomicAr- decrementing the FREE instance succeeds. u
ray atomically sets the existing value of a specified indeato THEOREM 3: On add method call, the same Frame in-
updated value if the current value is identical to the exgectstance will never be returned to a different invocation.
one. Proof: [Proof of Theorem 3] Wheradd method call
The ClockBuffer class has a single entry point on #duel returns a non-null value, thewapmethod is called to return
method. Theadd method fixes the given frame to the buffe@an evicted Frame instance. The evicted instance will neger b
pool. The swap method is invoked when thadd method managed in theeplacement lis{see Line 60 to 64 of Fig. 3).
replaces an existing frame with the new frame accordingBetween Lines 27 and 47 in the for-loop ®fvap method,

cl ass ClockBuffer { 29 int pincount = e.pinCount();

1 Atomi cArray POOL; 30 if(pincount == -1) { // evicted?

2 Atonmi cl nteger FREE; 31 i f(POOL. CAS(i,e,entry)) {

3 Atom cCounter CLOCKHAND = new At omi cCounter (0); 32 nmoveC ockHand(i, start);

4 int SlIZE 33 return e;

5 ClockBuffe(i nt size) { 34

6 this.POOL = new Atom cArray(size); 35 continue;

7 this. FREE = new Atoniclnteger(size); 36

8 this.SIZE = size; 37 if(pincount > 0) { // pinned?

91} 38 i f (++nunpi nni ng>=si ze)

10 Frane add Frame entry) { 39 yield this thread and allow others to execute
11 do { 40 cont i nue;

12 int free = FREE. get(); 41 1}

13 if(free == 0) 42 if(e.decrWC() <= 0) {

14 return swap(entry); 43 if(e.tryEvict() && POOL.CAS(i,e,entry)) {
15 if(FREE. CAS(free, free - 1)) 44 noved ockHand(i, start);

16 br eak; 45 return e;

17 '} while(true); 46

18 int idx = CLOCKHAND. get(); 47 1}

19 whil e(!POOL. CAS(i dx¥sl ZE, null, entry)) 48 } //end for

20 i dx++; 49 } //end swap

21 CLOCKHAND. i ncrenent (); 50 voi d moveClockHan¢li nt curr, int start) {
22 returnnul | ; 51 int delta;

23} 52 if(curr < start)

23 Franme swag Frame entry) { 53 delta = curr + size - start + 1;

24 int nunpinning = 0; 54 el se

25 int start = CLOCKHAND. get (); 55 delta = curr - start + 1;

26 for(int i=start¥8lZE; ;i=(i+1)%5lZE) { 56 CLOCKHAND. add(del ta);

27 Franme e = POOL.get(i); 57 }

28 if(e == null) continue; } //end O ockBuffer

Fig. 4. Pseudo code of the ClockBuffer.

Frame sl ot = PAGE_CACHE. fi xEntry(pagel d);
' i 31/43 try {
E: entry action N Fxinosl \ (o)wapped V page = slot.volatileGetVal ue();
o P AN if(page == null) { A
: it page = read-in a page of the pageld from disk

sl ot . CASVal ue(nul |, page);
do application logic for the page

} finally {
sl ot.unpin();

NRoo~wounbwNR

1
43

Try to evict

“—-wecount<=0

Fig. 6. Usage of a buffer in our scheme.

Existing I/0 schemes acquire a lock before reading a page and
releases the lock after associating the page to a framen@aki

a lock before reading a page from disk may be reasonable,
sincelseekandread system calls also require mutex exclusion.
On the other hand, our scheme does not delay the concurrent
I/0. Our optimistic 1/0 scheme is non-blocking by utilizing

a pread system call (Line 5), a memory barrier (Line 3) and

a Compare-and-Swap instructiofiine 6). The preadpwrite

) o system calls enable efficient I/O to the same file descriptor
the state of a Frame instaneechanges as shown in Fig. 5.from multiple threads. They are even thread-safe and tks I/
Whene is returned through the state 32/44campare-and- sing them do not need user-level locking mechanisms.
swapoperation removes from the buffer pool at the transition Note then that the following would fill in the background
(c). Therefore, the same Frame instance will never be retlirnyt our concurrent 1/0 strategies.

to a different invocation. []

the weount

E: decrement
the weount

Fig. 5. State transitions in clock-sweep.

Current secondary storage systems including cheap SATA
disks and SSD storages have 1/0 command queuing fa-
cilities that allows optimally re-ordering the executioh o

B. Optimistic and Concurrent I/Os

In certain scenarios, there are race conditions in which
multiple threads attempt the same 1/O operation on a fixed
frame concurrently. A process of a conventional buffer man- «
agement thus waits until the_in_progresslock on a fixed

I/O commands. SATA Il NCQ supports a command depth
of 32 and SCSI disks can queue up to 255 commands.
I/O requests can be reordered based, for example, on a
famous elevator algorithm by I/O schedulers of modern

frame is released when someone else has already started /O operating system kernels and are not directly passed to

on the buffer [11]. Though our Nb-GCLOCK makbafferfix

device drivers.

operations non-blocking, thEage-inoperation to a fixed frame Though detailed analysis using several storage systems and

seems to remain an open problem.

operating systems is beyond the scope of this paper, we pro-

To make thispage-in operation non-blocking, our non-vide a performance evaluation between a traditional blagki

blocking scheme acts optimistically as shown in Fig. 6.0

scheme and our optimistic and concurrent I/O scheme in

SectionlV-A.2. 100

IV. EXPERIMENTAL EVALUATION 90 +—

In order to evaluate the effectiveness of Nb-GCLOCK, we oo | |otock
compared Nb-GCLOCK with LRU, GCLOCK [15], and the v
full version of 2Q [17]. We need to clarify how much our 70
proposed technigue improves the performance for CPU-bound //
and 1/0-bound jobs. One of the main factors in determining * ..7
whether a job is CPU-bound or 1/O-bound is the number of ©
disk I/Os, which depends on the buffer hit rates as well as
the ratio of dirty pages in replacement victims. Therefove, a0 -
focus on buffer hit rates at first in Sectitv+A.1 and then give e “fuﬂercapacfy“" e
considerations to the scalability to the number of process
when buffer hit rates change.

As for the workloads, we followed the example provided iRo.ause 20 is effective for sequential scans and is expected
the paper [17] in which the authors tried a mixed WOI’k|OaBJ . Qi N guent s oXp

o SN provide better buffer hit rates than LRU/CLOCK [17].
containing both random accesses Wiipfandistributions and Of course, enough buffer capacity minimizes the difference

scans because database workloads generally contain sc Sthe result shows in Fig. 7; however, highly concurrent

For the parameters of 2Q, we used 20% and 30% of Q€ esses cause almost random access to buffers. 2Q has two
bgffer spaces .fO'Kl'n anq Klout respectively. TTA.S l(.JCk redetermined parametetsi(in andK1louf), which need to be
with exponential backoff is used for the synchronization arefully tuned. Tuning buffer regions with a little ovestae

blocking algorithms. . . . is crucial [17], and it becomes the reason that 2Q lost its
We performed experiments on a real machine with a S vantages where the buffer capacity is 32768.

UltraSPARC T2 processor (Sun SPARC Enterprise T51 We also evaluated here the batching and prefet@rieh-

box). The detailed specification is shown in Table Il. The. ; -
processor has eight CPU cores, and each core is able to haﬁl ge introduced in [30] for page replacement of LRU and 2Q.

. h set the configuration parameters of Bp-Wrapper as follows:
eight threads concurrently. Thus, the processor is camaible,, s pirq queuegsize to 691 and batch threpshoIdF:g 32 as used in
processing up to 64 concurrent threads. We used the Sun J@ . Fig. 8 shows throughputs of the experiment varying the

1.6 for the runtime environment in all of the experiments. buffer capacity andipf distributions. The batching technique,

=¥=NbGCLOCK

buffer hit rate (%)

%ig. 7. Relationship between buffer capacity and bufferdti¢ (64 threads).

Operating System | Solaris 10 8/07 accumulating a set of page accesses to make corresponding
Core (Threads/Core] 8 (8) replacement operations within one lock-holding period, is
Eﬂggeﬁfgr;gg/q“emy e apparently efficient when all pages are cached as evaluated
Disk SAS (10000 rpm) in [30]. However, the scheme has a pitfall when the moderate
L2 cache per core | 4M cache misses caused in Fig. 8 because a cache miss induces
TABLE Il the batching; the batching involves the larger lock holding
SPECIFICATIONS OFSUN SPARC ENTERPRISET5120. time, and thus, the serious contentions happened in theatrit
section. It was much better to acquire a spin-lock to LRU/RQ i
A. Experiments on Mixed/Zipfan Distributions our setting (much more processors and cache-misses than one

of [30]) because théufferfix operation takes a short period

The experiments in this section used artificially generategl time and the spin-lock avoided overhead from process re-
workloads using &ipfaninput distribution [32] with parame- scheduling or context switching. From our experience, Bp-

tersa = 0'.5 ando = 0.86. If there_ are N pages, the pmbabi"%vrapper was beneficial in reducing lock acquisition cost of
of accessing a page numbered i or less is (i/N) setting ofu sleep locks.

= 0.86 gives an 80/20 distribution, while a settingcof= 0.5 :) ;
give a less skewed distribution (about 45/20). When runnthSmce our Nb GC-LOCK basically follows GCLOCK, the

occasionally start scans. We used mixed workload of Zipliwit,,
20% scans of 100 pages, and the page size commonly UR
throughout our experiments is 8 KB. To emulate a multi-user
scenario, the workloads are concurrently issued from plalti s
threads in which each thread uses its own simulator ag

roughput of GCLOCK variants apparently depends on buffer
ates.

2) 1/0 in Progress and Concurrent I/OsAs described in
ctionlll-B , our scheme utilizes non-blocking (at user-level)
scheme using gread system call, a memory barrier

d aCompare-and-Swamstruction. In a general blocking
eme, redundant I/Os never happen; However, transaction
tend to be blocked. On the other hand, when our non-blocking
#g scheme of Fig. 6 is utilized, it does not need to block
nsactions; however it causes additional I/Os as shown in

workload. We simulated a database consisting of 4,000,0
pages (32GB) and used the buffer capacity ranging from 4,0
to 32,768 pages.

1) Relation to Buffer Hit RateFig. 7 shows the relationship
between buffer capacities and the buffer hit rates when
threads concurrently ran the above mentioned 80/20 waikloa
on UltraSPARC T2. V_V'th decrease in the bl‘!ﬁer cape_lcny, 2Q2Thier scheme simply accesses the head nodes and the siblitmschd
shows better buffer hit rates than others. This result igmaht nodes in FIFO lists without CPU prefetching instructions.

3,500,000 3,500,000

3,000,000 =o=LRU (spinlock) 3,000,000 —| 4096 8192 m 16384 32768
==2Q (spinlock)
2,500,000 2,500,000
=36=GCLOCK

2,000,000 NbGCLOCK

=3¥=BpLRU
1,500,000 Bp2Q

2,000,000 I

oprs/sec
oprs/sec

1,500,000

1,000,000 1,000,000
500,000 ﬁé— 500,000

0 . - - . PR . 0

46.2% (16384 51.8% (4096 - 62.8% (8192 - 74.9% (32768 75.3% (16384 91.2% (32768
-20/45) 20/80) 20/80) -20/45) -20/80) -20/80)

LRU

GCLOCK

Nb-GCLOCK
Nb-GCLOCK

average buffer hit rate (buffer capacity - distribution)

Fig. 8. Throughputs obtained when varying buffer capacitg avorkload
distributions.

blocking1/O non-blocking 1/0

. Fig. 9. C i betw “pblocking /0" and “non-blockil@®”.
Table 1ll. Then, it needs to be proven that 9 empatison between “hlocking and “non-blackiig

« to what extent contentions are expected on the critical

section (i.e., Lines 3 to 7 in Fig. 6), and
« Which strategy is effective for (massively) parallel work-
loads. oprs/sec
Fig. 9 shows an experimental result on the 80/20 workload on flog scale]
the UltraSPARC T2 comparing the proposed scheme with the b
existing lock-based schemes. In Fig. 9, “non-blocking 18Dt processors (cores) [50 T o T 5 | or@
“blocking 1/O” respectively denote our I/O scheme introddc ——trU cagoe7 | o778 | os1ass | 695153
in Sectionlll-B and a general blocking I/O scheme usisgek = 890992 | 818975 | 866009 | 62782
GCLOCK 1758605 1912000 1931268 1817748
andread system calls. —4=Nb-GCLOCK(atomic)| 3461203 | 7330622 | 14285105 | 8646410
To answer the first question, we counted CAS failures —#—Nb-GCLOCK(stripe) | 3409819 | 7331722 | 14245524 | 25834449

generated at Line 6 of Fig. 6, and the results are shown i
Table Ill. From Table Il and Fig. 9, our non-blocking scheme

is effective even when contentions occur at a probability ¢f; the CLOCKHAND. The Atomiclnteger usesmpare-and-
1.7%, which lead us to expect that the proposed techniqygapoperations for each decrement/increment operation, and
becomes more effective as the buffer capacity increasele Whhys the bus lock decreases its scalability. Moreover, st

a certain threshold may exist. The Nb-GCLOCK schemgite operations cause CPU store buffers to flush.

incurred more contentions in CAS operations compared tog;, Nb-GCLOCK(stripe) employs a striped counter as
those in other schemes in Table Ill because more failurggown in Fig. 11, which scales beyond 32 processors. On the

can be observed as the system throughput increases. iy hand, it can be concluded that the existing lockirggbia
increasing throughput without compromising buffer hiesats ~ gchemes did not scale more than 16 processors according to
the ideal goal of caching database pages. On the other hagd, results in Fig. 10.
the long lock holding time of blocking 1/Os leads to more
serious contentions that cause context-switches and $80C& atoni clnteger cnt[];
rescheduling and overshadows the throughput. 2 int ge() {
. 3 int sum= 0;

It is notable that we used a single disk in the experiments, for(Atonmiclinteger i: cnt)
and thus this approach could be more effective on a high- sum+=i.get():
throughput disk configuration such as RAID 0. 7

3) Scalability to ProcessorsiVe ran a series of experiments$ Vlo'n? ?gji:thgs)h \Ealue of current threads cnt .| ent he
that varies the number of processors. In the experiments, Y€ cnt[i dx] . add(x) Sengn

i i 11 }
disabled/enabled processors by using gseadm command 12 voi d increment) {

r]:ig. 10. Scalability to processors when pages are resitdememory.

provided by Solaris. 13 add(1);
The first experiment measured the scalability to processaéfs}
when all pages are resident in memory. This experiment Fig. 11. Internal design of AtomicCounter class.

intended to see the scalability limit expected by each &lyor

in light of adopting the non-blocking scheme to high 1/0 We also conducted a performance measurement on varying
throughput configurations. The experimental results in. Fithe number of processors when disk 1/Os were performed
10 show that our non-blocking scheme denoted as “Nby usingpread The results in Fig. 12 showed that only the
GCLOCK(stripe)” is nearly scalable up to 64 processorproposed scheme can obtain at least log-linear performance
The scalability of “Nb-GCLOCK(atomic)”, which uses anrelative to the number of processors up to 64 processors.
Atomicinteger class for the CLOCKHAND in Fig. 4, declined'E$Nb-GCLOCK" denotes the expected scalability to proces-
between 33 and 64 processors because the naive implemestas according to the result of Nb-GCLOCK on 8 processors.
tion of our Nb-GCLOCK(atomic) has a global contention point Based on the above experimental results, we conclude that

buffer LRU 2Q GCLOCK Nb-GCLOCK
capacity Contention | CPU Time (Sec) Contention | CPU Time (Sec) Contention | CPU Time (Sec) Contention | CPU Time (Sec)
4096 | 10619 (0.04%) T000 (26%) 5342(0.03%) | 894.3 (23.3%) | 10177 (0.05%)| 983.9 (25.6%)| 88396 (1.7%)| 3699.8 (96.3%)
8192 5650 (0.02%) | 907.9 (23.6%)| 3329 (0.01%)| 831.9 (21.7%)| 7993 (0.03%) | 1068.1 (27.8%)| 65034 (0.1%) | 3690.3 (96.1%)
16384 2477 (0.01%) | 720.6 (18.8%)| 2077 (0.008%)| 721.3 (18.8%)| 6157 (0.01%)| 1080.8 (28.1%)| 53028 (0.06%) 3683 (95.9%)
32768 733 (0.002%) | 544.3 (14.2%)| 998 (0.003%) | 648.8 (16.9%)| 5538 (0.006%)| 1059.2 (27.6%)| 60447 (0.03%)| 3561.1 (92.7%)
TABLE Il
CONTENTIONS GENERATED BY PREAD
3500000 8,000,000
3000000 —— ™RV o000
20 6,000,000
2500000 +— m GCLOCK B L 5,000,000 |
% 2000000 4 B Nb-GCLOCK | £ 400000 |
2 ESNb-GCLOCK s
& 3,000,000 |
S 1500000 -
2,000,000 |
1000000 1,000,000 :l —I —I —
0
500000 LRU 2 GCLOCK | Nb-GCLOCK GC['&KS Nb;(f;f)’“
0 1 'Q";‘_tgf:;“ 1205061 1308776 1656718 6368404 6603253 6672930
D"E';_::;Szzem" 1335554 1289447 1718766 4938970 5056886 5574922
8192 16384
(62.8%) (75.3%)
buffer capacity (buffer hit rate) Fig. 13. Experiment on X86-64 architecture (8 threads).
Fig. 12. Scalability to processors when using pread for ek

The clear differences appearing on Nb-GCLOCK between
our non-blocking scheme is much more scalable than existifitg two architectures can be attributed to the greater num-
schemes in certain situations and has a significant advant8§" of contentions among chips performed on the Opteron
over the existing blocking schemes, as confirmed with Fig. @nfiguration as the throughput increases. Of course, CAS
where all pages are resident in memory and Fig. 12 whdRgurs more latency on a four-chip configuration than a two-

disk I/Os are performed by pread under adequate hit rateschip configuration because CAS (i.e., cmpxchg) causes bus
locks. To reducdalse sharingin the Opteron configuration,

B. Experiments on x86-64 Architecture “Nb-GCLOCK3(opt)” striped the memory location of array

In Section IV-A, our non-blocking scheme showed sigelements used for the buffer pool as depicted in Fig. 14.
nificant performance improvement on a SUN UltraSPARC

T2. However, it still needs to prove its efficiency on other
architectures. We have thus conducted an experiment on two
different x86-64 architectures as listed in Table IV.

n

A"av‘o‘l‘z‘a

4
Vi

Cache line

R Le]

Operating System Linux 2.6.22 Linux 2.6.5
OpenSUSE 10.3 SuSE (SLES) 9 2D Line 1
CPU model Quad core Xeon E542(0 Dual Core Opteron 880 vector n "
Architecture SMP ccNUMA
Core (Chips) 8 (2) 8 (4) ;
Processor frequency 2.5 GHz 2.4 GHz tine3
Main memory 8 GB 32 GB
Disk SATA 2 Ultra320 SCS f i _di i
(7200 rpm, NCQ) (10000 rpm) Fig. 14. Expressing an array as a two-dimensional vector.
[2 cache per core | 6 MB T™MB

The “Nb-GCLOCK3” means that the maximum value of Nb-
GCLOCK'’s weighting counter is restricted to 3. This effort
is introduced to reduce CAS instructions because CMPXCHG
We compared our non-blocking buffer management schensevery costly on Intel x86 multiprocessor systems while an
using Nb-GCLOCK to the existing locking-based schemddltraSPARC T2 processor has a very cheap CAS instruction.
with respect to throughputs where all pages are residentUitraSPARC T2 and Opteron multiprocessor systems show
memory and we assume eight concurrent accesses (i.e., ibter CAS and CMPXCHG performance [33], [34].
same as the number of processors) to the module. We useBased on the above results, we conclude that even under
LRU and 2Q for the page replacement algorithms, as withedium multithreaded environments of x86 architectures, o
the existing locking-based schemes, and performed thed80foposed non-blocking scheme can provide better perforenan
workloads for each algorithm. than the existing lock-based schemes and is thus the dlgorit
Fig. 13 shows the results of the experiment. Our schemaischoice.
(all variations of Nb-GCLOCK) outperform the existing
locking-based ones by more than 5 and 4 times on the Xe0h TPC-C I?,enchmark on Derby _
SMP architecture and the Opteron ccNUMA architecture, VW& have implemented our non-blocking buffer management
respectively. Note that this performance gain for 8 corentrr Scheme on Apache Derby [4]Apache Derby is an open
accesses is similar to the_ one _exp_ected on the SUN UltrasThe source code is publicly available on http://code.ge@gim/p/derby-
SPARC T2 (at most 4.78 times in Fig. 10). nb/.

TABLE IV
SPECIFICATIONS OF EACHX86-64 MACHINE.

1400 database performance, in particular, throughputs andetbuff

- hit rates on Symmetric Multiprocessor (SMP) systems. They
/j(investigated the impact of buffer size on performance using

1200 the TPC-C workload and observed that an adequate mem-
tpmC 1100 / \‘\ ory buffer size is relatively small compared to the database
/ \ N size. They also suggested a rule-of-thumb of 10-15% of the
1000 / database size to achieve more than an 80% buffer hit rate.
500 N In fact, DBT-1 and DBT-2 of OSDL database test suite
" [39], which derive TPC-W and TPC-C respectively, generates
e 1 2 e bs high hit-rates (greater than 95%) on PostgreSQL 8.2 when
of terminals (threads) a moderate buffer space (256MB or more) to the database

Fig. 15. Comparison of tpmC between Nb-GCLOCK and Derby’s CKOC $|Ze (6.8GB _and 5'_668_) can be expected [30]. As shown
in our experiment in Fig. 9, Nb-GCLOCK becomes very
source RDBMS written in Java and shows competitive pefgffective when the buffer hit rate is about 80% or more.
formance to other open source RDBMSs [35]. Apache Derdyiese requirements for buffer capacity can realisticakly b
used a striped hash table for the buffer lockup and take@nsidered acceptable because 64-bit processors, whietaha
a standard CLOCK for the page replacement scheme. \Weéde address space, have become widespread and, moreover,
compared our non-blocking scheme (Nb-GCLOCK) on T5140RAM has become dense and cheap.
(see Table II), with varied number of threads, to Derby’s one T0 avoid lock contentions on the LRU chain, ADABAS [40]
(Derby) with respect to transactions per minute C (tpma@; tt$Plits the buffer pool into several physical regions, whesieh
rating from the TPC-C benchmark [36] representing OLTFegion has its own LRU chain. This approach can reduce buffer
workloads. As the scaling factor of TPC-C, we set the numbBjt rates, especially when the distribution of hash valuas h
of warehousesV = 16, which gives 2.1GB databases. weskew. Moreover it is unsuited for massively multithreading
used 400MB that can hold 19 % of the database as the sP&tings because buffer hit rates apparently decrease when
of the buffer pool. The evaluation result using a TPC-C 5dviding a LRU chain into more finer regions according to
benchmark suite is shown in Fig. 15. a number to processors while it is mandatory for reducing
From this result, it can be concluded that our non-blockirgPntentions. In addition, they did not discuss how buffér hi
scheme does not decrease the throughput on the TPC-C &€s change by dividing the LRU chain. .
ting. On the other hands, Derby’s buffer management schemd3P-wrapper [30] introduced a batching technique to
clearly decreases the system throughput when the numbef€@fabase buffer management. The batching technique can
concurrent accesses grows beyond 16. There appeared orfif f£ategorized as a sort @&zy synchronizatiorj41], [26];
marginal increase in throughput beyond 16 threads becaud@stpones thehysicalwork (adjusting the buffer replacement
as discussed in [8], Derby decreases its throughput duesto #§t) and immediately returns tHegical operation. Bp-wrapper
contentions on the shared latch of the root node of the BOrks with any replacement algorithm and eliminates lock
Tree index. It is known that revising other database modulégntention on buffer hits. However, according to the result
is indispensable toward a high-throughput transactiona# pin [30], the advantage is limited to LRU variants and does
cessing [37], [6] because each module can reduce the oveP®i accelerate throughputs of CLOCK variants because the
throughput, and we showed in SectidhA that Nb-GCLOCK scheme does not avoid lock contention on buffer misses. If
improves the largest bottleneck, according to [37], in @uff one of concurrently accessed threads (e.g., 1/10) enasuate
management modules. Again, it is confirmed by Fig. 15 thAuffer miss and acquire an exclusive lock, Bp-wrapper must
our Nb-GCLOCK does not reduce the throughput. order a blocking operation. On buffer hits, CLOCK does not
The throughput obtained in buffer manager actually mattefged to acquire Ipcks and thus their scheme did not accelerat
on the scalability; contentions on synchronization hapipen the current buffering scheme (CLOCK) of PostgreSQL. On the
the buffer manager under high throughput accesses. If théfger hand, our scheme is an effective replacement of CLOCK
are few contentions and the throughput on 16 threads is I{@"ants on many-core settings. _
the difference in CPU scalability between CLOCK and Nb- Ve introduced, in Sectiotv-A.3, a striped counter for the
GCLOCK becomes slight. We assume it as the major reas¥ghly contending CLOCK hand. Shared counting on shared
of the similar performance where the number of threads is 1§emory multiprocessors has been studied, for example in [42
We are considering from Fig. 15 that hit-rates were a maj#3]- _ _ _
dominant factor when less than 9 threads and contentions! ransactional memory is another approach to address the is-
become problematic when the number of threads is greafée of lock contention. While hardware transactional memory
than 16, concerning the original Derby with CLOCK paggas not been pupllcly available, various !mplemen'tatlohs 0
replacement. This result is consistent with our conclusion Software transactional memory (STM) exist. STM improves
SectionIV-A.3 that the existing locking-based schemes hagystem scalability through enabling optimistic concuesen

scalability limits on around 16 processors. control in a similar way to non-blocking algorithms. Howeve
the overhead proposed by current STM implementations is
V. RELATED WORK known to reduce system throughputs and overshadow their

Tsuei et al. [38] designed experiments to investigate haw tpromise [44], though STMs improve scalability. In contrast
database size, the buffer size, and the number of CPUs impawt lock-free scheme does not decrease system throughputs

as shown through the experiments. Recall that lock-freeda@and JSPS research fellowships for young scientists from the
guarantees a certain throughput: any active thread takinglapan Society for the Promotion of Science.
bounded number of steps ensures global progress.
To the best of our knowledge, OS community has not REFERENCES
yet been working on non-blocking synchronization on pagey . sutter, “The Free Lunch Is Over: A Fundamental Turn Tawa
replacement policy though they developed a concurrenk+yadi Concurrency in Software,Dr. Dobb’s Journa) vol. 30, no. 3, March
. . _ ; 2005.
trez forlsel?rfChmg a budﬁer frame ?)nd uthRbald Cloply k [2] J. Cieslewicz, J. Berry, B. Hendrickson, and K. A. RosReélizing
Up ate(oc 3 '_’ee on ree_‘ operation but not completely lock- Parallelism in Database Operations: Insights from a MagsiMulti-
free when write operation happened) data structures. Buffe threaded Architecture,” iProc. DaMoN 2006. _
management strategies between database systems and ofsénl. Cieslewicz, K. A. Ross, and I. Giannakakis, “ParaBeffers for Chip
ti t ite diff tin t £ . t Multiprocessors,” inProc. DaMoN 2007.
aung sys em‘c_’ are qut e feren .m erms o requweme.n ﬁl] Apache Software Foundation, “The Apache Derby Prdject,
for power-saving capability; operating systems must agrsi http://db.apache.org/derby/. o
mobile devices and laptop computers while database systentd %O%t(\e/;'%isé ;‘r';gtti?t'fj'tféef% r'?);lta;\l ?{”ﬂ‘gg\fefgg%h-D- dismtion, Rensselaer
In general,. runon Se_r}/er machines. We assume that mprovn&g R. Johnson, I. Panc’Jis, N,. Haylrdaveillas, A Ailamaki, and Flsafi,
power saving capability of Nb-GCLOCK would be challeng-" ~ “Shore-MT: A Scalable Storage Manager for the Multicore,EraProc.
ing and analyzing tradeoff between resource utilizatiothef . SD]?TI,me?-S ina b SOL on SMP Archi Bodate”
system and the power saving capability is interesting tdwarl’l D- Tolbert, "Scaling PostgreSQL on rehitectures r Bpdate,
a greener computing.

in The PostgreSQL Conferenc2007.
It is to be noted that describing a non-blocking implementa-

[8] A. Morken, “Apache Derby SMP scalability,” Master’s tis, Norwe-
gian University of Science and Technology, June 2007.
: ; : : _ : _ ; [9] Sun Microsystems, Inc., “UltraSPARC T2 Processor,”
tion, including ours, in C-style requires a non-blockinglloz http://www.sun.com/processors/UltraSPARC-T2/.

and a safe memory reclamation scheme, dégzard pointer [10] “Azul Systems, Inc.” http://www.azulsystems.com/.

[45] or a concurrent garbage collector, as used in [46]_ [11] J. Gray and A. ReuteiTransaction Processing : Concepts and Tech-
niqgues Morgan Kaufmann, 1992.

[12] M. Blasgen, J. Gray, M. Mitoma, and T. Price, “The ConvoleP
nomenon,”SIGOPS Oper. Syst. Revol. 13, no. 2, pp. 20-25, April

1979.
0. Shalev and N. Shavit, “Split-Ordered Lists: LockeErExtensible

VI. CONCLUSIONS

In this paper, we proposed a lock-free variant of the]
i) 13
GCITOCK page replacemer_n algorithm, name(_j Nb GC.LOCK' Hash Tables,"Journal of the ACMvol. 53, no. 3, pp. 379-405, May
We introduced a non-blocking scheme farfferfixoperations 20086.
that fix buffer frames for requested pages without locks kig4] C. Purcell and T. Harris, “Non-blocking Hashtablestw@pen Address-

combining Nb-GCLOCK and a wait-free hash table. Our ex- ilngé' ilr‘21DiS"ib“ted Computing (DISC) Springer Berlin, 2005, pp.

perimental results revealed that our scheme can obtaifynegfs) 3. smith, “Sequentiality and Prefetching in Datab&gstems ACM

linear scalability to processors up to 64 processors, agtho

Trans. Database Systol. 3, no. 3, pp. 223-247, September 1978.

the existing locking-based schemes do not scale beyond [4® W. Effelsberg and T. Haerder, *Principles of Databaséfé Manage-

processors. We assume Nb-GCLOCK, in which a nonblocki
synchronization is firstly introduced to database buffenma

ment,” ACM Trans. Database Systiol. 9, no. 4, pp. 560-595, 1984.

M¥] T. Johnson and D. Shasha, “2Q: A Low Overhead High Pevéoice

Buffer Management Replacement Algorithm,”Rmoc. VLDB 1994, pp.

agement, takes major step towards in development of daiabﬁs 439-450.

. " 8] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An Effeetimprove-
systems for the many-core era. Lock-free algorithms, fioig ment of the CLOCK Replacement,” Proc. USENIX April 2005, p. 35.

ours, generally works much better than blocking ones f@ro] F. J. Corbato, “A paging experiment with the multics systein In
massively multithreading settings though it is hard to expe Honor of Philip M. Morse Feshbach and Ingard, Eds. ~ Cambridge,

Mass: MIT Press, 1969, p. 217.
the exact performance when processors become more tha’iz@f‘ R. Ramakrishnan and J. Gehri@atabase Management Systertisrd

because large difference in the numbers of processorscause ed. ed. McGraw-Hill Science/Engineering/Math, August 200
non-negligible changes in the computer architectures. [21] W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and Nlacnaughton,

: “The Oracle Universal Server Buffer,” iProc. VLDB Morgan
Gray et al. suggested in [11] that a future database system . imann Publishers Inc., 1997, pp. 590-594.

might introduce its page replacement at random since itdcoy2] T. E. Anderson, “The Performance of Spin Lock Alternesior Shared-
have a huge buffer pool. This can be a strategy of choice in a Monley MuEl;tlplrgCJessors,ﬂElSE)gOTrans. Parallel Distrib. Syst.vol. 1,
certain situation, though the behavior of the worst caseagn 5, no. L Pp. 5720, January Lob.

. . Intel Corporation, “Using spin-loops on Intel Pentivinprocessor and
meet the needs of critical systems. Ensuring lock-freedom’ intel Xeon processor,” Order Number: 248674-002, May 2001.

operation, as in our scheme, is considered preferable fir si24] g)- thou, J. Cieslevg_cz, Ilt< A. Fios?\»/,I E}Ptth' ghahg‘lmprwmatgbase
H H errormance on Imulitaneous ultithreading rocessors,Proc.
practical requirements. _ VLDB. VLDB Endowment, 2005, pp. 49—60.
The proposed scheme is effective not only for databagg] v. F. Nicola, A. Dan, and D. M. Dias, “Analysis of the gentzed
buffer management but also for general purpose caching that clock buffer replacement scheme for database transactiaregsing,”

; ot g SIGMETRICS Perform. Eval. Revol. 20, no. 1, pp. 35-46, June 1992.
requires synchronization. One example of such an appitati 26] M. Herlihy and N. Shavit,The Art of Multiprocessor Programming

would be scalable query result caching for W(_ab app_lications Morgan Kaufmann, March 2008.
where the requests come from over 1000 clients simultarig?] C. Click, “high-scale-lib," http://sourceforge.ipiojects/high-scale-lib.
ously [47] [28] A. Israeli and L. Rappoport, “Disjoint-Access-Paehlimplementations
' of Strong Shared Memory Primitives,” ifroc. PODG 1994, pp. 151
160.
ACKNOWLEDGMENT [29] D. Lea, “JSR 166: Congurrency Utilities,”
This work was supported in part by MEXT (Grant-in-__ hitp://icp.org/en/jsr/detail?id=166, 2004.

. . e L 30] X. Ding, S. Jiang, and X. Zhang, “BP-Wrapper: A Systemrireavork
Aid for Scientific Research on Priority Areas #210130355, Making Any Replacement Algorithms (Almost) Lock Contentiore&?

MEXT (Grant-in-Aid for Young Scientists (B) #21700111) in Proc. ICDE 2009.

[31] D. Lea, “The JSR-133 Cookbook for Compiler Writers,” LEMMA 2: If prevEntry does not exist in HASHTBL at

- *gtrgl/?&%fhs-Aoivgiggbigi;ﬁgirn;ﬂg?;ﬁmﬁz*X’;“('j-ison Wesley Profes Line 68, thenreplacefails; otherwise,replace succeeds and
sional, April 1998, vol. 3. the execution steps into Line 69.

[33] K.Russelland D. Detlefs, “Eliminating Synchronizati®elated Atomic ~~ LEMMA 3: If prevEntry is not evicted in Line 67, then

Operations with Biased Locking and Bulk Rebiasin§/[GPLAN Not. pin succeeds; otherwisgjn fails and the execution steps into
vol. 41, no. 10, pp. 263-272, October 2006. Line 75

[34] “mubench,” http://mubench.sourceforge.net/. ’

[35] O. Sandsi, D. Tjeldvoll, and K. A. Hatlen, “Apache Derby Perfor- LEMMA 4: If and only if an entry associated with tiey

mance,” inApacheCon2005. does not exist in Line 65putlifAbsentreturns null and the

[36] T. Council, “Tpc-c,” http://www.tpc.org/tpcc/. i ; i

[37] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonledma'OLTP execution steps into Line 79. .
Through the Looking Glass, and What We Found There,’Pinc. Lemma 1, Lemma 2, Lemma 3, and Lemma 4 derive the
SIGMOD New York, NY, USA: ACM, 2008, pp. 981-992. ~ following theorem:

[38] T.-F. Tsuei, A. N. Packer, and K.-T. Ko, “Database bufé&ze investi- THEOREM 4: ThefixEntryalgorithm in Fig. 3 is lineariz-

gation for OLTP workloads,” irSIGMOD ACM, 1997, pp. 112-122. bl
[39] The Open Source Development Laboratory, “OSDL Databasst able.
Suite,” http://osdldbt.sourceforge.net/.
[40] H. Scloning, “The ADABAS Buffer Pool Manager,” iProc. VLDR ~ B. Lock freedom

g?g FG%”CiSCO’ CA, USA: Morgan Kaufmann Publishers Inc.8188. The |ock-freedom property for Nb-GCLOCK means that a

[41] M. Moir, “Laziness Pays! Using Lazy Synchronization ehanisms to thread executing théxEntry operation completes in a finite
Improve Non-Blocking ConstructionspPistributed Computingvol. 14, number of steps unless other threads are infinitely making
no. 4, pp. 193-204, December 2001. roar nversely. Nb- L K is lock-free if hi i

[42] M. Herlihy, B.-H. Lim, and N. Shavit, “Scalable ConcunteCounting,” progress. Converse Y, b-GCLOCK is loc ee I eacn 1aop
ACM Trans. Comput. Systol. 13, no. 4, pp. 343-364, November 1995 /IXEntry starves (until some value of the looping conditioff

[43] S. Moran, G. Taubenfeld, and I. Yadin, “Concurrent Ciingy” in Proc. changes) only when other threads are continually comgjetin

] (F;Ogc Ne:/v(\:(orlél, Ng, Ill-’SMAi ’\AAC’;]"' %Q%Z:V%P-g?—@ W hi their invocations with changing some value &C. The
. Cascaval, C. blunaell, M. Michael, H. W. Cain, P. WU, Iras, A .
and S. Chatterjee, “Software Transactional Memory: Why Isrityar Processes that chande” must complete their invocations.
Research Toy?Commun. ACMvol. 51, no. 11, pp. 40-46, 2008. We give a succinct proof of the lock-freedom by extracting

[45] M. M. Michael, "Hazard Pointers: Safe Memory ReclamationLock- ~ every possible loops in fixEntry and proving those loops
Free Objects,IEEE Transactions on Parallel and Distributed Systems,

vol. 15, no. 6, pp. 491-504, 2004. are interfered with the progress only by other terminating
[46] J. Dybnis, “nbds,” http://code.google.com/p/nbds/. processes. The following is the complete list of the possibl
[47] D. Kegel, “The C10K problem,” http://www.kegel.com/ddatml. loops derived by successive calls of the fixEntry methodeLin

[48] M. P. Herlihy and J. M. Wing, “Linearizability: A Corrégess Condition - ; ; - ; ;
for Concurrent Objects,ACM Trans. Program. Lang. Systol. 12, 58-80 of Fig. 3 and Line 26-48 of Fig. 4, referring to as

no. 3, pp. 463492, July 1990. loop-in-addEntryand loop-in-swaprespectively. We have the
[49] —, “Axioms for Concurrent Objects,” ilPOPL, 1987, pp. 13-26. following theorems concerning the loops.
THEOREM 5: loop-in-addEntry retries the loop only
APPENDIX when another invocation of addEntry with the sakegvalue
A. Linearizability Proof was concurrently succeeded.

) o) Proof: [Proof of Theorem 5] Another invocation of ad-
We prove that our Nb-GCLOCK algorithm is Ilnearlzablqumry has succeeded whésop-in-addEntryenters Line 73
[48]. According to [49], [26], the definition of linearizalty pecause the condition on Line 68 becomes false only when
is equivalent to the following: other invocation of addEntry succeedeldop-in-addEntry
« All function calls have a linearization point at somealways retries the loop through Line 73, and thus, it is pdove
instant between their invocation and response. that loop-in-addEntry retries the loop only when another
« All functions appear to occur instantly at their linearizainvocation of addEntry with the sanlesyvalue concurrently
tion points, behaving as specified by the sequential defdcceeded. []

nition. THEOREM 6: loop-in-swapinfinitely retries the loop only
Every execution path ofixEntry (see Fig. 3) has at leastwhen other invocations dixEntry are concurrently succeed-
one linearization point. We chose the following linearieab ing.
points for each execution path returning through Lines 84, 7 Proof: [Proof of Theorem 6] From Theorem 2 and the

77, and 79, respectively: possible state transitions toontinuein Fig. 5, it follows
« Thepin operation for the returned Frame instance at Lirf§iat l00p-in-swapinfinitely retries the loop only when other
50 invocations offixEntry are concurrently succeedifig. []
. Thé replaceoperation at Line 68 The satisfaction of Theorem 5 and Theorem 6 derives the
« Thepin operation for the returned Frame instance at Linf@!lowing theorem: o _
67. and THEOREM 7: The fixEntry algorithm in Fig. 3 is lock-
’ free.

« The putlfAbsentoperation at Line 65.

All of the above methods are apparently linearized because
each of them incurs at least one compare-and-swap or LL/SC.
LEMMA 1: If entry is null or already evicted in Line 50, 4A CAS success is a local success, whereas a CAS failure meattsean

. o . . . AS succeeded; the state machine advances when the CAS &ededc It
thenpln fails; otherW|sep|n succeeds and the execution Steg notable that the nonblocking property of lock-freedonesimot rule out

into Line 51. starving in situations where it is explicitly intended (kid0 of Fig. 4).

